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Multiobjective optimization is nowadays a word of order in engineering projects. Although the idea involved is simple, the
implementation of any procedure to solve a general problem is not an easy task. Evolutionary algorithms are widespread as a
satisfactory technique to find a candidate set for the solution. Usually they supply a discrete picture of the Pareto front even if
this front is continuous. In this paper we propose three methods for solving unconstrained multiobjective optimization problems
involving quadratic functions. In the first, for biobjective optimization defined in the bidimensional space, a continuous Pareto set
is found analytically. In the second, applicable to multiobjective optimization, a condition test is proposed to check if a point in
the decision space is Pareto optimum or not and, in the third, with functions defined in n-dimensional space, a direct noniterative
algorithm is proposed to find the Pareto set. Simple problems highlight the suitability of the proposed methods.

1. Introduction

Life is about making decisions and the choice of the optimal
solutions is not an exclusive subject for scientists, engineers,
and economists. Decision making is present in day-to-day
life. Looking for an enjoyable vacancy, everyone will formu-
late an optimization problem to a travel agent, a problem
like with a minimum amount of money visit a maximum
number of places in a minimum amount of time and with the
maximum level of comfort. Usually all real design problems
have more than one objective; namely, they are multiobjec-
tive. Moreover, the design objectives are often antagonistic.

Edgeworth [1] was the pioneer to define an optimum for
multicriteria economic decision making problem, at King’s
College, London. It was about themultiutility problemwithin
the context of two consumers, 𝑃 and 𝜋. “It is required to find a
point (𝑥, 𝑦) such that inwhatever directionwe take an infinitely
small step, 𝑃 and 𝜋 do not increase together but that, while one
increases, the other decreases.”

Few years later, in 1896, Pareto [2], at the University of
Lausanne, Switzerland, formulated his two main theories,
Circulation of the Elites and the Pareto optimum. “The opti-
mum allocation of the resources of a society is not attained so

long as it is possible to make at least one individual better off in
his own estimation while keeping others as well off as before in
their own estimation.”

Since then, many researchers have been dedicated to
developing methods to solve this kind of problem. Interest-
ingly, solutions for problems with multiple objectives, also
called multicriteria optimization or vector optimization, are
treated as Pareto optimal solutions or Pareto front, although,
as Stadler [3] observed, they should be treated as Edgeworth-
Pareto solutions.

Extensive reviews of multiobjective optimization con-
cepts and methods are given by Miettinen [4], for evolution-
ary algorithms by Goldberg [5] and for evolutionary multi-
objective optimization by Deb [6]. The theoretical basis for
multiobjective optimization adopted in this work was based
on these references.

Thanks to the computer development, optimization of
large scale problems became a common task in engineering
designs. The development of high speed computers and their
increasing use in several industrial branches led to significant
changes in the design processes. Currently, the computers,
each time faster, allow the engineer to consider a wider
range of design possibilities and optimization processes allow
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systematic choice between alternatives, since they are based
on some rational criteria. If used adequately, these procedures
can, in most cases, improve or even generate the final results
of a design.

Associated with computer development, many of the
research done in optimization is focused on numerical meth-
ods to solve any kind of problem, but sometimes simplified
problems can give important clues to the designer during the
trade-off phases of a decision.

The present work aims to bring new approaches to solve
multiobjective optimization problems, providing a rapid
solution for the Pareto set if the objective functions involved
are quadratic.

The rest of the paper is organized into 3 sections. In the
first section a general multiobjective optimization problem
is formulated and the nature of optimal solutions from the
Pareto perspective and the necessary conditions to be met
are defined. In the second section, three propositions are
done to solve the unconstrained multiobjective optimization
problems involving quadratic functions. In the first section
the general problem comprises two bidimensional functions.
In this case, the proposition permits to find the Pareto front
analyticaly. In the second section, the problem considers the
minimization problemwith three or more functions, keeping
the decision space in two dimensions. In this case the propo-
sition helps to find the Pareto points and their boundary in
the decision space. In the third section, proposition of the
decision space is expanded to any dimensional size. Finally,
a section with the conclusions and the proposed future work
is presented.

2. Multiobjective Optimization Problem

Multiobjective optimization problems (MOOP) can be
defined by the following equations:

minimize: f (X) (1a)

subject to: 𝑔
𝑖 (X) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚, (1b)

ℎ
𝑗 (X) = 0, 𝑗 = 1, 2, . . . , 𝑙, (1c)

Xinf ≤ X ≤ Xsup, (1d)

where f(X) = [𝑓
1
, 𝑓
2
, 𝑓
3
, . . . , 𝑓

𝑘
]
𝑇
: R𝑛 → R𝑘 is a vector with

the values of scalar objective functions 𝑓
𝑖
(X) : R𝑛 → R to

be minimized. X ∈ R𝑛 is the vector containing the design
variables, also called decision variables, defined in design
spaceR𝑛.Xinf andXsup are, respectively, the lower and upper
bounds of the design variables. 𝑔

𝑖
(X) : R𝑛 → R represents

the 𝑖th inequality constraint function and ℎ
𝑗
(X) : R𝑛 → R

the 𝑗th equality constraint function. Equations (1b) to (1d)
define the region of feasible solutions, S, in design space R𝑛.
The constraints 𝑔

𝑖
(X) are of type “𝑔

𝑖
(𝑥) ≤ 0” functions in

view of the fact that “𝑔
𝑖
(𝑥) ≥ 0” functions may be converted

to the first type if they are multiplied by −1. Similarly, the
problem considers the “minimization” of𝑓

𝑖
(X), given the fact

that function “maximization” can be transformed into the
former by multiplying it by −1.

2.1. Pareto Optimal Solution. The notion of “optimum” in
solving problems of multiobjective optimization is known as
“Pareto optimal.” A solution is said to be Pareto optimal if
there is no way to improve one objective without worsening
at least another; that is, the feasible point X∗ ∈ S is Pareto
optimal if there is no other feasible point X ∈ S such
that for all 𝑖 <> 𝑗 𝑓

𝑖
(X) ≤ 𝑓

𝑖
(X∗) and 𝑓

𝑗
(X) < 𝑓

𝑗
(X∗).

Due to the conflicting nature of the objective functions,
the Pareto optimal solutions are usually scattered in the
region S, a consequence of not being able to minimize
all the objective functions simultaneously. In solving the
optimization problem we obtain the Pareto set or the Pareto
optimal solutions defined in the design space and the Pareto
front, an image of the objective functions, in the criterion
space, calculated over the set of optimal solutions.

2.2. Necessary Condition for Pareto Optimality. In fact, opti-
mizing multiobjective problems expressed by (1a)–(1d) is
of general character. The equations represent the problem
of single-objective optimization when 𝑘 = 1. According
to Miettinen [4], such as in single-objective optimization
problems, the solutionX∗ ∈ S for the Pareto optimality must
satisfy the Karush-Kuhn-Tucker (KKT) condition, expressed
as follows:

𝑘

∑

𝑖=1

𝜔
𝑖
∇𝑓
𝑖
(X∗) +

𝑚

∑

𝑗=1

𝜆
𝑗
∇𝑔
𝑗
(X∗) +

𝑙

∑

𝑖=1

𝜇
𝑖
∇ℎ
𝑖
(X∗) = 0, (2a)

𝜆
𝑗
𝑔
𝑗
(X∗) = 0, (2b)

𝜆
𝑗
≥ 0, (2c)

𝜇
𝑖
≥ 0, (2d)

𝜔
𝑖
≥ 0;

𝑘

∑

𝑖=1

𝜔
𝑖
= 1, (2e)

where 𝜔
𝑖
is the weighting factor for the gradient of the 𝑖th

objective function, calculated at the point X∗, ∇𝑓
𝑖
(X∗). 𝜆

𝑗

represents the weighting factor for the gradient of the 𝑗th
inequality constraint function,∇𝑔

𝑗
(X∗), and is zero when the

constraint function associated is not active; that is, 𝑔
𝑗
(X∗) ≤

0. 𝜇
𝑖
represents the weighting factor for the gradient of the 𝑖th

equality constraint function, ∇ℎ
𝑖
(X∗).

Equations (2a) to (2e) form the necessary conditions for
X∗ to be a Pareto optimal as described by Miettinen [4].
They are sufficient for complete mapping of the Pareto front
if the problem is convex and the objective functions are
continuously differentiable in the S space. Otherwise, the
solution will depend on additional conditions, as shown by
Marler and Arora [7].

The methods we will propose in the next sections can
be classified in posteriori preference articulation and an
extensive literature review of the most important methods to
solve multiobjective optimization problems can be found in
Augusto et al. [8].
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3. Two-Dimensional Functions of Class C1

In this section we propose a simple strategy to determine
the Pareto set in the decision space and the corresponding
Pareto front in the function space, for MOOP involving two
bidimensional differentiable functions. Consider an uncon-
strained multiobjective optimization problem. From (2a),
the optimality condition can be interpreted by the following
proposition.

Proposition 1. If there exists a Pareto front for the minimiza-
tion problem with two continuous and differentiable functions
defined in R2, say 𝑓

1
(𝑥
1
, 𝑥
2
) and 𝑓

2
(𝑥
1
, 𝑥
2
), then the points

in the decision space, where the gradients of both functions
are parallel and opposite, define a continuous Pareto set that
connects both functions minima.

As the gradients of each function are orthogonal to con-
tours and point outwards from the minimum, the curve
mentioned in Proposition 1 is the locuswhere the gradients of
both functions are parallel and opposite, as shown in Figure
1.

3.1. Two Quadratic Functions Defined in R2 Space. Proposi-
tion 1 is quite general, but as our focus is on quadratic func-
tions let us solve an unconstrained biobjective optimization
problem involving quadratic functions defined in the two-
dimensional decision space; that is, f(𝑥

1
, 𝑥
2
) = [𝑓

1
, 𝑓
2
] :

R2 → R2. The problem is defined as follows:

minimize:

𝑓
1
(𝑥
1
, 𝑥
2
) = 𝑎
1
𝑥
2

1
+ (𝑏
1
𝑥
1
+ 𝑒
1
) 𝑥
2
+ 𝑐
1
𝑥
2

2
+ 𝑑
1
𝑥
1
+ cst
1
,

(3a)

𝑓
2
(𝑥
1
, 𝑥
2
) = 𝑎
2
𝑥
2

1
+ (𝑏
2
𝑥
1
+ 𝑒
2
) 𝑥
2
+ 𝑐
2
𝑥
2

2
+ 𝑑
2
𝑥
1
+ cst
2
.

(3b)

Applying the optimality condition,∑𝑘
𝑖=1

𝜔
𝑖
∇𝑓
𝑖
(X∗) = 0, to

(3a) and (3b) results in the following:

[
2𝑎
1
𝑥
1
+ 𝑏
1
𝑥
2
+ 𝑑
1
2𝑎
2
𝑥
1
+ 𝑏
2
𝑥
2
+ 𝑑
2

𝑏
1
𝑥
1
+ 2𝑐
1
𝑥
2
+ 𝑒
1

𝑏
2
𝑥
1
+ 2𝑐
2
𝑥
2
+ 𝑒
2

]{
𝜔
1

𝜔
2

} = {
0

0
} . (4)

As the system of (4) is homogeneous, the nontrivial
solution, with 𝜔 ̸= 0, requires a singularity; that is, the
determinant of the coefficient matrix must be null. Consider

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑎
1
𝑥
1
+ 𝑏
1
𝑥
2
+ 𝑑
1
2𝑎
2
𝑥
1
+ 𝑏
2
𝑥
2
+ 𝑑
2

𝑏
1
𝑥
1
+ 2𝑐
1
𝑥
2
+ 𝑒
1

𝑏
2
𝑥
1
+ 2𝑐
2
𝑥
2
+ 𝑒
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0 (5)

which results in the following quadratic curve for (𝑥
1
, 𝑥
2
):

𝛼𝑥
2

1
+ (𝛽𝑥

1
+ 𝜀) 𝑥

2
+ 𝛾𝑥
2

2
+ 𝛿𝑥
1
+ 𝜏 = 0, (6)

where

𝛼 = 2 (𝑎
1
𝑏
2
− 𝑎
2
𝑏
1
) ,

𝛽 = 4 (𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
) ,

∇f1

∇f1

∇f1

∇f2

∇f2

∇f2

∇f1 and ∇f2 are parallel

f1 contours

f2 contours

∇f1 and ∇f2 are parallel and opposite

Figure 1: Graphical representation of Proposition 1.The continuous
Pareto set as the locus, where objective function gradients are
parallel and opposite.

𝛾 = 2 (𝑏
1
𝑐
2
− 𝑏
2
𝑐
1
) ,

𝛿 = 2 (𝑎
1
𝑒
2
− 𝑎
2
𝑒
1
) + (𝑑

1
𝑏
2
− 𝑑
2
𝑏
1
) ,

𝜀 = 2 (𝑑
1
𝑐
2
− 𝑑
2
𝑐
1
) + (𝑏
1
𝑒
2
− 𝑏
2
𝑒
1
) ,

𝜏 = (𝑑
1
𝑒
2
− 𝑑
2
𝑒
1
) .

(7)

Function gradients ∇𝑓
1
(X) and ∇𝑓

2
(X) are parallel on the

curve defined by (6), but they have to be opposite, resulting
in positive weights in (4). Being the system singular, to find a
relation between the weights 𝜔

1
and 𝜔

2
we can use only one

of the equations as the other is its linear combination. Using
the first equation, this relation can be deduced as follows:

𝜔
2

𝜔
1

= −
2𝑎
1
𝑥
1
+ 𝑏
1
𝑥
2
+ 𝑑
1

2𝑎
2
𝑥
1
+ 𝑏
2
𝑥
2
+ 𝑑
2

(8)

which have positive values if and only if

(2𝑎
1
𝑥
1
+ 𝑏
1
𝑥
2
+ 𝑑
1
) (2𝑎
2
𝑥
1
+ 𝑏
2
𝑥
2
+ 𝑑
2
) < 0. (9)

Therefore, (6) provides the locus where the functions
gradients are parallel and (9) defines the Pareto set for the two
quadratic functionsminimization problem.Theupper bound
of (9)

(2𝑎
1
𝑥
1
+ 𝑏
1
𝑥
2
+ 𝑑
1
) (2𝑎
2
𝑥
1
+ 𝑏
2
𝑥
2
+ 𝑑
2
) = 0 (10)

is reached if the first term 2𝑎
1
𝑥
1
+ 𝑏
1
𝑥
2
+ 𝑑
1
= 0 or the

second 2𝑎
2
𝑥
1
+ 𝑏
2
𝑥
2
+ 𝑑
2
= 0. As both terms are the first

components of ∇𝑓
1
and ∇𝑓

2
, respectively, these conditions

imply that the solution (𝑥
∗

1
, 𝑥
∗

2
) is over 𝑓

1
(𝑥
1
, 𝑥
2
) minimum

or over 𝑓
2
(𝑥
1
, 𝑥
2
)minimum. In conclusion, the Pareto set for

quadratic functions will be a quadratic curve connecting the
functions minima and where the gradients are parallel and
opposite.
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Figure 2: Graphical representation of Proposition 1. The continuous Pareto set as the locus, where objective function gradients are parallel
and opposite.

As an example, let us consider the following biobjective
problem:

minimize:

𝑓
1
(𝑥
1
, 𝑥
2
) = 3𝑥

2

1
+ (𝑥
1
+ 1) 𝑥

2
+ 𝑥
2

2
+ 28𝑥

1
+ 69, (11a)

𝑓
2
(𝑥
1
, 𝑥
2
) = 𝑥
2

1
− (𝑥
1
+ 1) 𝑥

2
+ 𝑥
2

2
− 7𝑥
1
+ 19. (11b)

From (6), the Pareto set takes the form

−8𝑥
2

1
+ (8𝑥
1
+ 70) 𝑥

2
+ 4𝑥
2

2
− 29𝑥

1
− 21 = 0 (12)

and is constrained by the following inequality:

(6𝑥
1
+ 𝑥
2
+ 28) (2𝑥

1
− 𝑥
2
− 7) < 0. (13)

In Figure 2(a) the contours of functions 𝑓
1
and 𝑓

2
in

the two-dimensional decision space are depicted.The thicker
grey continuous curve represents (12) and the thick blue
coloured portion of this curve satisfies (13), being as expected
the continuous Pareto set, namely, the curve along which the
gradient vectors are parallel and opposite. In Figure 2(b), the
continuous curve is the image of the Pareto set in the function
space, that is, the Pareto front. In addition, the blue dots
points are the images of the optimization functions calculated
on a regular grid in the design space.

For comparison, it is shown in Figures 2(c) and 2(d),
adapted from Augusto et al. [8], that the solution was
obtained by the genetic algorithm NSGA II of Deb et al.
[9]. It can be seen that the points are evenly distributed in
the function space, but they are not in the decision space.
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That happens because the search procedure in most of GAs is
focused in the function space, trying to get a well-distributed
Pareto front.

3.2. Three or More Functions Defined in R2 Space. In the
previous section we found a closed form solution for the
optimization of two quadratic functions in the bidimensional
decision space. Unfortunately, we did not find a similar
solution when we add more functions in the problem.
Nevertheless, the idea behind Proposition 1 remains useful.

Consider an optimization problem involving three con-
tinuous differentiable functions 𝑓

1
, 𝑓
2
, and 𝑓

3
. If a point p

belongs to the Pareto set, it must satisfy (2a), (2b), (2c), (2d),
and (2e). Therefore, one gradient vector, ∇𝑓

1
(p), will be a

linear combination of the other two, ∇𝑓
2
(p) and ∇𝑓

3
(p); that

is, there will exist positive weights such that

𝜔
1
∇𝑓
1 (p) = −𝜔

2
∇𝑓
2 (p) − 𝜔

3
∇𝑓
3 (p) . (14)

In Figure 3 such condition with the gradient vectors
∇𝑓
1
(p), ∇𝑓

2
(p), and ∇𝑓

3
(p) associated with their weighted

factors 𝜔
1
, 𝜔
2
, and 𝜔

3
, respectively, is illustrated.

An equilibrium condition exists when ∇𝑓
1
(p) is oriented

through the opposite angular sector defined by the two other
gradient vectors, namely, ∇𝑓

2
(p) and ∇𝑓

3
(p).

Based on this idea we suggest the following.

Proposition 2. Let e
𝑖
be the unit vector defined by e

𝑖
=

∇𝑓
𝑖
(p)/‖∇𝑓

𝑖
(p)‖, with ‖∇𝑓

𝑖
(p)‖ ̸= 0, and e

𝑏
, the unit vector

orthogonal to e
𝑖
; that is, e

𝑏
⋅ e
𝑖
= 0. If p belongs to the Pareto

set resulting from the multiobjective optimization problem
involving continuous and differentiable functions defined in
R2, then there exist at least three unit vectors, say, e

𝑖
(p), e
𝑗
(p),

and e
𝑙
(p), that satisfy the following conditions:

(e
𝑗
⋅ e
𝑖
) < 0, (15a)

(e
𝑙
⋅ e
𝑖
) < 0, (15b)

(e
𝑗
⋅ e
𝑏
) (e
𝑙
⋅ e
𝑏
) < 0. (15c)

The direction of e
𝑏
divides the decision space in two

semiplanes. If the vector ∇𝑓
𝑖
(p) points to one side, then (15a)

and (15b) state that the vectors ∇𝑓
𝑗
(p) and ∇𝑓

𝑙
(p) point to

the other side and (15c) states that −∇𝑓
𝑖
(p) is placed between

them.
Equations (15a), (15b), and (15c) form a condition test

for a point be Pareto optimum or not. This test can be
useful if the problem has few optimization functions as to
explore all distinguished sets with three gradient vectors
in a problem with 𝑘 objective functions; the maximum of
𝑘!/(𝑘−3)! permutations of 𝑖, 𝑗, 𝑙must be checked. Let us apply
Proposition 2 to find the solution of an unconstrainedMOOP
with three quadratic objective functions with two of them
being those defined by (11a) and (11b) and the third defined
by

𝑓
3
(𝑥
1
, 𝑥
2
) = 𝑥
2

1
+ 12𝑥

2
+ 𝑥
2

2
+ 4𝑥
1
+ 40. (16)

In Figure 4, the Pareto set found applying the Pareto test
in the points of a regular grid in the design space divided in

D
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Figure 3: Pareto optimality condition for three or more functions
in R2 decision space.

fifty points in each coordinate axis, (𝑥
1
, 𝑥
2
) ∈ (−10, 10] for all

(𝑥
1
, 𝑥
2
)
𝑖,𝑗
= (−10+(20/50)𝑖, −10+(20/50)𝑗), 𝑖, 𝑗 = 1, . . . , 50, is

shown.The continuous border of the Pareto set was obtained
applying Proposition 1 for each pair of objective functions.

3.3. Quadratic Functions Defined in R𝑛 Space. In the former
two sections we have considered unconstrained MOOP with
quadratic functions defined in the two-dimensional space.
To proceed to larger dimensions, let us define a quadratic
function in theR𝑛 space,𝑓(X) : R𝑛 → R, written as follows:

𝑓 (X) = 1

2
X𝑇
𝐿
AX
𝐿
+ cst (17)

with

X
𝐿
= T (X − X0) (18)

and X
𝐿
∈ R𝑛 is a local coordinate system for a convenient

definition of 𝑓(X), X0 ∈ R𝑛 is the position of the local coor-
dinate system related to the global one, and T is the coordi-
nates transformationmatrix, from local to global coordinates
systems.

Using (18), (17) can be rewritten as follows:

𝑓 (X) = 1

2
(X − X0)

𝑇
(T𝑇AT) (X − X0) + cst. (19)

Calling Ar = (T𝑇AT), (19) can be rewritten as follows:

𝑓 (X) = 1

2
(X − X0)

𝑇Ar (X − X0) + cst. (20)

As 𝑓(X) is smooth, its gradient vector is

∇𝑓 (X) = Ar (X − X0) . (21)

MatrixA, as well as its transformed formAr, is the symmetric
Hessian of 𝑓(X), H(X), containing its second partial deriva-
tives.
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Figure 4: Pareto optimality condition applied to the three-objective optimization problem involving functions defined in the two-
dimensional decision space.



Journal of Optimization 7

With these definitions, letX∗ be the solution of an uncon-
strained MOOP involving 𝑘 quadratic functions defined in
R𝑛 space. Accordingly, there exists 𝜔

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑘, that

satisfy (2a); that is,

𝑘

∑

𝑖=1

𝜔
𝑖
∇𝑓
𝑖
(X∗) = 0. (22)

As𝑓
𝑖
(X) is a quadratic, (21) can be used and (22) takes the

form
𝑘

∑

𝑖=1

𝜔
𝑖
Ar𝑖 (X

∗
− X0𝑖) = 0. (23)

In (23), the weights 𝜔
𝑖
, as well as the searched solution

X∗, are unknown. Let us assume that all𝜔
𝑖
are known; that is,

𝜔
𝑖
= 𝜔
∗

𝑖
. Accordingly, (23) can be rewritten as follows:

𝑘

∑

𝑖=1

𝜔
∗

𝑖
Ar𝑖X
∗
=

𝑘

∑

𝑖=1

𝜔
∗

𝑖
Ar𝑖X0𝑖. (24)

Calling

Â =

𝑘

∑

𝑖=1

𝜔
∗

𝑖
Ar𝑖, (25)

b̂ =

𝑘

∑

𝑖=1

𝜔
∗

𝑖
Ar𝑖X0𝑖 (26)

then (24) can be rewritten as follows:

ÂX∗ = b̂. (27)

Let us assume that all Ar𝑖 are positive definite; that is,
X𝑇Ar𝑖X > 0, for all X ∈ R𝑛 | X ̸= 0. If 𝜔∗

𝑖
is real, nonnegative

and satisfies the normalization equality, that is, ∑𝑘
𝑖=1

𝜔
∗

𝑖
= 1,

then Â will also be positive definite and therefore its inverse
Â−1 will always exist.

Consequently, the Pareto optimum solutionX∗ can easily
be found by solving (27); that is,

X∗ = Â−1b̂. (28)

In this approach, we have considered that 𝜔∗
𝑖
are known.

Consequently, Â, (25), and b̂, (26), are promptly found.
Although this is not the case for a general solution of (22), this
approach is very useful to find the Pareto set and the Pareto
front of unconstrainedmultiobjective optimization problems
involving quadratic functions considering the following.

Proposition 3. Consider a MOOP involving 𝑘 quadratic
functions, with the Hessian of each function being positive
definite. To obtain 𝑛

𝑝
Pareto optimum solutions the following

steps are proposed.

(1) Sort, at random over the interval [0, 1], the components
of 𝜔∗, a vector containing 𝑘 weights 𝜔∗

𝑖
.

(2) Perform a normalization such as ∑𝑘
𝑖=1

𝜔
∗

𝑖
= 1.

Table 1: Coefficients for objective functions 𝑓
𝑖
(X) definitions.

Function Semiaxis Rotation Origin
a b c 𝛼 𝛽 𝜃 𝑥

01
𝑥
02

𝑥
03

𝑓
1
(X) 1 2 3 0 0 −𝜋/6 10 10 0

𝑓
2
(X) 1 2 3 0 0 0 0 −10 0

𝑓
3
(X) 1 2 3 0 0 𝜋/4 −10 10 0

(3) Calculate Â = ∑
𝑘

𝑖=1
𝜔
∗

𝑖
Ar𝑖 and b̂ = ∑

𝑘

𝑖=1
𝜔
∗

𝑖
Ar𝑖X0𝑖.

(4) Solve the linear system X∗ = Â−1b̂, getting the Pareto
point X∗ associated with 𝜔∗.

(5) Repeat steps (1) to (4) for the number 𝑛
𝑝
of Pareto points

wanted.

Even requiring solutions of 𝑛
𝑝
linear systems, themethod

is very fast depending on the order of the matrix Â.
Before advancing to the applications, consider an ellip-

soid enclosed in a parallelepiped of sizes 2𝑎, 2𝑏, and 2𝑐, as
shown in Figure 5. Also consider local coordinates system,
X
𝐿
= [𝑥
𝐿1
, 𝑥
𝐿2
, 𝑥
𝐿3
]
𝑇with origin centered inside the ellipsoid,

fixed to it, and oriented along its semiaxes.
The family of quadratic functions that represents this

ellipsoid can be written as follows:

𝑓 (X) = 1

2
X𝑇
𝐿
AX
𝐿
+ cst = 0 (29)

with the matrix A defined in Figure 5.
The ellipsoid can be rotated around the 𝑖th coordinate

axis; that is, Xr𝑖 = r
𝑖
X
𝐿
. Let 𝛼, 𝛽, and 𝜃 be the rotation angles,

around 𝑥
𝐿1
, 𝑥
𝐿2
, and 𝑥

𝐿3
axes, respectively. Each individual

rotation matrix is depicted in Figures 9(a), 9(b), and 9(c) and
the appendix. Then, the general rotation matrix is defined by

R = r
1 (𝛼) r2 (𝛽) r3 (𝜃) . (30)

The local coordinate system can be positioned at a point
X
0
, relative to a global coordinates system, X = [𝑥

1
, 𝑥
2
, 𝑥
3
]
𝑇.

In such a case, the points on the surface of the ellipsoid can
be referenced in the global system as

X = RX
𝐿
+ X
0
. (31)

To get the transformation matrix T of (18), we isolate X
𝐿

in (31); that is,

X
𝐿
= R−1 (X − X

0
) . (32)

Being R an orthogonal matrix, its inverse is equal to its
transpose; that is, T = R−1 = R𝑇.

With the previous definitions, consider the following
unconstrained MOOP:

minimize: 𝑓
1 (X) , 𝑓2 (X) , 𝑓3 (X) (33)

with X ∈ R3, with 𝑓
1
(X), 𝑓

2
(X), 𝑓

3
(X) defined in Table 1 and

illustrated in Figure 6(a).
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Figure 6: Solution of the unconstrained MOOP with the quadratic functions defined in Table 1.
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Figure 7: Solution of the unconstrained MOOP with the quadratic functions defined in Table 2 and the appendix.
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Figure 8: Pareto set of the unconstrainedMOOPwith the quadratic
functions defined in Table 3 and the appendix.

The Pareto set for this problem, illustrated in Figure 6(b),
was obtained by applying Proposition 3 algorithm, with 𝑛

𝑝
=

5000. To get all the points, an ordinary 2GHz dual processor
computer with 3Gb RAM, running Matlab, expended 0.99
seconds of processing time.

As all ellipsoids were placed over (𝑥
1
, 𝑥
2
) plane and were

rotated around 𝑥
3
axis, only, the Pareto set is over the (𝑥

1
, 𝑥
2
)

plane. Bold points at the Pareto set boundarywere foundwith
the samemethod applied to the functions𝑓

1
(X), 𝑓

2
(X), 𝑓

3
(X)

taken in pairs. According to Proposition 1, in such cases, the
Pareto set is necessarily a curve.

xL3

xL2

𝛼

𝛼
r1(𝛼) =

1 0 0

0 cos(𝛼) −sin(𝛼)

0 sin(𝛼) cos(𝛼)

(a)

xL3

xL1

𝛽

𝛽r2(𝛽) =

cos(𝛽) 0 −sin(𝛽)

0 1 0

sin(𝛽) 0 cos(𝛽)

(b)

xL1

xL2
𝜃

𝜃r3(𝜃) =

cos(𝜃) −sin(𝜃) 0

sin(𝜃) cos(𝜃) 0

0 0 1

(c)

Figure 9: (a) Rotation 𝛼 around 𝑥
𝐿1
axis. (b) Rotation 𝛽 around 𝑥

𝐿2

axis. (c) Rotation 𝜃 around 𝑥
𝐿3
axis.

The Pareto front is shown in Figure 6(d). It should be
noticed that this front was obtained by means of a straight-
forward solution of the Pareto optimality conditions without
using any iterative algorithm.

In the next example three ellipsoidswith different orienta-
tions, as defined in Table 2 and the appendix, were distributed
in the (𝑥

1
, 𝑥
2
, 𝑥
3
) space.
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The Pareto set of this optimization problem found by the
proposed methodology delineates the curved surface shown
in Figure 7(a). The Pareto front, in the function space, is
shown in Figure 7(b).

Adding to the unconstrained MOOP the function 𝑓
4
(X),

defined in Table 3 and the appendix, the proposed method
generated in 1.17 seconds the three-dimensional Pareto set
illustrated in Figure 8.

In the problems all functions were defined by conve-
nience inR3 space; nevertheless, Proposition 3 can be applied
to quadratic functions defined in R𝑛 space.

4. Conclusions

Most of the real problems are multiobjective with their
objective functions being antagonistic. To solve this problem
many researchers are developing methods to solve multi-
objective optimization problems without reducing them to
single objective. Up to now, evolutionary algorithms are
widespread as a general technique to find a candidate set of
the optimal solutions. These algorithms provide a discrete
picture of the Pareto front in the function space, without
bringing too much information about the decision space.

In the framework of this paper, we have proposed differ-
ent methods to determine the Pareto set of unconstrained
multiobjective optimization problems involving quadratic
objective functions. Three different procedures were pro-
posed. One for biobjective optimization, with functions
defined in R2 space, which results in an analytical solution
for the Pareto set. For three or more functions also defined in
R2 space a condition test that is able to check if a point in the
decision space is Pareto optimum or not was proposed. In the
third method, suitable for multiobjective optimization with
functions defined in R𝑛 space and having Hessian positive
definite, a direct algorithmwas proposedwhich finds a Pareto
optimum based in an arbitrary valid weighting vector. Some
illustrative examples were used to highlight the potentiality
of the methods.

It is apparent that the Pareto set for two distinct two-
dimensional functions is a curve, and for three and above,
the Pareto set is a surface. In three-dimensional space, for
two distinct three-dimensional functions, the Pareto set will
be a space curve; for three functions, a surface; and for
four functions and above, a solid. Although the proposed
methods are restricted to unconstrained optimization, the
authors believe they can be extended to constrained problems
and are working on it.

Appendix

See Figures 9(a), 9(b), and 9(c) and Tables 2 and 3.

Nomenclature

DM: Decision maker
f(X): Objective functions vector
GA: Genetic algorithm
𝑔
𝑗
(X): 𝑗th inequality constraint function

Table 2: Optimization problem with 3 objective functions.

Function Semiaxis Rotation Origin
a b c 𝛼 𝛽 𝜃 𝑥

1
𝑥
2

𝑥
3

𝑓
1
(X) 1 2 3 0 0 0 0 0 0

𝑓
2
(X) 1 2 3 0 𝜋/4 0 10 0 0

𝑓
3
(X) 1 2 3 0 0 𝜋/6 0 10 10

Table 3: Optimization problem with 4 objective functions.

Function Semiaxis Rotation Origin
a b c 𝛼 𝛽 𝜃 𝑥

1
𝑥
2

𝑥
3

𝑓
1
(X) 1 2 3 0 0 𝜋/6 0 0 0

𝑓
2
(X) 1 2 3 0 −𝜋/30 0 15 0 0

𝑓
3
(X) 1 2 3 0 0 𝜋/6 0 15 0

𝑓
4
(X) 1 2 3 0 0 0 10 10 15

ℎ
𝑖
(X): 𝑖th equality constraint function

𝑘: Number of objective functions
KKT: Karush-Kuhn-Tucker
𝑙: Number of equality constraint functions
𝑚: Number of inequality constraint functions
MOOP: Multiobjective optimization problem
NSGA II: Nondominated sorting genetic algorithm,

version two
𝑛: Dimension of the design space
R𝑘: Function or criterion space
R𝑛: Decision variables or design space
S: Feasible region in the design space
𝑥
𝑖
: 𝑖th decision variable

X: Decision variable vector
X∗: Nondominated solution of a

multiobjective optimization problem
Xinf ,Xsup: Lower and upper bounds of the design

space
𝜔
𝑖
: Weighting factor for the 𝑖th objective

function gradient in KKT condition
𝜔: Vector of 𝜔

𝑖𝑠

𝜆
𝑗
: Weighting factor for 𝑗th inequality

constraint gradient in KKT condition
𝜆: Vector of 𝜆

𝑗𝑠

𝜇
𝑖
: Weighting factor for 𝑖th equality

constraint gradient in KKT condition
𝜇: Vector of 𝜇

𝑖𝑠

∇: Gradient operator.
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