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Simple Summary: The dog is considered an animal model for the study of several diseases that
occur in humans since they present similar phenotypic development. Among them, we can highlight
diabetes mellitus and pancreatitis, which are diseases that affect the endocrine and exocrine portion
of the pancreas, respectively, and showing high prevalence, social cost, mortality, and morbidity in
companion animals. This work aimed to highlight the importance of using the dog as a model for
the study of changes in the pancreatic extracellular matrix when affected by diabetes mellitus and
pancreatitis. The extracellular matrix performs several functions, such as physical support and regu-
lation of cellular processes, being composed mainly of proteins, glycoproteins, glycosaminoglycans,
and proteoglycans. It is noteworthy that there are no studies characterizing the healthy and diseased
canine pancreatic extracellular matrix, as well as studies related to the matrix components involved
in the progression of these diseases. It is known that most pathological pancreatic conditions induce
extracellular matrix changes through a remodelling process, which has to be thoroughly studied to
fully understand the pathogenesis of any pancreatic disease.

Abstract: Diabetes mellitus and pancreatitis are common pancreatic diseases in dogs, affecting the
endocrine and exocrine portions of the organ. Dogs have a significant role in the history of research
related to genetic diseases, being considered potential models for the study of human diseases. This
review discusses the importance of using the extracellular matrix of the canine pancreas as a model
for the study of diabetes mellitus and pancreatitis, in addition to focusing on the importance of using
extracellular matrix in new regenerative techniques, such as decellularization and recellularization.
Unlike humans, rabbits, mice, and pigs, there are no reports in the literature characterizing the
healthy pancreatic extracellular matrix in dogs, in addition to the absence of studies related to matrix
components that are involved in triggering diabetes melittus and pancreatitis. The extracellular
matrix plays the role of physical support for the cells and allows the regulation of various cellular
processes. In this context, it has already been demonstrated that physiologic and pathologic pancreatic
changes lead to ECM remodeling, highlighting the importance of an in-depth study of the changes
associated with pancreatic diseases.

Keywords: decellularization; ECM remodelling; endocrine and exocrine diseases; pancreas; scaffolds;
tissue bioengineering

1. Introduction

The canine species has a significant role in the history of diabetes mellitus (DM)
research since it was the first species to experimentally induce the disease. According to the
state of pet health by Banfield’s 2021 [1] annual report, the diagnosis of being overweight
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or obese has increased significantly in the last 9 years, making dogs 3.7 times more likely to
develop endocrine disorders such as diabetes mellitus. DM is predominantly of chronic
autoimmune origin in dogs and can be fatal if not diagnosed and properly treated since the
animals are completely dependent on insulin therapy to survive [2].

As in the study of DM, dogs have also been used as an animal model for the study of
pancreatitis. Dogs tend to develop the disease spontaneously, being phenotypically similar
to the development in humans, both related to genetic predisposition and environmental
change [3]. Unlike diabetes mellitus, which is an endocrine disease, pancreatitis affects
the exocrine portion of the pancreas and is characterized by inflammation in the exocrine
pancreas, and in dogs, it can be classified as acute or chronic.

According to the latest update of the Online Mendelian Inheritance in Animals
database [4], there are 546 genetic diseases in dogs that can be used as potential mod-
els for human diseases, among which we can highlight diabetes (mellitus and insipidus)
and pancreatitis, emphasizing the importance of exploring the use of the dog as an ani-
mal model.

It is known that pathological conditions cause alterations in cellular function in addi-
tion to dysregulation of extracellular matrix (ECM) components. The ECM is a network of
macromolecules that provides physical support and regulates a series of cellular processes
such as migration, differentiation, survival, homeostasis, and morphogenesis [5–7]. In
addition, it has a fundamental role in the remodelling of the response to physiological
changes, acting in the structural modulation and the matrix properties during a pathological
situation [8].

In this study, with the knowledge of the severity of these diseases and that dogs
can be used as an experimental model, we seek to highlight the importance of using the
extracellular matrix of the canine pancreas as a model for the study of diabetes mellitus
and pancreatitis in humans.

2. Canine Pancreas

In dogs, the pancreas is V-shaped and is located along with the duodenum [9]; it is
composed of a right lobe, a left lobe, and a central portion called the body of the pancreas
that joins the two lobes [10]. Anatomically, the left lobe is positioned caudomedially,
crossing the median plane behind the stomach and ending in contact with the left kidney.
While the right lobe lies caudodorsally, following the dorsal surface of the duodenum, it is
dorsally related to the visceral surface of the liver and the ventral surface of the kidney [11].

The pancreas is derived from the foregut and develops from the dorsal and ventral
endodermal buds. At the time of the first rotation of the stomach along the longitudinal
axis, the ventral pancreatic bud is displaced dorsally, staying close to the dorsal bud, after
which the two brutes merge to form a single organ [12]. The dorsal bud gives rise to the
largest portion of the pancreas including the right and left lobes as well as the body of the
pancreas, while the ventral bud gives rise to a portion of the body of the pancreas.

The dorsal bud grows in the mesoduodenum and is arborized as endodermal cell
cords, later forming a lumen [12]. In dogs, the ventral bud gives rise to the pancreatic
duct that opens into the greater duodenal papilla along with or close to the bile duct [11].
Meanwhile, the main duct coming from the dorsal bud is the accessory pancreatic duct
that opens into the minor duodenal papilla on the opposite side of the intestine, which is
considered the major excretory pancreatic duct. The endoderm of the shoots gives rise to
the exocrine acini and the endocrine islets of Langerhans [12]. The latter are formed by
groups of endodermal cells that gradually lose their connections with the exocrine system.

The pancreas contains endocrine and exocrine elements [10], the exocrine portion
is responsible for the production of digestive enzymes or their precursors that act in the
degradation of fats, carbohydrates, and proteins [13]. The endocrine portion is composed
of the islets of Langerhans, which are a cluster of cells distributed among the pancreatic
acini, which are responsible for the production of hormones [11] such as insulin, glucagon,
somatostatin, and pancreatic polypeptide [14].
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The exocrine portion of the pancreas is similar to the parotid gland, what differentiates
them histologically is the absence of striated ducts and the presence of the islets of Langer-
hans in the pancreas [15]. The pancreatic acini are surrounded by a basal lamina supported
by a delicate sheath of reticular fibers and are made up of several serous cells that surround
a lumen. This portion also has a wide network of capillaries essential for the secret process.

The exocrine component acts in the production of digestive enzymes that degrade
proteins (trypsin, chymotrypsin, elastase, aminopeptidase, and carboxypeptidase), car-
bohydrates (amylase), and fats (lipase). In addition to enzymes, the exocrine portion
secretes significant amounts of bicarbonate into the duodenum to help neutralize the acidic
contents of the stomach and to maintain adequate pH in the duodenum for enzymes to
act [16]. Therefore, pancreatic exocrine secretion is regulated by two hormones (secretin,
and cholecystokinin), which are produced by enteroendocrine cells present in the intestinal
mucosa [15].

The endocrine portion is constituted by the pancreatic or Langerhans islets, being
composed of polygonal cells arranged in cords, around an abundant network of blood
capillaries with fenestrated endothelial cells [15]. In addition, pancreatic islets have a thin
layer of connective tissue that separates them from the rest of the pancreatic tissue. The
blood with the secreted hormones passes through the capillary network of the acini in the
exocrine portion before leaving the pancreas, allowing the hormones to act in the regulation
of the exocrine pancreas [17].

Four cell types were identified in the islets of Langerhans: alpha cells (20−30%), which
secrete glucagon; beta cells (60−80%), which secrete insulin; delta cells (5−10%), which
secrete somatostatin; and F or PP cells (rare or absent) that secrete pancreatic polypep-
tide [17,18]. In dogs, beta cells are normally distributed peripherally and their proportion
tends to increase with age, while alpha cells are located more centrally, and delta cells are
randomly arranged and tend to decrease with age [17,19].

Alpha cells (α) are responsible for the secretion of glucagon. This hormone helps to
keep blood glucose constant, that is, when the blood glucose level drops, glucagon secretion
occurs to restore the level of glucose in the circulation [14]. Glucagon, produced by alpha
cells in the pancreas, antagonizes insulin by mobilizing glucose from the liver through
gluconeogenesis and glycogenolysis [16]. Beta (β) cells produce insulin (Figure 1), which is
the main anabolic hormone of mammals and has two important functions: to stimulate
carbohydrate and lipid metabolism by inducing cellular enzymes and to transport glucose
across the plasma membranes of insulin-sensitive cells [20].

Delta cells (δ or D) produce somatostatin which is responsible for inhibiting insulin,
glucagon, and growth hormone (GH) secretion and is necessary to decrease the activity of
the gastrointestinal tract [16]. The F or PP (pancreatic polypeptide cells) cells secrete the
pancreatic polypeptide, which acts in gastric secretion and emptying, in addition to the
secretion of pancreatic enzymes [21]. Therefore, any dysfunction involving one of these cell
lines can result in an excess or deficiency of the respective hormone in the circulation.
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3. Diabetes Mellitus

Diabetes mellitus is characterized by a disorder that results in the inability of the
pancreatic islets to secrete insulin and/or the deficient action of insulin in the tissues,
being classified as insulin-dependent or type 1 diabetes, or non-insulin-dependent or type
2 diabetes. However, the classification that considers insulin dependence is not helpful in
the canine patient, as all diabetic dogs become insulin-dependent, with few exceptions [22].
In both situations, a condition of insulin activity deficiency is established and glucose
uptake is severely compromised [23].

In both dogs and humans, diabetes is a multifactorial disease involving genetic [24,25]
and environmental factors [22,26,27]. Although the most frequent form in dogs is caused
by autoimmunity, that is, by immune-mediated, rapid, and progressive destruction of beta
cells [23].

Recently, the European Society of Veterinary Endocrinology (ESVE) established the
ALIVE Project (agreeing language in veterinary endocrinology) to clarify common terminol-
ogy and definitions used in veterinary endocrine diseases. Among the diseases addressed
are DM, in which there are two etiological classifications for DM in dogs: DM with insulin
deficiency (reduced insulin secretion and defective insulin production) and insulin-resistant
DM (endocrine influence, obesity, drugs, medications inflammation, and disorders of the
receptor and intracellular signaling) [28].

Insulin-deficient or type 1 DM is characterized by the destruction of β cells, with
progressive and eventually complete loss of insulin secretion. It is considered the most
common form in dogs. The cause of diabetes mellitus in dogs is poorly characterized,
however, initial factors such as genetic predisposition, infection, disease- and insulin-
antagonistic drugs, obesity, immune-mediated mechanisms, and pancreatitis have been
identified [2].

In dogs, these factors result in the loss of beta cells and hypoinsulinemia, impairing
glucose transport to most cells and thus accelerating the mechanisms of gluconeogenesis
and hepatic glycogenolysis. Ketoacidosis develops as the production of ketone bodies
increases to compensate for the underutilization of blood glucose. The loss of β-cell
function is irreversible in dogs with type 1 DM, requiring lifelong insulin therapy to
maintain glycemic control.

BioRender.com
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Insulin-resistant or type 2 DM is characterized by insulin resistance and/or dysfunc-
tional beta cells. In type 2 DM, there is a high basal concentration of glucose in the blood
and a basal concentration of insulin that can be high, low, or normal, however, the endoge-
nous insulin release is insufficient to overcome the insulin resistance in the tissues [20].
This type of diabetes is not clinically recognized in dogs since this species is not susceptible
to beta cell failure when there is a slight and persistent increase in blood glucose levels
(18 mg/dL) [29].

Most dogs diagnosed with diabetes are 4 to 14 years of age, with the peak preva-
lence being between 7 and 9 years of age [2]. The most common clinical signs are
polyuria/polydipsia, weight loss, and polyphagia, with wasting of the dorsal muscles,
oily skin and cataracts [30]. Polyuria and polydipsia develop when the blood glucose con-
centration exceeds the renal threshold for absorption (12 to 14 mmol/L) [31]. Polyphagia
and weight loss occur due to hyperglycemia and glucosuria, that is, when there is the
mobilization of fat and protein reserves for gluconeogenesis, thus causing weight loss,
hepatomegaly, and sarcopenia [31].

Unspayed females are three times more affected than males [32], once they go through
the hormonal changes of the diestrus in which there is a predominance of progesterone
exerting an antagonistic effect on insulin, as well as the GH released by the canine mammary
glands under the influence of progesterone [33]. However, when castrated, there is a
reduction in the number of diabetes cases as a result of insulin antagonism during the
diestrus phase [31]. In this case, the progesterone source is removed and the plasma growth
hormone concentration is reduced, causing the insulin antagonism to resolve [2].

The Poodle, Pinscher, Miniature Schnauzer, Dachshund, and Beagle breeds are the
breeds with the highest incidence of DM [30]. Type 1 DM has a strong genetic association
with genes encoding major histocompatibility complex (MHC) class II proteins, involved in
antigen presentation to the immune system [34]. Genetic studies highlight that some MHC
alleles are associated with an increased risk of diabetes in some breeds [35]. In addition,
some polymorphisms have been identified in other immune response genes that contribute
to the risk of diabetes in certain races [36].

Obesity increased significantly in dogs between 2011 and 2020 [1], being an important
predisposing factor for insulin-resistant DM, as it interferes with glucose and insulin
homeostasis. In this type of DM, there is a reversible state of insulin resistance due to
impaired secretion, downregulation of insulin receptors, and post-receptor defects in the
stimulation of systemic glucose transport, causing the degree of insulinemia to be directly
correlated with the degree of insulin resistance [20]. In this sense, weight control is essential
in the treatment of DM in dogs.

In diabetic dogs, control of hyperglycemia can be established with insulin therapy,
diet, exercise, prevention or concomitant control of diseases with insulin antagonism, and
the discontinuation of drugs that cause insulin resistance [2]. The treatment of an animal
with diabetes requires the daily administration of insulin, making it necessary to create
a routine and financial support, not only for the acquisition of insulin and consumption
items, but also for the monitoring costs, exams, and hospitalization [31].

4. Pancreatitis

Pancreatitis is a disease characterized by inflammation in the exocrine pancreas; in
dogs, it can be classified as acute or chronic. The triggering of pancreatitis occurs through
intra-acinar cell activation of zymogens, leading to self-digestion of the gland, with cationic
trypsinogen being the isoform responsible for cell death at the beginning of pancreatitis,
which occurs due to the activation of NF-kB that may be involved in the progression of
the local and systemic lesion [37]. It is noteworthy that the prolonged activation of NF-kB
contributes to the infiltration of inflammatory cells, activation of stellate cells, loss of acinar
cells, and fibrosis [38].

Histopathological examination is used as the gold standard for differentiating between
the acute and chronic forms of the disease, in which, in acute pancreatitis, there is a mixed
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inflammatory infiltration of neutrophils, edema, and necrosis [39], which can be reversed,
since the animals are treated. While in chronic pancreatitis there is progressive inflammation
in the pancreas, in which there is loss of endocrine and exocrine cells, infiltration of
inflammatory cells, fat replacement, activation of stellate cells, fibrosis, calcification and
enlargement of the nerves [40].

It is worth mentioning that the histological changes are reversible in acute pancreatitis,
however, when presented chronically, it can lead to compromise of endocrine and exocrine
function until the development of DM and exocrine pancreatic insufficiency (EPI). Unlike
the acute form, in which there is a high prevalence in the Miniature Schnauzer breed, the
chronic form has a high prevalence in the English Cocker Spaniel breed [41].

As in humans, several factors can contribute to the development of pancreatitis, of
which we can highlight: genetic predisposition, obesity, high-fat diet, alcoholism or smok-
ing (humans only), medications, obstruction of the pancreatic ducts (stones, tumors, etc.),
among others [41]. In dogs, in addition to the factors already discussed in humans, pan-
creatitis can be triggered by physical inactivity, idiopathic factors, toxins, breed, ischemia,
reperfusion, hypercalcemia, infections (Toxoplasma), diet, trauma (crush or impact injuries
to the abdomen), and endocrinopathies [42,43].

A study carried out by Bishop et al. [44] in miniature Schnauzer dogs, identified
mutations in the SPINK1 gene (serine protease inhibitor Kazal type 1, also known as
pancreatic secreting trypsin inhibitor PSTI), as well as in humans, which may or may not be
involved in the predisposition to the disease. Nevertheless, it has already been proven that
the mutation alone does not cause spontaneous pancreatitis in humans, but it increases the
susceptibility to alcoholic pancreatitis [45], so the mutation of this gene in dogs may also
contribute to the development of pancreatitis when submitted to environmental changes.

The most common symptoms in dogs with pancreatitis are anorexia, vomiting, weak-
ness, depression, abdominal pain (“prayer position”), and dehydration, however, symp-
toms may vary according to the severity of the pathology [46]. The mild stage of acute
pancreatitis does not lead to organ failure, however, in more advanced stages it can cause
multiple organ failure, systemic inflammatory response syndrome (SIRS), cardiovascular
shock, multiple organ dysfunction syndrome or disseminated intravenous clotting [47–50].

The cause of pancreatitis remains unknown in most cases, so the treatment of pancre-
atitis remains almost exclusively supportive [51]. Treatment for both forms is similar and
involves fluid therapy (IV), analgesia, nutritional treatment, antiemetics, gastro protectants,
and antibiotics (prophylactic use for cases of severe acute pancreatitis), as well as treatments
to deal with the loss of endocrine and exocrine function [43,47].

5. Extracellular Matrix Components

The extracellular matrix plays a fundamental role in the physical support for cells, in
addition to enabling the regulation of several cellular processes, of which growth, migration,
and differentiation, among others, can be highlighted [5–7]. It is worth mentioning that the
ECM is composed of a network of macromolecules, which may vary according to each type
of tissue.

The main constituents of the ECM are proteins such as collagens, elastin, fibronectin
and laminin, glycoproteins, glycosaminoglycans (GAGs), and proteoglycans (PGs) [8,52].
The literature highlights that in the pancreatic ECM, specifically in the periphery of the
islets, there is the presence of types I, II, III, IV, V and VI collagens, in addition to laminin,
fibrin, and fibronectin, it is noteworthy that these last components involved in the pro-
cess of cytoskeletal remodelling, contractility, and cell adhesion [53,54]. Collagens IV
and VI are located mainly at the islet–exocrine interface beyond the islet basement mem-
brane, playing the role of regulating fibronectin assembly by restricting cell–fibronectin
interactions [55–57].

Fibronectins regulate various processes in the islets through interaction with integrin
and non-integrin receptors on the islets and, and induce gene expression for differentiation
makes for endocrine tissue, such as insulin 2, glucagon, Pdx1, and Pax6 [54,58,59]. While
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laminin induces the expression of transcription factors and islet hormones such as Pdx1,
insulin 1, insulin 2, glucagon, somatostatin, and GLUT−2, in addition to activating protein
kinase B (Akt) and ERK (extracellular signal-regulated kinase), which act in the regulation
of cellular metabolism [58,59]. Finally, fibrin can regulate the expression of α v β 3 integrin,
preventing beta cell apoptosis [60,61].

A study carried out by Weber et al. [62] showed that the interaction between cells
and ECM is necessary for beta cells to remain functional and avoid apoptosis, since ECM
remodeling occurs during changes in physiological conditions, emphasizing the importance
of studying matrix components that may be related to the development of diseases.

6. Extracellular Matrix Remodeling

ECM remodeling is a mechanism that results in the change of its composition (syn-
thesis, degradation, and architecture) and the removal of some components (proteins,
proteoglycans, and glycoproteins) for replacement by new components [63]. It is worth
remembering that the processes of synthesis, degradation, reassembly, and modification of
the ECM need to be controlled so that the tissue can maintain homeostasis and there is no
deregulation of the components leading to the disease, in addition to aberrant remodeling
that can trigger several pathological states such as cancer and fibrosis [64].

Thus, one of the main components that act in the degradation of the ECM are the
metalloproteinases (MMPs), of which there are about 23 families in vertebrates, having a
basic structure of three domains [65]. MMPs can degrade all ECM proteins, acting directly
in organogenesis and morphogenesis. Under normal conditions, they have low activity,
however, their activity is increased during repair or remodeling processes [63].

Most MMPs are secreted as zymogens and subsequently activated in the extracellular
space, and their activation occurs through proteolytic cleavage or by modification of the
thiol group by oxidation [63]. They can regulate the activity of other proteases, growth
factors, cytokines, ligands, and cell surface receptors, in which their activity and that of
other proteases ADAMS (A disintegrin and metalloproteinase proteases) and ADAMTs (A
disintegrin and metalloproteinase with thrombospondin motifs) can be reversibly inhibited
by tissue inhibitors of metalloproteinases (TIMPs) [66].

In addition to MMPs, there are other protease families such as ADAMs which are an
integral membrane family and secreted glycoproteins with conserved protein domains [67].
They are divided into two subgroups: ADAMs and ADAMTs, which cleave ectodomains
of transmembrane proteins, collagens, proteoglycans, deposit normal collagen fibrils in
the ECM, and carry out cell signaling [64,66]. Another class of enzymes that can be
highlighted are the meprins, which cleave ECM proteins such as collagen IV, nidogen, and
fibronectin [68], in addition to acting indirectly in the regulation of ECM remodeling by
activating other MMPs.

Proteolysis resulting from remodeling releases growth factors, inducing cell pro-
liferation and migration, regulating organ morphogenesis [69], in addition to releasing
biologically active molecules. This process requires precise regulatory mechanisms to avoid
excessive ECM degradation and maintain tissue integrity.

When pancreatic cells undergo oxidative stress, there is the activation of MMPs and
induction of remodeling fibrosis, resulting in loss of elasticity and stiffening of the ECM,
affecting structures such as capillaries and exocrine ducts, in addition to impairing cell
migration, contraction, and acinar loss and diffusion of molecules and hormones such as
insulin. When we talk about pancreatic fibrosis, it is important to highlight the role of the
fibrogenic pericyte cell and its relationship with the profibrogenic pancreatic stellate cell,
which, when activated by incorrect pathways such as in oxidative stress, are differentiated
into profibrotic cells capable of synthesizing type I and III collagens and fibronectin [70–73],
accelerating the fibrosis process.

It has been shown that fibrosis via pancreatic ECM remodelling is a common pathway
present in most chronic diseases, destroying tissue architecture, function, and organ failure
as in type 2 DM in humans [74]. During the progression of diabetes, there is chronic
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infiltration of the pancreatic islets by mononuclear cells, and macrophages are considered
the main agent causing the activation of cytotoxic T lymphocytes within the beta cells and
the pancreatic islets [75].

When talking about DM and pancreatitis, two MMPs deserve special attention: MMP-2
and MMP-9 (gelatinases A and B, respectively), responsible for the degradation of gelatins,
type III, IV, V, VII, X, and XI collagens, fibronectin, laminin, elastin, aggrecan, entactin, and
vitronectin [63]. In the course of acute and chronic pancreatitis, the expression of MMP-9 is
increased [76] as a result of the intra-acinar conversion of trypsinogen to trypsin, causing
the activation of MMP−9.

The transforming growth factor−β (TGF−β) alters cell migration and regulates the
expression of the ECM protein, in addition to inhibiting the expression and activity of MMP-
2 leading to the expression of collagens and fibronectin [77]. However, during type 2 DM,
there is an increase in TGF-β/Smad3 signaling, leading to β-cell apoptosis, causing glucose
intolerance, β-cell dysfunction, decreased β-cell mass, and, consequently, insulin-resistant
DM [78]. Therefore, it is extremely important to know the mechanisms of pancreatic ECM
remodeling during pathological conditions.

7. Tissue Decellularization

Decellularization is a process that involves several steps to separate the extracellular
matrix of the organ/tissue from the cellular components, leaving the ECM intact in terms
of three-dimensional characteristics and biological properties [79]. The objective of this
process is to efficiently remove all cellular and nuclear material, reducing any adverse
effects on the composition, biological activity and mechanical integrity of the rest of the
extracellular matrix [80]. Resulting in a scaffold that recapitulates the native characteristics
of the organ or tissue serving as a basis for seeding with different cell types [79]. Among the
studies found in the literature, the following models have already been used for pancreas
decellularization (Figure 2): human [81–87], rabbit [88], murine [89–91], and swine [92–97]
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Figure 2. Models found in the PubMed database for pancreas decellularization between 2009 and
2021. The rat is the most used animal so far, representing 35% of the studies, followed by the swine
model (30%), humans present about 17.5% of the data described in the literature, soon after it can be
highlighted the mice (15%), while the least used species so far are rabbits (2.5%).

Decellularization protocols typically involve a combination of chemical, physical, and
biological treatments. The protocol normally starts with the lysis of the cell membrane
through physical methods or ionic solutions, followed by the separation of the ECM
components through biological treatment, aiming at the solubilization of the cytoplasmic
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and nuclear components using detergents, ending with the removal of cellular debris from
the tissue [80].

Decellularization by chemical methods, using acids or bases, occurs through the use
of chemical agents that act in the solubilization of the cytoplasmic components of the cells
and the removal of nucleic acids such as DNA and RNA [80]. The most common acids are
acetic and para-acetic, which demonstrate good cell removal capacity, however, they are
aggressive to ECM, causing excessive loss of their properties [98]. The most used bases
are calcium hydroxide, sodium sulfide, and sodium hydroxide [79]. However, despite
their acceptance, these compounds eliminate growth factors such as glycosaminoglycans,
resulting in loss of bioactivity [99]. Due to their characteristics, the aforementioned acids
and bases are not universally used.

Thus, detergents represent the most used chemical agents in the decellularization
process, acting in the solubilization of cell membranes [100], DNA separation from proteins,
and being effective in removing cellular material from the treated tissue or organ [101].

The most used detergents (Figure 3) in this process are sodium dodecyl sulfate (SDS)
and Triton X-100 [102]. SDS is an ionic and synthetic organic compound established in
the field of tissue bioengineering, having several protocols mentioned in the literature for
the decellularization of organs and tissues [102–104]. When compared to other detergents,
SDS performs the complete removal of remaining nuclei and cytoplasmic proteins such as
vimentin [105].
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Figure 3. Chemical/enzymatic methods for pancreas decellularization found in the PubMed database
between 2009 and 2021. The most used method to date includes the use of Triton X−100 and
ammonium hydroxide (17.39%), followed by the use of only SDS (13.04%), while the rest of the
studies addressed the use of different types of detergents (ionic and non-ionic) simultaneously in the
decellularization process.

Among the ionic detergents, sodium deoxycholate (SDC) can also be highlighted,
which is effective in removing remaining cells, but when compared to SDS, it tends to
cause greater disruption in the architecture of the native tissue [80]. Triton X−100 is a
non-ionic detergent composed of a hydrophilic polyethylene oxide chain and a lipophilic
or hydrophobic aromatic hydrocarbon group. When compared to SDS, Triton X−100 can
remove tissue cells and behaves less aggressively, thus making it interesting to use in thicker
tissues [73]. Nonetheless, its effectiveness will depend on the tissue to be decellularized,
the method used, and the decellularization protocol [80].

Decellularization by physical methods (Figure 4) involves several protocols that seek
ways to remove the extracellular matrix through temperature protocols (freeze and thaw
cycles), mechanical protocols (via shaking and immersion of samples), and pressure-based
protocols [106]. Protocols that use temperature as a basis require several freeze–thaw cycles
to become effective in cell removal [107]. Although this type of protocol is effective for cell
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removal, temperature changes can cause damage to the ECM structure [108], with this, the
rate of temperature change must be controlled avoiding the formation of ice so as not to
compromise the matrix [80]. Furthermore, the temperature protocol is recommended for
the decellularization of simple structures, such as tendon- or cartilage-based organs, and is
little applicable in organs with more complex structures, such as the pancreas, kidney, or
liver [79].
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2009 and 2021. The most used physical method is perfusion (63.16%), followed by agitation and
immersion (28.95%) which is classified as a mechanical protocol and cold perfusion (7.89%) that uses
temperature to assist in the process.

Mechanical protocols involving sample agitation and immersion are often used in
tissue bioengineering when samples are small and do not have vascular inlet and outlet,
such as pre-cut cubes of parenchymal tissue, blood vessels [109], or bone fragments [110].
This method is normally used in conjunction with the chemical method to aid in cell lysis
and removal and can be applied through a magnetic stir plate, orbital shaker, or low-
profile roller [80]. This protocol makes it possible to change the duration of the protocol
or the agitation force, allowing the adjustment according to the tissue density. However,
there is a need for a decellularization process through a homogeneous process, due to
some organs presenting higher degradation of the extracellular matrix at the external
region than the inner part of the sample [79]. Even so, physical decellularization protocols
need to be combined with chemical protocols as they are usually insufficient for complete
decellularization to occur [80].

In decellularization by biological treatment, cell membranes and the bonds responsible
for intercellular and extracellular connections are disrupted [80]. The protocols involve
the use of enzymatic and non-enzymatic biological agents that are capable of removing
unwanted cell residues or constituents from the extracellular matrix [79]. DNases and
RNases are the most used enzymes, as they can cleave nucleic acid sequences, helping
to eliminate nucleotides after cell lysis [111]. Non-enzymatic agents are represented by
chelators for divalent ions such as Ethylenediaminetetraacetic acid (EDTA) and Ethylene
glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) which, through sequester-
ing metal ions, separate cells from the extracellular matrix [79]. However, these agents are
not effective when used alone, so they are often added to multi-step protocols [112–114].

8. Tissue Recellularization

The recellularization process consists of repopulating the scaffolds with cultured cells.
Recellularization requires three different cell groups, belonging to parenchymal (effective
organ function), vascular (providing adequate blood flow), and supportive (sustaining
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parenchymal and vascular cells) types [79]. For the success of this process, the scaffold
must have its composition and three-dimensional structure preserved, adequate cell types,
an efficient cell seeding method, and a cell culture environment similar to the physiological
one [115].

There are reports in the literature on the recellularization of the pancreas with different
cell types, among them: mesenchymal stem cells from human placenta (hPL-MSC) [88],
human vascular endothelial cells (HUVEC) [116–119], pancreatic islet cells of murine
(mouse and rat), human and swine [91,93,120–124], bone marrow-derived mesenchymal
stromal cells (BMSCs) [125], fibroblasts [126], insulinoma cells (INS-1E) [89,94], endothelial
progenitor cells (EPCs) [127], isolated human fetal pancreas cells (hFPSC) [96], and induced
pluripotent stem cells (iPSCs) [128].

Fetal progenitor cells have a high capacity to proliferate and become adult cells from
the tissue they originate, being successfully tested in the recellularization process [129–131].
Rat fetal progenitor cells were able to perform physiological functions such as gas exchange
in recellularized lungs [132]. Even though these cells show evidence of the ability to
restore cell function in decellularized scaffolds, this cell type is not desirable for clinical
application, due to ethical concerns related to obtaining these cells, since they are derived
from fetuses [133].

Adult cells are candidates to be used in the recellularization process, as they have the
advantages of already being differentiated and expressing the genes necessary to perform
the functions of the tissue of origin [134–136]. These cells can be obtained by biopsy from
the patient’s organ or donor organs [137]. Due to the low proliferative capacity of these
cells, their application is limited [133].

Another group of cells that can be used in recellularization are stem cells, which have
a high proliferative capacity and can differentiate into desired cell types, in addition to
being the cell types most used in recellularization assays due to their advantages over other
cell types [138].

There are several reports of different procedures and cells used in seeding, perfusion,
and injections [139], however, clinical tests after the recellularization process are still
poorly published and there is a need for more studies related to the host response after
implantation [140].

9. Use of Pancreatic ECM as a Therapeutic Possibility for the Treatment of DM
and Pancreatitis

It is known that so far there is no possibility of a cure for diabetes mellitus and pancre-
atitis. In this sense, several studies have been developed in search of a therapeutic approach
for reducing the use of medicines. Among them, the pancreatic islet transplantation can be
highlighted, which gives the possibility of glycemic control, however, there is a need for
the use of immunosuppressants by patients in addition to the gradual loss of function of
the islets. [141].

It has already been demonstrated that ECM plays an important role in addition to
influencing cellular function. The use of decellularized organs has emerged in recent
years in tissue engineering and is a promising technique, since these tissues have a great
advantage due to the reduction of immunogenicity when all cellular contents are removed,
serving as a support for transplanted cells. In this context, the use of the pancreatic
extracellular matrix would be ideal for islet transplantation, as well as other cell types,
since its ECM presents the necessary components for the regulation of cellular processes,
allowing cellular survival. [142].

It is worth mentioning that some studies using islets seeded in pancreatic scaffolds
have already demonstrated that in vitro cellular function and survival were
maintained [87,91,93,143,144]. Nevertheless, there is a need for further in vivo studies.
Studies being carried out by our research group using canine and rat mesenchymal stem
cells seeded in canine pancreas scaffolds, allowed us to observe the survival and prolifera-
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tion of both cells, which could be used in the future as an option therapeutics in veterinary
medicine for the treatment of pancreatic diseases [145,146].

10. Conclusions

Dogs play an important and historical role in the research of diabetes mellitus, con-
sidering that it was in the canine species that this disease was produced for the first time
experimentally, in addition to the species having many inherited diseases that arise natu-
rally and mimic those observed in humans. It makes dogs an experimental model suitable
for the study of the pancreatic extracellular matrix aiming at a better understanding of both
diabetes mellitus and pancreatitis, since there are no reports in the literature regarding the
composition of the ECM of these animals, as well as studies related to matrix components
that are involved in triggering these diseases.
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