Journal of Physics: Complexity

PAPER « OPEN ACCESS

|dentification of city motifs: a method based on modularity and similarity
between hierarchical features of urban networks

To cite this article: Guilherme S Domingues et al 2022 J. Phys. Complex. 3 045003

View the article online for updates and enhancements.

This content was downloaded from IP address 143.107.180.158 on 24/10/2022 at 12:23


https://doi.org/10.1088/2632-072X/ac9446

10P Publishing

OPEN ACCESS

® CrossMark

RECEIVED
4 August 2022

ACCEPTED FOR PUBLICATION
22 September 2022

PUBLISHED
18 October 2022

Original content from
this work may be used
under the terms of the
Creative Commons

Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOL.

J.Phys.Complex. 3 (2022) 045003 (24pp) https://doi.org/10.1088/2632-072X/ac9446

Journal of Physics: Complexity

PAPER

|dentification of city motifs: a method based on modularity
and similarity between hierarchical features of urban networks

Guilherme S Domingues”, Eric K Tokuda*© and Luciano da F Costa

Sao Carlos Institute of Physics-DFCM, University of Sao Paulo, Av. Trabalhador Sao-carlense 400, Sao Carlos, S.P., 13566-590, Brazil
* Author to whom correspondence should be addressed.

E-mail: tokudaek@usp.br

Keywords: networks, motifs, cities

Abstract

Several natural and theoretical networks can be broken down into smaller portions, henceforth
called neighborhoods. The more frequent of these can then be understood as motifs of the
network, being therefore important for better characterizing and understanding of its overall
structure. Several developments in network science have relied on this interesting concept, with
ample applications in areas including systems biology, computational neuroscience, economy and
ecology. The present work aims at reporting a methodology capable of automatically identifying
motifs respective to streets networks, i.e. graphs obtained from city plans by considering street
junctions and terminations as nodes while the links are defined by the streets. Interesting results are
described, including the identification of nine characteristic motifs, which have been obtained by
three important considerations: (i) adoption of five hierarchical measurements to locally
characterize the neighborhoods of nodes in the streets networks; (ii) adoption of an effective
coincidence similarity methodology for translating datasets into networks; and (iii) definition of
the motifs in statistical terms by using community finding methodology. The nine identified motifs
are characterized and discussed from several perspectives, including their mutual similarity,
visualization, histograms of measurements, and geographical adjacency in the original cities. Also
presented is the analysis of the effect of the adopted features on the obtained networks as well as a
simple supervised learning method capable of assigning reference motifs to cities.

1. Introduction

Through a long period of time, cities unfolded as a means to provide resources to humans, including basic
infrastructure as well as access to transportation, food, health, leisure, etc. At the same time, city planning has
had to adapt to geographical and environmental constraints, including geographical and climatic characteris-
tics. Each city can thus be understood as a solution to the specific demands and constraints at varying levels
of optimization.

Given that the spatial and topological organization of cities are close and directly related to the above
observed aspects, their respective study (e.g. [1-9]) provides valuable means not only for better understand-
ing how cities are organized, but also for possibly identifying how specific topological features of a city may be
related to urbanistic and transportation aspects. Respectively obtained results and insights can then be shared
among municipalities as a possible subsidy for planning and improvement initiatives.

The cities to be analysed are often assumed to be represented as respective complex networks (e.g. [10—13]),
which can be achieved by representing streets crossings as nodes, while the streets or avenues between two
nodes are taken as a respective link.

While the overall topology of a whole city can be characterized in terms of global topological measurements,
including statistical properties of blocks and streets, this type of global characterization cannot account for
varying local interconnectivity taking place at different locations in a city. For instance, even if a city is found
to have blocks with an average of four sides, there may still be blocks with three, five or more sides. In addition,
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Figure 1. A small portion of Liverpool, UK (derived from Open Street Maps [14]), illustrating the potential diversity
neighborhoods around each node, characterized by distinct local topological properties. The identification of recurring
neighborhood types, here called city motifs, provides subsidies for developing several analysis aimed and better understanding and
optimizing cities. The automated identification of city motifs constitutes the main objective of the present work.

some portions of a city can be more or less densely covered by streets. As a consequence, although global char-
acterization of a city organization can provide valuable respective information, it is also of particular interest to
perform studies of local, mesoscopic topological properties of cities. This can be achieved by focusing on a size-
limited neighborhood around each of the points of interest, which are henceforth understood to correspond
to each crossing between two or more streets or avenues.

Figure 1 illustrates a small portion of a city (Liverpool, UK) involving several parts characterized by specific
local properties, including highly regular square blocks, varying density regions, as well as street dead ends.
The identification of the recurring neighborhood types, here called motifs, can contribute to developing and
applying enhanced approaches not only to the characterization of cities, but also their better understanding,
planning and optimization.

In this work, cities are understood as corresponding to transportation networks. Each street intersection
and dead end are represented as nodes of these networks, while the streets themselves define the respective
interconnections between these nodes. Cities are typically composed by several boroughs or districts, which
are not specifically taken into account in the present work. Each node i of a streets network will be associated to
a respective subgraph, namely its neighborhood, corresponding to the nodes that are at successive topological
distances, up to a maximum H, from node i. These neighborhoods will be henceforth expressed as 7y(i). The
topology of these neighborhoods are here characterized in terms of respective hierarchical measurements. Coin-
cidence similarity networks are then obtained by taking into account the similarity between the hierarchical
measurements.

The concept of motifs in networks (e.g. [15, 16]) has allowed several interesting results in network science,
with ample applications in biochemistry, neurobiology, ecology, engineering, economy [17], transportation
and infrastructure [ 18]. Because of the intrinsic topological variations expected to be found in streets networks,
the identification of possible motifs needs to be done statistically (e.g. [19, 20]), while taking into account a
set of informative local/mesoscopic topological measurements. For instance, it could be expected that highly
regular, orthogonal neighborhoods would produce a respective motif, being topologically characterized by
nearly constant degree distribution and small clustering coefficient values. Other possible motifs would be
related to dead ended streets (degree one), triangular blocks, as well as interfaces between city regions with
distinct properties.

A method for translating datasets into respective networks, reported in [21], has been successfully applied
to several types of problems including datasets from the UCI database ([22]), enzymes ([23]), as well as neu-
ronal morphology data from the Neuromorpho.org database ([24]), among other works. In the present work,
we apply the coincidence similarity methodology to obtain a network expressing the similarity between the
considered neighborhoods, from which it becomes possible to identify city motifs as corresponding to respec-
tively detected communities or modules. Since the coincidence similarity concept and respective methodology
have been applied before, the main contribution of the present work consists in using the coincidence similarity
approach to automatically identify the motifs in streets networks.

Consisting of a combination of the widely employed Jaccard similarity index, adapted to real values
[25, 26], and the interiority (or overlap) index (e.g. [27]), the coincidence similarity provides a particularly
selective and sensitive means for translating datasets, with entries characterized by respective measurements
or features, into respective networks or graphs [21, 22, 28].
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In addition to its potential for obtaining particularly detailed and modular networks [26, 29], the coinci-
dence similarity methodology can also incorporate a parameter, namely 0 < « < 1, allowing the control of
the relative contribution of features with aligned or counter-aligned signs onto the resulting similarity index
[21, 26]. For instance, by making o < 0.5, the influence of positive joint variations can be relatively attenuated
so that a more detailed and modular pattern of interconnectivity can be obtained. The levels of detail of the
obtained coincidence similarity networks can be enhanced by selecting the o parameter.

Several works related to the characterization of cities and network motifs are briefly reviewed in section 2:
related works.

Motifs should reflect the mesoscopic surroundings of each city network node, and not only its first
neighbours or, at the other extreme, features that depend on the whole network. In addition, as city motifs
often involve statistical variations (e.g. a roundabout may involve a varying number of radiating streets), for
generalization’s sake, it becomes necessary to cater for this effect while identifying the basic motifs to be taken
into account in subsequent characterization and analysis of the cities. Considering the relevance of topological
motifs for the study of diverse cities, it also becomes important to develop means for the respective automated
identification.

The present work aims at addressing the following requirements. First, in order to obtain city motifs that
reflect local, mesoscopic topological characteristics of streets networks, we characterize the motifs associated to
each of the streets network nodes in terms of several respective hierarchical features (e.g. [30, 31]). These fea-
tures are potentially effective because they are defined in terms of the number of neighborhoods taken around
each node of interest, therefore allowing a mesoscopic characterization of the surroundings of that node. Sec-
ond, in order to allow statistical generalization of the city motifs, we resource to defining each motif in terms
of a respectively identified module/cluster obtained while taking into account the hierarchical features. There-
fore, the intrinsic variation of the patterns within each cluster will naturally cater for their statistical variation.
In addition, the clustering-based approach will also inherently allow unsupervised, automated identification
of the motifs from streets networks. More specifically, the proposed methodology employs community find-
ing on coincidence similarity networks obtained by taking into account the similarity between the hierarchical
features of each of the streets network nodes.

The proposed methodology starts with a given city being represented in terms of its streets network,
in which nodes correspond to crossings between two or more streets and to terminations of streets, while
the streets themselves are taken as respective links. A neighborhood with a specific extension H is then
obtained around each of the streets network nodes, and respective topological measurements are derived.
Given that we are interested in studying varying neighborhood extensions H, node-centered topological mea-
surements become of particular relevance for the characterization of the topological properties within the
H-neighborhood around each of the streets network nodes.

The coincidence similarity methodology is here applied between the features of each possible pairwise com-
bination of the H-neighborhood of the streets network nodes, therefore yielding a new network that, though
with the same number of nodes, presents links whose strengths correspond to the similarity between the topo-
logical features of all possible pairs of H-neighborhoods. This network is henceforth called the neighborhoods
network (NN).

As a consequence of the above described approach, two nodes in an NN will be strongly interconnected
whenever the neighborhoods associated to those nodes have markedly similar local topological properties.
Several interesting information and insights can be potentially obtained from these networks. For instance, a
narrow distribution of interconnecting strengths will indicate that most of the node neighborhoods are sim-
ilar, while wider strength distributions will reveal that the neighborhoods of the specific city of interest are
noticeably heterogeneous. In addition, in case the obtained NN presents a well-defined modularity, commu-
nity detection methods (e.g. [32—35]) can be applied in order to identify the main modules, each of which will
indicate a mesoscopic region of the city, presenting particular topological properties.

Each of the communities identified in NNs will constitute a candidate for a motif. Therefore, in addition to
studying the similarity between the topological properties of node neighborhoods across varying topological
scales, the present work also aims at investigating if the motifs identified among two or more cities can be
inter-related. For instance, one such module recurring between several cities can be understood as a possible
shared motif. In order to develop these studies in a systematic manner, we identify the motifs respectively to a
given city taken as a reference, and then compare these motifs with those of two other cities.

The obtained results revealed a surprising level of consistency and stability of the nine identified motifs,
which have specific visual, topological, cross-similarity, and adjacency properties, all of which having being
quantified in an objective manner in the present work.

In order to complement the discussion of the obtained results, we also performed an analysis of the influ-
ence of the adopted five hierarchical measurements on the resulting NNs, which is developed by using an
approach that is also based on the coincidence similarity methodology [29].
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While the above described methodology for automatically identifying the city motifs is unsupervised, the
observed generality of the identified motifs motivated the proposal of a simple supervised method for assigning
motifs to cities with similar characteristics. This method, which is also described and illustrated in the present
work, involves using the instances of motifs identified for the reference city(ies) for assigning motif types to
neighborhoods of other cities. This method was shown to perform well for the case of a two other cities.

This work starts by providing a non-exhaustive review of related works and follows by presenting the data,
basic concepts and methods, including hierarchical measurements, the coincidence similarity methodology,
and motifs identification. The results are then presented and discussed respectively to features interrelation-
ship, motifs characterization, and application. The effect of the adopted features on the respectively obtained
networks is also addressed, and a simple procedure for assigning the nine types of identified motifs to other
cities is also presented.

2. Related works

This section revises some of the works related to the main aspects and concepts developed in the current article.

The increase of the number of cities and their population along the last century was accompanied by the
development of systematic approaches aimed at discussing and better understanding urban and city spaces
(e.g. [36—38]). Interesting works continued along the 60s and onward, including more quantitative approaches
aimed at organizing urban scenery into several types of constituent elements [39], as well as subdividing overall
cities into smaller spaces based on criteria including unimpeded visibility and navigation [40].

The comparison of networks, a topic of significant interest in network science, can be implemented based
on different criteria, such as the network type, the degree distribution, and the presence of communities. In
[41] the similarity between the internet backbone and air transportation network is addressed by considering
the hierarchy and pattern of connections among world cities.

In [42], four different standard similarity metrics (common neighbors, Jaccard, resource allocation and
Leicht—Holme—Newman) are used to evaluate node similarity and reconstruct propagation networks based
on the epidemics spreading dynamics. It is observed that temporal information can play an important role on
the reconstruction. In [43], different samples of the urban networks of 20 different world cities are compared
with basis on a set of measurements of spatial graphs, namely the meshedness, the number of short cycles of
sizes three, four and five edges, the global efficiently and the cost. In particular, similarity is estimated between
self-organized and planned cities.

The characterization of networks can be performed locally. In the context of spatial networks, in [44] the
authors propose defining neighborhoods based on social ties as well as on physical distance. They propose four
alternative manners of doing, which are applied to data of students from North Carolina schools. In [45], in
the scenario where connections are susceptible to noise, the authors consider a neighborhood scheme based
on shared neighbors.

Networks can also be characterized in terms of the presence of pre-defined patterns, commonly known
as motifs (e.g. [15, 46, 47]). For instance, the distribution of triangles along a network has been used as an
indicative of the tendency of the network to form clusters [48]. The distribution of motifs has also been studied
respectively to its effects on specific types of dynamics on networks [49-52].

There is a variety of reported applications of network motifs. In [53, 54], the authors studied network
connectivity in terms of specific types of motifs: vertices connected in a sequential way such that the inner
vertices have degree equal to two. They observed highly different distributions of these motifs between real-
world and artificial networks. In [55], the authors analyzed the distribution of motifs in directed networks,
which they called sequential motifs. They propose a connection between sequential motifs and higher order
networks, and analyze data from passenger trips through the airport network in the United States and also
article navigation in Wikipedia.

Motifs have also been used to analyze data from mobile phone communication networks and related data,
which can be used to study communication and human mobility patterns [56, 57]. Mobility patterns from
tourists have been studied in [58]. The authors considered in their analysis temporal information, such as
when the places were visited and semantic information (the attractions). The temporal travel motifs in this case
revealed popular duration of stays in each attraction while the topological motifs the frequent travel sequences
among the attractions.

Motifs have also been adopted in the study of urban networks [59, 60]. In [59], the authors analyzed
how socioeconomic aspects of a city—such as mobility, market and population—can be associated to city
street network patterns. They considered Greek cities and observed three distinct patterns: considering the
central nodes, ring nodes and the mixture of the two. In [60] the authors studied the frequency of motifs in
public transportation networks in large Chinese cities. One of the main findings regards the distribution of




J.Phys.Complex. 3 (2022) 045003 (24pp) G S Domingues et al

Table 1. Concepts and measurements used in this work, and
respective acronyms/symbols.

Measurement Symbol
Neighborhoods network NN
Neighborhood motifs NM
Hierarchical ring centered around the node i Ry (1)
Neighbourhood of node i for H hierarchical levels Ny (D)

Minimum number of nodes of the detected communities N,
Considered maximum hierarchical level H
Coincidence similarity index C
Jaccard similarity index J
Interiority index s

Hierarchical degree hd
Hierarchical clustering coefficient hc
Convergence ratio cr
Hierarchical number of nodes hn
Hierarchical number of edges he

Table 2. The types of networks used in the current work, as well as their identification in terms of respective
nodes and links. The table also incorporates references to the sections where each type of network is presented
at more length.

Network Nodes Links

Streets network Streets crossings and Interconnecting

(section 3.1) dead-ends. streets.

Neighborhoods network Neighborhood respective Coincidence similarity between

(section 3.3) to each node in the the hierarchical features
streets network. of the neighborhoods.

Motifs network Motif type assigned to the Same as in the

(section 5.1) respective nodes in the streets network. streets network.

Motif types network Coincidence similarity between

(section 5.2) Each identified motif. densities of the hierarchical features

of the identified motifs.

Features network NN obtained for a Coincidence between
(section 7) specific feature combination. the NNs.

certain three-node motifs, which seemed to be associated with the efficiency of the transportation system and
robustness to failures.

3. Materials and methods

The present section describes the data, basic concepts, and methods adopted in the current work in order
to automatically identify city motifs. These include the cities dataset, the hierarchical measurements, as well
as the coincidence similarity-based approach for translating datasets into respective complex networks. The
main concepts and measurements adopted in the present work, as well as their respective acronyms/symbols,
are summarized in table 1.

Table 2 presents the types of networks employed in the present work, as well as their identification in terms
of respective nodes and links. Observe that, given that this table provides only a summary description of the
networks, references have been provided to the sections where the concepts are respectively presented at more
length.

Figure 2 presents the main data and methods involved in the suggested approach to automated city motif
identification. In the present work, the implementation of the methods adopted Python [61] and igraph [62].

3.1. Streets networks

The city data was obtained from the OpenStreetMaps [14] database. The original data contained a preliminary
network delimited by a square area encompassing the geographical coordinates of the city. Additional pre-
processing was required in order to obtain the streets networks. More specifically, chains of nodes [53] were
identified and replaced by a single link. The identification of these chains involved finding all nodes with degree
2 while checking their adjacent.
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Open Street Neighborhoods
Map network
(1) (V)
Data to Network Community
Detection
Streets Motifs
network network
() X (V)
Feature Motif
Extraction Analysis
Hierarchical Results +
features Statistics
L (1)
Coincidence
Methodology

Figure 2. The main steps of the methodology for city motif identification described in the present work. Specific cities are
obtained from the Open Street Map resource and transformed into respective networks (I). Hierarchical measurements are
calculated (II) for each neighborhood of each node, yielding respective feature vectors. The coincidence similarity methodology is
the applied (IIT), resulting in the respective similarity network, which has its motifs detected as corresponding to the identified
communities (IV). The obtained motifs can then be analyzed in several manners (V).

After obtaining the streets networks, figure 2(I), the hierarchical measurements described in the following
section were calculated (II) for each node and then used for identification of possible motifs characterizing the
cities topology.

3.2. Hierarchical measurements
In this work, we considered a set of five hierarchical measurements (e.g. [30, 31, 63]) for characterizing the
topology of the neighborhood around each node, which are taken as features in the coincidence methodol-
ogy (section 3.3). The adoption of a H-neighborhood around the reference node i implies the hierarchical
measurements to be calculated relatively to the hierarchical ring Ry,(i) with h = H — 1.

Figure 3 illustrates the concept of the first and second neighborhoods (h =1 and h = 2) defined by a
reference node (V), also including the calculation of the respective hierarchical measurements.

Hierarchical degree (hd). The hierarchical degree hdj, (i) of node i at distance  is defined as the number
of edges between the hierarchical rings Ry (i) and R+ (7)

Hierarchical clustering coefficient (/ic). The hierarchical clustering coefficient of node i at distance # is
defined as

hey (i)

b = 2 () = 1) (v

where e, (i) is the number of edges connecting nodes of the hierarchical ring R,(7) and h#ny,(7) is the number of
nodes in that hierarchical level.

Convergence ratio (cr). The convergence ratio of node i at hierarchical level / is defined as the ratio between
hd, (i) and the number of nodes in the next hierarchical level, i.e.

hdy (i)
hﬂh+1 (1)

(2)

crp(i) =

Hierarchical number of nodes (/i1). The hierarchical number of nodes hn;, (i) in the hierarchical ring R, (1)
is defined as the number of nodes inside R;(7), or the size of R, (7).
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Figure 3. Illustration of the determination of the hierarchical measurements employed in this work for h = 1 and h = 2. The
measurements are determined respectively to the reference node (V), which defines the two neighborhood levels h = 1 and
h = 2. The respectively obtained hierarchical measurements are presented at the right-hand side of the figure.

Hierarchical number of edges (/e). The hierarchical number of edges hej, (i) among the nodes in the hier-
archical level Ry (7) is defined as the number of edges hey, (i) between the nodes of R (i) without considering
edges connecting nodes of Rj,1(i) or Ry, (7).

3.3. The coincidence similarity methodology
Several similarity indices have been considered respectively to diverse types of data and applications (e.g.
[26-28, 64—66]), including cosine similarity, correlation, and the Jaccard index.

Though the Jaccard similarity index (e.g. [26—28, 67]) has been extensively employed as a means of quanti-
tying the similarity between two non-empty sets, these applications have been mostly limited to categorical or
binary data. In addition, the Jaccard index has been shown not to be able to take into account how much the
two compared sets are mutually internal one another [25]. This motivated the consideration of the coincidence
similarity index [25], corresponding to the product of the Jaccard index and the respective interiority or overlap
index (e.g. [27]).

By extending multisets (e.g. [68—73]) to real-valued data [74], it has been possible to derive a respective
coincidence similarity index that can be employed as a means to quantify the similarity between two non-zero,
real-valued vectors or even functions. In addition, it has been shown that the Jaccard index can be decomposed
into two major terms, one corresponding to the positive pairwise alignment of the signs of the compared values,
and another to the anti-aligned pairs. The linear combination of these two terms, respectively weighted by «
and 1 — q, yields the parametric coincidence similarity index expressed as:

Ch(fr 820) = Ca(Zr fr) = Ta(f1 8) Tl f» 800, (3)
here S.als; + s | min{ [l lgl} — (1 — @ls; — sg| min{[fl lgl}
- _ iasﬁ+sgi minq |fi|, iy — — Q) |Sf; — Sg;| MINY |fi], |gi 4
TS &) > max{[fl, &} “
and: )
IR(f) g) — Zi mll’l{|ﬁ|, ‘g1|} (5)

min{> 2, \fil, >2ilgil ¥

We also have that —2(1 — a) < Jx( ]?, g,a) < 2.

The parameter « allows an effective control of how the aligned and anti-aligned pairwise measurements
are linearly combined into the resulting overall coincidence similarity value.

In particular, when v = 0.5, the above index becomes identical to the product between the real-valued,
interiority index and the parameterless Jaccard index, i.e.:

Cr(frgra=05) =Ta(fr8) Te(fr ), (6)

where:

2% min{|fil, [gif}
2 max{[fil, [gi[}

Tr(fr8) = (7)

with =1 < Jx(f, &, a) < 1 (see also [66]).
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Figure 4. Diagram illustrating how a streets network is translated into the respective coincidence similarity network. The
neighborhood around each node (e.g. i and j) is identified and the respective hierarchical measurements are calculated. The
example in this figure considers h = 1, therefore including only first neighbors. The coincidence similarities between each
resulting feature vectors are calculated and taken as the weights between the nodes in the coincidence similarity network. Observe
that both the streets and coincidence similarity network have the same number of nodes.

The real-valued coincidence similarity index has been applied [21, 22] to translate datasets, with each data
element characterized in terms of M measurements or features, into respective graphs or networks whose inter-
connecting weights between each two nodes correspond to the respective coincidence similarity values between
the features of those two nodes. These coincidence similarity networks can be then thresholded by T to yield
networks with weights limited to 0 and 1. However, it is also possible to preserve the values of the coincidence
similarities above T while making assigning zero to the values smaller that T.

It has been shown [21, 22, 29, 75] that the interconnectivity of the resulting coincidence similarity net-
works strongly depends on the values of «, in the sense that higher values of o will imply more intensely
interconnected networks. However, these networks may become too interconnected, to the point that the
respective interconnection details and modularity are severely blurred and cluttered. This is precisely where
reductions of the parameter « can contribute to limiting the overall connectivity, enhancing the level of details
and modularity of the obtained networks [21, 29].

In this manner, the coincidence similarity methodology for quantifying similarity between real-valued vec-
tors and functions (as well as other types of data) incorporates several interesting features derived from the
Jaccard and interiority indices combined with the important control of the resulting overall interconnectivity
by varying the parameters .

In the current work, for each city, as illustrated in figure 4, the neighborhood around each node i is iden-
tified and the respective hierarchical measurements obtained and organized into a respective feature vector as
follows:

f,— = [hd(i), he(i), cr(i), hn(i), he(i)] (8)

The obtained features are then supplied to the above described coincidence similarity methodology in
order to deriving respective coincidence similarity networks for each individual city, figure 2(III). Observe
that neighborhoods defined by each node of the streets network therefore becomes associated to a single node
in the NN. As a consequence, two adjacent nodes in the latter will necessarily imply some overlap between
their respective neighborhoods in the streets network.

Similarity is intrinsically related to connectivity (e.g. [76]), providing a means for obtaining complex net-
works (e.g. [77-81]). The coincidence similarity, which has been applied as a means of translating datasets
into respective complex networks [21, 22] is adopted henceforth in the present work. More specifically, after
being standardized, the features describing the dataset are taken into account while calculating the coincidence
similarity between every pair of data elements, yielding a coincidence similarity network in which each node
corresponds to a data element while the links are determined by the respective pairwise coincidence similarity
indices.

The standardization (e.g. [82]) of each of the adopted features x, respectively to data elements x;, can be

implemented as follows:
w= ©)
Ox

where 11, and o, are the average and standard deviation of feature x taken along the whole considered dataset.
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Figure 5. Given three generic cities (A, B, and C), all possible neighborhoods with hierarchical level H are identified, and the
respective standardized hierarchical measurements are organized as feature vectors, four of which are shown in the figure. The
coincidence similarity is then calculated between each pair of these feature vectors. By blanking these values by T, the combined
NN CN can then be obtained. Each detected community in the latter network is then understood as a NM.

4. Motifs identification

In this section, we describe the proposed methodology for motif identification, please refer to figure 2(IV).
Basically, a community finding approach is applied on the previously obtained NN, and the identified modules
are understood to define the reference city motifs.

As observed in the introduction of the present work, given the diversity of interconnections typically
observed in streets networks, the neighborhood motifs (NMs) to be considered here need to have a statistical
nature, in the sense that each given motif type can be allowed to undergo small topological variations.

The basic hypothesis of our approach regarding the NMs is that they have some level of generality and
recurrence not only within a given city, but also across other cities. Thus, the problem of motif identification
as addressed in the present work can be stated as: given a city, or a set of cities, and respective neighbor-
hoods characterized by associated topological features, to find sets of these neighborhoods that are strongly
topologically similar one another while being distinct to the other neighborhoods.

The resource to be applied in order to find these groups of similar neighborhoods, which will be taken as the
NMs, consists of the application of the coincidence similarity methodology [21, 22, 26, 28]. More specifically,
we estimate the coincidence similarity between each pair of neighborhoods obtained from all the adopted
cities. A single network is then derived from each neighborhood while the coincidence similarity between each
pair of nodes corresponds to the respective link weight. The so obtained structure is henceforth called the
combined network.

In order to simplify the resulting network, its links with coincidence similarity values smaller than a given
reference T are subsequently ignored, therefore yielding a weighted network (a binary network would be
otherwise obtained by standard thresholding). This operation is henceforth referred to as blanking.

The NMs can then be identified as being associated to the main detected communities, figure 2(IV), having
at least a minimum number of nodes N.. The nodes resulting in smaller communities are henceforth referred
as unassigned nodes. The community detection is performed independently in the combined network and also
in each considered city NN as a means to identify the correspondence among the detected communities across
cities. This is implemented for each city at a time. For each community m in a given city, it is verified which
among the communities in the combined network contains the largest number of the nodes in m, which is
taken as the corresponding community.

The suggested methodology for identifying the NMs is illustrated in figure 5 respectively to three generic
cities A, B, and C taken as reference. The adopted five hierarchical features are standardized (e.g. [83]) along
all neighborhoods of a considered city before coincidence similarity estimation.

The motifs obtained by the suggested methodology can then be analyzed in several manners, figure 2(V).
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Figure 6. The NN obtained for the city of Sao Carlos. Each node 7 corresponds to the respective 7, (i) neighborhood, while the
link values are the respective pairwise coincidence similarities assuming T = 0.08 and o = 0.1, yielding good separation of the
nodes into clusters. The colors indicate the nine identified motifs (see also figure 9), with the unassigned neighborhoods,
considering N. = 200, being represented in white. This network has been visualized by using the Fruchterman—Reingold [84]
approach.

Table 3. The identification and number of neighborhoods in Sao Carlos
motifs network corresponding to each of the nine identified motifs.

Motif identif. Motif color No. of nodes Rel. freq.
ml Blue 1732 19.345%
m2 Yellow 1426 15.927%
m3 Orange 1377 14.554%
m4 Cyan 1135 12.677%
m5 Magenta 1103 12.320%
mé Red 917 10.242%
m7 Green 649 7.249%
m8 Purple 436 4.870%
m9 Black 233 2.602%
Unassigned White 19 0.212%

5. Results and discussion

This section presents the main obtained results regarding the characterization of the neighborhoods, the
estimation of the NN, the identification of the city motifs, and respective analysis.

We considered the Brazilian city of Sao Carlos (SP), with population between approximately 250 000
inhabitants, whose streets were represented by complex networks as described in section 3.1, with each node
representing streets crossing or termination, while the corresponding street as link between that pair of nodes.
The obtained network has the N = 8953 (Sao Carlos) nodes.

5.1. Neighborhoods and motifs networks

As a first step in our approach, we calculated the five hierarchical measurements for each neighborhood 7, (7)
(H = 2) associated to each node i, which were used to characterize locally the topological properties of the
streets network.

The NNs obtained respectively to the city of Sao Carlos are presented in figure 6. These visualizations were
obtained by using the Fruchterman—Reingold [84] method.

Of particular interest is the relatively high modularity of all obtained NNs, which was mostly allowed by the
strict similarity quantification implemented by the coincidence similarity methodology, as well as the mutual
coherence between the neighborhoods. The network in figure 6 provides the basis for identifying the city
motifs, which was done by detecting the respective communities using the Infomap methodology (e.g. [85]).
Each of the nine identified community with at least N. = 200 nodes (neighborhoods) were understood as
identified motifs, with the smaller communities remaining unassigned.

Table 3 presents the number of motifs of each type, from 1 to 9, identified in the Sao Carlos motifs network.
Interestingly, the relative frequency of the occurrence of motifs decreases in an almost linear manner. Observe
that only 19 nodes resulted unassigned.

Once the motif types have been identified, all the corresponding nodes in the respective NNs can be labeled
with the respective motif type, resulting in a motifs network. Observe that the latter network is identical to the
original streets network of the city being considered, except for the labelling of the nodes with the respectively
obtained motifs.

Figure 7 presents the motifs network obtained for the city of Sao Carlos by using the described
methodology.

10
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Figure 7. The geographical distribution of motif types in the city of Sao Carlos (SP, Brazil).

m6

Figure 8. Coincidence similarity network obtained for the nine identified city motifs, referred to as motif types network. Each
node corresponds to one of the motifs, while the width of the links is proportional to the respective pairwise coincidence
similarity between the densities of the five features adopted for characterizing each neighborhood 7, (i), assuming no blanking
(T = 0) and o = 0.1. This network was visualized by using the distributed recursive layout algorithm. [86].

5.2. Motif types network

It is interesting to construct a network where each node corresponds to one of the identified motifs, while the
width of the link between two motifs i and j reflects the value of the respective coincidence similarity between
the respective features densities. These densities, shown in the first column in figures 17 and 18 of appendix A,
correspond to the histograms of relative frequency of each of the hierarchical measurements characterizing
each of the nine motifs obtained for the city of Sao Carlos. The so obtained motif types network is presented in
figure 8 illustrates respectively to the nine identified motifs.

The node with the largest strength (sum of coincidence similarities respective to its links) in figure 8 cor-
responds to the city motif m4, which can thus be understood as being more mutually similar to several of
the remainder motifs. Also worth noticing is the relatively stronger relationship between motifs m2—m5-m9,
m2—m7, md—m7, m9—m3, as well as m4 and m5, meaning that they are intrinsically more similar one another.

11
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Motifs m3, m6 and m8 have the smallest coincidence similarity strengths, being therefore relatively more
distinct to the remainder motifs.

5.3. Motifs characterization

In this section we discuss the nine identified city motifs in terms of three particularly important respective per-
spectives: (i) visual appearance; (ii) relative frequency histograms (densities) of features; and (iii) geographical
adjacency between motifs.

Figure 9 depicts five samples of each of the nine identified motifs. The reference node has been shown
as circles (red), while its first and second neighborhoods are shown as squares (green) and triangles (blue),
respectively.

Of particular relevance is the high level of similarity observed among samples from the same type of motif.
In addition, despite intrinsic statistical variations, the samples from motifs of different types resulted with
marked topological differences. For instance, motifs m1, m8 and m9 are characterized by reference nodes with
degrees that are, with just one exception, all equal to four, in contrast, for instance, to the degrees one or two
observed for the reference nodes of m6. Motifs m2, m3, m4, m5 and m7 have reference nodes with degree
equal to three. The distinction between these motifs having the same reference node degree is accounted
for by the other considered hierarchical features, which cannot be straightforwardly discerned by visual
analysis.

In order to characterize the identified motifs in a more comprehensive manner, it is necessary to resource to
the relative frequency histograms (densities) of the adopted five hierarchical measurements obtained for each
of the nine identified motifs respectively to the Sao Carlos motifs network (please see first column of figures 17
and 18 in appendix A).

Figure 10 presents the relative frequency histograms (densities) of the hierarchical node degree hdj—, for
the Sao Carlos motifs network for each of the nine identified motifs. Interestingly, most of the obtained his-
tograms are mutually distinct, except for the cases m4 /m5 and m2 /m7. However, these two pairs of motifs that
have similar hierarchical degree have been verified to differ regarding the distribution of the other adopted
measurements.

These histograms provide an objective characterization of the distribution of the feature hdj—, with in the
identified motifs, therefore complementing the preliminary visual analysis.

A more comprehensive characterization of the identified motifs taking into account not only the distri-
butions of all the five adopted hierarchical features, but also additional aspects including the motif shapes
(figure 9) and the adjacency between motifs, is presented in section 6.

Another important property of the city motifs concerns their geographical relationships in the original
streets network (see examples in figure 11).

Indeed, it could be expected that some types of motifs tend to appear adjacent one another as one moves
from more uniform to less uniform, or from more central to more periphery regions of a city. In order to verify
this possibility in a more systematic and quantitative manner, figure 12 depicts the histograms of city motif
adjacencies for the city of Sao Carlos.

The understanding of the spatial relationships between motif types can be complemented by visualizing
their distribution within the considered city, as shown in figure 7.

It is interesting to keep in mind that, given a NN, where each node is associated to a respective neighbor-
hood, the fact that two nodes i and j are adjacent implies overlap between their respective neighborhoods. As
a consequence, two adjacent neighborhoods tend to have similar local topological properties. That is one of
the reasons why each of the motif types tends to present specific adjacency preferences.

Regarding the predominant adjacencies observed for the nine identified motifs, we have that each of motif
types ml and from m3 to m5 tend to be most adjacent to itself. This transitive property is of particular impor-
tance as it leads to patches of neighborhoods sharing the same motif type. For instance, motif m1 tends to form
extensive regions of almost perfect orthogonality, and therefore regularity, in cities. Interestingly, this type of
motif tends to be adjacent also to m2 or m7, frequently appearing at the border of the regular patches cor-
responding to m1. Motif m6 is mostly adjacent to motif type m5. Given that m6 often corresponds to streets
dead-ends, we also have that the motif type m5 also tends to occur near the geographical borders between
the communities within cities. In addition, motif m9 is adjacent to m2, with the former tending to appear
surrounded by the latter type. Also, motif m8 is mostly adjacent to m3, both of them frequently composing
triangular topologies in the city.

It should be observed that having similar topological properties contributes to making a pair of motif types
to appear geographically adjacent, but this is not always the case. Take, for instance, motif types m2 and m?7.
As indicated from figure 12, they are not adjacent. At the same time, as illustrated by the strong respective
connection in figure 8), they are significantly similar one another. Thus, though topologically similar, these
two motif types are highly unlikely to be found geographically adjacent in the considered city.

12
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Figure9. Examples of the nine motifs identified for the city of Sao Carlos, with the reference nodes shown as circles, while the
respective first and second neighborhoods are depicted as squares and triangles, respectively. From top to bottom, the types of
motifs are presented in decreasing order of respective frequency. As expected, small variations can be observed among motifs of
the same type, which justifies the adopted statistical approach for motif identification. The networks shown in this figure were
visualized by using the Kamada—Kawai method [87].
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Figure 10. Relative frequency histograms of hd),—, obtained for the nine identified city motifs respectively to the city of Sao
Carlos. Interestingly, distinct histograms have been obtained for most of the motifs, except for m4 being similar to m5 and m2
being similar to m?7.
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Figure 11. Visualization of some instances of the identified motifs in the streets networks of the city of Sao Carlos. (a) m1 (blue)
nodes appear as representing highly regular and rectangular blocks, with predominance of m7 (green) on their borders. (b) m6
(red) are end nodes, generally linked to the network through m4 (cyan) and m5 (magenta). (c) The occurrence of m3 (orange)
and m8 (purple), as part of triangular blocks.

6. The nine identified motifs

By referring to figures 8—10 (complemented by figures 17 and 18 in appendix A), and figure 12, we can now
typify each of the nine identified motifs as follows:

ml, blue. As it can be observed in figure 9, this motif type tends to have its reference node with degree 4.
In addition, we have from figures 10, 17, and 18 that this motif is characterized (together with m8 and m9)
by the highest hierarchical degree and hierarchical number of nodes. As it can be discerned from figure 9 as
well as the geographical distributions (figure 7), this motif is intrinsically associated to highly regular patches
of square blocks. This motif type also tends to appear adjacent to itself as well as to m2 and m?7.

m?2, yellow. This motif type, whose reference nodes tend to have degree 3, being also similar to m5 and m7.
However, m2 and m5 have the hd histograms at different positions. At the same time, the cr densities are at
different positions in m2 and m7, and the latter motif has a wider dispersion of hd. Motif m2 tends to appear
adjacent to itself, m1, and m5. This motif, which tends to have a relatively large number of second neighbors,
often corresponds to irregular neighborhoods inside the patches of 11 motifs.

m3, orange. This motif type tends to have reference node characterized by node degree equal to 3, as well
as by relatively low hd values. As it can be readily inferred from figure 7, this motif type is characterized by
having its reference node as corresponding to one of the vertices of a triangular block. Motif type m5 tends to
be adjacent to itself as well as to m8.

m4, cyan. This motif, which often has reference node with degree 3, is similar to m5, but it tends to have
cr larger than that of m5. Interestingly, this motif appears adjacent mostly to itself, and then with m2.

m5, magenta. This motif, with reference node tending to have degree 3, is similar to motifs m2, m4, and m9.
However, the hd histograms are different among these three motifs. In particular, m9 tends to have larger hn
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Figure 12. Histograms of the geographical adjacency between the nine identified motifs respectively to the city of Sao Carlos.
These results corroborate the tendency of certain motif types presenting higher probability of being near one another.

than m5, and m4 has cr larger than m5. This motif tends to be adjacent to itself and to m2. Generally speaking,
motifs m2, m4, and m5 are typically found at the interfaces or transitions between the more highly regular
patches of m1 motifs.

m6, red. This motif type tends to have reference node with degree 1 or 2. In addition, we have from
figures 10, 17, and 18 that this motif has the smallest hierarchical degree (hd) and hierarchical number of
nodes (hn). Unlike many other motifs, this motif does not tend to appear adjacent to itself, being predomi-
nantly adjacency with m4. Figure 7 indicates that this motif type tends to correspond to street dead-ends, being
therefore expected to appear mostly near the city borders.

m7, green. The reference node associated to this type of motif tends to have node degree equal to 3. Its
hierarchical measurements are mostly similar to those of m2, though presenting cr larger. This motif type tends
to be predominantly adjacent to m1 and itself. Figure 7 indicates that this type of motif tends to correspond to
borders of the highly regular patches of m1 motifs.

m8, purple. This is the second least frequently observed type of motif, with only 436 occurrences in the city
of Sao Carlos. It is most similar to m1, but the latter has larger hd. As with motif type m3, the reference node
of m8 tends to correspond to one of the vertices of a triangular block. Motif type m8 tends to be adjacent to
itself and m3.

m9, black. The reference node of this motif type tends to have degree equal to 4. It is most similar to m2
and m5. However, m9 tends to have he distinct from m3, and hd distinct from m5. This type of motif tends to
be adjacent to itself, m1, and m2.

7. Analysis of the influence of the adopted features

Almost invariably, the results obtained from comparisons and classifications depend substantially on the
adopted measurements or features used to characterize each data element. Even though the five selected fea-
tures (see section 3.2) allowed remarkable results regarding the identification of city motifs, it is still interesting
to study the effect of each of them on the obtained motifs networks. The present section focuses on this
aspect.
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Figure 13. The features network obtained for the motifs identified for the city of Sao Carlos. Each node corresponds to one of the
31 possible combinations of the five adopted features (hierarchical measurements), while the links width is proportional to the
value of the coincidence similarity between the NNs obtained for the respective combinations and assuming T'= 0.3 and

o = 0.1. Eight communities, discriminate by respective colors, have been identified, which can be understood as the main
possible models of the effect of the features on the obtained motifs network. The hubs within each identified community are
shown as triangles. The colors in this figure were used only for highlighting the eight models, bearing no relationship whatsoever
with the identified motifs. This network was visualized by using the Kamada—Kawai method [87].

In order to do so, in the present work we apply the feature analysis methodology described in [29]. More
specifically, NNs are obtained considering all possible combinations of the adopted features. Each of these
networks is then represented by the respective weight matrix, whose entries correspond to the obtained coinci-
dence similarity values. Then, the coincidence similarities are obtained between every pair of respective weight
matrices, yielding a respective features network. Each node in the latter therefore corresponds to a coincidence
similarity network respective to some features combination, while the link weights indicate the respective
coincidence similarities.

Given that five hierarchical measurements (features) have been adopted, the resulting features network will
necessarily have 31 nodes, each corresponding to a possible combination, except for the null case. Figure 13
depicts the therefore obtained features network.

A total of eight communities have been found by using the Infomap methodology (e.g. [85]), each of
which corresponding to a respective putative model of the NNs that can be obtained for different features
combinations. Interestingly, the network obtained while considering all the five features resulted strongly
interconnected to other nodes.

Further understanding of the influence of the features can be derived by taking into account the histograms
of features to be found within each detected community. These histograms are shown in figure 14.

All features contributed almost equally to the NNs in model A. The motifs in model B employ features 1 to
4, while the feature 5 is not found in this model. The model C involves features 2 to 4. All in all, we have that the
adopted features led to eight main putative models of the networks, with the model A corresponding to being
the most interconnected within itself as well as with some other models, therefore having special relevance
deriving from its centrality.

8. A simple supervised method for assigning motifs

Given that the nine identified city motifs depend exclusively on local measurements, namely only the two
neighborhood levels around each reference node, they are not influenced by the remainder of the streets net-
works, also tending to be invariant to border effects. In addition, it is likely that the local city topology is
shared betwen similar cities, as required to cater for similar demands, such as transportation, mobility, access
to resources, etc. Yet another important aspect possibly supporting the possible generality of the identified
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Figure 14. Histograms of the features adopted within each of the eight obtained models describing the effect of features
combinations, respectively to the communities A—H.

Figure 15. The motifs associated to the neighborhoods of Lages by using the suggested supervised motif assignment method
while considering the motif reference table obtained for the city of Sao Carlos as reference for motif identification.

motifs is the fact that streets networks are largely geographical networks with scant long range connections.

In the light of the above discussion, it is reasonable to posit that the identified motifs can be mostly shared
by cities that are reasonably similar. In other words, the reference motifs are henceforth considered among a
given set of cities with similar topology.

Under this assumption, it becomes possible to consider transferring the motifs learned in unsupervised
manner respective to some reference cities to other cities, which can be done in a relatively simple manner.
First, some cities are taken as models, and their combined NN is respectively obtained as described in the
current work. Then, a table is derived in which each line corresponds to one of the neighborhoods of the
combined network that have been identified as motifs, followed by its respective motif type, as well as its five
hierarchical measurements. Now, given a neighborhood from another city to be classified, its standardized
features can be compared to those in the reference table and, in case the maximum coincidence similarity
is larger than a given threshold, the motif type of the respective entry in the table is assigned to the new
neighborhood.

In order to illustrate the above suggested supervised methodology for estimating motifs to nodes of
other cities, we consider the motifs identified for the city of Sao Carlos as described in the previous sections
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Figure 16. The motifs associated to the neighborhoods of Imperatriz by using the supervised suggested motif assignment
method while considering the motif reference table obtained for the city of Sao Carlos as reference for motif identification.

Table 4. The identification, number and relative
frequency of neighborhoods assigned to each of the nine
identified motifs obtained for the city of Lages.

Motif identif. Motif color No. of nodes  Rel. freq.

ml Blue 926 18.494%
m2 Yellow 853 17.036%
m3 Orange 377 7.529%
m4 Cyan 484 9.666%
m5 Magenta 513 10.246%
mé Red 924 18.454%
m7 Green 394 7.869%
m8 Purple 246 4.913%
m9 Black 290 5.792%

as templates for assigning motifs to two other Brazilian cities, namely Lages (SC) and Imperatriz (MA). The
respective results are presented in figures 15 and 16. It can be observed that the obtained motifs have character-
istics and roles markedly similar to those obtained in the case of Sao Carlos. The densities of the five hierarchical
features of the nine motif types obtained in supervised manner for the cities of Lages and Imperatriz are
presented in figures 17 and 18 of appendix A.

Tables 4 and 5 present the relative frequency of the motifs obtained for the cities of Lages and Imperatriz,
respectively. It could be expected that many of the motifs result with similar frequencies, though some of the
frequencies obtained for different cities could be expected to result distinct, reflecting intrinsic geographical
and other types of environmental, geographical and other types of constraints and specificities.

The above tendencies can be observed by comparing the obtained relative frequencies in tables 3—5. We
have a markedly large number of motifs m1 in all cases, suggesting a predominant orthogonal organization of
the cities. Similar relative frequencies were obtained also for motif m2. At the same time, a particularly large
relative frequency of motif m3, as well as relatively small frequency of motif m6, were observed for the city of
Sao Carlos.
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Table 5. The identification, number and relative
frequency of neighborhoods assigned to each of the nine
identified motifs obtained for the city of Imperatriz.

Motif identif. Motif color No. of nodes  Rel. freq.

ml Blue 1340 24.192%
m2 Yellow 888 16.032%
m3 Orange 330 5.958%
m4 Cyan 417 7.528%
m5 Magenta 755 8.214%
mé Red 1165 21.033%
m7 Green 392 7.077%
m8 Purple 194 3.502%
m9 Black 358 6.463%

9. Concluding remarks

The study and characterization of cities have constituted the focus of significant attention along the last
decades, especially given the potential of such analysis for enhancing urban aspects and better understanding
relationships between the city topology and socioeconomic factors, among several others possibilities.

In network science, the concept of network motifs has been applied with particular effectiveness for char-
acterizing and better understanding the network topology. Here, we approached the interesting topic of city
characterization in terms of statistical motifs identified from network representations of cities, i.e. streets net-
works. More specifically, we adopted a local characterization of the topological properties of neighborhoods
around each of the streets networks nodes. This has been accomplished by using five hierarchical measurements
considering two neighborhood levels around each reference node, thus allowing a mesoscopic characterization
of the respective topological properties.

The pairwise similarity between the topological properties of the neighborhoods was then quantified by
using the coincidence similarity methodology, which implements a particularly strict similarity quantification,
therefore contributing to enhanced levels of interconnection details and network modularity.

A NN was obtained for a Brazilian city (Sao Carlos), which then had its communities detected by the
Infomap approach. The properties of the identified motifs were then characterized and discussed based on
four main perspectives, namely the motifs similarities, visualizations of samples of each motif, distribu-
tions of the five adopted hierarchical measurements, as well as histograms of adjacency between the nine
motifs.

The obtained city motifs can be understood from both the perspective of homogeneity, complexity, as
well as centrality, with one of the motifs (m1) corresponding to the prototypical square block organization
characterizing full orthogonal street plans. This type of motif tends to be the most regular and central among
the identified types. Another particularly interesting motif, namely m6, tended to be related to streets dead
ends. Motifs m3 and m8 both have their reference nodes corresponding to one of the vertices of a triangular
block, but they distinguish one another respectively to other hierarchical measurements. Motifs of type m2, m4
and m5 tended to be particularly irregular, frequently appearing as an interface or transitions between more
regular patches. These three motifs, however, have distinct hierarchical degrees.

As a complement to the reported approach to city motifs identification, we also performed an analysis of
the influence of the adopted hierarchical features on the respectively obtained NNs. This was accomplished by
using the coincidence similarity, leading to the identification of eight possible models (communities) of NNs
that can be obtained by combining the five adopted features. The most cohesive model involves all the five
adopted hierarchical measurements.

Although the proposed methodology to identify city motifs involves several concepts and steps, a simple
supervised method has been also suggested and illustrated in this work for estimating motif types in a given
streets network. This procedure is based on a reference table containing several instances of neighborhoods and
their motifs identified respective to a set of reference cities used for training. Then, given a new city with similar
characteristics represented in terms of its streets network, motif types can be assigned to its neighborhoods by
taking into account the motif of the table entry with the features that are most similar to those of each of the
nodes in the new city.

The potential of this simple supervised methodology has been illustrated by applying a motif table derived
from the city of Sao Carlos to two other cities, with suitable results. In particular, the nine city motifs therefore
identified were found to be remarkably consistent not only within a same city, but also across the considered
cities. However, it should be kept in mind that this approach requires the new cities to have characteristics
similar to those used in the training stage, and incorrect or biased results can be otherwise obtained.
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Figure 17. Histograms of relative frequency (density) of the five hierarchical measurements characterizing motif types m1 to m5
obtained for the cities of Sao Carlos, Lages, and Imperatriz. Observe that the motifs have been assigned in unsupervised manner
in the case of former city, and in supervised way in the other two cases.

Additional information about this work can be found at https://github.com/ericktokuda/city-motifs-supp.

The encouraging results reported in the present work respectively to concepts, methodology and results,
pave the way to a large number of future possible developments. For instance, it would be interesting to inves-
tigate the effect of larger neighborhood extensions (H) on the resulting motifs. It would also be interesting to
compare a substantial number cities based on their respective distribution of motifs, as well as the adjacency
between them.

Given the inherently hierarchical nature of the accessibility (e.g. [88—90]), this measurement could also be
considered instead, or as a complement to the hierarchical measurements currently adopted. Another par-
ticularly promising perspective regards the incorporation of geometrical features as a complement of the
topological features. For instance, even more strict identification of motifs belonging to highly orthogonal
portions of a city can be obtained by also taking into account the lengths of each of the block sides.

In addition, given that motifs can be expected in a wide range of real-world and theoretical networks,
it would be of particular interest to extend the concepts and methodology proposed in the present work to
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Figure 18. Histograms of relative frequency (density) of the five hierarchical measurements characterizing motif types m6 to m9
obtained for the cities of Sao Carlos, Lages, and Imperatriz. Observe that the motifs have been assigned in unsupervised manner
in the case of former city, and in supervised way in the other two cases.

other types of networks, such as roads and airport routes, energy distribution, Internet and WWW, protein
interaction, scientific collaboration, text and citations networks, among many other possibilities.
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Appendix A. Comparison of all measurements

Shown in this appendix are the relative frequency histograms (densities) of the nine types of motifs obtained
in unsupervised manner in the case of the city of Sao Carlos, and in supervised manner respectively to the
cities of Lages and Imperatriz, which are presented respective in figure 17 (from motif m1 to m5) and figure 18
(from motif m6 to m9).
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Of particular importance is the fact that the histograms obtained for each of the three NNs have similar
shapes, suggesting potential consistency and generality of the identified motifs. At the same time, markedly
distinct histogram shapes can be observed between distinct motif types. To a considerable extension, these
important results have been allowed by the choice not only of the informative hierarchical measurements, but
also by the strict similarity characterization implemented by the coincidence similarity methodology.

Interesting relationships can be observed among different motif types. For instance, the histograms of hier-
archical degree hd obtained for distinct motifs tended to appear at different positions along the horizontal axes
and with varying shapes. Consequently, this feature can be deemed to be of particular importance for distin-
guishing between the nine identified city motif types. Particularly noticeable variation has also been observed
for the convergence ratio cr hierarchical feature. In addition, observe that the histogram of the hierarchical
number of edges ne resulted mostly null for several motif types.
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