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Objetivos

A tarefa  de classificar  autômatos  visualmente
pode  ser  comprometida  pela  subjetividade  e
desgaste  humano  de  quem  a  realiza,  sem
contar  que à medida que a configuração dos
autômatos se torna mais complexa, o número
de  regras  cresce  exponencialmente,
dificultando ainda mais esta tarefa. Além disso,
manter a classificação de S. Wolfram [1] para
autômatos  celulares  elementares  (ECAs)  têm
sido  a  norma,  mas  com  uma  maior
complexidade na configuração dos diagramas
espaço-tempo  (STD),  pode  ser  que  novas
classificações tornem-se necessárias.

Por isso, objetivamos o desenvolvimento de um
pipeline automático  de  classificação  que  se
inicie  na  geração  de  STDs  de  autômatos  e
finalize  no  agrupamento  de  características
visuais extraídas dessas imagens por meio de
redes  neurais  convolucionais  (CNNs).
Testamos esse  fluxo  de  classificação  apenas
para os ECAs.

Métodos e Procedimentos

Nosso  conjunto  de  dados  consiste  de  um
gerador  dinâmico  de  STDs  de  autômatos.  A
dinamicidade  do  nosso  conjunto  permite  que
não  ocupamos  memória  ostensivamente  e
interage  perfeitamente  com  o  framework
escolhido,  Keras  [2].  Este  gerador  consegue
simular diferentes configurações de autômatos
celulares,  mas  nos  concentramos  nos  ECAs
para os fins desse trabalho. A Figura 1 mostra
exemplos de STDs possivelmente pertencentes
ao nosso conjunto.

Figura 1: um STD de cada classe Wolfram

Utilizamos  duas  CNNs  para  extração  de
características visuais das imagens. A primeira
consiste de uma arquitetura nossa (Figura 2) e
a segunda, de uma ResNet50 [3] pré-treinada
na ImageNet [4]. A arquitetura de nossa autoria
é  treinada  em  nosso  conjunto  para
classificação  de  STDs  no  número  da  regra
deles  por  50  épocas.  Normalizamos  nossos
dados antes de passá-los pelas CNNs.

Figura 2: Arquitetura desenvolvida

Reduzimos a dimensionalidade dos resultados
da  extração  realizada  pela  nossa  arquitetura
com a técnica de Principal Component Analysis
(PCA)  [5].  Para  a  extração  com a  ResNet50
pré-treinada, utilizamos tanto PCA quanto um
Autoencoder (AE).



Por  fim,  realizamos  um  K-Means  [6]  com  K
variando  de 2  a  15.  Aplicamos o método  do
cotovelo  para  avaliar  o  melhor  valor  de  K e
analisamos  os  agrupamentos  resultantes.  Na
próxima  seção,  trazemos  os  resultados  do
nosso pipeline.

Resultados

A  CNN  elaborada  por  nós  com  PCA  não
apresentou  resultados  significativos  para  o
agrupamento. Os melhores valores de k para o
pipeline ResNet50 + PCA foram k = 4 e k = 6;
com Autoencoder,  foi  k =  3  e  k =  7.  Dentre
estas,  analisando  a posteriori,  a  classificação
mais  significativa  se  deu  com  ResNet50  +
Autoencoder para k = 7 (vide figura abaixo).

Figura 3: classificações para k = 7, ResNet50 + AE

Pode-se  ver  STDs  com  comportamentos
similares ocupando classes distintas.

Conclusões

A  elaboração  do  pipeline foi  bem  sucedida,
com  a  classificação  sendo  gerada  a  partir
apenas  de  STDs  e  resultando  nos
agrupamentos.  Ademais,  para  estender  esta
aplicação  para  autômatos  não  elementares
(totalísticos, outer-totalísticos, etc) basta gerar
os diagramas destes CAs – funcionalidade que
nosso sistema de geração de STDs possui.

Contudo,  os  agrupamentos  estão  poluídos:
ECAs com comportamentos similares ocupam
classes diferentes (vide Figura 3). Suspeitamos
que  isto  é  devido  à  ausência  de  algumas
técnicas  em  nosso  pipeline:  o  fine-tuning da
ResNet50, por meio de transfer learning, para a
rede  aprender  características  específicas  de
autômatos;  treinamento  mais  intenso  no  AE,
que  alcançou  76.95%  em  seu  conjunto  de
teste.  O  K-Means,  por  sua  vez,  realiza
suposições  sobre o  formato dos  clusters que
pode não ser interessante para nossa extração;
utilizar  algoritmos  mais  robustos,  como  o
HDBSCAN, pode trazer melhores resultados a
trabalhos futuros.
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Objectives

The task of  classifying automata visually  may
be  compromised  by  human  subjectivity  and
wear-and-tear from those who engage in it, and
as the  automata  configuration  becomes more
and more complex, the number of rules grows
exponentially,  further  hampering  this  task.
Beyond that,  using S.  Wolfram’s classification
[1] for elementary cellular automata (ECAs) has
been  the  norm,  but  higher  complexity  in  the
space-time diagrams (STDs) may require new
classification schemes.

Therefore,  we intend to develop an automatic
pipeline for  classification that  begins in  STDs
generation  and  finishes  grouping  their  visual
characteristics  extracted  by  convolutional
neural  networks  (CNNs).  We  test  this
classification  flow  only  for  the  ECAs.

Materials and Methods

Our dataset consists of a dynamic generator of
automata STDs. The dynamicity of our dataset
allows us  to  not  occupate memory  ostensibly
and  interacts  perfectly  with  the  chosen
framework, Keras [2]. This generator is able to
simulate  different  configurations  of  cellular
automata, but we shall focus on ECAs for the
purposes  of  this  work.  Figure  1  shows
examples of STDs that could possibly be a part
of our data.

We have used two CNNs for extraction of visual
characteristics  from  images.  The  first  is  an
architecture from us (Figure 2) and the second
one, a ResNet50 [3] pretrained on ImageNet [4]

Figure 1: an STD for every Wolfram class

Our  architecture  is  trained  on  the
aforementioned  dataset  for  the  STD
classification in its rule number for 50 epochs.
We normalize  our  data  before  feeding  to  the
CNNs.

Figure 2: developed architecture

We  reduce  the  dimensionality  of  our
architecture’s  extracted  features  with  the
Principal  Components  Analysis  (PCA)  [5]
technique.  For  the  pretrained  ResNet50’s
extraction,  we  used  both  PCA  and  an
Autoencoder (AE).

In the end, we apply K-Means [6] with K varying
between 2 and 15. The elbow method is applied
to evaluate the best value for K and we analyze
the resulting clustering. In the next section, we
show the results of our pipeline.



Results

The  CNN  developed  by  us,  alongside  PCA,
didn’t  have  significative  results  for  the
clustering. The best values for K with ResNet50
+ PCA pipeline were K = 4 and K = 6; with the
Autoencoder,  K = 3 and  K = 7.  Evaluating  a
posteriori,  the  most  significative  classification
resulted  from  the  ResNet50  +  Autoencoder
pipeline (see below figure).

Figure 3: classifications for K = 7, ResNet50 + AE

Still,  it  can be seen that  there are STDs with
different behaviours occupying distinct classes.

Conclusions

The pipelines’ elaboration was successful, with
classification starting with STDs and resulting,
in the end, in clusters. Besides that, to extend
this  application  to  non-elementary  automata
(totalistics, outer-totalistics, etc),  it’s enough to

simply  generate  such  STDs  –  a  present
functionality in our STD generation system.

However,  the  clusterings  are  polluted:  ECAs
with similar behaviours occupy different classes
(see Figure 3). We suspect that this is due to
the absence of some techniques in our pipeline:
the fine-tuning of ResNet50’s model via transfer
learning,  so  that  the  network  can  learn
characteristics  specific  to  automata;  more
intense  training  of  our  AE,  which  peaked
76.95% in the test set. K-Means, on the other
hand,  makes  assumptions  regarding  the
clusters shape that can be problematic with our
extraction;  applying  more  robust  algorithms,
such as HDBSCAN, can bring better results to
future works.
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