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Abstract
We employ the resource theory of generalized contextuality as a tool for analyz-
ing the structure of prepare-and-measure scenarios. We argue that this frame-
work simplifies proofs of quantum contextuality in complex scenarios and
strengthens existing arguments regarding robustness of experimental imple-
mentations. As a case study, we demonstrate quantum contextuality associated
with any nontrivial noncontextuality inequality for a class of useful scen-
arios by noticing a connection between the resource theory and measurement
simulability. Additionally, we expose a formal composition rule that allows
engineering complex scenarios from simpler ones. This approach provides
insights into the noncontextual polytope structure for complex scenarios and
facilitates the identification of possible quantum violations of noncontextuality
inequalities.
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1. Introduction

Prepare-and-measure type experiments are essential setups corresponding to practical tasks,
such as communication protocols, key distribution, computing, among many others. An
important question in quantum information is finding quantum-over-classical advantages for
these protocols. For this question to be rigorously approached, it is crucial to decide upon one
of the various existing notions of classicality. Common choices include incoherent states [1,
2], Kochen–Specker (KS) noncontextuality [3], and Bell’s notion of local causality [4, 5].
Throughout this work, we will consider the notion of classicality provided by generalized
noncontextuality in [6]. This notion subsumes KS-noncontextuality [7–12], and has concrete
relations with the others mentioned [13–16].

After it was proved that quantum theory is contextual in this generalized sense [6], sev-
eral works have shown that contextuality underpins advantages in quantum protocols when
compared to their classical counterparts. Some examples are parity oblivious tasks [13, 17],
quantum state discrimination tasks [18], state-dependent quantum cloning [19], linear response
processes [20] and quantum interrogation [21]. Nonetheless, finding novel techniques to detect
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quantum contextuality that are suitable to deal with complex scenarios is important for taking
advantage of such a nonclassical feature in practical tasks.

The framework of resource theories provides a concrete and formal treatment for the
quantification, manipulation and conversion of nonclassical resources [22, 23]. Despite the
results outlined above, and the success of the resource theories of coherence [24–26], KS-
contextuality [27–33], and nonlocality [34, 35], research on a resource theory for generalized
contextuality is still in its infancy [36].

In this work, we provide novel tools in such direction. Following the linear characterization
of generalized noncontextuality from [37] and the resource theory constructed from the under-
lying polytope structure presented in [36], we develop techniques to reduce complex scenarios
to smaller ones, where the existence of contextuality serves as a witness for contextuality in the
original scenario. These tools allow us to reinterpret the results of [38], as well as to witness
the existence of quantum contextuality for a class of prepare-and-measure scenarios. Such a
class encompasses the majority of already known proofs of contextual advantage and further
generalizes it for a large class of experimental realizations.We also identify a class of scenarios
with quantum violations for all nontrivial nocontextuality inequalities. Notably, we uncover
that contextuality in the state-dependent cloning scenario of [19] is inherited from a product
of simpler scenarios. Overall, these results highlight the potential usage of our techniques for
witnessing and engineering nonclassical correlations in complex scenarios lifted from simpler
ones.

In section 2, we briefly review the notion of generalized noncontextuality. Section 2.1
describes prepare-and-measure scenarios and how noncontextual ontological models attempt
to explain the statistics arising from these experimental scenarios. Section 2.2 describes meas-
urement simulability in operational theories, while section 2.3 discusses the elements of the
resource theory we are considering, with a particular focus on the free operations. In section 3
we describe our results in general terms, using a link between simulability and the free opera-
tions of a resource theory (section 3.1), and a binary composition of scenarios (section 3.2).We
then use these tools to witness and engineer quantum contextuality, in section 3.3. In section 4
we expose conclusions and perspectives.

2. Preliminaries

2.1. Generalized contextuality

Contextuality, as a notion of nonclassicality, is an inference between the operational descrip-
tion of an experimental setup and the ontological models one might prescribe to it. An oper-
ational theory is formally a process theory where processes are considered as lists of laborat-
ory instructions with a probability rule [39]. To operationally describe a prepare-and-measure
experiment, one must provide some set of laboratory procedures that prepare the studied sys-
tem, together with a set of possible measurements that shall extract outcome information.
The most general result from such procedures is described through conditional probabilities.
We will consider the case of prepare-and-measure experiments with a finite set of prepara-
tion procedures, that we denote by P := {Pj}j∈J, and a finite set of measurement procedures,
M := {Mi}i∈I, leading to some outcome results that we label OM ≡ K. Capital letters K,J
and I denote the set of labels with the same cardinality of the sets of primitives, OM,P,M
respectively, while | · | represents the cardinality of the set (e.g. |I| is the number of measure-
ment procedures in the experimental scenario). The measurement event associated to obtain-
ing outcome k for measurementM will be denoted [k|M]. Performing all the operations several
times to acquire statistics will lead to a datatable of conditional probabilities, that we denote
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as B:

B := {p(k|Mi,Pj)}k∈K,i∈I,j∈J . (1)

We name B as the behavior of the system. Each physical realization will lead to some beha-
vior B in the set of all possible behaviors. Operationally, there are more structures within an
experimental description. For instance, it might be so that there are operationally equivalent
ways to generate some statistics; as a standard example, consider the quantum preparations
Pj7 associated to preparations of the quantum states ρ j,

ρ1 = |0〉〈0|, (2)

ρ2 = |1〉〈1|, (3)

ρ3 = |+〉〈+|, (4)

ρ4 = |−〉〈−|. (5)

For these preparation procedures, it is known that

1
2
ρ1 +

1
2
ρ2 =

1
2
ρ3 +

1
2
ρ4, (6)

meaning that the statistics for the measurement events [k|Mi] will be the same for the above
convex mixtures of {ρ j}j∈J. Such a description hints at what is understood as an operational
equivalence.

Definition 1 (Operational equivalences). LetP,P ′ be two preparation procedures on an oper-
ational theory. Let M be a tomographically complete set of measurement procedures. Then,
the procedures are operationally equivalent, and we write P' P ′, if and only if,

∀ [k|M] ,M ∈M,k ∈OM, p(k|M,P) = p(k|M,P ′) . (7)

Equivalently, let [k|M] and [k ′|M ′] be two measurement events, and P be a tomographically
complete set of preparation procedures. Then, the events are operationally equivalent, and we
write [k|M]' [k ′|M ′], if and only if,

∀P ∈ P, p(k|M,P) = p(k ′|M ′,P) . (8)

Let us imagine a situation in which an experimenter prepares single-photons and sends
them through two different modes, that we denote 0 and 1. The experimenter then imple-
ments the procedure ‘Send the single-photons through each mode with equal probability’.
We call this procedure P0/1. As another possibility, the experimenter can set-up a balanced
beam-splitter between the two modes. In this case, they then implement the procedure ‘Send,
with equal probability, the single-photons through each mode, that later pass through a bal-
anced beam-splitter.’ We call this procedure P+/−. Any conceivable measurement extracting
mode information will not be able to distinguish between these two procedures, i.e. ideally
p(k|M,P0/1) = p(k|M,P+/−), ∀[k|M]. Using the quantum formalism,

p
(
k|M,P0/1

)
= Tr

(
Ek

(
1
2
ρ1 +

1
2
ρ2

))
= Tr

(
Ek

(
1
2
ρ3 +

1
2
ρ4

))
= p

(
k|M,P+/−

)
,

7 More precisely, each state ρj defines an equivalence class [Pj] of equivalent procedures implementing the same state.
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for all possible POVMs {Ek}k. The concept of operational equivalence will be fundamental in
the definition of the generalized noncontextuality we will introduce.

Equivalences are part of the description of any operational theory, quantum or not; those
denote the fact that some operational procedures (maybe defined as convex mixtures of others)
cannot be distinguished using only the probabilities in the experiment. A set of non-trivial,
fixed and finitely defined operational equivalences for the preparation procedures is denoted
by EP, when a= 1, . . . , |EP|,

∑
j

αaj Pj '
∑
j

βaj Pj, (9)

where
∑

jα
a
j =

∑
jβ

a
j = 1, and 0⩽ αaj ,β

a
j ⩽ 1. At the level of the behaviors, we assume that

convex mixtures of procedures will be respected, so that for all measurement events, we have

∑
j

αaj p(k|MiPj) =
∑
j

βaj p(k|MiPj) . (10)

Thus, each label a uniquely defines a vector γaP ≡ (αa;βa) associated with the preparation
procedures,

γaP :=
(
αa1, . . . ,α

a
|J|;β

a
1 , . . . ,β

a
|J|

)
. (11)

Similarly for the measurement events, we define a set EM, where the operational equival-
ences b= 1, . . . , |EM|,

∑
i,k

αb[k|Mi]
[k|Mi]'

∑
i,k

βb[k|Mi]
[k|Mi] (12)

uniquely define vectors γbM ≡ (αb;βb),

γbM := (αb[1|M1]
, . . . ,αb[|K||M1]

, . . . ,αb
[|K||M|I|]

; (13)

βb[1|M1]
, . . . ,βb[|K||M1]

, . . . ,βb
[|K||M|I|]

). (14)

Hence, we define the sets EP := {γaP}
|EP|
a=1 and EM :=

{
γbM

}|EM|
b=1

, which completes the ele-
ments for the definition of a scenario. We say that an operational equivalence γ as defined
above is trivial if α= β.

Nontriviality is required to get rid of self-equivalences, since, for example, any preparation
is always equivalent to itself in its own experimental setting. Hence, writing EM = ∅ does not
mean that there are no operational equivalences between measurement events, but that the
experimentalist is not considering equivalences different from those of the formM1 'M1 that
represent no interesting constraints.
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Definition 2 (Prepare-and-measure scenario). A prepare-and-measure scenario is consti-
tuted by the tuple B given by

B= (P,M,OM,EP,EM) . (15)

The first three elements in the tuple B are common to any prepare-and-measure experi-
mental investigation, while the other two are required, as we will see later, for analyzing the
existence of generalized contextuality. If a behavior B is obtained from prepare-and-measure
implementations of the three first elements of B, while satisfying the equivalences from the
last two, we will often write B ∈ B. Each element of any scenario B represents finitely chosen
procedures available in a laboratory.

Whenever it is convenient, and since we are mostly interested in the labels for the pro-
cedures, we might follow the notation of [40], and write B= (|J|, |I|, |K|,EP,EM). Notice that
scenarios do not need to have tomographically complete sets of procedures, P⊂ P , but the
operational equivalences must hold for P , the complete set of procedures.

As an example, which we shall consider when applying the techniques we develop in this
work, is the simplest nontrivial scenario [13].

Definition 3 (Simplest scenario, Bsi). The simplest nontrivial scenario, denoted Bsi, is com-
posed by 2 dichotomic measurementsM1 andM2 and 4 preparation procedures, P := {Pi}4i=1.
There are no equivalences for measurements, while preparations respect the equivalence
relation

1
2
P1 +

1
2
P2 '

1
2
P3 +

1
2
P4. (16)

In our notation, we haveBsi := (4,2,2,EP.si,∅), whereEP,si = {(1/2,1/2,0,0;0,0,1/2,1/2)}.

Pusey [13] showed that this scenario is the one with the least experimental elements for
which data can be contextual. Moreover, it was shown that there exists a mapping of this scen-
ario into the Bell scenario investigated by Clauser et al [41]. The relationship between scen-
arios with such operational equivalences and Bell scenarios was also investigated in [15, 40].

The characterization of behaviors in [37] provides a fundamental aspect for contextuality
theory when a finite set of operational procedures and equivalences are considered: the set of
possible behaviors in B is in one-to-one correspondence with points in Rn forming a convex
polytope. Inside this convex polytope of all behaviors obeying the operational equivalences,
lies another polytope: the set of behaviors explained by noncontextual ontological models.

2.1.1. Ontological models. In order to explain the conditional probabilities in a behavior
B ∈ B we use the ontological models framework [10, 42, 43]. In such a framework, there
exists some measurable set (Λ,Σ) of so-called ontic states λ ∈ Λ. These contain the full set
of parameters representing the most accurate physical description of the system. From such
a set of states, we construct probabilistic explanations for both preparation and measurement
procedures in B, such that:

∀P ∈ P,∃µP, (17)

∀M ∈M,∀k ∈OM,∃ξ[k|M], (18)

6
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where µP are probability measures over (Λ,Σ), for all λ ∈ Λ, ξ[·|M](λ) are probability distri-
butions over the outcomes k, for any λ, and every ξ[k|M] is a measurable function for (Λ,Σ).
Calling Π the set of all µP and Θ the set of all ξ[k|M] we have that an ontological model for B
is a quadruple (Λ,Σ,Π,Θ) that recovers the conditional probabilities by means of

p(k|Mi,Pj) =
ˆ
Λ

ξ[k|Mi] (λ)dµPj (λ) ,∀i, j,k. (19)

The assumption of noncontextuality is defined as follows:

Definition 4 (Noncontextuality). A behavior in a prepare-and-measure scenario, B ∈ B, is
called noncontextual if there exists some ontological model (Σ,Λ,Π,Θ) for the behavior B
such that the measures from Π respect operational equivalences of EP, meaning

∑
j

αaj Pj '
∑
j

βaj Pj ⇒
∑
j

αaj µPj =
∑
j

βaj µPj , (20)

and the same for elements from Θ that are associated with equivalent procedures from EM

∑
i,k

αb[k|Mi]
[k|Mi]'

∑
i,k

βb[k|Mi]
[k|Mi]⇒

∑
i,k

αb[k|Mi]
ξ[k|Mi] =

∑
i,k

βb[k|Mi]
ξ[k|Mi]. (21)

In this way, noncontextual models provide an explanation for operational equivalences.
Some processes are operationally indistinguishable because they have the same ontological
counterparts. In even more direct terms, because they correspond to the same functions (or
distributions) of the variables λ.

The set of behaviors that do have a noncontextual ontological explanation is fully char-
acterized by a finite set of tight inequalities forming the so-called noncontextual polytope
NC(B) [37], see appendix A for an example. The behaviors that are incompatible with any
noncontextual ontological explanation are said to be contextual. It is already established that
operational descriptions of quantum theory, where POVMs represent measurements and dens-
ity matrices represent preparations, can lead to contextual behaviors (see [38, 43, 44])– in
particular, the simplest scenario in which such a violation can occur is given by Bsi.

Deciding if a behavior in a given scenario is noncontextual or not can be framed as a lin-
ear program, and is fully determined by the complete set of facet-defining noncontextuality
inequalities characterizing the polytope NC(B) [37]. Using hierarchies of semi-definite pro-
grams (SDPs), it is also possible to bound the set of quantum behaviors [40, 45]. However, in
most situations, these numerical tools provide little intuition for generating novel analytical
insights, and they become increasingly computationally demanding. This is especially evid-
ent when attempting to find all noncontextuality inequalities or applying SDP hierarchies to
scenarios where |I|, |J|, |K| � 2.

The resource theoretic toolbox will be instrumental in providing simple yet important qual-
itative understanding of possibly large prepare-and-measure scenarios, while avoiding numer-
ically demanding procedures. We will do so by leveraging the concept of measurement sim-
ulability, and by lifting inequalities present in smaller scenarios into more complex ones.
Before delving into the key aspects of the resource theory of generalized contextuality, we will
first explain measurement simulation within an operational-probabilistic theories perspective.
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2.2. Measurement simulability

One notion that will be valuable to this work is that of measurement simulability. It was first
stated for quantum measurements [46, 47] and recently studied in the context of generalized
probabilistic theories [48]. The basic idea is to understand which measurement statistics can
be obtained by using a given set of measurement apparatuses and classical (pre- or post-)
processing. Here, we adapt the notion of measurement simulability to operational theories.

Definition 5 (Measurement simulability). Consider a set of |I| measurement procedures
N≡ {Ni}i∈I, on a given operational theory, with outcome set K. Then, another measurement
procedure set {Mĩ}̃i∈̃I on this operational theory, with outcome set K̃, is said to beN-simulable
if there exists classical pre-processings qM(i|̃i) and post-processing qiO(k̃|k) such that

[
k̃|Mĩ

]
'
∑
i,k

qiO
(
k̃|k

)
[k|Ni]qM

(
i|̃i
)

(22)

for every k̃ ∈ K̃ and ĩ ∈ Ĩ. Above, qM(i|̃i) is a conditional probability that, for each ĩ, chooses
Ni with probability qM(i|̃i). Similarly, qiO(k̃|k) define the probability of outcome k̃ ∈ K̃ given
k ∈ K for each i ∈ I.

The aim of this definition is to take the concept of measurement simulability to the scope of
operational theories. In such framework, as per definition 5, measurement simulability states
an equivalence of specific form between themeasurement procedure to be simulated and the set
of measurements performing the simulation, in which the coefficients defining the equivalence

are decomposed as β
simM̃̃i

[ki|Ni] := qM(i|̃i)qiO(k̃|k).
As said before, measurement simulability has been defined in the framework of generalized

probabilistic theories [48], broadening the previous and exclusively quantum definition [46,
47, 49]. In fact, these definitions follow from definition 5 by identifying the procedures that are
operationally equivalent—similarly to ignoring/forgetting the particular ensemble that led to a
quantum state ρ. This implication follows from the fact that one can obtain a generalized prob-
abilistic description by starting with the operational theoretic one and then quotienting over
the operational equivalences [39]. Therefore, one can understand definition 5 as taking meas-
urement simulability to a more primitive description of experimental scenarios (operational
theories), which carry more information than the description given by the GPT framework (or
the previous quantum description [46]).

2.3. Resource theory

In general formulations of resource theories, the basic ingredients are objects, that may feature
a specific resource, as well as operations among those objects [22, 36]. Objects without any
resource, and operations incapable of creating them are called, respectively, free objects and
free operations. Free operations define a pre-order: if an object o can be freely transformed
into o′, then o must have at least the same amount of resources as o′. This pre-order, in turn,
must be respected by any monotone aiming to quantify the resource.

For the present work, we consider contextuality in any fixed prepare-and-measure scenario
B as the resource, following [36]. Thus, we are interested in considering the objects as B ∈
B, while the set of free objects is naturally defined by the polytope NC(B). The set of free
operations defining the resource theory we consider is the set of pre-processing preparations
or measurements, together with post-processing of the measurement results [36].

8
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Definition 6. Given a scenario B := (|J|, |I|, |K|,EP,EM) we define the set of free operations
F as the set of maps T : B→ T(B) such that

T : {p(k|Mi,Pj)}k∈K,i∈I,j∈J 7→

∑
i,j,k

qiO
(
k̃|k

)
p(k|Mi,Pj)qM

(
i|̃i
)
qP

(
j|̃j
)

k̃∈K̃,̃i∈̃I,̃j∈J̃

(23)

where qiO : K→ K̃,qM : Ĩ→ I,qP : J̃→ J are stochastic maps between index sets, i.e. qP =
(qP( j|̃j))j,̃j is a stochastic matrix, corresponding to operational primitives in the different scen-

arios defined for each B by T(B) :=
(
|J̃|, |̃I|, |K̃|,ET(P),ET(M)

)
, for sets of operational equival-

ences defined for the procedures after the transformation T was performed. �

Experimentally, the procedures in B can be thought of as highly controlled experimental
apparatuses, such as actions over superconducting qubits, programmable integrated interfer-
ometers, etc. However, the free operations must, intuitively, pertain to a class of processes
available by classical machinery, such as introducing classical randomness, or relabeling
procedures.

The free operations have an impact on the equivalence classes. For instance, the new coef-
ficients for preparations, α̃ and β̃ (for every s labeling the equivalences), are those obeying
equations [36]

αsj =
∑
j̃∈J̃

α̃sj̃qP
(
j|̃j
)
, (24a)

βsj =
∑
j̃∈J̃

β̃sj̃ qP
(
j|̃j
)
, (24b)

where qP( j|̃j) are defined by the free operation (with similar relations for equivalences on
measurements). The change in the operational equivalences is represented by the notation

EP
T→ ET(P). Some particularly important features of the new equivalences are: first, the res-

ulting equivalences in the new scenario may be trivial. This is so because we may haveα 6= β
while qPα= α̃= β̃ = qPβ, for qP a (left) stochastic matrix. Second, no equivalences can be
‘broken’; indeed, from (9),∑

j∈J
αsjPj ' βsjPj =⇒

∑
j,̃j

α̃sj̃qP
(
j|̃j
)
Pj '

∑
j,̃j

β̃sj̃ qP
(
j|̃j
)
Pj =⇒

∑
j̃∈J̃

α̃sj̃ P̃̃j '
∑
j̃∈J̃

β̃sj̃ P̃̃j

where the new set of preparations T(P)≡ {P̃j}̃j∈J̃ are defined in the new scenario T(B).
Finally, there are some different examples of monotones respecting the pre-order estab-

lished by the free operations. The one we will use in this work is the l1−distance from [36].

Definition 7. Let B := (|J|, |I|, |K|,EP,EM) be any finitely defined prepare-and-measure scen-
ario. The l1-contextuality distance d : B→ R+ is defined by

d(B) := min
B∗∈NC(B)

max
i∈I,j∈J

∑
k∈K

|p(k|Mi,Pj)− p∗ (k|Mi,Pj) |. (25)

Until now, we have been describing contextuality as a property: a data-set B either has it or
not. The function above allows us to discuss contextuality as a quantity. With respect to d, we
can now ask ‘does B1 have more contextuality than B2?’.

9
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The concept of quantifying abstract resources is one of the hallmarks of the formalization
of general resource theories. The primary motivation for introducing quantifiers, such as the
one above, is to correlate the success rates of tasks with the available resources (similar to
determining how far a car can travel based on its fuel capacity).

This program has been surprisingly successful. To mention two examples related to
quantum computation: Shor’s algorithm [50] can be shown to depend on the amount of coher-
ence [25] present in the computation, and success probabilities of computing Boolean non-
linear functions, in a restricted measurement-based computational model, can be shown to
depend on the amount of KS-contextuality [28]

Let us nowmention one example which showcases that the use of resource theoretic quanti-
fiers (in particular the contextuality l1-quantifier of definition 7) can be broader than one might
expect. In [51] this measure was used to bound nonclassicality in finite scenarios relevant to
quantum Darwinism. This paradigm was proposed as an explanation for the emergence of
objectivity from the quantum—and arguably non-objective—substrate [52]. Shortly speaking,
quantum Darwinism poses that the information about a central system stored in small por-
tions of its environment is redundant. This would imply that independent observers gathering
information about the system through such portions of its environment (as we often do when
assessing systems around us in our everyday life), will agree on the obtained information. This
agreement between observers is the key to objectivity in the Darwinist program.

Brandão et al [53] showed that, under the circumstances that Darwinism is expected to
hold (such as the presence of an environment with many parts), the quantum dynamics from
the central system to some part j of the environment, Φ j, is close to a measure-and-prepare
map Φ j

obj. This fact was shown by upper bounding the diamond norm ‖Φ j−Φ j
obj‖⋄. Then,

[51] showed that the l1-distance lower bounds this quantity:

d(B)⩽ C
dim(H)

‖Φ j−Φ j
obj‖⋄, (26)

where C is a constant, dim(H) is the system’s of interest dimension and B is the statistics
described by a finite scenario satisfying the operational properties of quantum Darwinism
dynamics. This tells us that if a Darwinist process takes place, contextuality should be con-
strained. On the other side, Any value d(B)> 0 in such a set-up signals, not only that a perfect
process of quantum Darwinism has not taken place, but also by how much. Therefore, as we
see, the understanding of a resource theory and its quantifiers can be helpful in a variety of
fields, such as quantum computation or classical limits in open quantum systems dynamics.

3. Results

The results here reported are essentially obtained by exploring the defining feature of free oper-
ations; namely, that they cannot increase the resource (contextuality). The practical implication
is that if T is a free operation and T(B) ∈ T(B) is contextual, then Bmust be contextual on the
original scenario, B.

With this in mind, we first show how to reduce some complex scenarios to simpler ones by
using measurement simulability. A practical implication of this is that we can attain/explore
contextuality with easier implementations; with this perspective, we reinterpret the results of
[38]. It is noteworthy that, in the resource-theoretic treatment of KS-contextuality, measure-
ment simulation has also been investigated with the very same goal of understanding the sim-
ulation trade-off between scenarios [29], further investigated in [30, 31]. The results we will

10
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present regarding simulability and the conclusions drawn for the resource theory of generalized
contextuality complement the existing knowledge in the KS-contextuality literature.

Secondly, we take the opposite path, showing how to build more complex scenarios from
simpler ones—where important features of the simple scenarios are carried to the complex
ones. This composition technique allows to engineer scenarios where all non-trivial facets
exhibit quantum violations. Moreover, we conclude that the contextual advantage on the
cloning task [19] is inherited from a simpler scenario. It is worth noting that the results
obtained here will remain valid, or be easily generalized, if other resource theories encom-
passing broader families of free operations that include classical pre- and post-processing are
constructed.

3.1. Simulability and free operations

We begin by showing that measurement simulation, as expressed in definition 5, physically
implements a subset of the free operations.

Lemma 1 (Simulation is free). Consider a {Ni}i∈I-simulation of a set {Mĩ}̃i∈̃I and a set
of preparations P. Now consider the behaviors obtained by the simulating set {Ni}i∈I,
BN := {p(k|Ni,Pj)}k∈I,i∈I,j∈J, and those obtained by the simulated set {Mĩ}̃i∈̃I, BM :=

{p(k̃|Mĩ,Pj)}k̃∈K̃,̃i∈̃I,j∈J. The operation implemented by such a simulation, Tsim : BN 7→ BM, is
free.

Proof. Measurement simulation acts as a map Tsim which takes the measurement events [k|Ni],
to the measurement events

∑
k,i q

i
O(k̃|k)[k|Ni]qM(i|̃i). Due to linearity, the impact of simulation

on behaviors is Tsim({p(k|Ni,Pj)}) = {
∑

k,i q
i
O(k̃|k)p(k|Ni,Pj)qM(i|̃i)}. Now, the equivalence

established by simulation, [k̃|Mĩ]'
∑

k,i q
i
O(k̃|k)[k|Ni]qM(i|̃i), implies∑

k,i

qiO
(
k̃|k

)
p(k|Ni,Pj)qM

(
i|̃i
)
= p

(
k̃|Mĩ,Pj

)
∀Pj ∈ P. (27)

By comparing the l.h.s. of equation (27) with the r.h.s. of equation (23), we see that Tsim is
indeed a specific kind of free operation (obtained through simulation), which leaves prepara-
tions untouched.

This lemma has a direct implication for quantum realizations (we will denote MQ as the
quantum realizations of the procedures M):

Corollary 1. Let MQ
1 ,M

Q
2 be sets of quantum realizations of prepare-and-measure scenarios

B1,B2, respectively. Then, if MQ
1 is MQ

2 -simulable there exists a free operation T : B2 →
T(B2) = B1.

One implication of the above results is that one can use simulations to derive simpler scen-
arios from complex ones. We discuss two simple instances of how this can be done: by manip-
ulating measurement equivalences or by moving to a scenario having fewer measurements
than the original one.

The first instance is a consequence of the impact of free operations on equivalence classes
(as expressed in equation (24) for preparations). Indeed, by performing classical pre- and post-
processing of events one might be able to engineer the equivalence classes of interest. This
gives an alternative interpretation of the results of [38], that we proceed to briefly recall: In
their work, the authors tackle the problem of practical impossibility to obey exactly the desired
operational equivalences for the ideal quantum procedures, due to experimental errors. Assume

11
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that we want to test a noncontextuality inequality defined for a scenario B. When operationally
characterizing the procedures of B in a real experiment the noisy data effectively implements
some other closely related scenarioBp.We call these the primary procedures. For concreteness,
let us use preparations Pp to express in precise terms the idea. The procedures Pp correspond to
those that can be characterized using the (robust) experimental implementations. In particular,
the problem with these procedures is that they do not satisfy the ideal operational equivalences
of the target scenario B, with preparation procedures P, in which case the noncontextuality
inequality tested is not applicable.

By performing classical post-processing in the procedures, it is possible to obtain new sec-
ondary procedures that match the expected operational equivalences perfectly, by construc-
tion. The mapping can be framed as something of the form

Ps
j̃ =

∑
j

qP
(̃
j|j
)
Pp
j (28)

for all j ∈ J labeling the elements of Pp. Properly choosing p(̃j|j) allows the procedures
Ps := {Ps

j̃
}̃j to satisfy the target operational equivalences ofB. With this, the behavior obtained

from the secondary procedures can now be properly used to violate the inequality, that is now
applicable.

To this approach one could provide the following criticism: Since we never obtain a non-
contextual bound with respect to the primary (measured) procedures and their corresponding
operational equivalences, what guarantees that we are not demonstrating contextuality of the
secondary procedures only? The resource theory framework guarantees that:

Theorem 1. Contextuality for behaviors obtained with the secondary procedures implies con-
textuality for behaviors obtained from the primary procedures.

Proof. Recall that for the monotone d it is true that d(T(B))⩽ d(B) for all B ∈ B and T ∈ F
free operation. Transformations from primary to secondary procedures are of the form given
by definition 6. Let us denote these operations as Tp→s. This can be seen simply by noticing
that Tp→s probabilistic mixes the secondary procedures given the primary ones, as is expressed
by equation (28). Since ∀T ∈ F , it is true that d(T(B))> 0 =⇒ d(B)> 0, the fact that Bs =
Tp→s(Bp) implies d(Bs)> 0 =⇒ d(Bp)> 0 =⇒ Bre is contextual.

With the resource-theoretic perspective here proposed, we can understand the methods of
[38] as using a free operation to obtain new behaviors which obey the desired operational
equivalences and still exhibit contextuality. Moreover, since the performed operation is free,
we can add that their violations also show contextuality for the original measurements, in the
original scenario. Notice that imposing assumptions on the possible experimental errors this
argument can be extended to the ideal quantum realizations.

Let us now consider the use of measurement simulation to reduce a given scenario. We will
consider the simplest case, where part of the measurements are erased. The following results
are corollaries of lemma 1.

Corollary 2 (Trivial simulation). Consider a scenario B= (|J|, |I|, |K|,EP,EM) and define
another scenario B ′ obtained simply by discarding some of the measurements, i.e. B ′ =
(|J|, |I ′|, |K|,EP,E ′

M ′) whereM ′ ⊂M (thus, |I ′|⩽ |I|) and E ′
M ′ ⊂ EM. The transformation of

erasing such procedures and equivalences among them, T : B 7→ B ′, is free.

12
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Proof. This transformation can be mathematically described as
T(B) = {

∑
j p(k|Ni,Pj)qM(i|i ′)} where q(i|i ′) = 1 if i = i ′ and 0 otherwise.

This will be important to us, especially in the case where all remaining measurements are
dichotomic and with no equivalences, EM ′ = ∅. In other words, the case where one arises at
simple generalizations of the simplest scenario definition 3 after discarding a subset of meas-
urements. In this case, we know that there is a quantum realization of the measurements of the
reduced scenario. That is,

Corollary 3. Let M := {Mi} be any set of two-outcome operational measurements having a
quantum realization MQ. Then, the quantum measurements MQ

si := { 1√
2
(σX+σZ),

1√
2
(σX−

σZ)} areMQ-simulable, for at least some quantum realizationMQ ofM.

With the above results, we see that using simulations provided by a particular set of meas-
urements may lead us to new, simpler, scenarios. If contextuality is witnessed in such scen-
arios, the resource theoretical perspective allows us to conclude that contextuality was present

prior to the simplification process. Yet, the mere application of free operations Binitial
T7→ Bfinal

do not always help in engineering novel scenarios, or novel contextual behaviors, because
we may not necessarily know from where the contextual behaviors T(B) ∈ Bfinal came from,
among all the possible ones in the more complex scenarios B ∈ Binitial, nor how to access them,
since T needs not be injective. To that end, we introduce a formal composition rule⊞, presented
in the next section 3.2. We will use such ideas in section 3.3 to engineer and witness quantum
contextuality in more involved scenarios.

3.2. Composition of scenarios

In the previous section, we discussed how to use free operations (measurement simulability
in particular) to obtain simpler scenarios. Here we take the opposite path, constructing com-
plex scenarios from simpler ones. This particular construction allows one to obtain important
information regarding the resource, which is inherited from the original, smaller, scenarios.
This is based on the following definition,

Definition 8. Let B1 = (|J1|, |I1|, |K1|,EP1 ,EM1), and B2 = (|J2|, |I2|, |K2|,EP2 ,EM2) be two
finitely defined prepare-and-measure scenarios, with behaviors B1 ∈ B1,B2 ∈ B2, seen as vec-
tors B1 = (p(k1|Mi1 ,Pj1))i1,k1,j1 , we then define:

(a) (Composition of scenarios) The target scenario B≡ B1 ⊞B2 defined by the tuple,

(|J1 ∪ J2|, |I1 ∪ I2|, |K1 ∪K2|,EP1∪P2 ,EM1∪M2)

has the operational equivalences of both scenarios defined as, for {a}|EP1∪P2 |
a=1 := {a1}

|EP1 |
a1=1 ∪

{a2}
|EP2 |
a2=1, that we denote γaP1∪P2

∈ EP1∪P2 ,

γaP1∪P2
:=

{
(αa1 ,0;βa1 ,0) , a= a1
(0,αa2 ,0;βa2) , a= a2

. (29)

The analogous definition holds for the operational equivalences for measurement events
by a change P→M and a→ b.

13
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(b) (Composition of behaviors) The binary operation ⊞ is defined as the vertical stacking of
vectors from the scenarios B1,B2 towards B, i.e.

B1 ⊞B2 :=

(
p(k1|Mi1 ,Pj1)
p(k2|Mi2 ,Pj2)

)
. (30)

With i1 ∈ I1, |I1|= |M1| and similarly for all other labels.

As an operational constraint, the target scenario does not consider the probabilities obtained
with hybrid procedures, i.e. those of the form

p(k1|Mi1 ,Pj2) ,p(k2|Mi1 ,Pj1) /∈ B1 ⊞B2. (31)

Note that compositions of multiple scenarios are constructed in sequence and are associative.
This binary operation essentially appends two given scenarios. The geometrical con-

sequences of such composition will be important, as it will allow us to build an intuition of the
resulting noncontextual polytope. This is described by the following lemma:

Lemma 2 (Geometrical consequences, from [54–56]). Let P⊂ Rn, Q⊂ Rm be two convex
polytopes. Then, the product defined by

P×Q :=

{(
p
q

)
: p ∈ P,q ∈ Q

}
⊂ Rn+m, (32)

is again a convex polytope. Let |V(P)| and |V(Q)| represent the number of vertices of each of
the convex polytopes P and Q, then, we also have that |V(P×Q)|= |V(P)| · |V(Q)|. Let |F(P)|
define the number of facets of the convex polytope P, and similarly for the convex polytope Q.
Then, we have that |F(P×Q)|= |F(P)|+ |F(Q)|.

One important feature of the binary operation is the following result.

Theorem 2. The binary operation ⊞ preserves the resource:

B1 ∈ NC(B1) ,B2 ∈ NC(B2)⇔ B1 ⊞B2 ∈ NC(B1 ⊞B2) .

We prove this theorem in appendix B, but we provide some intuition here. (⇒) If there
exists a noncontextual ontological model for each part B1 and B2, respecting the operational
equivalences of both scenarios, then in the new scenario B := B1 ⊞B2 the operational equival-
ences are inherited according to (29), so that we can choose the set of ontic states Λ1 tΛ2, and
construct a noncontextual model for any B using the model of the parts, over this larger ontic
space. (⇐) Now, on the other way around, if there exists a noncontextual ontological model
for any behavior B1 ⊞B2 there must exist one for its parts, by simply restricting the probab-
ility distributions to the correct labels since the operational equivalences are of the form of
equation (29). An implication of ⊞ preserving the resource is that it does not increase the
l1-distance quantifier:

Lemma 3. Let B := (|J|, |I|, |K|,EP,EM) be any finitely defined prepare-and-measure scen-
ario. The l1-contextuality distance d : B→ R+ (see definition 7) is subbadditive under the
binary operation ⊞. This means that for B1 ∈ B1 and B2 ∈ B2 we get:

d(B1 ⊞B2)⩽ d(B1)+ d(B2) . (33)
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In other words, theorem 2 (and its manifestation through the l1-distance) tells us that this
composition preserves the structure of the noncontextual behaviors; therefore, if B1 ⊞B2 ∈
B1 ⊞B2 is contextual, then it must be true that either B1 or B2 is contextual (or both). We
remark that similar results have been shown for KS-contextuality using the contextual fraction
monotone [28]. Abramsky et al [29] presented the monotonicity rules for the fraction with
respect to different composition rules between empirical models. Moreover, they have also
shown that if a given model simulates another, the latter must have less contextual fraction
than the former.

Lemma 2 is also proved in appendix B. Both lemma 2 and theorem 2 give interesting tools
to understand a complex scenario. Indeed, if we are able to decompose a given scenario as
B= B1 ⊞B2 ⊞ . . .⊞Bn, we can obtain resourceful behaviors on B by building on resourceful
behaviors on its components, Bl(l ∈ {1, . . . ,n}). In this sense, B can be engineered from the
control an experimenter has of its parts. The resulting scenario, together with its behaviors,
will also be known, and with a known lower bound in the contextuality with respect to the l1-
distance monotone. Behaviors in the parts B1, . . . ,Bn will dictate what are the behaviors given
by the whole B, and how to access them.

3.3. Witnessing quantum contextuality

In sections 3.1 and 3.2, we exposed general results that show how a resource-theoretic approach
provides interesting tools to analyze complex contextuality scenarios. Namely, by reducing a
scenario via erasing procedures, designing equivalences or looking for a nice decomposition
in terms of the product (30); we can also use such a product to build up complex scenarios that
preserve the resource. Here we take advantage of those results to engineer andwitness quantum
contextuality. In particular, we show that scenarios of a particular form always feature quantum
contextuality and that the contextual advantage present in the cloning scenario [19] is actually
inherited from a simpler scenario (that we name B6).

3.3.1. Using free operations. Here we present examples in which one can prove the existence
of quantum contextuality in certain scenarios by taking advantage of free operations in the
resource-theoretic approach. In particular, we use free operations (such as the trivial simulation
discussed in corollary 2), to take these scenarios to the simplest one (Bsi, see definition 3), and
still find contextual quantum realizations. The idea is represented in figure 1.

In what follows, we discuss scenarios of a specific structure in which we can apply such a
technique.

Example 1. Consider scenarios of the kind B := (4, |I|,2,EP,si,∅), |I|⩾ 2. There is always a
quantum behavior B ∈ B and a free operation towards the simplest scenario, i.e. T ∈ F where
T(B) = Bsi, such that T(B) ∈ Bsi is a quantum contextual behavior.

In other words, every prepare-and-measure scenario that can be written as abovewill have at
least some quantum realization that is contextual. Such contextual behaviormay be understood
as a quantum advantage in such a scenario, as suggested by the resource-theoretic approach.

Proof. Since there are no equivalences among measurements, we can choose any setMQ with
|I| procedures to be a realization of the measurement procedures M. Finally, we can use the
strategy of trivial simulation described in corollary 2 to take B to Bsi, simply by erasing all but
two measurements. Finally, we can use the quantum realizations providing contextual advant-
age in this scenario, which proves our example.
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Figure 1. Free operations as a tool for witnessing quantum contextuality in complex
scenarios. By finding the existence of a free transformation T towards quantum contex-
tual behaviors in already known scenarios, such as the simplest scenario Bsi from [13],
one can attest contextuality in the original case.

Even though the above completes our proof, we might profit from an explicit description
of such a procedure. Let a quantum realization of the measurement procedures M= {Mi}i∈I
from the scenario B be such that each measurement is a projective measurement, with MQ =
MQ

si ∪{Mproj
3 , . . . ,Mproj

I }, for Mproj
i a projective measurement for all i = 3, . . . , |I|. Now, define

maps qiO,qM as

qiO
(
k̃|k

)
= δk,̃k (34)

qM
(
i|̃i
)
=

{
1if i ∈ {0,1,2}
0,otherwise.

(35)

For any measurement event represented by the quantum operators Eĩ
k̃
from the POVMs Mĩ ∈

MQ
si , we have

Eĩ
k̃
=
∑
i,k

qiO
(
k̃|k

)
EikqM

(
i|̃i
)
. (36)

Let the quantum realization of the preparation procedures in B be that given in
equations (2)–(5). These can also be a quantum realization for Bsi, since the preparation struc-
ture of both scenarios is the same. Then, if we define the free operation T using the maps in
equations (36) and (34), we can notice that the following holds,
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p(k|Mi,Pj) = Tr
(
Eik ρ

j
) T→

→
∑
i,k

qiO
(
k̃|k

)
Tr

(
Eikρ

j
)
qM

(
i|̃i
)

= Tr

∑
i,k

qiO
(
k̃|k

)
EikqM

(
i|̃i
)
ρ j


= Tr

(
Eĩ
k̃
ρ j
)
= p

(
k̃|Mĩ,Pj

)
,

where Eĩ
k̃
are the POVM elements of the measurement procedures in MQ

si , discussed in the
appendix C. Therefore we might access the quantum contextual behavior from Bsi that is max-
imally quantum contextual [6, 57]. Since T is a free operation, the specific quantum realization
we used in the domain B cannot be noncontextual.

Applying the same reasoning to preparation procedures, a generalization follows:

Example 2. Consider scenarios of the kind B := (|J|, |I|,2,EP,∅), with |J| even, |J|⩾ 4 and
|I|⩾ 2, and EP = EP,si ∪E ′, where E ′ does not involve the first four preparations. There is
always a quantum behavior B ∈ B and a free operation T ∈ F , with image T(B) = Bsi the
simplest scenario such that T(B) ∈ Bsi is a quantum contextual behavior.

It is clear that there exists a quantum contextual behavior for such a scenario since we can
consider the same quantum contextual behavior from example 1, and complete the procedures
with anything such that the equivalences E ′ do not involve the first four procedures. Then,
there will certainly exist some pre-processings from these towards the preparations (3)–(5),
with the same description as the one given by corollary 2.

3.3.2. Using the composition. In this section, we take advantage of the consequences of
theorem 2 to witness quantum contextuality. Namely,

Corollary 4. Consider a behavior B1 ⊞B2, with B1 ∈ B1 and B2 ∈ B2, that has some quantum
realizations and is contextual. Then, B1 or B2 must be contextual. Mathematically,

B1 ⊞B2 ∈ QC(B1 ⊞B2) (37)

⇐⇒ B1 ∈ QC(B1) or B2 ∈ QC(B2) (38)

whereQC(B) is the set of contextual points in the scenario that have some quantum realization.

Hence, using the composition ⊞, we are constructing higher-dimensional polytopes that
will inherit quantum contextuality from its lower-dimensional components. Thus, whenever
very complex scenarios can be understood as the product of lower-dimensional ones, we
can find the arising noncontextual polytope structure from the product elements and build
up quantum violations from those in the components. We shall see examples of how this
can be done. First, let us give an intuitive geometric view of why complex scenarios acquire
quantum contextuality from simple ones. Let be the pictorial representation
of a prepare-and-measure experimental scenario, meaning that this is some convex polytope B
with the quantum set (first three nodes) containing the left black line and the one in blue (color
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Figure 2. Representation of the polytope structure arising from the product scenario.
We stress that it is not clear how the new form of the quantum set Q(B) should be, even
though it is clear the polytope structure for both NC and the larger polytope of statistics.
In this picture we have used the fact that NC(B)⊆ Q(B). From the convex nature of
Q(B), the product scenario must have a quantum contextual set that is at least of the
form given by region 1, but it could also be given by region 2 and the study of maximal
violations for noncontextuality inequalities shall answer such questions, see [58, 59]
(color online).

online; three lines between four nodes, first one represents the noncontextual set of behaviors,
the second represents the quantum and the third the post-quantum). Then, the product B⊞B
between two of these 1-dimensional convex polytopes will be such as represented in figure 2.

From figure 2, we see that if one constructs very complex scenarios, when they are asso-
ciated with decompositions of B⊞n for n as large as we could imagine, the resource is always
present.

The arguably simplest construction one might consider is to take sequential products of
the simplest scenario, B := B⊞n

si . Interestingly, using some symmetry arguments and the tight
noncontextuality inequalities of the simplest scenario, we can obtain the following result for
such construction:

Lemma 4. For any scenario of the form B := B⊞n
si , n⩾ 1, every tight and nontrivial noncon-

textuality inequality will be violated by some quantum contextual behavior.

We provide a proof in appendix D. Therefore, for these scenarios, there exist quantum
contextual behaviors with respect to all (nontrivial) noncontextuality inequalities that define
the polytope NC(B). A resource theoretic consequence arises as a corollary from such lemma.

Corollary 5 (Quantum advantages for B= B⊞n
si ). Consider a quantum information task that

has a success rate defined by a function g : B→ R+, for B of the form of B⊞n
si , such that

the noncontextual bound for the success, gNC(B)⩽ δ, for some δ ∈ R, can be expressed as a
linear combination of the noncontextuality inequalities of NC(B). Then, there exists a quantum
behavior BQ such that g(BQ)> δ.

Thus, lemma 4 represents a general proof of quantum advantage in tasks related to scenarios
of the form B⊞n

si , for n⩾ 2 (whenever the success rate of the operational task is defined by a
function g that is a convex-linear function of the noncontextuality inequalities NC(Bsi)).

As another notable example, we discuss the quantum cloning scenario from [19] which we
name as Bqc. This is an operational scenario that reproduces the statistics for an important
quantum task known as state-dependent quantum cloning, in which contextuality underpins
quantum advantage [19].

In this scenario, we have a set

Pqc := {Ps,Ps⊥ | s ∈ {a,b,α,β,aa,bb}}
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with preparation operational equivalences

1
2
Pa+

1
2
Pa⊥ ' 1

2
Pb+

1
2
Pb⊥ , (39)

1
2
Pα +

1
2
Pα⊥ ' 1

2
Paa+

1
2
Paa⊥ , (40)

1
2
Pβ +

1
2
Pβ⊥ ' 1

2
Pbb+

1
2
Pbb⊥ . (41)

For the measurement procedures, we have the six binary-outcome ones Ms,s ∈
{a,b,α,β,aa,bb}, with no operational equivalences. The example below captures the poly-
tope structure of this scenario as from smaller ones.

Example 3 (Quantum cloning inherits contextuality from B6). The scenario Bqc related to
the state-dependent quantum cloning task, can be written as

Bqc = B6 ⊞B6 ⊞B6, (42)

where B6 := (4,6,2,EP,si,∅). The inner polytope structure of Bqc is then given by B6.

We needed to add some symmetries associated with the fact that the scenario B⊞3
6 would

have 18 measurement procedures, therefore making notice of the symmetry I1 = I2 = I3 =⇒
I := I1 ∪ I2 ∪ I3 = I1 = {a,b,α,β,aa,bb}. And also that K1 = K2 = K3. Under these circum-
stances equation (42) holds.

Recall that the operational equivalences within any scenario provide the fundamental con-
straints of the generated data over noncontextual models. As such, the example above shows
that the equivalences from Bqc can be framed as compositions of those from Bsi. Hence, the
operational structure underpinning the cloning scenario is simply that of a composition of those
pertaining to the simplest scenario.

This example is also helpful to discuss some aspects of the map ⊞, in particular,

NC(Bqc) = NC(B6)×NC(B6)×NC(B6) . (43)

This example allows us to conclude the following: equation (42) is a proof of quantum con-
textuality in the quantum cloning scenario, since B6 has quantum contextual behaviors. The
first point is in agreement with [19, 60] providing a new understanding of the advantage in the
cloning scenario, i.e. in terms of quantum contextuality present in the smaller B6.

4. Discussion

In this work, we use the resource theory of contextuality introduced in [36].We examine, with a
resource theoretic perspective, the preservation of contextuality due to measurement simulab-
ility; known techniques used in experimental tests of contextuality; and the polytope structure
of novel composed scenarios. These composed scenarios can be interpreted as a strategy for
extending inequalities from smaller scenarios to larger ones.

To elaborate, we establish a connection between the simulation of measurements in opera-
tional theories with free operations and the creation of simpler scenarios achieved by omitting
certain measurements. Furthermore, by recognizing that mixing is formally a free operation,
we offer a new interpretation of the engineering of operational equivalences used in the tests
detailed in [38]. We conclude that the free operations provide a simple and rigorous argu-
ment in favor of the experimental conclusions drawn from [38] regarding the use of secondary
procedures as a tool for witnessing contextuality from imperfect equivalences.
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Moreover, we introduce a composition of scenarios allowing the construction of complex
scenarios while conserving the resource. This brings light to the importance of the resource
theory developed in [36], especially in situations limited by the intrinsic complexity of numer-
ically studying correlation polytopes.

We then apply the techniques to analyze quantum contextuality, leading to both found-
ational and practical implications. We have demonstrated that there always exists quantum
contextual behaviors for a class of prepare-and-measure scenarios—and such a class encom-
passes the scenarios from [13, 17–19]. We also show that quantum contextuality is present for
every nontrivial facet of the noncontextual polytope for scenarios of the form B⊞n

si . Moreover,
we show that the scenario related to the task of state-dependent cloning, Bqc, can be decom-
posed in terms of the simpler scenario B6. Thus, we can conclude that the quantum resource
present inBqc is inherited from quantum contextuality inB6. This also allows one to understand
NC(Bqc) via the inequalities of NC(B6), which is a much simpler computational task.

4.1. Relation with previous work

Resource theoretic investigations of prepare-and-measure (generalized) contextuality scen-
arios remain largely unexplored. In this work, we have presented various qualitative and quant-
itative results that analyze the specific structure of these scenarios. We believe these findings
can be important in practical applications, enabling the development of novel demonstrations
of quantum contextuality, or the lack thereof, akin to the successful application of the mono-
tone d, as seen in [51], for constraining the emergence of noncontextuality under quantum
Darwinism.

On the contrary, for a different yet related notion of contextuality, namely KS contextual-
ity, not only there is a vast literature devoted to formalizing a resource theory of it [27–29, 32,
61–63], but also its application to relevant tasks [31, 64, 65]. In this case, very similar construc-
tions, such as the operation ⊞ we have considered here, have been introduced for empirical
models in the resource theory of KS-contextuality in [29], as we have pointed out before. Our
description differs from theirs since it uses a fairly different notion of nonclassicality, namely,
generalized contextuality. Those differences are not only present at a conceptual level, but res-
ult in a completely different scenario description, with fairly different tools. For example, the
various quantum states used are present operationally in the description of a generalized con-
textuality scenario, while those are left out from the definition of scenarios used for studying
KS-contextuality. Consequently, there is no compelling argument for why results from gener-
alized contextuality scenarios should apply to the measurement scenarios in the KS formalism,
and vice-versa. Yet, the existing literature on KS-contextuality is certainly suggestive of the
future directions to be considered.

4.2. Further directions

The examples here discussed are far from exhausting the possibilities of the tools developed.
Therefore, finding other physically appealing scenarios, or introducing novel composition
rules beyond ⊞ is an interesting perspective. Further investigations could also use small per-
turbations over the quantummeasurements [66], and with the help of contextuality monotones,
try to understand how much can one perturb the quantum behaviors and still witness contex-
tuality, which is important for experimental implementation of generalized noncontextuality.

One potential venue of exploration involves studying the interplay between the composition
rule ⊞ and scenarios relevant for quantum computation. For instance, it remains unclear the
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relevance of generalized contextuality in some measurement-based schemes of quantum com-
putation [67, 68]. Possibly, each measurement step leads to some defined scenario B, and the
sequence of measurements leading to some sequence B1 ⊞ · · ·⊞Bn. Furthermore, it is likely
that the resource theory of generalized contextuality will play a leading role in explaining hard-
ness of classically simulating quantum computations for the so-calledΛ-polytopemethod [69–
71], that provides an ontological model that is measurement noncontextual, but preparation
contextual, and for which it is unknown what nonclassical resources drive the simulation
overhead.

To conclude, our work motivates the utilization of resource-theoretic analysis of general-
ized contextuality, as we provide new qualitative insights into the underlying polytope struc-
ture within prepare-and-measure scenarios. We have demonstrated the applicability of the
composition rule ⊞, which can be interpreted as an instance of a lifting of noncontextu-
ality inequalities. Formally, lifting has been successfully employed in analyzing other per-
tinent quantum information polytopes, such as Bell inequalities that define facets in local
polytopes [72]. Nevertheless, the formal lifting strategies for noncontextuality inequalities
in prepare-and-measure scenarios remain an uncharted territory, lacking a formal complete
description. We hope our work paves the way for future investigations, encouraging explora-
tion in this direction.
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Appendix A. Noncontextual polytope for the simplest scenario

With the methods developed by [37] it is possible to fully characterize the noncontextual poly-
tope for the scenario Bsi. For a given behavior B ∈ Bsi using the shorthand for p(1|Mi,Pj) = pij
we have that the facets of the noncontextual polytope are tightly characterized by the following
set of inequalities:

0⩽ pij ⩽ 1, ∀Mi,Pj (A1)

p12 + p22 − p14 − p23 ⩽ 1 (A2)

p12 + p22 − p13 − p24 ⩽ 1 (A3)
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p22 + p13 − p12 − p24 ⩽ 1 (A4)

p12 + p23 − p22 − p14 ⩽ 1 (A5)

p22 + p14 − p12 − p23 ⩽ 1 (A6)

p23 + p14 − p12 − p22 ⩽ 1 (A7)

p12 + p24 − p22 − p13 ⩽ 1 (A8)

p13 + p24 − p22 − p12 ⩽ 1. (A9)

Taken from [37, 56].

Appendix B. Proof of theorem 2

Proof. Let B1 ∈ NC(B1),B2 ∈ NC(B2). Hence, there are (Σ(i),Λ(i),Π(i),Θ(i))whereΠ(i) and
Θ(i), i = 1,2, respect the operational equivalences at the ontological model level respectively
for each scenario. For sets of labels we define Ki, Ii,Ji,{ai},{bi} as before (see definition 8),
for their respective operational primitives from Bi. The scenarios are finite and the operational
equivalences are fixed and finite as well, so each set ranges over a finite set of labels.

K := K1 ∪K2

I := I1 ∪ I2
J := J1 ∪ J2

{a}|EP1∪P2 |
a=1 := {a1}

|EP1 |
a1=1 ∪{a2}

|EP2 |
a2=1 ,

{b}|EM1∪M2 |
b=1 := {b1}

|EM1 |
b1=1 ∪{b2}

|EM2 |
b2=1 .

From the definition of noncontextuality at the ontological model level, we have the
equations below. Here and throughout this appendix we simplify the notation to p(k|Mi,Pj)≡
p(k|i, j).

p(k1|i1, j1) =
∑

λ1∈Λ1

ξ[k1|i1] (λ1)µj1 (λ1) , (B1)

p(k2|i2, j2) =
∑

λ2∈Λ2

ξ[k2|i2] (λ2)µj2 (λ2) , (B2)

∑
j1

(
αa1j1 −βa1j1

)
µj1 (Ω1) = 0, ∀a1,∀Ω1 ∈ Σ1 (B3)

∑
j2

(
αa2j2 −βa2j2

)
µj1 (Ω2) = 0, ∀a2,∀Ω2 ∈ Σ2 (B4)

∑
k1,i1

(
αb1[k1|i1] −βb1[k1|i1]

)
ξ[k1|i1] (λ1) = 0, ∀λ1,b1, (B5)

∑
k2,i2

(
αb2[k2|i2] −βb2[k2|i2]

)
ξ[k2|i2] (λ2) = 0, ∀λ2,b2. (B6)

In (B3)–(B6), ξ[·|i1] ∈Θ(1),µj1 ∈Π(1), and similarly for the remaining distributions. If we con-
sider the product between the behaviors, B1 ⊞B2, we can construct a novel ontological model
using as the ontic space Λ := Λ(1) tΛ(2) the disjoint union between the two sets. We then
define ξ̃[k|i] : Λ→ [0,1] as,
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ξ̃[k|i] (λ) :=

{
ξ[k1|i1] (λ1) , λ= (λ1,1)
ξ[k2|i2] (λ2) , λ= (λ2,2)

∀λ ∈ Λ,
∑
k∈K

ξ̃[k|i] (λ) =

{∑
k∈K ξ̃[k|i1] (λ) , if i ∈ I1∑
k∈K ξ̃[k|i2] (λ) , if i ∈ I2

=

{∑
k1∈K1

ξ̃[k1|i1] (λ) , if i ∈ I1∑
k1∈K1

ξ̃[k1|i2] (λ) , if i ∈ I2
=

{
1,
1

= 1.

So that the extended functions are normalized in the ontic spaceΛ. We have considered that,
whenever i ∈ I1 ∩ I2 any function ξ[k1|i1] or ξ[k2|i2] will serve, we then just need to pick one and
use it for our noncontextual ontological model. This means that if we have two scenarios with
the same procedures, {M1,M2},{M1,M2}→ {M11 ,M21 ,M12 ,M22} ≡ {M1,M2}. Therefore we
can recognize if two procedures are simply the same. In this sense, we can have that the number
of procedures in Bsi and B⊞n

si are the same so that we simplify the scenario’s description.
For µ̃j, the ontic spaces are finite and we write µ̃j({λ})≡ µ̃j(λ). Let j ∈ J, we define that,

if j ∈ J1,

µ̃j (λ) :=

{
µj1 (λ) , if λ= (λ1,1)

0, if λ= (λ2,2)

and similarly if j ∈ J2. Again, when j ∈ J1 ∩ J2 we choose one of the ontological descriptions
as our fixed definition for the preparation procedure associated with it. With this definition, we
have that, for any j ∈ J,∑

λ∈Λ

µ̃j (λ) =
∑

λ=(λ1,1)∈Λ

µ̃j (λ)+
∑

λ=(λ2,2)∈Λ

µ̃j (λ)

and, whenever j ∈ J1 or j ∈ J2 we recover the normalization condition from the already defined
distributions in the parts. We then obtain that any p(k|i, j) in B1 ⊞B2 will have an ontological
description,

∑
λ∈Λ1⊔Λ2

ξ̃[k|i] (λ) µ̃j (λ) =

{∑
λ∈Λ ξ̃[k1|i1] (λ) µ̃j1 (λ) , if k, i, j ∈ K1, I1,J1∑
λ∈Λ ξ̃[k2|i2] (λ) µ̃j2 (λ) , if k, i, j ∈ K2, I2,J2

=

{∑
λ1∈Λ1

ξ[k1|i1] (λ1)µj1 (λ1) , if k, i, j ∈ K1, I1,J1∑
λ2∈Λ2

ξ[k2|i2] (λ2)µj2 (λ2) , if k, i, j ∈ K2, I2,J2

=

{
p(k1|i1, j1) , if k, i, j ∈ K1, I1,J1
p(k2|i2, j2) , if k, i, j ∈ K2, I2,J2

= B1 ⊞B2.

Notice that in the new scenario B1 ⊞B2 it is at play our operational constraint that the
preparations of the parts do not interact with the measurements of one another. The operational
equivalences defined in the scenario B1 ⊞B2 are the ones from (29), so we need to study the
following objects:∑

j

(
αaj −βaj

)
µ̃j (λ) , ∀λ ∈ Λ1 tΛ2,∀γa ∈ EP1∪P2 . (B7)
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It will be true, for all λ ∈ Λ1 tΛ2, the following holds,

∑
j

(
αaj −βaj

)
µ̃j (λ) =

∑
j1

(
αaj1 −βaj1

)
µ̃j1 (λ)︸ ︷︷ ︸

(B3)
= 0

+
∑
j2

(
αaj2 −βaj2

)
µ̃j2 (λ)︸ ︷︷ ︸

(29)
= 0

= 0,∀γaP1∪P2
= γa1P1∪P2

∑
j

(
αaj −βaj

)
µ̃j (λ) =

∑
j1

(
αaj1 −βaj1

)
µ̃j1 (λ)︸ ︷︷ ︸

(29)
= 0

+
∑
j2

(
αaj2 −βaj2

)
µ̃j2 (λ)︸ ︷︷ ︸

(B4)
= 0

= 0,∀γaP1∪P2
= γa2P1∪P2

.

And for all λ ∈ Λ1 tΛ2 we also have, ∀γbM1∪M2
= γb1M1∪M2

,

∑
k,i

(
αb[k|i] −βb[k|i]

)
ξ̃[k|i] (λ) =

∑
k1,i1

(
αb1[k1|i1] −βb1[k1|i1]

)
ξ̃[k1|i1] (λ1)︸ ︷︷ ︸

(B5)
= 0

+
∑
k2,i2

(
αb1[k2|i2] −βb1[k2|i2]

)
ξ̃[k2|i2] (λ2)︸ ︷︷ ︸

(29)
= 0

= 0,

and ∀γbM1∪M2
= γb2M1∪M2

,

∑
k,i

(
αb[k|i] −βb[k|i]

)
ξ̃[k|i] (λ) =

∑
k1,i1

(
αb2[k1|i1] −βb2[k1|i1]

)
ξ̃[k1|i1] (λ1)︸ ︷︷ ︸

(29)
= 0

+
∑
k2,i2

(
αb1[k2|i2] −βb1[k2|i2]

)
ξ̃[k2|i2] (λ2)︸ ︷︷ ︸

(B6)
= 0

= 0.

This proves that the ontological model constructed is noncontextual for the behavior B1 ⊞
B2 whenever B1,B2 are also noncontextual behaviors.

For the (⇐) part of the proof, suppose that the behavior B1 ⊞B2 has a noncontextual onto-
logical model (Σ,Λ,Π,Θ). We know that this B1 ⊞B2 scenario has the same operational
equivalences as both the scenarios B1 and B2 divided, by means of the weight vectors, e.g.
(αa11 ,αa12 , . . . ,αa1j1 ,0, . . . ,0). Hence, there exists an ontological model for B1 inherited from
B1 ⊞B2 using the operational equivalences:

∑
j

(
αaj −βaj

)
µj (λ) = 0,∀λ =⇒

∑
j1

(
αaj1 −βaj1

)
µj1 (λ) = 0,∀λ,∀γaP1∪P2

∈ EP1∪P2 ,
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where we can restrict {a} to some set of labels {a1} and reduced vectors γa1P by cutting the
zeros. We get the same for the behavior B2. The ontological description of the probabilities we
get immediately:

p(k1|i1, j1) :=
∑
λ∈Λ

ξ[k=k1|i=i1] (λ)µj=j1 (λ) , (B8)

for any k1, i1, j1 ∈ K1, I1,J1, and similarly,

p(k2|i2, j2) :=
∑
λ∈Λ

ξ[k=k2|i=i2] (λ)µj=j2 (λ) . (B9)

B.1. l1-distance

We prove lemma 3 as follows: Recall that the l1-distance monotone is defined as,

d(B) := min
B∗∈NC(B)

max
i,j

∑
k

|p(k|i, j)− p∗ (k|i, j) |. (B10)

Let B∗
1 and B∗

2 be the noncontextual behaviors achieving the minimum in equation (B10).
Denoting (p∗(k|i, j))k∈K,i∈I,j∈J ≡ B∗

1 ⊞B∗
2 ,

d(B1 ⊞B2)

⩽max
i,j

∑
k

|p(k|i, j)− p∗ (k|i, j) |

=max
i,j

{{∑
k

|p1 (k1|i1, j1)− p∗1 (k1|i1, j1) |

}
∪

{∑
k

|p2 (k2|i2, j2)− p∗2 (k2|i2, j2) |

}}

=max

{
max
i1,j1

∑
k

|p1 (k1|i1, j1)− p∗1 (k1|i1, j1) |,max
i2,j2

∑
k

|p2 (k2|i2, j2)− p∗2 (k2|i2, j2) |

}
=max{d(B1) ,d(B2)}⩽ d(B1)+ d(B2) .

Appendix C. Quantum realization in the simplest scenario

Consider the so-called simplest scenarios Bsi from definition 3. In this scenario there are
no operational equivalences between the measurement procedures M := {M1,M2}. A pos-
sible quantum contextual realization within the simplest scenario was presented in [13, 17],
where we simply consider that M1,M2 are given by the POVMs, M1 =

1√
2
(σX+σZ),M2 =

1√
2
(σX−σZ). For the preparations we can simply take, as is usual, the preparations (2)–(5),

such that this realization gives rise immediately to the correct operational equivalences for pre-
paration procedures from Bsi. For a sufficiently large number of repeated procedures, we get
the following probabilistic data table (we omit probabilities corresponding to 1− p events).

Since we have a full characterization of the noncontextual polytope for such scenario [37]
we notice that table 1 is contextual because it violates Ineq. (A8)

p12 + p24 − p22 − p13 = 0.8535+ 0.8525− 0.1464− 0.1464= 1.4132> 1.
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Table 1. Data-table for the final statistics obtained by quantum predictions.

ρ1 ρ2 ρ3 ρ4

E1
1 0.1464 0.8535 0.1464 0.8535
E2
1 0.8535 0.1464 0.1464 0.8535

Appendix D. Permutations of contextual vertices

In this appendix, we prove lemma 4. There are three partial results we need:

1. The set of vertices of the polytope of all behaviors Bsi, is the set of deterministic assign-
ments that respect the operational equivalences associated with the preparation procedures.
Therefore there is always a permutation Tv→w between any two vertices from Bsi. Since
any permutation is also a free operation, we need to show that Tv→w is a special kind of free
operation, one that satisfies,

B ∈ C(B) \NC(B)⇔ Tv →w (B) ∈ C(B) \NC(B) .

This will be true whenever Tv→w is a permutation of elements in the behavior B ∈ Bsi.
2. To do so, we will use the contextual measure d : B→ R+. We need to show that

B ∈ C(B) \NC(B) =⇒ d(B)> 0. (D1)

3. We need to show that for any quantum contextual behavior B ∈ B⊞n
si , n⩾ 1, there always

exists some transformation Tv→w between contextual vertices of B⊞n
si that maintains this

behavior inside the set B⊞n
si . This will be true for B⊞n

si because for any n⩾ 1, some of the
features regarding the polytope structure of the simplest scenario will remain.

We then proceed with the demonstration of these lemmas.

Lemma 5. Let B := (|J|, |I|, |K|,EM,EP) be any finitely defined prepare-and-measure
scenario. Let d : B→ R+ be the l1-contextuality monotone defined in lemma 3. Then, the fol-
lowing holds:

B ∈ C(B) \NC(B) =⇒ d(B)> 0. (D2)

Proof. Let B ∈ C(B) \NC(B). Then, d(B) = 0 implies that,

min
B∗∈NC(B)

max
i,j

∑
k

|p(k|i, j)− p∗ (k|i, j) |= 0 =⇒

∃ B∗ ∈ NC(B) ,max
i,j

∑
k

|p(k|i, j)− p∗ (k|i, j) |= 0, =⇒

∀i ∈ I,∀j ∈ J,
∑
k

|p(k|i, j)− p∗ (k|i, j) |= 0 =⇒

∀i ∈ I,∀j ∈ J,∀k ∈ K, |p(k|i, j)− p∗ (k|i, j) |= 0

which implies that B= B∗, contradiction. Therefore, we must have that d(B)> 0.
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Lemma 6. Let B := (|J|, |I|, |K|,EM,EP) be any finitely defined prepare-and-measure scen-
ario. Let P ∈ F defined such that, for all i ∈ I, qiO : K→ K̃= K, qM : Ĩ= I→ I, qP : J̃= J→ J
are permutation matrices. Then,

B ∈ C(B) \NC(B)⇔ P(B) ∈ C(B) \NC(B) . (D3)

Whenever P ∈ F is defined by permutation matrices we call P a free permutation. If a free
operation satisfies equation (D3) we will refer to this operation as a completely free operation.

Proof. Wewant to show that free permutations are completely free transformations. LetB ∈ B,
and let P ∈ F be a free permutation. Since P ∈ F we immediately have that

B ∈ C(B) \NC(B)⇐ P(B) ∈ C(B) \NC(B) .

Therefore, we need to show that the arrow ⇒ holds. Note that the action of P is simply to
rearrange the labels. We denote this by using the tilde notation,

B := (p(k|i, j))k∈K,i∈I,j∈J 7→ P(B) =
(
p
(
k̃|̃i, j̃

))
k̃∈K,̃i∈I,̃j∈J

.

This implies that, using the l1-monotone,

d(B) = min
B∗∈NC(B)

max
i∈I,j∈J

∑
k∈K

|p(k|i, j)− p∗ (k|i, j) |

= min
B∗∈NC(B)

max
ĩ∈I,̃j∈J

∑
k̃∈K

|p
(
k̃|̃i, j̃

)
− p∗

(
k̃|̃i, j̃

)
|= d(P(B)) .

We can then conclude that,

B ∈ C(B) \NC(B) Lemma 5
=⇒ d(B)> 0 =⇒ d(P(B))> 0 =⇒ P(B) ∈ C(B) \NC(B) (D4)

whenever P is a free operation constructed from permutation matrices.

Lemma 7. Let Bsi be the simplest scenario, as defined in definition 3. The noncontextual poly-
tope NC(Bsi) has eight facet-defining noncontextuality inequalities, that we associate with
affine-linear functionals {hi}8i=1, with hi : R8 → R. Then, for each affine-functional hi there is
one, and only one vertex Bv ∈ V(Bsi), for V(Bsi) the set of vertices of the convex polytope Bsi,
that violates the noncontextuality inequality associated with hi(B)⩽ 0.

Proof. Writing the functionals hi(B)⩽ 0 is equivalent to writing the noncontextuality inequal-
ities given by equations (A1)–(A9). The polytope NC(Bsi) has many other noncontextual-
ity inequalities but these constitute the non-trivial tight noncontextuality inequalities. The
lemma is proven then by construction: table 2 has all elements of V(Bsi), where we choose

B≡
(
p11,p12,p13,p14
p21,p22,p23,p24

)
.
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Table 2. Table of deterministic vertices from C(Bsi). Vertices violating one of the tight
noncontextuality inequalities defined by (A1)–(A9) correspond to contextual determin-
istic behaviors (see inequalities below). Note that for this scenario noncontextual ver-
tices of NC(Bsi) need not be deterministic.

(1,1,1,1) (1,0,0,1) (1,0,1,0) (0,1,0,1) (0,1,1,0) (0,0,0,0)

(1,1,1,1)

(
1,1,1,1
1,1,1,1

) (
1,0,0,1
1,1,1,1

) (
1,0,1,0
1,1,1,1

) (
0,1,0,1
1,1,1,1

) (
0,1,1,0
1,1,1,1

) (
0,0,0,0
1,1,1,1

)
(1,0,0,1)

(
1,1,1,1
1,0,0,1

) (
1,0,0,1
1,0,0,1

) (
1,0,1,0
1,0,0,1

) (
0,1,0,1
1,0,0,1

) (
0,1,1,0
1,0,0,1

) (
0,0,0,0
1,0,0,1

)
(1,0,1,0)

(
1,1,1,1
1,0,1,0

) (
1,0,0,1
1,0,1,0

) (
1,0,1,0
1,0,1,0

) (
0,1,0,1
1,0,1,0

) (
0,1,1,0
1,0,1,0

) (
0,0,0,0
1,0,1,0

)
(0,1,0,1)

(
1,1,1,1
0,1,0,1

) (
1,0,0,1
0,1,0,1

) (
1,0,1,0
0,1,0,1

) (
0,1,0,1
0,1,0,1

) (
0,1,1,0
0,1,0,1

) (
0,0,0,0
0,1,0,1

)
(0,1,1,0)

(
1,1,1,1
0,1,1,0

) (
1,0,0,1
0,1,1,0

) (
1,0,1,0
0,1,1,0

) (
0,1,0,1
0,1,1,0

) (
0,1,1,0
0,1,1,0

) (
0,0,0,0
0,1,1,0

)
(0,0,0,0)

(
1,1,1,1
0,0,0,0

) (
1,0,0,1
0,0,0,0

) (
1,0,1,0
0,0,0,0

) (
0,1,0,1
0,0,0,0

) (
0,1,1,0
0,0,0,0

) (
0,0,0,0
0,0,0,0

)

Each vertex defining a deterministic contextual behavior violates one, and only one, non-
contextuality inequality

h1 (B) = p12 + p22 − p14 − p23 − 1⩽ 0→ h1

((
0,1,1,0
0,1,0,1

))
> 0

h2 (B) = p12 + p22 − p13 − p24 − 1⩽ 0→ h2

((
0,1,0,1
0,1,1,0

))
> 0

h3 (B) = p22 + p13 − p12 − p24 − 1⩽ 0→ h3

((
1,0,1,0
0,1,1,0

))
> 0

h4 (B) = p12 + p23 − p22 − p14 − 1⩽ 0→ h4

((
0,1,1,0
1,0,1,0

))
> 0

h5 (B) = p22 + p14 − p12 − p23 − 1⩽ 0→ h5

((
1,0,0,1
0,1,0,1

))
> 0

h6 (B) = p23 + p14 − p12 − p22 − 1⩽ 0→ h6

((
1,0,0,1
1,0,1,0

))
> 0

h7 (B) = p12 + p24 − p22 − p13 − 1⩽ 0→ h7

((
0,1,0,1
1,0,0,1

))
> 0

h8 (B) = p13 + p24 − p22 − p12 − 1⩽ 0→ h8

((
1,0,1,0
1,0,0,1

))
> 0.

In terms of the polytope structure, each contextual behavior B ∈ Bsi violates at least one
inequality, and therefore for some h ∈ {hi}8i=1 and someBv ∈ V(B), we have that both h(B)> 0
and h(Bv)> 0.

Lemma 8. Whenever Bv,Bw ∈ V(Bsi) are contextual vertices, there exists a free permutation
Tv→w satisfying the following:

∀B ∈ Bsi =⇒ Tv→w (B) ∈ Bsi. (D5)
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Table 3. Free permutations acting over Bsi. Each one of these operations is such that
they leave the polytope Bsi invariant. They also leave c(B)si invariant, meaning that
each vertex is sent to another vertex in the polytope.

Element Result qO qM qP

α

(
p12,p11,p13,p14
p22,p21,p23,p24

) (
1 0
0 1

) (
1 0
0 1

) 
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



β

(
p11,p12,p14,p13
p21,p22,p24,p23

) (
1 0
0 1

) (
1 0
0 1

) 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



γ

(
p21,p22,p23,p24
p11,p12,p13,p14

) (
1 0
0 1

) (
0 1
1 0

) 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



δ

(
p13,p14,p11,p12
p23,p24,p21,p22

) (
1 0
0 1

) (
1 0
0 1

) 
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



Since free permutations are completely free operations, we have that there exists a quantum
contextual behavior violating all noncontextuality inequalities of Bsi.

Proof. Let Γ(Bsi) be the symmetry group of the polytope Bsi ⊂ R8 ⊂ R16. For any
convex polytope Bsi, the symmetry group Γ(Bsi) is finite. To each symmetry α ∈
Γ(Bsi) we associate a (faithful) representation T : Γ(Bsi)→ Aut(R8). Define c(Bsi) :=
ConvHull(V(Bsi) \V(NC(Bsi))). Then, we have that the polytope c(Bsi) is vertex-transitive,
i.e. there exists an element of Γ(Bsi) that sends any vertex of c(Bsi) to any other vertex. To see
this we consider the group elements α,β,γ,δ defined by their representation matrices as, for

any point

(
p11,p12,p13,p14
p21,p22,p23,p24

)
∈ Bsi:

The free operations that we associate with the group elements α,β,γ,δ ∈ Γ(Bsi), present
in table 3 they constitute free permutations. Each one of these operations is such that they
constitute a proof that c(Bsi) is a vertex-transitive convex polytope. To prove so we simply
notice that we can make a graph, such that each contextual point is a vertex of the graph, and
each edge is a free permutation between the vertices. Figure 3 we construct this graph; since
this graph is completely connected, there is always a symmetry (free permutation) between
any two vertices8 and we conclude that c(Bsi) is a vertex-transitive convex polytope.

Since there exists a bijection between nontrivial violations given by equations (A1)–(A9),
and contextual vertices in the scenario Bsi we have that if B ∈ Bsi violates an inequality asso-
ciated with Bv a contextual vertex, since c(Bsi) is vertex-transitive there exists a symmetry
Tv→w, that is a free permutation that can be read from figure 3, such that Tv→w(B) violates any
other noncontextuality inequality associated with any other contextual vertex Bw ∈ V(c(Bsi)).
Therefore, let BQ ∈ Bsi be the quantum contextual behavior given by table 1. There exists a

8 The set F of free operation is closed under composition.
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Figure 3. Graph of transformations between contextual vertices.

free permutation that sends BQ to a region of the polytope Bsi that violates any other noncon-
textuality inequality.

Now that we know that this is a true feature of Bsi, we can prove the result from the text
(lemma 4), that we rewrite here.

Lemma 9. For any scenario of the formB := B⊞n
si , n⩾ 1, every tight noncontextuality inequal-

ity will have a quantum contextual behavior.

Proof. Since we know that this is true for n= 1 we can try to prove this by induction. Let the
set of non-trivial noncontextuality inequalities for Bsi be defined by H1 := {hi : hi(B)⩽ 0, i ∈
{1, . . . ,8}}. For B and B⊞(n−1)

si we use similar definitions, denoting H the set of function-

als corresponding to inequalities of NC(B), and Hn−1 for NC(B⊞(n−1)
si ). Since we know that

NC(B) = NC(Bsi)×NC(B⊞(n−1)
si )we have thatH is the set of linear functionals such that, for

all B 3 B= B1 ⊞B2,

H : = {h : h(B) = h1 (B1)⩽ 0, for some h1 ∈ H1}
∪ {h : h(B) = h2 (B2)⩽ 0, for some h2 ∈ Hn−1} . (D6)

Therefore, as our hypothesis, we suppose that there exists a quantum contextual behavior
BQ such that, for all h ∈ Hn−1 we have that h(BQ)> 0. Since, for H1 we know that this is
also true and that H is given by equation (D6), we have that for every h ∈ H there exists some
BQ ∈ B such that h(BQ)> 0. We conclude that this must be true for all n⩾ 1.

Notice that equation (D6) is another way of stating that the number of facets in a convex
polytope that is the product of two convex polytopes gets summed. This is clear by noticing that
we can associate the setsH to matrices that define the convex polytope via anH-representation,
and by proving lemma 2, from where it is clear how the set of inequalities (convex-linear
functions in the terminology of the sets H) is upgrated for the product polytope.
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