

Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0076721

1 **Title:** New insights into the mechanism of action of the cyclopalladated complex - **CP2**
2 in *Leishmania*: Calcium Dysregulation, Mitochondrial Dysfunction and Cell Death

3

4 Angela M. A. Velásquez,^{a,b} Paula J. Bartlett,^b Irwin A. P. Linares,^c Thais G. Passalacqua,^a
5 Daphne D. L. Teodoro,^a Kely B. Imamura,^a Stela Virgilio,^d Luiz R. O. Tosi,^d Aline de L.
6 Leite,^e Marilia A. R. Buzalaf,^e Jecika M. Velasques,^f Adelino V. G. Netto,^f Andrew P.
7 Thomas,^b Marcia A. S. Graminha^a#*

8

9 ^aSão Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São
10 Paulo, Brazil.

11 ^bDepartment of Pharmacology, Physiology and Neuroscience, New Jersey Medical
12 School, Rutgers, The State University of New Jersey, Newark, NJ, USA.

13 ^cDepartment of Chemistry, São Carlos Institute of Chemistry – IQSC, University of São
14 Paulo (USP), São Carlos-SP, Brazil

15 ^dDepartment of Cellular and Molecular Biology, and Pathogenic Bioagents, Ribeirão
16 Preto Medical School, University of São Paulo (USP), University of São Paulo, Ribeirão
17 Preto-SP, Brazil

18 ^eLaboratory of Biochemistry, Department of Biological Sciences, Bauru School of
19 Dentistry, University of São Paulo (USP), Bauru-SP, Brazil

20 ^fSão Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo,
21 Brazil.

22

23 **Running Title:** The mechanism of action of **CP2** in *Leishmania*

24 #Address correspondence to Marcia A. S. Graminha, marcia.graminha@unesp.br

25 *Present address: Departamento de Análises Clínicas – UNESP, Rodovia Araraquara-

26 Jaú Km 01 s/n, Campus Ville, Araraquara, SP, Brazil.

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 **ABSTRACT**

46 The current treatment of leishmaniasis is based on few drugs that present several
47 drawbacks such as high toxicity, difficult administration route, and low efficacy. These
48 disadvantages raise the necessity to develop novel antileishmanial compounds allied to a
49 comprehensive understanding of their mechanisms of action. Here, we elucidate the
50 probably mechanism of action of the antileishmanial binuclear cyclopalladated complex
51 $[\text{Pd}(\text{dmba})(\mu\text{-N}_3)]_2$ (**CP2**) in *Leishmania amazonensis*. **CP2** causes oxidative stress in the
52 parasite resulting in disruption of mitochondrial Ca^{2+} homeostasis, cell cycle arrest at S-
53 phase, increasing the ROS production and overexpression of stress-related and cell
54 detoxification proteins, collapsing the *Leishmania* mitochondrial membrane potential and
55 promotes apoptotic-like features in promastigotes leading to necrosis or directs
56 programmed cell death (PCD)-committed cells toward necrotic-like destruction.
57 Moreover, **CP2** is able to reduce the parasite load in both liver and spleen in
58 *Leishmania infantum*-infected hamsters when treated for 15 days with 1.5 mg/Kg/day
59 **CP2**, expanding its potential application in addition to the already known effectiveness
60 on cutaneous leishmaniasis for the treatment of visceral leishmaniasis, showing the broad
61 spectrum of action of this cyclopalladated complex. The data herein presented bring new
62 insights into the **CP2** molecular mechanisms of action, assisting to promote its rational
63 modification to improve both safety and efficacy.

64

65

66 **Keywords:** Binuclear cyclopalladated complex, cutaneous leishmaniasis, leishmanicidal
67 activity, necrotic death in *Leishmania*, calcium homeostasis, mitochondria.

68 **INTRODUCTION**

69 Leishmaniasis is a neglected parasitic disease caused by at least 20 species of the
70 kinetoplastid genus *Leishmania* (1, 2) and is endemic in 98 countries (3). Cutaneous
71 leishmaniasis (CL) is the most common clinical manifestation, while visceral
72 leishmaniasis (VL) is a very severe systemic manifestation that can be fatal if left
73 untreated (1, 2, 4). Causative CL species in the old-world are *L. tropica*, *L. major*, and *L.*
74 *aethiopica*; also *L. infantum* and *L. donovani*. In the Americas (New-world) the species
75 involved in CL are *L. mexicana* species complex (especially *L. mexicana*, *L. amazonensis*,
76 and *L. venezuelensis*) and Viannia subgenus (most notably *L. (V.) braziliensis*, *L. (V.)*
77 *panamensis*, *L. (V.) guyanensis*, and *L. (V.) peruviana*); also *L. major*-like organisms and
78 *L. chagasi*. For VL, the principal causative species of disease are *L. donovani* species
79 complex (ie, *L. donovani* and *L. infantum* in old-world, and *L. chagasi* in new-world) (5–
80 7).

81 Available treatments for leishmaniasis have several limitations associated with high
82 toxicity, difficult administration route, and low efficacy in endemic areas due to the
83 emergence of resistant strains (4, 8–10). The adverse effects are mainly evident in
84 leishmaniasis–HIV coinfection (1, 3). The current drugs for VL include pentavalent
85 antimonials, amphotericin B and its lipid formulations (AmBisome), paromomycin,
86 miltefosine, and drug combinations, such as AmBisome/miltefosine,
87 AmBisome/paromomycin, and miltefosine/paromomycin (2, 4, 11). For the CL, limited
88 treatments are available (pentavalent antimonials, amphotericin B, and pentamidine) in
89 comparison to VL, where these drugs are only recommended for the treatment of specific
90 forms (2, 12). These challenges associated with few current pharmaceuticals highlight the
91 urgent need to develop novel, safe, and effective leishmaniasis treatment drugs.

92 Thus, in order to contribute to new molecules that overcome the problems listed above,
93 different strategies to identify new drugs against *Leishmania* spp. have been used (13–

94 18). Many primary screenings of different compound libraries (natural products or
95 synthetic molecules) have identified and validated hits (15, 19, 28–32, 20–27). Metal
96 complexes with known antitumor bioactivity have been tested to treat various neglected
97 diseases; some of them have exhibited anti-trypanosomatid effects (21, 24, 36–43, 25, 26,
98 28–30, 33–35). Moreover, the insertion of metal centers in antiparasitic drug structures is
99 a strategy to increase their pharmacological activity by affecting multiple targets
100 simultaneously (26). Au^{III} and Pd^{II} cyclometallated compounds and oxorhenium(V)
101 complexes that inhibit different cysteine proteases of *Trypanosoma cruzi* and *Leishmania*
102 spp. was developed as reported by Fricker and colleagues (25). Other authors reported
103 the *in vitro* and *in vivo* leishmanicidal and trypanocidal activity of some Pd^{II} complexes
104 (29, 30, 46, 33, 35–38, 43–45). However, not all of these reports addressed the possible
105 mechanism of action of these compounds. In general, studies involving Pd^{II} complexes
106 reported that these compounds induce arrest of the cell cycle of parasites, generation of
107 reactive oxygen species (ROS), interaction with DNA by electrostatic forces, irreversible
108 inhibition of trypanothione reductase and cysteine protease, and inhibition of
109 topoisomerase I (25, 30, 38, 43, 45, 46). The palladacycle compounds [Pd₂Cl₂(C²,N-
110 dmpa)₂(μ-dppe)] (DPPE 1.1) and [Pd(C²,N-dmpa)(dppe)]Cl (DPPE 1.2), where dmpa =
111 S₍₋₎-*N,N*-dimethyl-1-phenethylamine, dppe = 1,2-Bis(diphenylphosphino)ethane, reduced
112 the parasite load *L. amazonensis* infected mice and reported cathepsin B and cysteine
113 protease as their targets. However, cell death mechanism induced by DPPE 1.1 and DPPE
114 1.2 has not been investigated (35–37). Other studies on DPPE 1.1 have described the
115 cascade of effects produced after parasite treatment, and that also displayed action against
116 other organisms (33, 34, 47). DPPE 1.1 exerts in *T. cruzi* trypomastigotes an apoptosis-
117 like death and causes mitochondrion disruption (33); in *Paracoccidioides lutzii* and *P.*
118 *brasiliensis*, the complex induced remarkable chromatin condensation, DNA degradation,

119 superoxide anion production, metacaspase activity, and apoptosis- and autophagy-like
120 mechanisms (34). In murine and cisplatin-resistant human tumor cells, DPPE 1.1 interacts
121 with mitochondrial membrane thiol-groups and induces the intrinsic apoptotic pathway
122 (47).

123 Previously, we demonstrated that the binuclear cyclopalladated complex [Pd(dmba)(μ -
124 N₃)₂] (**CP2**) delivers *in vivo* leishmanicidal activity in a *L. amazonensis*-infected mice as
125 a CL model via inhibition of DNA topoisomerase 1B (30). In this study we identified the
126 downstream effects of the *Leishmania* topoisomerase IB inhibition by **CP2**, and its
127 probable mechanism of action against *L. amazonensis*. Here, we observed that **CP2**
128 increased ROS, cytosolic Ca²⁺ levels, and collapsed the mitochondrial membrane
129 potential, leading the parasite to promote necrosis or leading programmed cell death
130 (PCD) committed cells toward necrotic-like destruction. In addition, **CP2** causes an
131 alteration in the levels of translation, stress-response proteins, and ROS detoxification in
132 *L. amazonensis*. Finally, we demonstrated that **CP2** not only has *in vivo* leishmanicidal
133 activity on CL model but also displayed effective leishmanicidal activity against *L.*
134 *infantum*-infected hamsters, a VL model, which demonstrates the widespread potential of
135 this cyclopalladated complex.

136

137

138

139

140

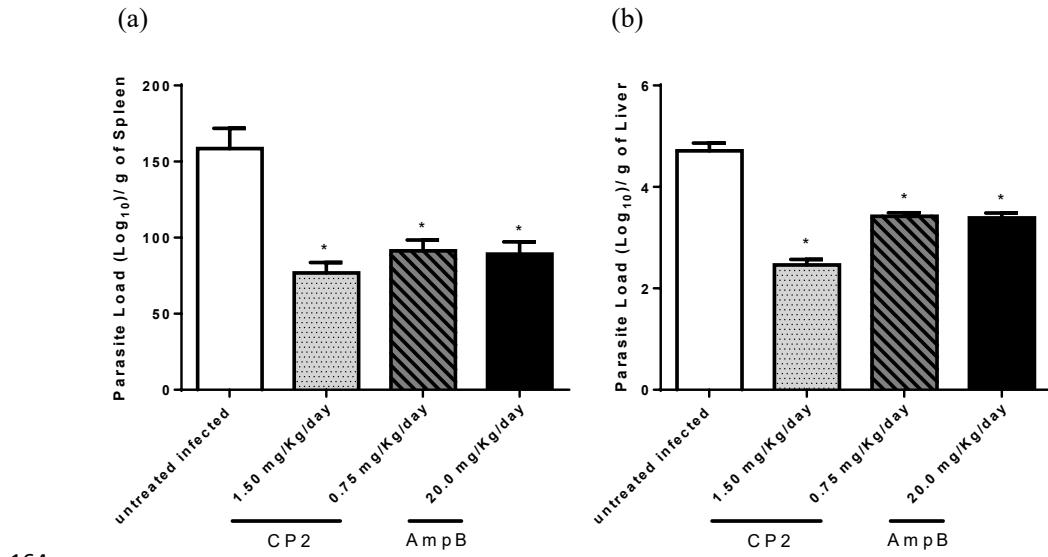
141 RESULTS

142 **CP2 displayed *in vitro* and *in vivo* antileishmanial activity against *L. infantum***

143 To evaluate the spectrum of action of **CP2** beyond the effects previously reported (30),
144 we analyzed the *in vitro* and *in vivo* efficacy of the compound using *L. infantum* as the
145 causative agent of visceral leishmaniasis. **CP2** displayed a high antileishmanial activity
146 and selectivity index (SI) against both the insect promastigote stage ($IC_{50} = 4.0 \mu\text{mol L}^{-1}$,
147 $SI = 1261$) and the intracellular amastigote forms ($IC_{50} = 4.7 \mu\text{mol L}^{-1}$, $SI = 107.6$) as
148 reported in Table 1. The SI values were calculated using our previously reported values of
149 cytotoxicity of **CP2** against murine peritoneal macrophages (30).

150

151 **TABLE 1** Antileishmanial activity of **CP2** against *Leishmania infantum* (IC_{50}). Data are
152 the mean and standard deviation from three independent experiments. The results are
153 expressed in ($\mu\text{mol L}^{-1}$).


Compound	<i>L. infantum</i> $IC_{50} \pm SD$ (SI)*	
	Promastigote	Amastigote
CP2	4.0 ± 0.4 (126.1)	4.7 ± 0.1 (107.6)
AmpB	0.9 ± 0.1 (25.1)	2.9 ± 0.1 (7.7)

154 *The selectivity index (SI, indicated in parentheses) was calculated as the CC_{50}/IC_{50} of
155 **CP2**. $p < 0.05$ for all values.

156

157 *L. infantum*-infected Golden hamsters were used as a VL model. The animals were
158 treated for 15 days with **CP2** (0.75 or 1.5 mg/Kg/day) or AmpB (20 mg/Kg/day) and the
159 parasite load of both spleen and liver determined (Fig. 1). A dose of 1.5 mg/Kg/day of
160 **CP2** caused a ~50% reduction in the parasite load of both liver and spleen similar to
161 AmpB (at a dose thirteen-fold higher than **CP2**), without any alteration in biochemical

162 markers of liver and kidney function (Fig. S1 at <http://hdl.handle.net/11449/214617>),
163 following previous work (30).

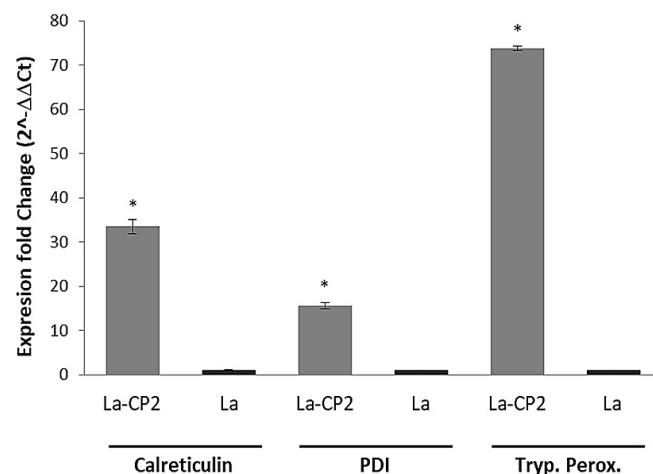
164
165 **Fig. 1.** Parasite load of *L. infantum*-infected hamsters treated with **CP2** or AmpB.
166 Hamsters infected with *L. infantum* promastigotes in the stationary growth phase were
167 treated with **CP2** or AmpB commencing 75 days post-infection for 15 days. The parasite
168 load was determined by the limiting dilution method at the end of the treatment in (a) the
169 spleen and (b) the liver. The data are expressed as mean \pm SD.* Statistical significance of
170 the difference relative to the untreated infected group ($p < 0.05$) was determined by
171 ANOVA with Tukey's post-hoc test.

172

173 **CP2 causes an alteration in the levels of stress-response proteins, protein translation**
174 **and ROS detoxification in *Leishmania***

175 Two-dimensional SDS-PAGE comparative analysis was performed to identify
176 differentially expressed proteins in the presence or absence of **CP2**. *L. amazonensis*
177 promastigotes at logarithm growth phase were treated with $13.3 \mu\text{mol L}^{-1}$ of **CP2** for 72

178 h, concentration corresponding to the previously determined IC₅₀ value (30). The protein
179 extracts obtained were separated by two-dimensional SDS-PAGE in a pH ranging from
180 4 to 7 (Fig. S2 at <http://hdl.handle.net/11449/214617>).


181 Fifty two differentially expressed proteins identified through mass spectrometry analyses
182 (Table S1 at <http://hdl.handle.net/11449/214617>) are related to chaperons/protein folding
183 (48%), mitochondrial respiratory chain (17%), and ROS detoxification (14%), in addition
184 to α - and β -tubulins. In order to minimize possible artifacts, the spots were selected after
185 data filtration based on two factors: a *p*-value of less than 0.5 in a Student's t-test
186 comparing protein samples obtained in the presence or absence of **CP2**, and expression
187 differences higher than two-fold.

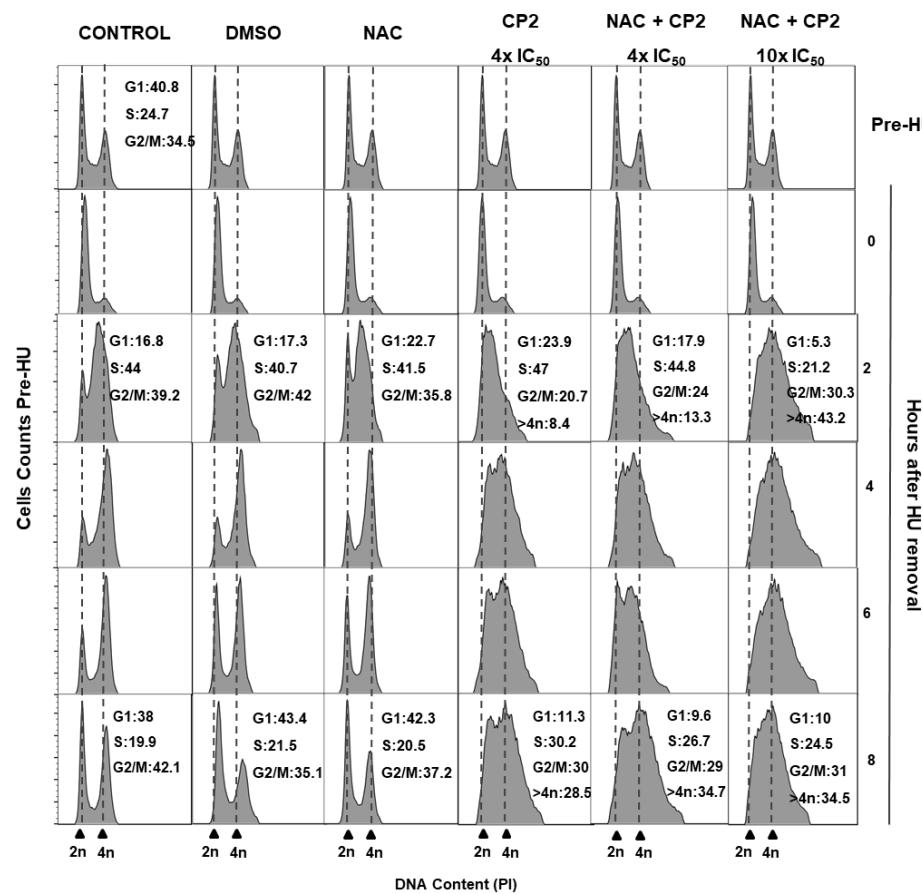
188 Among the overexpressed proteins, **CP2** increased the levels of putative chaperons by at
189 least three fold, including HSP70, LMXM_28_2770 (nine-fold), two isoforms of putative
190 calreticulin, LMXM_30_2600 (seven-fold – pI 4.14 and two-fold – pI 4.53), and protein
191 disulfide-isomerase (PDI), LMXM_36_6940 (three-fold). For the group of redox
192 proteins, trypanothione reductase, LMXM_05_0350, and the peroxiredoxin tryparedoxin
193 peroxidase, LMXM_23_0040, increased by six- and four-fold, respectively.

194 Some proteins related to parasites' mitochondria were found overexpressed in presence
195 of **CP2** such as mitochondrial cytochrome c oxidase subunit IV, LMXM_12_0670, and
196 ribonucleoprotein p18, LMXM_15_0275, while others, such as putative mitochondrial
197 chaperone heat shock 70-related protein 1 (mHSP70-1), LMXM_29_2550, was not
198 expressed in the cells treated with **CP2**.

199 In the functional category of protein synthesis, the putative translation elongation factor
200 1-beta, LMXM_33_0840, was eleven-fold higher relative to the control, while the
201 elongation factor 1-alpha, LMXM_17_0080, the elongation factor 2, LMXM_36_0180,
202 and the 60S acidic ribosomal protein P0, LMXM_27_1380, were only expressed in the

203 absence of **CP2**. The putative carboxypeptidase, LMXM_32_2540), in the category of
204 amino acid metabolism, was incremented by two-fold. Additionally, RT-qPCR data also
205 show a correspondence between transcriptional and protein levels for calreticulin, PDI,
206 and tryparedoxin peroxidase (Fig. S3 at <http://hdl.handle.net/11449/214617>) induced by
207 **CP2** (Fig. 2).

208
209 **Fig. 2.** Relative gene expression of calreticulin, PDI, and tryparedoxin peroxidase of
210 *Leishmania amazonensis* promastigotes after 72 h of exposure to **CP2**. The relative gene
211 expression determined by RT-qPCR was calculated using the $2^{-\Delta\Delta Ct}$ method, using kDNA
212 mRNA expression as a reference and the *L. amazonensis* (La) in the absence of **CP2** as
213 the calibrator (see the supplemental material at <http://hdl.handle.net/11449/214617>). The
214 data were expressed as average \pm SD.*: Statistical significance of the difference relative
215 to La in the absence of **CP2**, control ($p < 0.001$) was determined by ANOVA with
216 Tukey's post-hoc test. La-CP2 is the *L. amazonensis* treated with $13.3 \mu\text{mol L}^{-1}$ **CP2**.


217

218

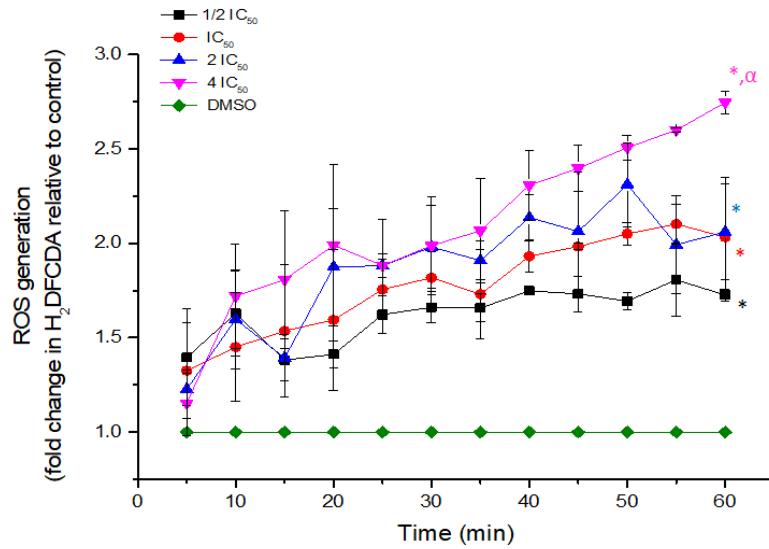
219

220 **CP2 arrests cell cycle progression at S-phase in *Leishmania***

221 Previously, we demonstrated that **CP2** inhibited the cleavage step of DNA topoisomerase
 222 1B of *Leishmania* (30), leading to the accumulation of DNA damage and arrest in the cell
 223 cycle progression. To investigate the effect of **CP2** on cell cycle progression, hydroxyurea
 224 (HU) synchronized *L. amazonensis* promastigotes were treated with **CP2** or **CP2** plus the
 225 ROS inhibitor N-acetyl L-cysteine (NAC), and the progression of the cell cycle was
 226 followed by determining the parasite DNA content by flow cytometry (Fig. 3).

227

228 **Fig. 3. CP2 effect on the cell cycle of *Leishmania amazonensis*.** Promastigotes in the
 229 mid-log growth phase were synchronized by adding 5 mmol L⁻¹ HU for eight hours and
 230 then transferred to an HU-free medium containing 0.03% DMSO (control). The parasites


231 were treated with **CP2** (4 x IC₅₀: 53.2 $\mu\text{mol L}^{-1}$), 20 $\mu\text{mol L}^{-1}$ NAC or **CP2** (4 x IC₅₀: 53.2
232 $\mu\text{mol L}^{-1}$ or 10x IC₅₀: 133 $\mu\text{mol L}^{-1}$) plus 20 $\mu\text{mol L}^{-1}$ NAC. Cells were collected at 0, 2,
233 4, 6, and 8 h, and the DNA content was measured by flow cytometry. Each histogram
234 represents the data of 50,000 events; 2n and 4n indicate non-replicated and replicated
235 DNA, respectively. The percentage of cells in G1, S, and G2/M phases is indicated for
236 cells before treatment with HU (Pre-HU) and at 2 h and 8 h after the removal of HU. HU,
237 hydroxyurea; NAC, N-acetyl-L-cysteine. ($p < 0.01$).

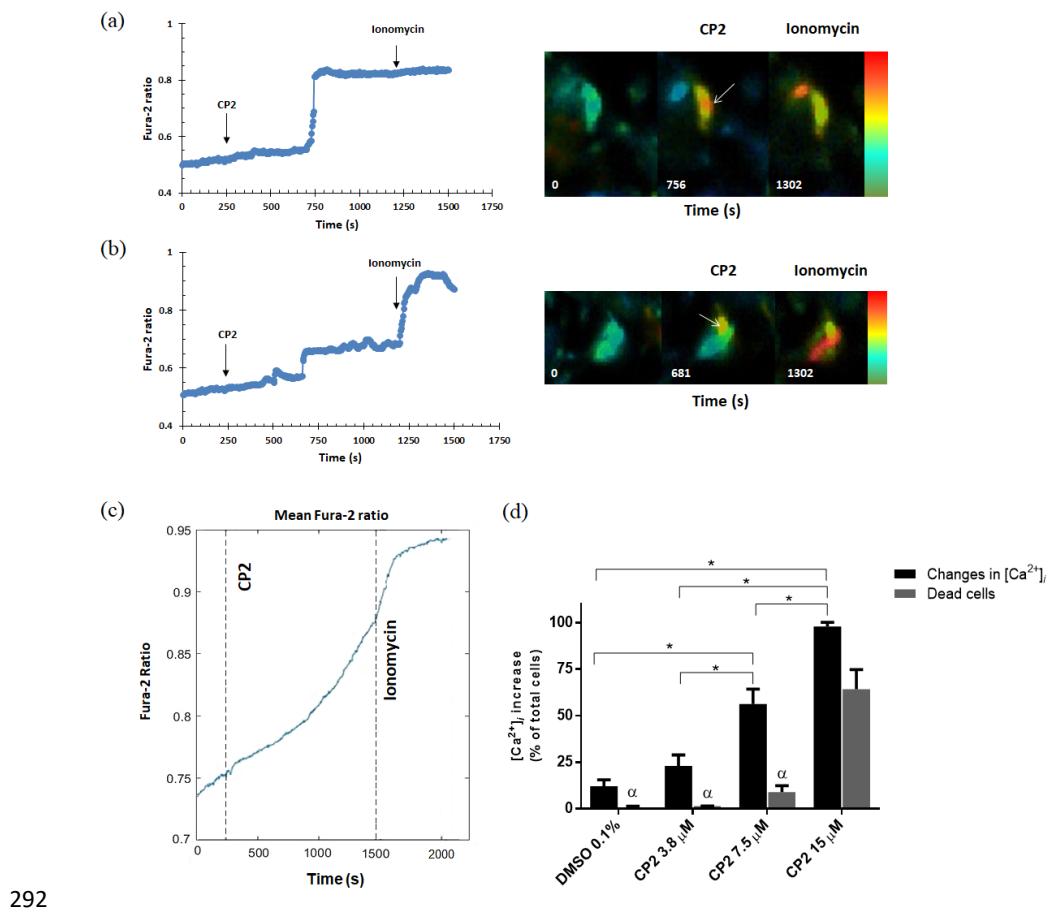
238 The data obtained demonstrate that **CP2** induced the accumulation of a higher proportion
239 of cells in the S-phase, indicating an arrest of the cell cycle at this phase after **CP2**
240 treatment at 53.2 $\mu\text{mol L}^{-1}$. Notably, this effect is not abolished by the addition of NAC.
241 Moreover, promastigotes in the presence of 133 $\mu\text{mol L}^{-1}$ **CP2** (10 x IC₅₀) increased the
242 proportion of cells with 4n DNA content, indicating that the effect of **CP2** on the parasite
243 cell cycle progression occurred independently of ROS.

244

245 **CP2 increases ROS levels in *Leishmania***

246 Promastigotes were exposed for 60 min to different concentrations of **CP2** to determine
247 its ability to increase cellular ROS levels at every 5 min. **CP2** increased ROS production
248 in a dose-dependent manner (Fig. 4). This finding correlates with the proteomic data that
249 showed overexpression of trypanothione reductase, peroxiredoxin, and tryparedoxin
250 peroxidase, enzymes involved in the trypanothione-mediated hydroperoxide metabolism
251 for detoxification of endogenous or exogenous oxidative agents (48).

253 **Fig. 4. CP2-dependent ROS generation in *L. amazonensis*.** Promastigote forms of *L.*
 254 *amazonensis* were treated with **CP2** ($\frac{1}{2} \times \text{IC}_{50}$: $6.7 \mu\text{mol L}^{-1}$; IC_{50} : $13.3 \mu\text{mol L}^{-1}$; $2 \times \text{IC}_{50}$:
 255 $26.6 \mu\text{mol L}^{-1}$ and $4 \times \text{IC}_{50}$: $53.2 \mu\text{mol L}^{-1}$) for 60 min. ROS generation was measured
 256 spectrofluorimetrically using the probe H_2DFCDA . The parasites were treated with 0.1%
 257 DMSO as a control. Data are mean \pm SD of three independent experiments. *: statistically
 258 significant difference relative to DMSO control ($p < 0.001$); α : statistically significant
 259 difference relative to parasites treated with $\frac{1}{2} \times \text{IC}_{50}$ of **CP2** ($p < 0.01$). Statistical
 260 significance was determined by ANOVA with Student-Newman-Keuls multiple
 261 comparisons test.

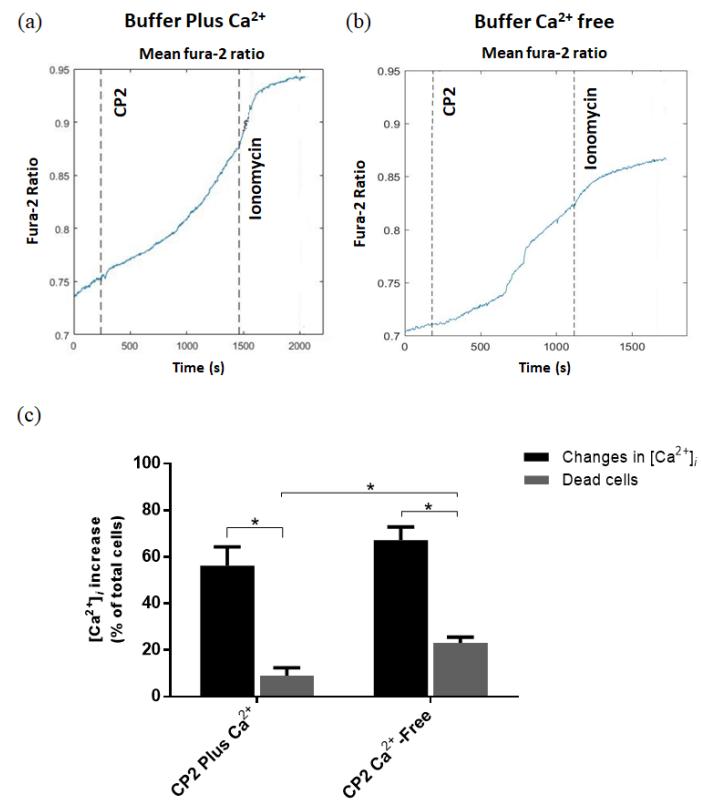

262

263 **CP2 disrupts Ca^{2+} homeostasis in *Leishmania* in a dose-dependent manner**

264 Considering that oxidative stress is often associated with a rise in intracellular Ca^{2+}
 265 concentration ($[\text{Ca}^{2+}]_i$) (49–52), we determined the effect of **CP2** on $[\text{Ca}^{2+}]_i$ in single-
 266 promastigote cells by live-cell fluorescence imaging using the ratiometric Ca^{2+} indicator
 267 Fura-2/AM (Fig. 5). After **CP2** addition, increases in $[\text{Ca}^{2+}]_i$ were observed in the

268 majority of cells after a delay of 5-10 min. The subsequent addition of the Ca^{2+} ionophore
269 ionomycin increased $[\text{Ca}^{2+}]_i$ to maximum, and this occurred with no delay. The presence
270 of an ionomycin response and maintenance of the Fura-2 dye load of the cells was used
271 to validate that the cells remained viable during the experiment. The $[\text{Ca}^{2+}]_i$ responses to
272 **CP2** varied in magnitude, with an increase to near-maximal $[\text{Ca}^{2+}]_i$ levels (relative to the
273 ionomycin response) in some promastigotes (Fig. 5a). In contrast, others exhibited small
274 peaks and only partial increases in $[\text{Ca}^{2+}]_i$ (Fig. 5b). When the responses were averaged
275 from all parasites in the imaging field, the profile $[\text{Ca}^{2+}]_i$ showed a progressive increase
276 during the incubation period (Fig. 5c). Additionally, the percentage of parasites that
277 exhibited changes in $[\text{Ca}^{2+}]_i$ during the incubation period with **CP2** increased in a dose-
278 dependent manner (Fig. 5d). In the presence of $3.8 \mu\text{mol L}^{-1}$, an increase in $[\text{Ca}^{2+}]_i$ was
279 detected in 20% of cells during the 25-30 min time-course of the experiment, whereas in
280 the presence of $7.5 \mu\text{mol L}^{-1}$ and $15 \mu\text{mol L}^{-1}$ responses were detected in 60% and 98%
281 of cells, respectively. Following the large $[\text{Ca}^{2+}]_i$ increase during continuing incubation
282 with high doses of **CP2**, some cells showed a loss of the total Fura-2 signal, which was
283 taken as an indicator of cell death (Fig. S4 at <http://hdl.handle.net/11449/214617>). Thus,
284 the increase in Ca^{2+} levels appears to presage cell death in response to **CP2** (Fig. 5c).

285 Removal of extracellular Ca^{2+} did not affect the percentage of promastigotes of *L.*
286 *mexicana* exposed to **CP2**, in which increases in $[\text{Ca}^{2+}]_i$ were observed (Fig. 6a, 6b).
287 These data show that **CP2**-induced $[\text{Ca}^{2+}]_i$ responses are observed in the absence of
288 extracellular Ca^{2+} , indicating that the observed $[\text{Ca}^{2+}]_i$ increase is caused by Ca^{2+} release
289 from an intracellular Ca^{2+} store, such as the endoplasmic reticulum (ER), acidic
290 compartments or mitochondria. Of note, an increase in dead cells after **CP2** addition was
291 also still observed in the absence of extracellular Ca^{2+} (Fig. 6c).



292

293 **Fig. 5.** Effect of **CP2** on the $[Ca^{2+}]_i$ of *Leishmania mexicana* promastigotes. The
 294 parasites were cultivated until the mid-log growth phase and then loaded with 5
 295 μ mol L⁻¹ Fura-2/AM in a loading buffer containing 1.3 mmol L⁻¹ of CaCl₂. Changes in
 296 $[Ca^{2+}]_i$ were measured with Fura-2 excitation at 340/380 nm and emission at > 510 nm
 297 and are plotted as the 340/380 ratio (Fura-2 ratio). Representative single-cell traces of
 298 large (a) and small (b) $[Ca^{2+}]_i$ changes in response to 7.5 μ mol L⁻¹ **CP2** treatment of
 299 promastigotes are shown. Ionomycin (10 μ mol L⁻¹) was added at the end of each
 300 experiment to determine the maximal $[Ca^{2+}]_i$ response for each cell. The right panel shows
 301 pseudocolor images demonstrating the increase in fluorescence ratio related to an increase
 302 in $[Ca^{2+}]_i$ from blue (lowest ratio) to red (highest ratio) in the absence and presence of

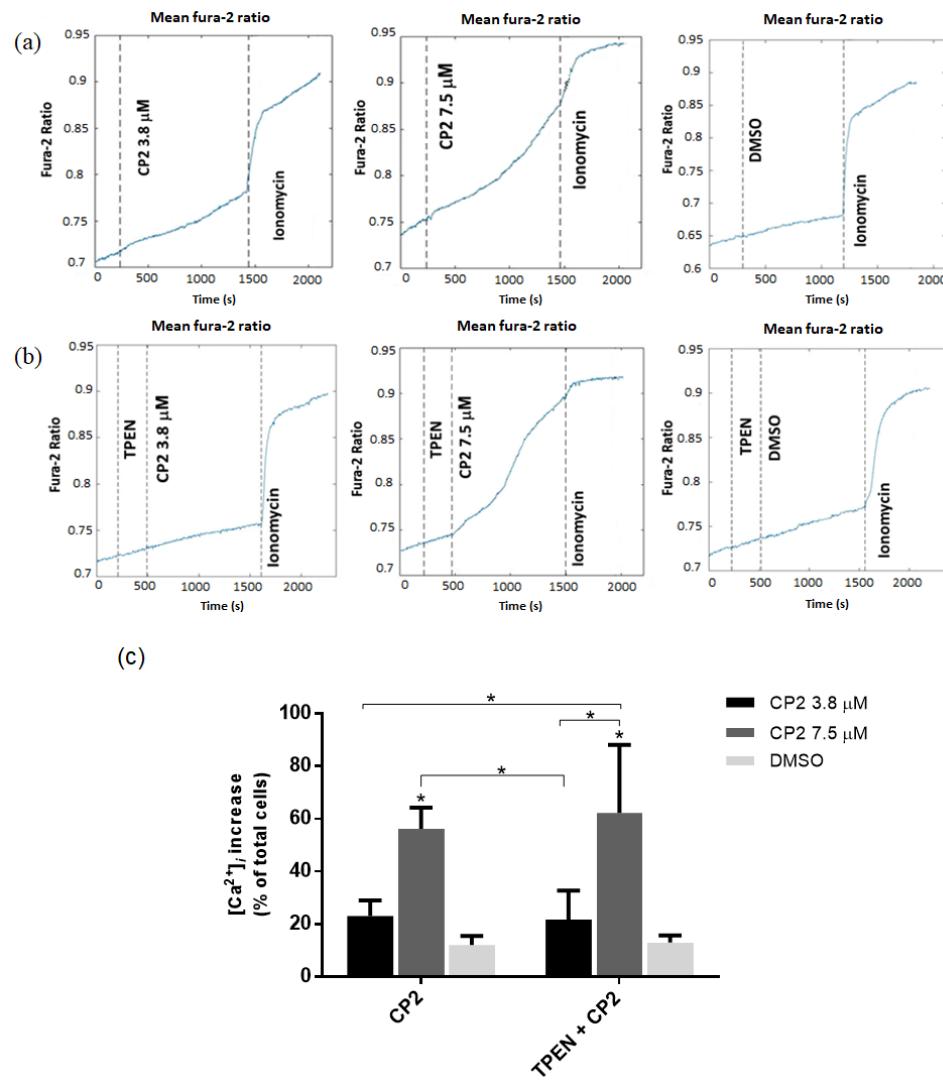
303 drugs. (c) Averaged trace for 100 cells in the imaging field. (d) Mean percentage of
 304 parasites with a change in $[Ca^{2+}]_i$ in the presence of 3.8, 7.5, or 15 $\mu\text{mol L}^{-1}$ **CP2**, 0.1 %
 305 DMSO was used as a control. Cell death counts reflect cells that showed total loss of
 306 Fura-2 by the end of the imaging experiment. Summary data are mean \pm SD of three
 307 independent experiments. α :statistically significant difference relative to dead cells in the
 308 presence of 15 $\mu\text{mol L}^{-1}$ **CP2**, and *: statistically significant difference between groups
 309 ($p < 0.001$) was determined by Two-way ANOVA followed by Tukey's multiple
 310 comparisons test.

311

312

313 **Fig. 6.** Removal of extracellular Ca^{2+} does not perturb **CP2**-induced $[Ca^{2+}]_i$ responses in
 314 *Leishmania mexicana*. A representative experiment of promastigotes cultivated until the

315 mid-log growth phase and then loaded with Fura-2/AM in a loading buffer with (a) or
316 without (b) 1.3 mmol L⁻¹ of CaCl₂ and treated with 7.5 μ mol L⁻¹ **CP2** followed by 10
317 μ mol L⁻¹ ionomycin. Traces averaged from 100 individual parasites. (c) Mean of the
318 percentage of parasites with an increase in [Ca²⁺]_i and the percentage of dead cells in the
319 presence or absence of extracellular Ca²⁺ after **CP2** addition. Summary data are mean \pm
320 SD of three independent experiments. *: statistically significant difference between
321 groups ($p < 0.001$) was determined by Two-way ANOVA followed by Tukey's multiple
322 comparisons test.


323

324 **The metal chelator TPEN does not suppress the CP2-dependent [Ca²⁺]_i response.**

325 Since **CP2** is a complex of Pd²⁺, and heavy metals can affect Ca²⁺ channels and pumps,
326 we tested the effect of TPEN (N,N,N',N'-Tetrakis (2-pyridylmethyl) ethylenediamine), a
327 permeable cell and highly selective heavy metal chelating agent with low affinity for
328 Mg²⁺ and Ca²⁺ (53, 54). *L. mexicana* promastigotes were exposed to 10 μ mol L⁻¹ TPEN
329 followed by **CP2** addition (3.8 and 7.5 μ mol L⁻¹) (Fig. 7). It was observed that TPEN
330 does not inhibit the ability of **CP2** to mobilize intracellular Ca²⁺ (Fig. 7a, 7b). **CP2** (7.5
331 μ mol L⁻¹) induced [Ca²⁺]_i responses was observed in ~60% of cells in the presence or
332 absence of TPEN (Fig. 7c). Heavy metals have been shown to alter the fluorescent
333 properties of Ca²⁺ indicator dyes (53). The addition of **CP2** does not alter the fluorescence
334 of Fura-2 in *Leishmania*, and TPEN does not perturb the Ca²⁺ response to this agent
335 indicates that Pd²⁺ is coordinated to *N,N*-dimethylbenzylamine (dmba), and azide (N₃⁻) in
336 the active species of **CP2**, which contributes to its effect on [Ca²⁺]_i mobilization. Notably,
337 the dmba by itself did not exhibit leishmanicidal activity, as previously demonstrated
338 (29). Nevertheless, it cannot be ruled out that **CP2** can participate in competing ligand

339 exchange reactions with other molecules or bridge splitting reactions during the
340 experiments, affording new species, which may be responsible for the observed activity.

341

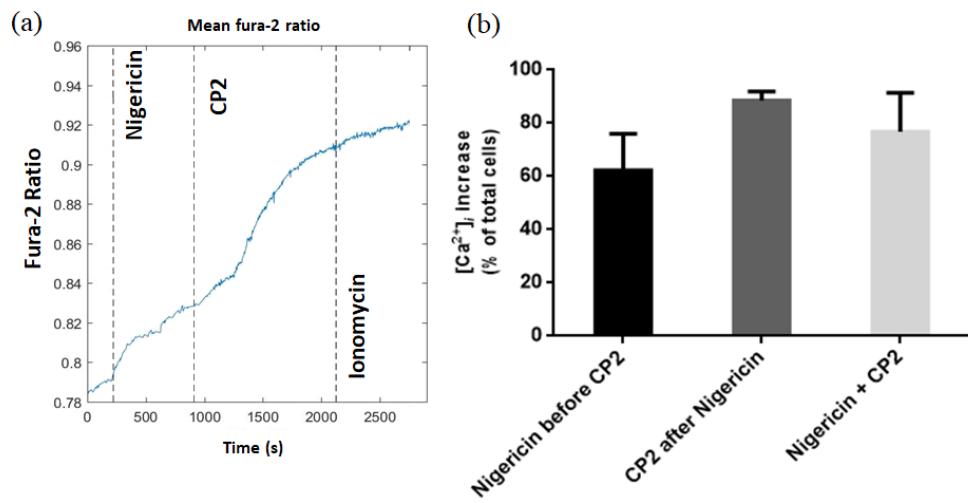
342

343 **Fig. 7.** Effect of **CP2** on the *L. mexicana* $[Ca^{2+}]_i$ in the presence of TPEN, a heavy metal
344 chelating agent. (a) Representative experiment of promastigotes treated with 3.8 or 7.5
345 $\mu\text{mol L}^{-1}$ **CP2** followed by 10 $\mu\text{mol L}^{-1}$ ionomycin and (b) promastigotes treated with 10
346 $\mu\text{mol L}^{-1}$ TPEN plus 3.8 or 7.5 $\mu\text{mol L}^{-1}$ **CP2**, followed by 10 $\mu\text{mol L}^{-1}$ ionomycin. Each

347 trace is the average from at least 100 individual parasites. (c) Summary data of the percent
348 of cells with increased $[Ca^{2+}]_i$, 0.1 % DMSO was used as a control. Data are mean \pm SD
349 of three independent experiments. *: statistically significant difference relative to DMSO
350 control ($p < 0.001$) was determined by Two-way ANOVA followed by Tukey's multiple
351 comparisons test.

352

353 **CP2 induces Ca^{2+} release from mitochondria but not ER or acidic Ca^{2+} pools in**
354 ***Leishmania***

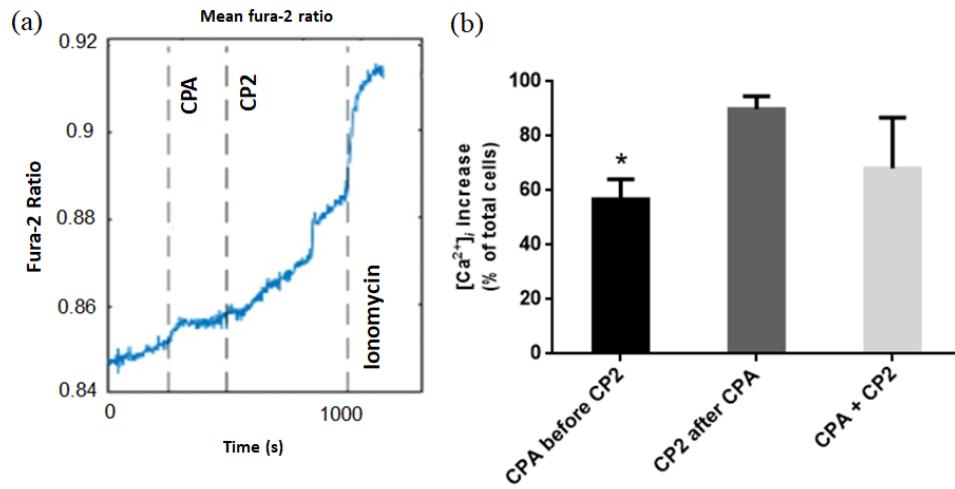

355 Fura-2/AM-loaded promastigotes in the presence of extracellular Ca^{2+} were exposed to
356 nigericin (55) or cyclopiazonic acid (CPA) (56), followed by the addition of **CP2** in order
357 to determine the Ca^{2+} store targeted by **CP2**. The addition of nigericin, which releases
358 Ca^{2+} from acidic compartments such as the acidocalcisome and acidic vesicles, resulted
359 in an elevation of $[Ca^{2+}]_i$ in \sim 60% of the parasites. Nevertheless, an increase in $[Ca^{2+}]_i$
360 was still observed after adding **CP2** to nigericin-treated cells in 90% of the cells. Also, in
361 cells, that response to nigericin, an additional increase in response **CP2** was observed in
362 \sim 77% (Fig. 8a and 8b). Thus, **CP2** does not act by mobilizing Ca^{2+} from acidic pools in
363 ***Leishmania***.

364 CPA, a specific inhibitor of the sarco-endoplasmic reticulum Ca^{2+} -ATPase (SERCA)
365 (56), was used to investigate whether **CP2** releases Ca^{2+} from the ER. Ca^{2+} responses in
366 Fura-2 loaded parasites were observed after the addition of both CPA and **CP2**,
367 suggesting that the release of Ca^{2+} caused by these two drugs is independent (Fig. 9a).
368 Almost 60% of the parasites showed an increase in $[Ca^{2+}]_i$ in response to CPA, and 90%
369 gave an $[Ca^{2+}]_i$ increase upon subsequent **CP2** addition. The percentage of cells that
370 responded to both CPA and **CP2** was \sim 70% (Fig. 9b).

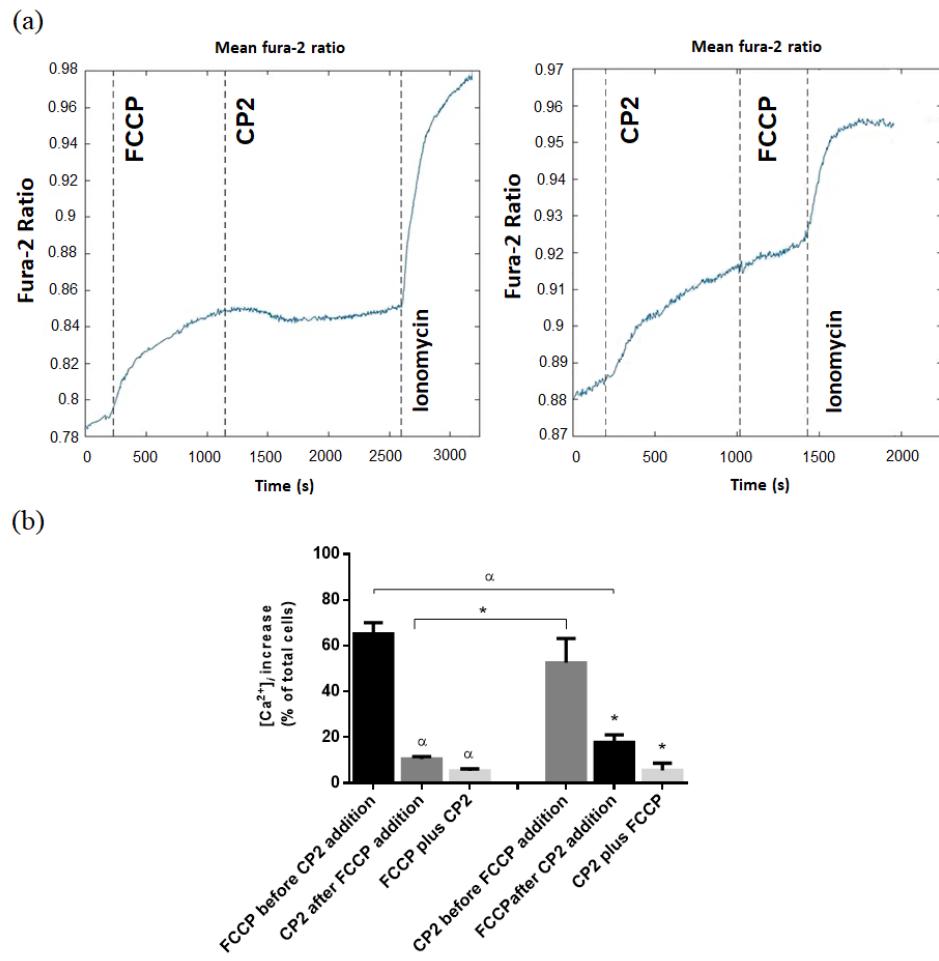
371

372 **Fig. 8.** Effects of **CP2** on $[Ca^{2+}]_i$ in *Leishmania mexicana* after the addition of nigericin.

373 (a) Representative experiment of promastigotes treated with $2.5 \mu\text{mol L}^{-1}$ nigericin,
374 followed by $7.5 \mu\text{mol L}^{-1}$ **CP2** and $10 \mu\text{mol L}^{-1}$ ionomycin. The trace shows an average
375 of at least 100 individual parasites. (b) Mean percentage of parasites with a change in
376 $[Ca^{2+}]_i$ in the presence of nigericin, subsequent **CP2** addition, and those that responded to
377 both nigericin and **CP2**. Data are mean \pm SD of three independent experiments. There are
378 no statistically significant differences between groups determined by the one-way
379 ANOVA multiple comparisons test ($p < 0.05$).



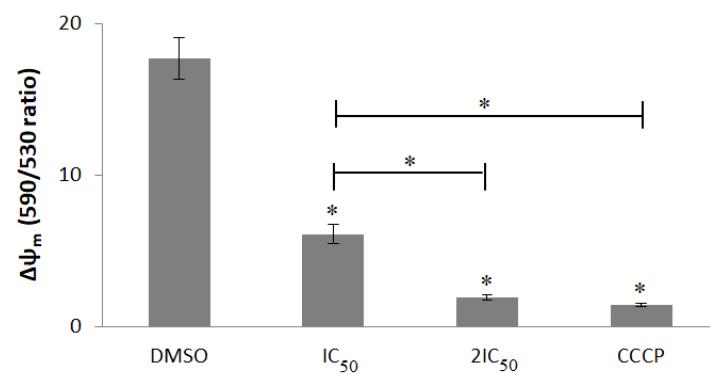
380


381 **Fig. 9.** Effects of **CP2** on $[Ca^{2+}]_i$ in *Leishmania mexicana* after the addition of
 382 cyclopiazonic acid (CPA). (a) Representative experiment of promastigotes treated with
 383 $10 \mu\text{mol L}^{-1}$ CPA, followed by $7.5 \mu\text{mol L}^{-1}$ **CP2** and $10 \mu\text{mol L}^{-1}$ ionomycin. The trace
 384 shows an average of at least 100 individual parasites. (b) Mean of the percentage of
 385 parasites with increases in $[Ca^{2+}]_i$ in the presence of CPA, subsequent addition of **CP2**,
 386 and those that respond to both CPA and **CP2**. Data are mean \pm SD of three independent
 387 experiments. *: statistically significant differences relative to **CP2** after CPA addition (p
 388 < 0.05) were determined by one-way ANOVA multiple comparisons test.

389

390 The results described above indicate that the **CP2**-dependent elevation of intracellular
 391 Ca^{2+} is not due to release from acidocalcisomes or the ER. To determine whether
 392 mitochondria might be the Ca^{2+} source, promastigotes were exposed to **CP2** and the
 393 mitochondrial uncoupler FCCP (Fig. 10). The cell percentage with an $[Ca^{2+}]_i$ increase in
 394 response to **CP2** was significantly decreased to about 10% by the pre-treatment with
 395 FCCP (Fig. 10b). Similarly, prior treatment with **CP2** decreased the response to
 396 subsequent FCCP addition. In both sequential addition paradigms, the percentage of

397 parasites that responded to both FCCP and **CP2** was only ~5% (addition of FCCP
 398 followed by **CP2** or **CP2** followed by FCCP). Thus, these data suggest that **CP2** is
 399 mobilizing Ca^{2+} from a mitochondrial pool.


400
 401 **Fig. 10.** Effect of **CP2** on the *Leishmania mexicana* $[\text{Ca}^{2+}]_i$ before or after addition of
 402 FCCP (mitochondrial uncoupler). (a) Representative experiment of promastigotes treated
 403 with FCCP followed by **CP2** ($5 \mu\text{mol L}^{-1}$ and $7.5 \mu\text{mol L}^{-1}$, respectively) or **CP2** followed
 404 by FCCP ($7.5 \mu\text{mol L}^{-1}$ and $5 \mu\text{mol L}^{-1}$, respectively), and ionomycin ($10 \mu\text{mol L}^{-1}$). Each
 405 trace is the average from at least 100 individual parasites. (b) Summary data showing
 406 mean \pm SD of three independent experiments. *: statistically significant difference

407 relative to cells with $[Ca^{2+}]_i$ increase in the presence of **CP2** ($p < 0.05$); α : statistically
408 significant difference relative to cells with $[Ca^{2+}]_i$ increase in the presence of FCCP ($p <$
409 0.001) were determined by Two-way ANOVA followed by Tukey's multiple
410 comparisons test.

411

412 **CP2 depolarized the mitochondrial membrane potential of *Leishmania***

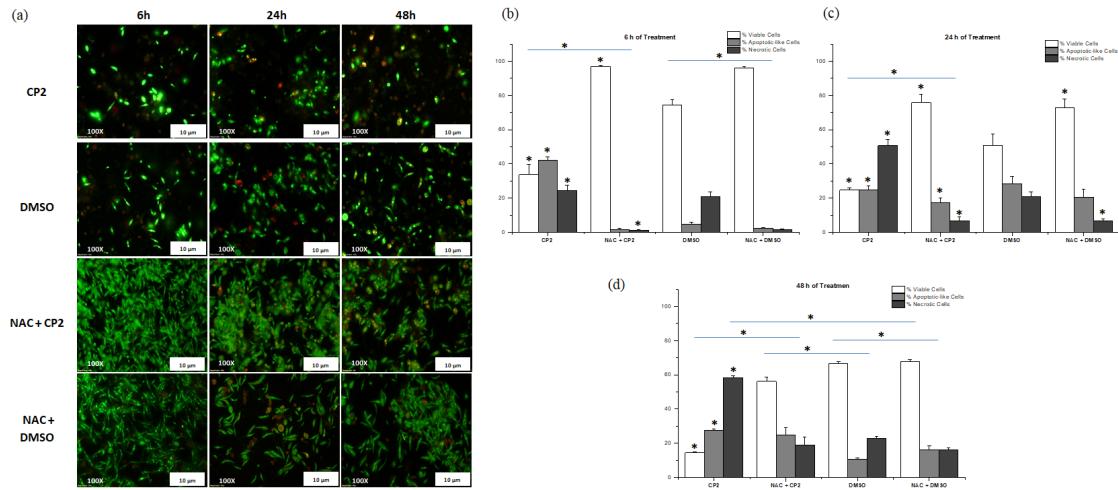
413 To investigate whether **CP2** alters the mitochondrial membrane potential ($\Delta\psi_m$) of *L.*
414 *amazonensis*, promastigotes were exposed to different concentrations of **CP2** based on
415 the IC_{50} value for *L. amazonensis* previously determined (30) (IC_{50} : 13.3 $\mu\text{mol L}^{-1}$ and 2
416 $\times IC_{50}$: 26.6 $\mu\text{mol L}^{-1}$) for 60 min and changes in $\Delta\psi_m$ were determined with JC-1. The
417 spectrofluorometric data (Fig. 11) showed a decrease in the relative fluorescence intensity
418 in all tested concentrations, indicating the membrane potential's depolarization.
419 Moreover, at a dose of 26.6 $\mu\text{mol L}^{-1}$ of **CP2**, the decrease in the relative fluorescence
420 intensity was similar to that caused by the mitochondrial uncoupler CCCP.

421

422 **Fig. 11.** Analysis of the mitochondrial membrane potential $\Delta\psi_m$ of *L. amazonensis*
423 promastigotes. Promastigotes ($2 \times 10^6/\text{mL}$) were incubated with the potential-sensitive
424 probe JC-1 (10 $\mu\text{mol L}^{-1}$) for 10 min after exposure to different doses of **CP2** (IC_{50} : 13.3

425 $\mu\text{mol L}^{-1}$ and $2 \times \text{IC}_{50}$: $26.6 \mu\text{mol L}^{-1}$) for 60 min or CCCP ($50 \mu\text{mol L}^{-1}$), 15 min before
426 the addition of JC-1. For the untreated controls, promastigotes were incubated in the
427 presence of 0.1% DMSO. Dose-dependent changes in relative $\Delta\psi_m$ values were expressed
428 as the fluorescence ratio at 590 nm/ 530 nm. *: statistically significant difference relative
429 to the control and between groups ($p < 0.001$). Statistical analysis was determined by
430 ANOVA followed by Student-Newman-Keuls multiple comparisons test.

431


432 **CP2 causes necrotic parasite death**

433 The cell death mechanism induced by **CP2** was investigated using a dual acridine orange
434 (AO)/ethidium bromide (EB) staining method (Fig. 12) (57). Cultures of *L. amazonensis*
435 promastigotes were exposed to **CP2** for 6, 24, or 48 h, and 200 parasites of each sample
436 were analyzed, and the percentage of viable cells (green), apoptotic-like cells (orange),
437 or necrotic cells (red) calculated (Fig. 12b, 12c, 12d). It was observed that six hours post-
438 **CP2**-treatment (Fig. 12b), promastigotes presented mainly apoptotic-like features
439 (~40%). However, exposure for more extended periods (24 h and 48 h) to **CP2** produced
440 ~50% and 58% necrotic cells, respectively (Fig. 12c and 12d). Cell viability was
441 significantly improved by NAC pre-treatment resulting in the prevention of apoptotic-
442 like and necrotic cells (Fig. 12b-d). These data suggest that **CP2**-induced ROS formation
443 triggers a programmed cell death response.

444

445

446

447

448

449

25

450 **Fig. 12.** **CP2**-induced necrotic cell death in *L. amazonensis*. Promastigotes were treated
451 with 13.3 $\mu\text{mol L}^{-1}$ **CP2** for 6, 24, and 48 h in the presence and absence of 20 $\mu\text{mol L}^{-1}$
452 NAC pre-treatment for two hours. The parasites were stained with acridine orange and
453 ethidium bromide (AO/EB) and immobilized to be analyzed under a fluorescence
454 microscope, Axio Imager A2 (Zeiss), at 100x magnification. (a) Staining of necrotic /
455 apoptotic-like *L. amazonensis* promastigotes with AO/BE, where viable cells are green,
456 necrotic cells red, and apoptotic-like cells yellow/orange colors. The images were
457 captured with an Axio Cam MRm camera and processed using the AxioVision software.
458 200 parasites from each sample were evaluated to determine the number of necrotic and
459 apoptotic-like cells after (b) 6 h, (c) 24 h, and (d) 48 h of treatment. 0.1% DMSO was
460 used as a control. Scale, 10 μm . *: statistically significant differences relative to the
461 control and between treatments ($p < 0.001$) were determined by ANOVA with Student-
462 Newman-Keuls multiple comparisons test.

463

464 **Discussion**

465 We previously reported that the cyclopalladated complex **CP2** inhibits *Leishmania*
466 topoisomerase IB (30), which might lead to DNA damage, triggering cell cycle arrest and
467 DNA repair (58–60). Herein we demonstrated that although **CP2** is a ROS-inducing
468 compound, the observed cell cycle arrest in S-phase, but not cell death, is ROS-
469 independent, unlike DNA damage effects in *T. brucei*, which are ROS inducible (61).
470 Moreover, cells that have sustained DNA damage activate repair proteins, which cause
471 NAD depletion and glycolysis inhibition. As a result, cells that become quickly depleted
472 of ATP suffer necrotic cell death (62). Thus, we hypothesized that **CP2** is causing several
473 and simultaneous deleterious effects on the parasite.

474 Some cyclopalladated compounds act by targeting mitochondria (33, 34, 47, 63). This
475 kind of compound could interact with thiols groups of mitochondrial membrane proteins,
476 causing dissipation of the mitochondrial membrane potential, uncoupling of oxidative
477 phosphorylation, increasing cytosolic Ca^{2+} and decreasing ATP levels, which lead to
478 apoptosis, as reported by Serrano and colleagues (47). In this study, we demonstrated that
479 **CP2** increased ROS and cytosolic Ca^{2+} levels in *Leishmania*.

480 The trypanosomatids mitochondrion is a major source of ROS (64), and in order to deal
481 with oxidative stress, the parasite produces several antioxidant molecules, including
482 glutathione/trypanothione (64–66). Our proteomic analyses revealed other important
483 overexpressed components such as trypanothione reductase and tryparedoxin peroxidase
484 induced by **CP2**. The trypanothione system is unique in trypanosomatids and protects
485 them from oxidative damage and toxic heavy metals (67, 68). The combined action of
486 trypanothione reductase, tryparedoxin, and tryparedoxin peroxidase is central to the
487 maintenance of hydroperoxide metabolism (69). The trypanothione system is related to
488 the mode of action and resistance to drugs containing metals, such as antimonials, by
489 decreasing its thiol buffering capacity in *Leishmania* (68). In addition, elevated ROS
490 levels are associated with increase in peroxiredoxins involved in peroxynitrite protection
491 (70). Thus, high peroxiredoxin levels observed in *Leishmania* after **CP2** exposure might
492 be related to the cell's attempt to stabilize the mitochondrial membrane potential (71);
493 wherein mitochondrial dysfunction and mitochondrial permeability transition induction
494 are candidate intermediate steps in cell death (71, 72).

495 Oxidative membrane alterations can result in a secondary intracellular Ca^{2+} increase
496 responsible for the irreversible disruption of membrane continuity (72). Calcium
497 homeostasis is crucial for the correct functioning of mitochondria, and many
498 antileishmanial agents exert their cytotoxic effects through the disruption of Ca^{2+}

499 homeostasis in the parasite (49, 64). Ca^{2+} is stored in the acidocalcisomes, the ER, and
500 the mitochondrion in trypanosomatids, keeping the cytosolic Ca^{2+} constant. Disruption of
501 cytosolic Ca^{2+} signaling (73) and mitochondrial Ca^{2+} (73) may cause the parasite's death
502 or interfere with its virulence. Ca^{2+} transport mechanisms common to eukaryotic cells
503 operate in the mitochondria of trypanosomatid parasites such as the mitochondrial
504 calcium uniporter (MCU), the voltage-dependent anion channel (VDAC1), and $\text{Ca}^{2+}/\text{H}^+$
505 exchanger (CHX) (73, 74). VDAC1 in the outer mitochondrial membrane permits the
506 Ca^{2+} influx into the intermembrane space and MCU in the inner mitochondrial membrane
507 transport Ca^{2+} ions into the inner mitochondrial space (75). Efflux of Ca^{2+} to the cytosol
508 from the inner mitochondrial space occurs via the $\text{Ca}^{2+}/\text{H}^+$ exchanger. The transport of
509 Ca^{2+} into the mitochondria is membrane potential-dependent and compounds that perturb
510 the mitochondrial membrane potential result in Ca^{2+} release from the mitochondria into
511 the cytosol as observed for FCCP. We demonstrated that promastigotes treated with **CP2**
512 suffer a loss of mitochondrial membrane potential and release of mitochondrial Ca^{2+} into
513 the cytosol. Our results demonstrated that the high levels of $[\text{Ca}^{2+}]_i$ observed in
514 *Leishmania* exposed to **CP2** were derived from the mitochondrion, as a result of the loss
515 of mitochondrial membrane potential.

516 Increased *Leishmania* calreticulin and PDI levels after **CP2** exposure was also observed.
517 Calreticulin is a protein that presents high affinity for Ca^{2+} , contributing to the
518 maintenance of Ca^{2+} homeostasis. However, its Ca^{2+} affinity decreases in the presence of
519 PDI (76), leading to a rapid disturbance in its homeostasis, which can be translated into
520 cell death processes (77, 78).

521 The cyclopalladated compound DPPE 1.1, and not Pd^{2+} , induced mitochondrial
522 permeabilization and elevation in the cytosolic Ca^{2+} levels from intracellular pools, since
523 PdCl_2 was not able to promote the same effect on the cation permeabilization (47).

524 Similarly, the heavy metal ion chelator TPEN herein used could not prevent the **CP2**-
525 induced cytosolic Ca^{2+} increase, suggesting that the observed effect was not due to free
526 Pd^{2+} . Additionally, the $[\text{Pd}(\text{C}^2\text{N-dmba})(\text{N}_3)]$ **CP2**'s moiety is important for the Ca^{2+} to
527 unbalance since free dmba was not able to exert an antileishmanial effect (29).

528 Protein folding is sensitive to changes in Ca^{2+} flux and the parasite's exposure to reducing
529 agents (79). Proteins such as HSP70, HSP10, GRP78, and PDI play an important role in
530 repairing the correct three-dimensional structure of unfolded proteins or forming
531 aggregates due to stress. The observed increment of these proteins in **CP2**- treated
532 parasites suggests the parasite's efforts to refold proteins and diminish the harmful effect
533 of **CP2** to the cell. Moreover, GRP78, HSP70, and PDI are dependent on ATPase activity
534 (80) and are strongly related to the increase in proteins secreted inside ER and degraded
535 by the proteasome. The mentioned above will be the subject of analysis in future studies.

536 In trypanosomatids, apoptosis-like cell death mechanisms associated with a lack of
537 molecular markers and conditions are not fully understood (81). It is known that low ROS
538 levels promote apoptosis events, while necrosis is observed at high ROS levels (72, 82–
539 84). Our data showed that *Leishmania* exposed to **CP2** increased ROS levels along 60
540 min, which favored the necrotic process as seen in parasites exposed to **CP2** for 24 h.
541 Moreover, the percentage of living or apoptotic-like promastigotes after **CP2** exposure
542 increased in the presence of NAC. Indeed, in our previous work (30), it was reported an
543 inflammatory process in a *L. amazonensis*-infected BALB/c mice treated with **CP2**,
544 which might corroborate the high number of necrotic cells herein detected after parasite
545 exposure to **CP2** for 48h.

546 It is important to consider that Ca^{2+} also plays an important role in cell death mechanisms
547 inducing both apoptosis (Ca^{2+} low levels) or necrosis (Ca^{2+} high levels) (72, 82, 84). We
548 have shown here that promastigotes exposed to **CP2** displayed changes in $[\text{Ca}^{2+}]_i$.

549 followed by cell death. Thus, high ROS and $[Ca^{2+}]$ levels were observed ~ 10 min after
550 **CP2** addition, which suggested that ROS production is shortly followed by release of
551 mitochondrial Ca^{2+} . These data suggest that ROS might be playing an essential role in the
552 signaling/execution of the observed cell death mechanism and that Ca^{2+} acts onto the
553 observed mitochondrial changes, such as membrane depolarization, pointing out the
554 parasite mitochondrion as central in orchestrating cell fate after triggering cell death
555 signaling induced by **CP2** (34, 49, 85).

556 Finally, beyond the antileishmanial efficacy previously reported by **CP2** in a CL mice
557 model (30), herein, we demonstrated that **CP2** is also able to diminish the parasite load
558 in a hamsters model, as a visceral leishmaniasis model, indicating the broadly potential
559 of **CP2** to exert its antileishmanial activity targeting other leishmaniasis clinical
560 manifestations. Thus, this work herein presented will help to promote rational drug
561 modifications and thus contribute to the pipeline of leishmaniasis drug discovery.

562

563 MATERIALS AND METHODS

564 Compounds

565 The binuclear cyclopalladated complex $[Pd(C^2,N\text{-}dm\text{ba})(\mu\text{-}N_3)]_2$ (dm\text{ba}: N,N-
566 dimethylbenzylamine), here denominated **CP2**, was obtained as previously described
567 (86). Stock solutions of **CP2**, amphotericin B - AmpB (Cristalia, São Paulo, Brazil),
568 nigericin (Sigma – Aldrich), FCCP (Sigma – Aldrich), ionomycin (Sigma – Aldrich),
569 CPA (Calbiochem; San Diego, CA) and, TPEN (Sigma – Aldrich) were dissolved in
570 dimethylsulfoxide (DMSO) (Sigma – Aldrich) and further diluted in culture media (final
571 0.1 % DMSO). Stock solutions were kept at -20°C .

572

573 **Biological Assay**

574 **Parasites culture**

575 Promastigotes of *L. mexicana* strain MNYC/BZ/62/M379 and *L. infantum* strain
576 MHOM/BR/1972/LD were maintained in Schneider's Insect medium (Sigma – Aldrich)
577 and *L. amazonensis* strain MPRO/BR/1972/M1841-LV-79 was maintained in liver-
578 infusion tryptose (LIT) medium (87) at 28°C, supplemented with 10% heat-inactivated
579 bovine serum (iFBS; Gibco/Invitrogen) and 1% penicillin/streptomycin (Sigma –
580 Aldrich).

581 **Animals**

582 Male Swiss albino mice used to evaluate *in vitro* leishmanicidal activity against
583 intracellular amastigotes were obtained from São Paulo State University (UNESP,
584 Araraquara, São Paulo, Brazil). Male Golden hamsters (*Mesocricetus auratus*) used in *in*
585 *vivo* assays were acquired from ANILAB (Animais de Laboratório Criação e Comércio
586 Ltda, Paulínia, São Paulo, Brazil). All animals were maintained in single-sex cages under
587 a 12-h light/12-h dark cycle in a controlled temperature room (22 ± 2°C), and they were
588 fed *ad libitum*. The Ethics Committee approved this study for Animal Experimentation
589 of São Paulo State University (UNESP), the School of Pharmaceutical Sciences
590 (CEUA/FCF/CAr, 18/2015 and 44/2015) in agreement with the guidelines of Sociedade
591 Brasileira de Ciência de Animais de Laboratório (SBCAL) and Conselho Nacional de
592 Controle da Experimentação Animal (CONCEA).

593

594 **Antileishmanial *in vivo* assay**

595 To analyze the potential spectrum of action of **CP2**, we evaluated *in vitro* and *in vivo*
596 leishmanicidal activity of the cyclopalladated against *L. infantum*. The MTT assay

597 evaluated the susceptibility of *L. infantum* promastigotes, and evaluation of intracellular
598 amastigotes forms was made according to previously reported methodology (29, 30);
599 followed by evaluation of *in vivo* leishmanicidal activity of **CP2** against *L. infantum*-
600 infected hamsters according to previously established methodology (88). Briefly, eight-
601 week-old male golden hamsters were intraperitoneally infected with 2×10^8 promastigotes
602 of *L. infantum* in the stationary phase of growth and randomly separated into six groups
603 containing five animals per cage. Seventy days post-infection, the animals received 15
604 daily intraperitoneal doses of **CP2** (1.5 or 0.75 mg/Kg/day), the reference drug AmpB (20
605 mg/Kg/day), or PBS (vehicle); untreated infected animals and non-infected animals were
606 also evaluated. The animals were euthanized at the end of treatment. According to
607 previously established methodology, the blood was collected by cardiac puncture to
608 obtain blood serum samples to analyze liver and renal function biomarkers (88). Parasite
609 burden in the spleen and liver was determined by limiting dilution methodology as
610 previously described (88, 89).

611

612 **Proteomic Analyses**

613 For comparative proteomic analysis, 1×10^7 parasites mL⁻¹ of promastigote forms of *L.*
614 *amazonensis* in the mid-log phase were treated with 13.3 μ mol L⁻¹ **CP2** (IC₅₀ of **CP2**
615 previously reported) (30) for 72 h. The extraction of total proteins of promastigotes was
616 carried out in the presence (treated cells) and absence of **CP2** (untreated cells). The
617 parasite cultures were made in biological triplicates.

618

619 **Protein Extraction**

620 Promastigote forms of *L. amazonensis* untreated and treated with **CP2** were centrifuged
621 at 2,000 g for 10 min at 4°C. The pellet was washed three times with tryps wash (100
622 mmol L⁻¹ NaCl, 3 mmol L⁻¹ MgCl₂, 20 mmol L⁻¹ Tris-HCl, pH 7.5) and resuspended in
623 500 µL of lysis solution (7 mol L⁻¹ urea, 2 mol L⁻¹ thiourea, 4% CHAPS, 2% IPG buffer
624 3-10, 40 mmol L⁻¹ DTT) (90) containing a protease inhibitor cocktail (cOmpleteTM, Mini
625 Protease Inhibitor Cocktail, Roche) for one hour under constant stirring at 4°C. Finally,
626 the supernatant was collected by centrifugation at 14,000 g for 3 min at 4°C and stored at
627 -80°C until the time of use. Protein extract quantification was performed with the 2D
628 Quant Kit (GE Healthcare) using the Infinite 200 pro plate reader (TECAN).

629

630 Two-dimensional SDS-PAGE

631 2D gels were run in triplicate according to standard procedures. pH 4–7 IPG buffer
632 (Sigma– Aldrich) and bromophenol blue were added to 61.5 µg of protein and ran on 24
633 cm pH 4–7 strips (GE Healthcare). Strips were equilibrated in equilibration buffer (6 mol
634 L⁻¹ urea, 75 mmol L⁻¹ Tris-HCl pH 8.8, 29.3% glycerol, 2% SDS, 0.002% bromophenol
635 blue) containing 25 mg mL⁻¹ dithiothreitol (DTT) for 15 min under gentle stirring. The
636 previous solution was discarded, and a new equilibration buffer containing 10 mg mL⁻¹
637 iodoacetamide was added for 15 min. For the first dimension, rehydrated strips containing
638 protein extracts of *L. amazonensis* promastigotes were transferred to ceramic support
639 (Ettan IPGphor Manifold - GE Healthcare) and subjected to 50 µA per strip for protein
640 migration using the Ettan IPGphor II Isoelectric Focusing System (GE Healthcare). The
641 second dimension was run on 12.5% polyacrylamide gels (40 mA per gel) under
642 continuous cooling (10°C) using a *SE 600 Ruby* and Multitemp IV (GE Healthcare). The
643 gels were stained with 0.1% Phast Gel Blue R solution (GE Healthcare) before scanning
644 and analysis using ImageMasterTM 2D Platinum 7.0 software (GE Healthcare). Spots were

645 cut, destained, and dried before trypsinization. Briefly, the spots were washed three times
646 using a 0.1 mol L⁻¹ NH₄HCO₃ in 50% acetonitrile (ACN), followed by the addition of
647 pure ACN for 15 min. Finally, the spots were air-dried and trypsinized with Trypsin Gold
648 mass spectrometry grade (Promega) according to the manufacturer's instructions.

649

650 **Mass Spectrometry (MS) Analysis**

651 The analysis of tryptic peptides was performed in the nanoACQUITY UPLC (Waters,
652 Milliford, USA) coupled to the mass spectrometer Xevo Q-TOF G2 (Waters, Milliford,
653 USA). For this, the UPLC nanoACQUITY system was equipped with a column of HSS
654 T3 (Acquity UPLC HSS T3 column 75 mm x 150 mm; 1.8 µm, Waters), previously
655 equilibrated with 7% of the mobile phase B (100% ACN + 0.1% formic acid). The
656 peptides were separated by a linear gradient of 7% to 85% of mobile phase B for 20 min
657 with 0.35 µL min⁻¹ of flow and 45°C. MS was operated in positive ion mode, with a data
658 acquisition time of 20 min. The data obtained were processed using ProteinLynx
659 GlobalServer 3.0 software (PLGS) (Waters, Milliford, USA). Protein identification of *L.*
660 *amazonensis* was performed using the ion count algorithm integrated with the software
661 and searched against the *Leishmania mexicana* UniProt (Universal Protein Resource,
662 <http://www.uniprot.org/proteomes/?query=Leishmania&sort=score>, proteome ID
663 UP000007259) protein database (analysis date: March 2016), used for comparison
664 purposes since *L. amazonensis* and *L. mexicana* are phylogenetically related (6, 7, 91).

665

666 **Cell Cycle Analysis**

667 Promastigotes of *L. amazonensis* were grown in a LIT medium at 28°C. Parasites in the
668 exponential phase of growth (3x10⁶ parasites mL⁻¹) were incubated with 5 mmol L⁻¹

669 hydroxyurea (HU) for eight hours and then transferred to HU-free medium supplemented
670 with 0.03% DMSO, 20 $\mu\text{mol L}^{-1}$ NAC (N-Acetyl-L-cysteine, Sigma), 53.2 or 133 μmol
671 L^{-1} **CP2** (4 x IC_{50} or 10 x IC_{50}), 20 $\mu\text{mol L}^{-1}$ NAC + 53.2 or 133 $\mu\text{mol L}^{-1}$ **CP2**. Cells were
672 collected after 2, 4, 6, or 8 h of treatment, washed with 1X PBS and fixed in 30%
673 PBS/70% methanol overnight at 4°C. Fixed cells were washed with 1X PBS and stained
674 with PBS solution containing propidium iodide (10 $\mu\text{g mL}^{-1}$) and RNase A (10 $\mu\text{g mL}^{-1}$)
675 at 37°C for 30 min. Flow cytometry data were collected using the BD FACSCanto1 flow
676 cytometer. Data were analyzed using FlowJo software.

677

678 **Intracellular ROS measurement**

679 Intracellular ROS levels were compared after *L. amazonensis* exposure to **CP2** based on
680 the methodology previously described with some modifications (92). Briefly, parasites
681 cultivated in Schneider's Insect medium until the mid-log growth phase were harvested,
682 washed, and resuspended in modified 1X HBSS (Hank's Balanced Salts, Sigma) medium
683 containing 1.3 mmol L^{-1} CaCl_2 . Then, 1×10^7 promastigotes mL^{-1} were incubated in the
684 dark with 20 mmol L^{-1} H₂DCFDA (2',7'-dichlorodihydrofluorescein diacetate, Sigma) for
685 30 min followed by treatment with different concentrations of **CP2** based on the
686 previously determined IC_{50} value as follows (30): 6.7 $\mu\text{mol L}^{-1}$ (½ x IC_{50}), 13.3 $\mu\text{mol L}^{-1}$
687 (1 x IC_{50}), 26.6 $\mu\text{mol L}^{-1}$ (2 x IC_{50}), and 53.2 $\mu\text{mol L}^{-1}$ (4 x IC_{50}). A volume of 200 μL of
688 parasites was transferred to the wells of black bottom plates, and the fluorescence was
689 measured at 530 nm (emission), and 480 nm (excitation) for 60 min (Infinite 200,
690 TECAN) and the basal fluorescence subtracted at the end of the process.

691

692 **Live-cell Fura-2 Ca^{2+} imaging**

693 Promastigotes of *L. mexicana* in the mid-log phase (1×10^7 parasites mL^{-1}) were harvested
694 and subsequently washed in loading buffer (8.5 mmol L^{-1} Na_2HPO_4 , 1.5 mmol L^{-1}
695 KH_2PO_4 , 137 mmol L^{-1} NaCl , 4 mmol L^{-1} KCl , 10 mmol L^{-1} HEPES 0.8 mmol L^{-1} MgCl_2 ,
696 0.8 mmol L^{-1} MgSO_4 , 5 mmol L^{-1} glucose, 2.4 mmol L^{-1} probenecid, pH 7.4), with and
697 without 1.3 mmol L^{-1} CaCl_2 , that contained 5 $\mu\text{mol L}^{-1}$ Fura-2/AM (2-[6-
698 [Bis(carboxymethyl)amino]-5-(2-[2-[bis(carboxymethyl)amino]-5-
699 methylphenoxy]ethoxy)-1-benzofuran-2-yl]-1,3-oxazole-5-carboxylic acid, Molecular
700 Probes, Eugene, OR) and 2 $\mu\text{mol L}^{-1}$ pluronic acid F-127 (Molecular Probes, Eugene,
701 OR). The suspensions were incubated for two hours at 28°C in the dark. Parasites were
702 washed twice with the loading buffer to remove the extracellular dye and immobilized on
703 coverslips previously treated with 2 μL *Cell Tak* (Corning® Cell-Tak Cell and Tissue
704 Adhesive) for 5 min. The coverslip containing the immobilized cells was transferred to
705 the microscope stage (*thermostatically regulated microscope chamber*, Open Perfusion
706 Micro-Incubator (PDMI-2)) at 28°C. The fluorescence of promastigote forms loaded with
707 Fura-2/AM was captured at 40x magnification, using an inverted microscope *Nikon*
708 *Eclipse TE300* (Nikon, Melville, NY) has coupled to a digital camera *Hamamatsu EM-*
709 *CCD Imagem*. Image acquisition was performed every 3 s at 340 nm and 380 nm
710 excitation and 510 nm emission. A series of images generated in-frame was transformed
711 into a video with the software NIS-Elements AR 4.20.02. The results were obtained from
712 at least three independent experiments of 100 promastigote forms per assay. Responses
713 to the addition of different compounds were captured in real-time, followed by 10 μmol
714 L^{-1} ionomycin to determine maximal fluorescence.

715

716 **Measurement of the mitochondrial transmembrane potential $\Delta\psi_m$**

717 Changes in the $\Delta\psi_m$ were measured spectrofluorimetrically using the cationic lipophilic
718 dye 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazole carbocyanide iodide (JC-1)
719 (Sigma – Aldrich). Briefly, 2×10^6 promastigotes mL^{-1} of *L. amazonensis* were cultured
720 for 60 min in the presence or absence of **CP2**. The parasites were harvested, resuspended
721 in HBSS containing 1.3 mmol L^{-1} CaCl_2 , and incubated with JC-1 ($10 \mu\text{mol L}^{-1}$) for 10
722 min at 28°C . For positive control, $50 \mu\text{mol L}^{-1}$ of the mitochondrial uncoupler carbonyl
723 cyanide 3-chlorophenylhydrazone (CCCP) was added to untreated control cells 15 min
724 before addition of JC-1. After washing twice with HBSS, fluorescence was measured at
725 530 nm and 590 nm using a spectrofluorometer (TECAN) with an excitation wavelength
726 of 485 nm. The 590 nm/ 530 nm ratio values were plotted as the relative $\Delta\psi_m$ (93).

727

728 **Cell death analysis using acridine orange/ethidium bromide (AO/EB) staining**

729 Promastigotes of *L. amazonensis* in the mid-log phase (1×10^7 parasites mL^{-1}) were
730 incubated with $13.3 \mu\text{mol L}^{-1}$ **CP2** for 6 h, 24 h, and 48 h. Likewise, parasites were
731 incubated with 0.1% DMSO as a control. Besides, parasites were pre-treated with 20
732 $\mu\text{mol L}^{-1}$ NAC for two hours before **CP2** addition. After the incubation period, the
733 parasites were centrifuged for 10 min at 2,000 g and washed with PBS, and resuspended
734 in 200 μL of PBS. 20 μL of cell suspension were stained with a mixture of ethidium
735 bromide and acridine orange ($100 \mu\text{g mL}^{-1}$) and immobilized on a glass coverslip
736 previously treated with *Cell Tak*, as described above. The labeled parasites were
737 visualized by fluorescence microscopy (Axioplan-Zeiss) with 100x magnification and a
738 FITC filter (460-490 nm band-pass excitation filter and 510-560 nm emission) according
739 to a previously described methodology (57). For the percentage quantification of each
740 event, 200 cells from each sample were counted.

741

742 **Statistical Analysis**

743 The biological assays' data were analyzed by one-way analysis of variance (ANOVA)
744 followed by Tukey and Student-Newman-Keuls Multiple Comparisons Test (Graph Pad
745 InStat software and GraphPad Prism software). Differences were considered significant
746 when $p \leq 0.05$.

747

748

749 **ACKNOWLEDGMENTS**

750 This work was supported by the São Paulo Research Foundation (FAPESP) grants:
751 #2016/05345-4, #2016/177115, #2017/03552-5 and #2018/23015-7; Programa de Apoio
752 ao Desenvolvimento Científico da Faculdade de Ciências Farmacêuticas da UNESP
753 (PADC); and Funding from the Thomas P. Infusino Endowment at Rutgers University.
754 AMAV (#2016/19289-9 and #2019/21661-1) and SV (#2016/18191-5) were supported
755 by FAPESP. This study was financed in part by the Coordenação de Aperfeiçoamento de
756 Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, IAPL, TGP, KBI, JMV.
757 MARB, AVGN and MASG are recipienu of a Research Productivity Scholarship from
758 the National Council for Research and Development (CNPq). We thank Prof. Dr. Janice
759 Rodrigues Perussi, from USP – São Carlos, for kindly allowing us to have access to the
760 fluorescence microscope, and "Núcleo de atendimento à comunidade (NAC), FCF,
761 UNESP," for the analysis of biomarkers of liver and renal function. The funders had no
762 role in study design, data collection, analysis, decision to publish, or manuscript
763 preparation.

764

765 **AUTHOR CONTRIBUTIONS**

766 AMAV, LROT, APT, and MASG designed the studies. JMV and AVGN synthesized the
767 cyclopalladated complex CP2. AMAV, IAPL, TGP, DD, KBI, SV, and ALL performed
768 the experiments and acquired the data. AMAV, PJB, IAPL, TGP, DD, KBI, SV, LROT,
769 MARB, AVG, APT, and MASG contributed to the data analysis and interpretation
770 results. AMAV wrote the manuscript. AMAV, PJB, LROT, MARB, APT, and MASG
771 reviewed and edited the manuscript.

772

773 DECLARATION OF INTERESTS

774 The authors declare no conflict of interest.

775

776 REFERENCES

- 777 1. **Burza S, Croft SL, Boelaert M.** 2018. Leishmaniasis. Lancet **392**:951–970.
- 778 2. **Barrett MP, Croft SL.** 2012. Management of trypanosomiasis and
779 leishmaniasis. Br Med Bull **104**:175–196.
- 780 3. **Lindoso JAL, Cunha MA, Queiroz IT, Moreira CHV.** 2016. Leishmaniasis –
781 HIV coinfection: current challenges. Dovepress **8**:147–156.
- 782 4. **Monzote L.** 2009. Current Treatment of Leishmaniasis: A Review. Open
783 Antimicrob Agents J **1**:9–19.
- 784 5. **Herwaldt BL.** 1999. Leishmaniasis. Lancet **354**:1191–1199.
- 785 6. **Silveira FT, Lainson R, Corbett CEP.** 2004. Clinical and immunopathological
786 spectrum of American cutaneous leishmaniasis with special reference to the
787 disease in Amazonian Brazil: a review. Mem Inst Oswaldo Cruz **99**:239–251.
- 788 7. **Mann S, Frasca K, Scherrer S, Henao-martínez AF, Newman S, Ramanan P,**

789 **Suarez JA.** 2021. A Review of Leishmaniasis : Current Knowledge and Future
790 Directions. *Curr Trop Med Reports* **8**:121–132.

791 8. **Singh N, Kumar M, Singh RK.** 2012. Leishmaniasis: Current status of available
792 drugs and new potential drug targets. *Asian Pac J Trop Med* **5**:485–497.

793 9. **Van Griensven J, Diro E.** 2012. Visceral Leishmaniasis. *Infect Dis Clin North*
794 *Am* **26**:309–322.

795 10. **Croft SL, Sundar S, Fairlamb AH.** 2006. Drug resistance in leishmaniasis. *Clin*
796 *Microbiol Rev* **19**:111–126.

797 11. **Meheus F, Balasegaram M, Olliaro P, Sundar S, Rijal S, Faiz MA, Boelaert**
798 **M.** 2010. Cost-Effectiveness Analysis of Combination Therapies for Visceral
799 Leishmaniasis in the Indian Subcontinent. *PLoS Negl Trop Dis* **4**:e818.

800 12. **Palumbo E.** 2009. Current treatment for cutaneous leishmaniasis: a review. *Am J*
801 *Ther* **16**:178–182.

802 13. **Katsuno K, Burrows JN, Duncan K, van Huijsduijnen RH, Kaneko T, Kita**
803 **K, Mowbray CE, Schmatz D, Warner P, Slingsby BT.** 2015. Hit and lead
804 criteria in drug discovery for infectious diseases of the developing world. *Nat*
805 *Rev Drug Discov* **14**:751–758.

806 14. **Chawla B, Madhubala R.** 2010. Drug targets in Leishmania. *J Parasit Dis* **34**:1–
807 13.

808 15. **Siqueira-Neto JL, Song O-R, Oh H, Sohn J-H, Yang G, Nam J, Jang J,**
809 **Cechetto J, Lee CB, Moon S, Genovesio A, Chatelain E, Christophe T,**
810 **Freitas-Junior LH.** 2010. Antileishmanial High-Throughput Drug Screening
811 Reveals Drug Candidates with New Scaffolds. *PLoS Negl Trop Dis* **4**:e675.

812 16. **Freitas-Junior LH, Chatelain E, Kim HA, Siqueira-Neto JL.** 2012. Visceral
813 leishmaniasis treatment: What do we have, what do we need and how to deliver
814 it? *Int J Parasitol Drugs drug Resist* **2**:11–19.

815 17. **Akbari M, Oryan A, Hatam G.** 2017. Application of nanotechnology in
816 treatment of leishmaniasis : A Review. *Acta Trop* **172**:86–90.

817 18. **De Almeida L, Fujimura AT, Del Cistia ML, Fonseca-Santos B, Imamura
818 KB, Michels PAM, Chorilli M, Graminha MAS.** 2017. Nanotechnological
819 Strategies for Treatment of Leishmaniasis — A Review. *J Biomed Nanotechnol*
820 **13**:117–133.

821 19. **Torres FAE, Passalacqua TG, Velásquez AMA, de Souza RA, Colepicolo P,
822 Graminha MAS.** 2014. New drugs with antiprotozoal activity from marine
823 Algae: A review. *Brazilian J Pharmacogn* **24**:265–276.

824 20. **Falkenberg M, Nakano E, Zambotti-Villela L, Zatelli GA, Philippus AC,
825 Imamura KB, Velasquez AMA, Freitas RP, Tallarico LDF, Colepicolo P,
826 Graminha MAS.** 2018. Bioactive compounds against neglected diseases isolated
827 from macroalgae : a review. *J Appl Phycol*.

828 21. **Elgazwy A-SSH, Ismail NSM, Atta-Allah SR, Sarg MT, Soliman DHS, Zaki
829 MY, Elgamas MA.** 2012. Palladacycles as Antimicrobial Agents. *Curr Med
830 Chem* **19**:3967–3981.

831 22. **Anilanmert B.** 2012. Therapeutic Organometallic Compounds, p. 651–680. *In*
832 Galleli, L (ed.), *Pharmacologyintech*. croatia.

833 23. **Farrell N.** 2003. Metal Complexes as Drugs and Chemotherapeutic Agents, p.
834 809–840. *In Comprehensive Coordination Chemistry II*Elsevier L. Elsevier Ltd.,
835 USA.

836 24. **Sánchez-Delgado RA, Anzellotti A.** 2004. Metal complexes as
837 chemotherapeutic agents against tropical diseases: trypanosomiasis, malaria and
838 leishmaniasis. *Mini-Reviews Med Chem* **4**:23–30.

839 25. **Fricker SP, Mosi RM, Cameron BR, Baird I, Zhu Y, Anastassov V, Cox J, Doyle PS, Hansell E, Lau G, Langille J, Olsen M, Qin L, Skerlj R, Wong RSY, Santucci Z, McKerrow JH.** 2008. Metal compounds for the treatment of
840 parasitic diseases. *J Inorg Biochem* **102**:1839–1845.

841 26. **Navarro M, Gabbiani C, Messori L, Gambino D.** 2010. Metal-based drugs for
842 malaria, trypanosomiasis and leishmaniasis: Recent achievements and
843 perspectives. *Drug Discov Today* **15**:1070–1078.

844 27. **Lopera AA, Velásquez AMA, Clementino LC, Robledo S, Montoya A, de Freitas LM, Bezzon VDN, Fontana CR, Garcia C, Graminha MAS.** 2018. Solution-combustion synthesis of doped TiO₂ compounds and its
845 potential antileishmanial activity mediated by photodynamic therapy. *J Photochem Photobiol B Biol* **183**:64–74.

846 28. **Velásquez AMA, Francisco AI, Kohatsu AAN, Silva FA de J, Rodrigues DF, Teixeira RG da S, Chiari BG, de Almeida MGJ, Isaac VLB, Vargas MD, Cicarelli RMB.** 2014. Synthesis and tripanocidal activity of ferrocenyl and
847 benzyl diamines against *Trypanosoma brucei* and *Trypanosoma cruzi*. *Bioorg Med Chem Lett* **24**:1707–1710.

848 29. **Velásquez AMA, de Souza RA, Passalacqua TG, Ribeiro AR, Scontri M, Chin CM, de Almeida L, Del Cistia ML, da Rosa JA, Mauro AE, Graminha MAS.** 2016. Antiprotozoal activity of the cyclopalladated complexes against
849 *Leishmania amazonensis* and *Trypanosoma cruzi*. *J Braz Chem Soc* **27**:1032–

860 1039.

861 30. **Velásquez AMA, Ribeiro WC, Venn V, Castelli S, Camargo MS de, de Assis**
862 **RP, de Souza RA, Ribeiro AR, Passalacqua TG, da Rosa JA, Baviera AM,**
863 **Mauro AE, Desideri A, Almeida-Amaral EE, Graminha MAS.** 2017. Efficacy
864 of a Binuclear Cyclopalladated Compound Therapy for Cutaneous Leishmaniasis
865 in the Murine Model of Infection with *Leishmania amazonensis* and Its Inhibitory
866 Effect on Topoisomerase 1B. *Antimicrob Agents Chemother* **61**:e00688-17.

867 31. **Clementino L da C, Velásquez AMA, Passalacqua TG, de Almeida L,**
868 **Graminha MAS, Martins GZ, Salgueiro L, Cavaleiro C, Sousa M do C,**
869 **Moreira RRD.** 2018. In vitro activities of glycoalkaloids from the *Solanum*
870 *lycocarpum* against *Leishmania infantum*. *Brazilian J Pharmacogn* **28**:673–677.

871 32. **Passalacqua TG, Dutra LA, de Almeida L, Velásquez AMA, Torres FAE,**
872 **Yamasaki PR, dos Santos MB, Regasini LO, Michels PAM, Bolzani V da S,**
873 **Graminha MAS.** 2015. Synthesis and evaluation of novel prenylated chalcone
874 derivatives as anti-leishmanial and anti-trypanosomal compounds. *Bioorganic*
875 *Med Chem Lett* **25**:3342–3345.

876 33. **Matsuo AL, Silva LS, Torrecilhas AC, Pascoalino BS, Ramos TC, Rodrigues**
877 **EG, Schenkman S, Caires ACF, Travassos LR.** 2010. In vitro and in vivo
878 trypanocidal effects of the cyclopalladated compound 7a, a drug candidate for
879 treatment of Chagas' disease. *Antimicrob Agents Chemother* **54**:3318–3325.

880 34. **Arruda DC, Matsuo AL, Silva LS, Real F, Leitão NP, Pires JHS, Caires**
881 **ACF, Garcia DM, Cunha FFM, Puccia R, Longo LVG.** 2015. Cyclopalladated
882 Compound 7a Induces Apoptosis- and Autophagy-Like Mechanisms in
883 *Paracoccidioides* and Is a Candidate for Paracoccidioidomycosis Treatment.

908 gambiense, *T. b. rhodesiense* and *T. b. brucei*. *Trop Med Parasitol Off organ*
909 Dtsch Tropenmedizinische Gesellschaft Dtsch Gesellschaft fur Tech
910 Zusammenarbeit **42**:41–44.

911 41. **Croft SL, Neal RA, Craciunescu DG, Certad-Fombona G.** 1992. The activity
912 of platinum, iridium and rhodium drug complexes against *Leishmania donovani*.
913 *Trop Med Parasitol* **43**:24–28.

914 42. **Santos D, Parajón-Costa B, Rossi M, Caruso F, Benítez D, Varela J,**
915 **Cerecetto H, González M, Gómez N, Caputto ME, Moglioni AG, Moltrasio**
916 **GY, Finkielstein LM, Gambino D.** 2012. Activity on *Trypanosoma cruzi*,
917 erythrocytes lysis and biologically relevant physicochemical properties of Pd(II)
918 and Pt(II) complexes of thiosemicarbazones derived from 1-indanones. *J Inorg*
919 *Biochem* **117**:270–276.

920 43. **Otero L, Vieites M, Boiani L, Denicola A, Rigol C, Opazo L, Olea-Azar C,**
921 **Maya JD, Morello A, Krauth-Siegel RL, Piro OE, Castellano E, González M,**
922 **Gambino D, Cerecetto H.** 2006. Novel antitrypanosomal agents based on
923 palladium nitrofurylthiosemicarbazone complexes: DNA and redox metabolism
924 as potential therapeutic targets. *J Med Chem* **49**:3322–3331.

925 44. **Franco LP, de Góis EP, Codonho BS, Pavan ALR, Pereira I de O, Marques**
926 **MJ, de Almeida ET.** 2013. Palladium(II) imine ligands cyclometallated
927 complexes with a potential leishmanicidal activity on *Leishmania (L.)*
928 amazonensis. *Med Chem Res* **22**:1049–1056.

929 45. **Bjelogrlić SK, Todorović TR, Kojić M, Senčanski M, Nikolić M, Višnjevac**
930 **A, Araškov J, Miljković M, Muller CD, Filipović NR.** 2019. Pd (II) complexes
931 with N-heteroaromatic hydrazone ligands: Anticancer activity, *in silico* and

932 experimental target identification. *J Inorg Biochem* **199**:110758.

933 46. **Navarro M, Betancourt A, Hernández C, Marchán E.** 2008. Palladium
934 Polypyridyl Complexes: Synthesis, Characterization, DNA Interaction and
935 Biological Activity on *Leishmania (L.) mexicana*. *J Braz Chem Soc* **19**:1355–
936 1360.

937 47. **Serrano FA, Matsuo AL, Monteforte PT, Bechara A, Smaili SS, Santana DP,**
938 **Rodrigues T, Pereira F V, Silva LS, Machado Jr J, Santos EL, Pesquero JB,**
939 **Martins RM, Travassos LR, Caires ACF, Rodrigues EG.** 2011. A
940 cyclopalladated complex interacts with mitochondrial membrane thiol-groups
941 and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant
942 human tumor cells. *BMC Cancer* **11**:1–16.

943 48. **Mutlu O.** 2014. In Silico Molecular Modeling and Docking Studies on the
944 Leishmanial Tryparedoxin Peroxidase. *Brazilian Arch Biol Technol An Int J*
945 **57**:244–252.

946 49. **Corral MJ, Benito-Peña E, Jiménez-Antón MD, Cuevas L, Moreno-Bondi**
947 **MC, Alunda JM.** 2016. Allicin Induces Calcium and Mitochondrial
948 Dysregulation Causing Necrotic Death in *Leishmania*. *PLoS Negl Trop Dis*
949 **10**:e0004525.

950 50. **Docampo R, Vercesi AE, Huang G.** 2014. Mitochondrial calcium transport in
951 Trypanosomes. *Mol Biochem Parasitol* **196**:108–116.

952 51. **Sen N, Das BB, Ganguly A, Mukherjee T, Bandyopadhyay S, Majumder**
953 **HK.** 2004. Camptothecin-induced imbalance in intracellular cation homeostasis
954 regulates programmed cell death in unicellular hemoflagellate *Leishmania*
955 *donovani*. *J Biol Chem* **279**:52366–52375.

956 52. **Kowaltowski AJ, Castilho RF, Vercesi AE.** 2001. Mitochondrial permeability
957 transition and oxidative stress. *FEBS Lett* **495**:12–15.

958 53. **Marchi B, Burlando B, Panfoli I, Viarengo A.** 2000. Interference of heavy
959 metal cations with fluorescent Ca²⁺ probes does not affect Ca²⁺ measurements
960 in living cells. *Cell Calcium* **28**:225–231.

961 54. **Takahashi A, Camacho P, Lechleiter JD, Herman B.** 1999. Measurement of
962 Intracellular Calcium. *Physiol Rev* **79**:1089–1125.

963 55. **Docampo R, Scott DA, Vercesi AE, Moreno SNJ.** 1995. Intracellular Ca²⁺
964 storage in acidocalcisomes of *Trypanosoma cruzi*. *Biochem J* **310**:1005–1012.

965 56. **Moncoq K, Trieber CA, Young HS.** 2007. The Molecular Basis for
966 Cyclopiazonic Acid Inhibition of the Sarcoplasmic Reticulum Calcium Pump. *J
967 Biol Chem* **282**:9748–9757.

968 57. **Linares IAP, de Oliveira KT, Perussi JR.** 2017. Chlorin derivatives sterically-
969 prevented from self-aggregation with high antitumor activity for photodynamic
970 therapy. *Dye Pigment* **145**:518–527.

971 58. **Zuma AA, Mendes IC, Reignault LC, Elias MC, de Souza W, Machado CR,
972 Motta MCM.** 2014. How *Trypanosoma cruzi* handles cell cycle arrest promoted
973 by camptothecin, a topoisomerase I inhibitor. *Mol Biochem Parasitol* **193**:93–
974 100.

975 59. **Prada CF, Álvarez-Velilla R, Balaña-Fouce R, Prieto C, Calvo-Álvarez E,
976 Escudero-Martínez JM, Requena JM, Ordóñez C, Desideri A, Pérez-Pertejo
977 Y, Reguera RM.** 2013. Gimatecan and other camptothecin derivatives poison
978 *Leishmania* DNA-topoisomerase IB leading to a strong leishmanicidal effect.
979 *Biochem Pharmacol* **85**:1433–1440.

980 60. **Reguera RM, Díaz-González R, Pérez-Pertejo Y, Balaña-Fouce R.** 2008.
981 Characterizing the bi-subunit type IB DNA topoisomerase of Leishmania
982 parasites; a novel scenario for drug intervention in trypanosomatids. *Curr Drug*
983 *Targets* **9**:966–78.

984 61. **Figarella K, Uzcategui NL, Beck A, Schoenfeld C, Kubata BK, Lang F, Duszenko M.** 2006. Prostaglandin induced programmed cell death in
985 Trypanosoma brucei involves oxidative stress. *Cell Death Differ* **13**:1802–1814.

986 62. **Edinger AL, Thompson CB.** 2004. Death by design: Apoptosis, necrosis and
987 autophagy. *Curr Opin Cell Biol* **16**:663–669.

988 63. **Santana DP, Faria PA, Paredes-Gamero EJ, Caires ACF, Nantes IL, Rodrigues T.** 2009. Palladacycles catalyse the oxidation of critical thiols of the
989 mitochondrial membrane proteins and lead to mitochondrial permeabilization and
990 cytochrome c release associated with apoptosis. *Biochem J* **417**:247–256.

991 64. **Vincent IM, Racine G, Légaré D, Ouellette M.** 2015. Mitochondrial
992 Proteomics of Antimony and Miltefosine Resistant *Leishmania infantum*.
993 *Proteomes* **3**:328–346.

994 65. **Mishra J, Singh S.** 2013. Miltefosine resistance in *Leishmania donovani*
995 involves suppression of oxidative stress-induced programmed cell death. *Exp*
996 *Parasitol* **135**:397–406.

997 66. **Canuto GAB, Castilho-Martins EA, Tavarez MFM, Rivas L, Barbas C, López-González Á.** 2014. Multi-analytical platform metabolomic approach to
998 study miltefosine mechanism of action and resistance in *Leishmania*. *Anal*
999 *Bioanal Chem* **406**:3459–3476.

1000 67. **Müller S, Liebau E, Walter RD, Krauth-Siegel RL.** 2003. Thiol-based redox

1004 metabolism of protozoan parasites. *Trends Parasitol* **19**:320–328.

1005 68. **Krauth-siegel RL, Comini MA.** 2008. Redox control in trypanosomatids ,
1006 parasitic protozoa with trypanothione-based thiol metabolism. *Biochim Biophys
1007 Acta* **1780**:1236–1248.

1008 69. **Turrens JF.** 2004. Oxidative stress and antioxidant defenses: a target for the
1009 treatment of diseases caused by parasitic protozoa. *Mol Aspects Med* **25**:211–
1010 220.

1011 70. **Barr SD, Gedamu L.** 2003. Role of peroxidoxins in *Leishmania chagasi*
1012 survival. Evidence of an enzymatic defense against nitrosative stress. *J Biol
1013 Chem* **278**:10816–10823.

1014 71. **Harder S, Bente M, Isermann K, Bruchhaus I.** 2006. Expression of a
1015 mitochondrial peroxiredoxin prevents programmed cell death in *Leishmania*
1016 *donovani*. *Eukaryot Cell* **5**:861–870.

1017 72. **Lemasters JJ, Nieminen A-L.** 2002. *Mitochondrial Implication in Cell
1018 Death* Mitochondria in pathogenesis. Kluwer Academic Publishers, New York,
1019 Boston, Dordrecht, London, Moscow.

1020 73. **Docampo R, Huang G.** 2015. Calcium signaling in trypanosomatid parasites.
1021 *Cell Calcium* **57**:194–202.

1022 74. **Stefani D De, Rizzuto R.** 2014. Molecular control of mitochondrial calcium
1023 uptake. *Biochem Biophys Res Commun* **449**:373–376.

1024 75. **Scarpelli PH, Pecenin MF, Garcia CRS.** 2021. Intracellular Ca²⁺ Signaling in
1025 Protozoan Parasites: An Overview with a Focus on Mitochondria. *Int J Mol Sci*
1026 **22**:469.

1027 76. **Baksh S, Burns K, Andrin C, Michalak M.** 1995. Interaction of calreticulin
1028 with protein disulfide isomerase. *J Biol Chem* **270**:31338–31344.

1029 77. **Groenendyk J, Lynch J, Michalak M.** 2004. Calreticulin, Ca²⁺, and
1030 calcineurin - signaling from the endoplasmic reticulum. *Mol Cells* **17**:383–389.

1031 78. **Lim S, Chang W, Lee BK, Song H, Hong JH, Lee S, Song B-W, Kim H-J, Cha M-J, Jang Y, Chung N, Choi S-Y, Hwang K-C.** 2008. Enhanced
1032 calreticulin expression promotes calcium-dependent apoptosis in postnatal
1033 cardiomyocytes. *Mol Cells* **25**:390–396.

1035 79. **Dolai S, Adak S.** 2014. Endoplasmic reticulum stress responses in Leishmania.
1036 *Mol Biochem Parasitol* **197**:1–8.

1037 80. **Mayer M, Kies U, Kammermeier R, Buchner J.** 2000. BiP and PDI cooperate
1038 in the oxidative folding of antibodies in vitro. *J Biol Chem* **275**:29421–29425.

1039 81. **Kaczanowski S, Sajid M, Reece SE.** 2011. Evolution of apoptosis-like
1040 programmed cell death in unicellular protozoan parasites. *Parasit Vectors* **4**:44.

1041 82. **Lemasters JJ, Nieminen A-L, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B.** 1998. The
1042 mitochondrial permeability transition in cell death: a common mechanism in
1043 necrosis, apoptosis and autophagy. *Biochim Biophys Acta* **1366**:177–196.

1045 83. **Kim J-S, He L, Lemasters JJ.** 2003. Mitochondrial permeability transition: A
1046 common pathway to necrosis and apoptosis. *Biochem Biophys Res Commun*
1047 **304**:463–470.

1048 84. **Lemasters JJ, Theruvath TP, Zhong Z, Nieminen A-L.** 2009. Mitochondrial
1049 Calcium and the Permeability Transition in Cell Death. *Biochim Biophys Acta*
1050 **1787**:1395–1401.

1051 85. **Tagliarino C, Pink JJ, Dubyak GR, Nieminen A-L, Boothman DA.** 2001.
1052 Calcium is a key signaling molecule in beta-lapachone-mediated cell death. *J*
1053 *Biol Chem* **276**:19150–19159.

1054 86. **de Almeida ET, Mauro AE, Santana AM, Ananias SR, Godoy Netto A V.,**
1055 **Ferreira JG, Santos RHA.** 2007. Self-assembly of organometallic Pd(II)
1056 complexes via $\text{CH}_3\cdots\pi$ interactions: the first example of a cyclopalladated
1057 compound with herringbone stacking pattern. *Inorg Chem Commun* **10**:1394–
1058 1398.

1059 87. **Silva LHP, Nussenzweig V.** 1953. Sobre uma cepa de *Trypanosoma cruzi*
1060 altamente virulenta para o camundongo branco. *Folia Clin Biol* **20**:191–208.

1061 88. **de Almeida L, Passalacqua TG, Dutra LA, da Fonseca JNV, Nascimento**
1062 **RFQ, Imamura KB, de Andrade CR, dos Santos JL, Graminha MAS.** 2017.
1063 In vivo antileishmanial activity and histopathological evaluation in *Leishmania*
1064 *infantum* infected hamsters after treatment with a furoxan derivative. *Biomed*
1065 *Pharmacother* **95**:536–547.

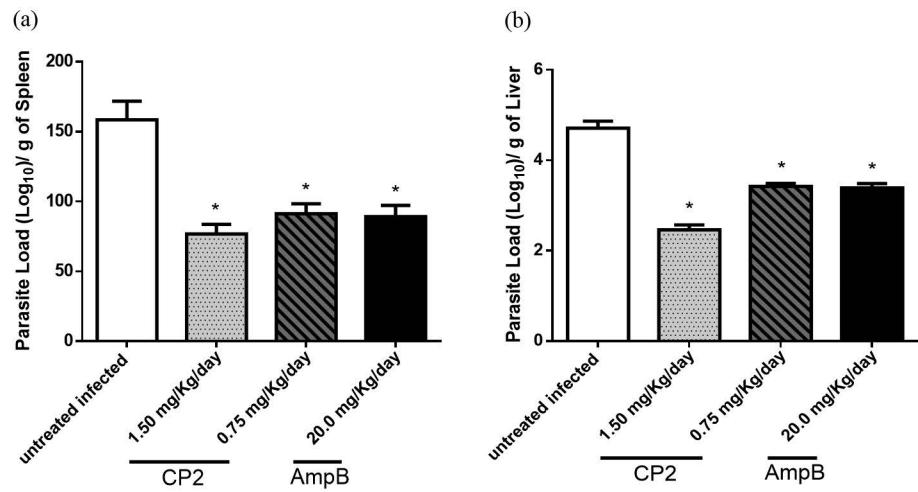
1066 89. **Lima HC, Bleyenberg JA, Titus RG.** 1997. A simple method for quantifying
1067 *Leishmania* in tissues of infected animals. *Parasitol Today* **13**:80–82.

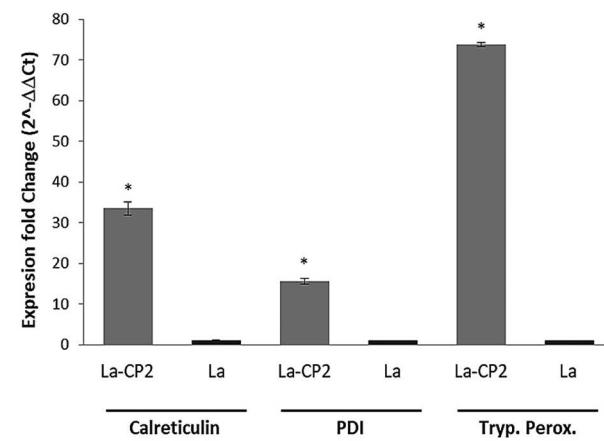
1068 90. **GÖRG A.** 2004. 2-D electrophoresis: principles and methods. Munich.

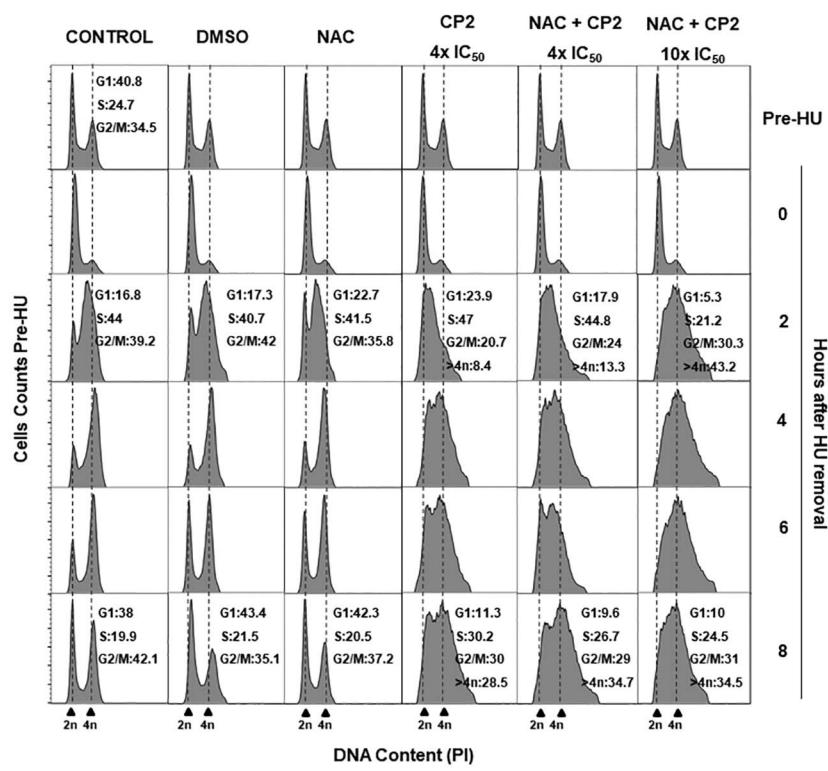
1069 91. **Tschoeke DA, Nunes GL, Jardim R, Lima J, Dumaresq ASR, Gomes MR,**
1070 **Pereira LDM, Loureiro DR, Stoco PH, Leonel H, Guedes DM, Miranda AB**
1071 **De, Pitaluga A, Jr FPS, Probst CM, Dickens NJ, Mottram JC, Grisard EC,**
1072 **Dávila AMR.** 2014. The Comparative Genomics and Phylogenomics of
1073 *Leishmania amazonensis* Parasite. *Evol Bioinforma* **8**:131–153.

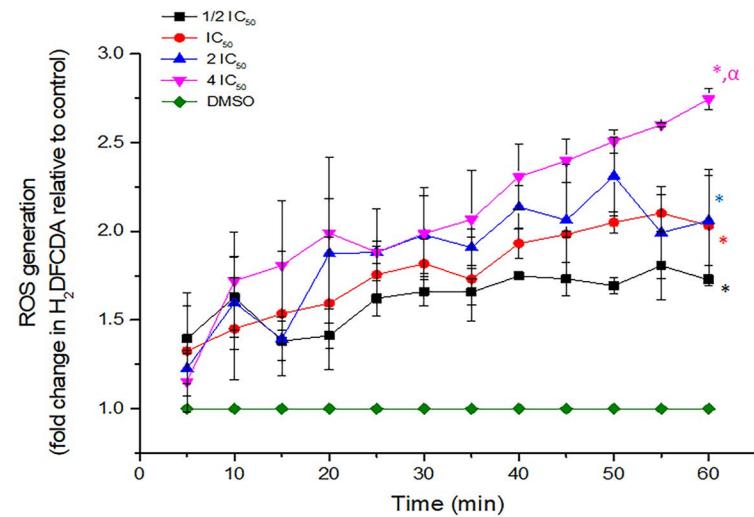
1074 92. **Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE.**

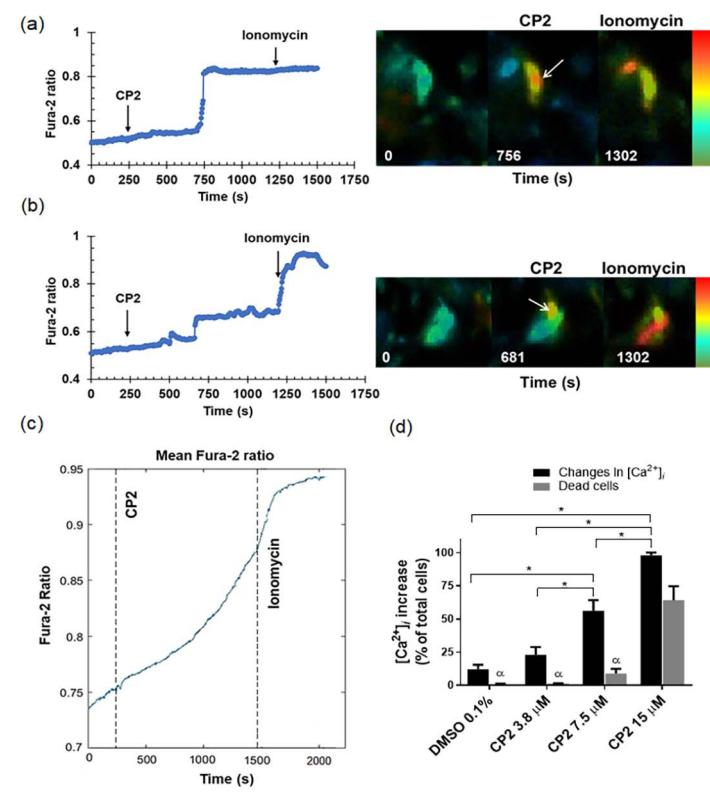
1075 2011. Reactive oxygen species production and mitochondrial dysfunction
1076 contribute to quercetin induced death in *Leishmania amazonensis*. *PLoS One*
1077 6:e14666.


1078 93. **Mukherjee P, Majee SB, Ghosh S, Hazra B.** 2009. Apoptosis-like death in
1079 *Leishmania donovani* promastigotes induced by diospyrin and its ethanolamine
1080 derivative. *Int J Antimicrob Agents* 34:596–601.


1081


TABLE 1 Antileishmanial activity of **CP2** against *Leishmania infantum* (IC₅₀). Data are the mean and standard deviation from three independent experiments. The results are expressed in (μmol L⁻¹).


Compound	<i>L. infantum</i> IC ₅₀ ± SD (SI)*	
	Promastigote	Amastigote
CP2	4.0 ± 0.4 (126.1)	4.7 ± 0.1 (107.6)
AmpB	0.9 ± 0.1 (25.1)	2.9 ± 0.1 (7.7)


*The selectivity index (SI, indicated in parentheses) was calculated as the CC₅₀/IC₅₀ of **CP2**. *p* < 0.05 for all values.

