

Torsion units in integral group rings

Stanley Orlando Juriaans

Instituto de Matemática e Estatística
Universidade de São Paulo
Caixa Postal 20570 - Ag. Jardim Paulistano
01452-990 - São Paulo - Brasil

Introduction

Let G be a group and let $V\mathbb{Z}G$ be the group of units of augmentation one of the integral group ring $\mathbb{Z}G$. Given an element $x = \sum x(g)g \in \mathbb{Z}G$ we set $T^{(k)}(x) = \sum_{g \in G(k)} x(g)$, called the k -generalized trace of x . Here $G(k) = \{g \in G : o(g) = k\}$. We also set $\tilde{x}(g) = \sum_{h \sim g} x(h)$, where \sim denotes conjugacy.

In 1987 A. Bovdi made the following conjecture which we shall call BC1 ([1]).

$$T^{(p^n)}(x) = 1 \quad \text{and} \quad T^{(p^j)}(x) = 0 \quad \text{for } j < n.$$

In 1987 M. Dockuchaev proved this conjecture for metabelian nilpotent groups [3]. In 1993 A. Bovdi, Z. Marcjanik and S. K. Sehgal confirmed this conjecture for nilpotent groups [2]. In the same year M. Dockuchaev and S. K. Sehgal proved this conjecture for metabelian groups [4]. We prove the conjecture for other classes of groups. Proofs will appear elsewhere.

I - The Results

Theorem 1.1: *Bovdi's conjecture holds for any finite solvable group G such that every Sylow subgroup of G is abelian.*

Theorem 1.2: Let G be a finite soluble group such that, for every prime p , if $p \mid |G|$ then $p^4 \nmid |G|$. Then, Bovdi's Conjecture holds for G .

In particular BC1 holds for any group whose order is not divisible by the fourth power of any prime.

We introduce a definition that will be needed in the sequel. Let G be a group and m, n positive integers. We shall say that G is (m, n) -absorvent if the subgroup $H = \langle g \in G : o(g) \mid m^n \rangle$ has exponent less than or equal to m^n . If G is (m, n) -absorvent for all pairs (m, n) then G is called *absorvent*. Note that abelian and regular p -groups are absorvent.

Theorem 1.3: BC1 holds for absorvent groups.

Theorem 1.4: BC1 holds for supersolvable groups.

Theorem 1.5: BC1 holds for finite Frobenius groups.

Theorem 1.6: Let G be a finite group whose commutator subgroup is nilpotent. Then BC1 holds for G .

As a consequence we have the following result

Theorem 1.6: Let G be a polycyclic group whose commutator subgroup is nilpotent. Then BC1 holds for G .

Note that Theorem 1.4 is a consequence of the last Theorem.

II - Main Ingredients

We shall now quote the main ingredient used to prove the results mentioned in the previous section.

The following results can be found in [5].

Lemma 2.1: Let G a finite group and $\alpha \in VZG$ a unit of finite order. Then $\beta^{-1}\alpha\beta \in G$ for some $\beta \in U(QG)$ if and only if for every element γ in the subgroup generated by α there is an element $g_0 \in G$, unique up to

conjugacy, such that $\tilde{\gamma}(g_0) \neq 0$.

Lemma 2.2: Let $G = P \rtimes X$ where P is a Sylow p -subgroup of G . Let $H \subseteq U(1 + \Delta(G, P))$ be finite. Then there exists $\alpha \in QG$ such that $H^\alpha \subseteq G$.

Lemma 2.3: Let G be a noetherian group and $u \in V\mathbb{Z}G$ a torsion element. Let $x \in G$ be of infinite order. Then $\tilde{u}(x) = 0$.

The next Lemmas give us an induction argument.

Lemma 2.4: Let G be a finite group and $H \triangleleft G$ a normal subgroup of G . Let $\psi : \mathbb{Z}G \rightarrow \mathbb{Z}(G/H)$ be the natural projection and $\alpha \in V\mathbb{Z}G$ such that $(o(\alpha), |H|) = 1$. If $\beta = \psi(\alpha)$ then $T^{(k)}(\alpha) = T^{(k)}(\beta)$ for every k such that $(k, |H|) = 1$ and $T^{(k)}(\alpha) = 0$ if $(k, |H|) \neq 1$.

Lemma 2.5: Let p be a prime and G a finite group. Suppose that G has unique subgroup H of order p . Let $\alpha \in V\mathbb{Z}G$ be such that $o(\alpha) = p^n$. Then, with the notation of Lemma I.4, we have that $T^{(p^j+1)}(\alpha) = T^{(p^j)}(\beta)$.

Lemma 2.6: Let G be a noetherian group containing $H \triangleleft G$ with H torsion free. If $\alpha \in V\mathbb{Z}G$ is a torsion element then, with the notation of Lemma I.4, we have that $T^{(k)}(\alpha) = T^{(k)}(\beta)$.

The next Lemma deals with the absorvent case

Lemma 2.7: Let G be group and $\alpha \in V\mathbb{Z}G$ an element such that $o(\alpha) = p^n$, p a prime. If G is (p, k) -absorvent for all $k \leq n$ then $T^{(p^j)}(\alpha) = \delta_{nj}$.

ACKNOWLEDGEMENTS

The author would like to thank Professor C. Polcino Milies for his guidance and encouragement and Professors S.P. Coelho, M.L. Singer and N.A. Fernandes for usefull conversations.

REFERENCES

- [1] Bovdi A.A., The Unit Group of Integral Group Rings (Rusian), Uzhgorod Univ. (1987), 210. (Dep. Ukr. Ninti 24.09.87, N2712-UK 87).
- [2] Bovdi A., Marciniak Z., Sehgal S. K., Torsion Units in Infinite Group Rings *J. Number Theory*, to appear.
- [3] Dokuchaev, M.A., Torsion units in integral group ring of nilpotent metabelian groups. Comm. in Alg. 20(2), 423–435 (92).
- [4] Dokuchaev M. A., Sehgal S. K., Torsion units in integral group ring of solvable groups. (Preprint)
- [5] Seghal, S.K., Units of Integral Group Rings, Longman's, Essex, 1993.