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Multiobjective optimization is nowadays a word of order in engineering projects. Although the idea involved is simple, the
implementation of any procedure to solve a general problem is not an easy task. Evolutionary algorithms are widespread as a
satisfactory technique to find a candidate set for the solution. Usually they supply a discrete picture of the Pareto front even if
this front is continuous. In this paper we propose three methods for solving unconstrained multiobjective optimization problems
involving quadratic functions. In the first, for biobjective optimization defined in the bidimensional space, a continuous Pareto set
is found analytically. In the second, applicable to multiobjective optimization, a condition test is proposed to check if a point in
the decision space is Pareto optimum or not and, in the third, with functions defined in n-dimensional space, a direct noniterative

algorithm is proposed to find the Pareto set. Simple problems highlight the suitability of the proposed methods.

1. Introduction

Life is about making decisions and the choice of the optimal
solutions is not an exclusive subject for scientists, engineers,
and economists. Decision making is present in day-to-day
life. Looking for an enjoyable vacancy, everyone will formu-
late an optimization problem to a travel agent, a problem
like with a minimum amount of money visit a maximum
number of places in a minimum amount of time and with the
maximum level of comfort. Usually all real design problems
have more than one objective; namely, they are multiobjec-
tive. Moreover, the design objectives are often antagonistic.

Edgeworth [1] was the pioneer to define an optimum for
multicriteria economic decision making problem, at King’s
College, London. It was about the multiutility problem within
the context of two consumers, P and 7. “It is required to find a
point (x, y) such that in whatever direction we take an infinitely
small step, P and m do not increase together but that, while one
increases, the other decreases.”

Few vyears later, in 1896, Pareto [2], at the University of
Lausanne, Switzerland, formulated his two main theories,
Circulation of the Elites and the Pareto optimum. “The opti-
mum allocation of the resources of a society is not attained so

long as it is possible to make at least one individual better off in
his own estimation while keeping others as well off as before in
their own estimation.”

Since then, many researchers have been dedicated to
developing methods to solve this kind of problem. Interest-
ingly, solutions for problems with multiple objectives, also
called multicriteria optimization or vector optimization, are
treated as Pareto optimal solutions or Pareto front, although,
as Stadler [3] observed, they should be treated as Edgeworth-
Pareto solutions.

Extensive reviews of multiobjective optimization con-
cepts and methods are given by Miettinen [4], for evolution-
ary algorithms by Goldberg [5] and for evolutionary multi-
objective optimization by Deb [6]. The theoretical basis for
multiobjective optimization adopted in this work was based
on these references.

Thanks to the computer development, optimization of
large scale problems became a common task in engineering
designs. The development of high speed computers and their
increasing use in several industrial branches led to significant
changes in the design processes. Currently, the computers,
each time faster, allow the engineer to consider a wider
range of design possibilities and optimization processes allow



systematic choice between alternatives, since they are based
on some rational criteria. If used adequately, these procedures
can, in most cases, improve or even generate the final results
of a design.

Associated with computer development, many of the
research done in optimization is focused on numerical meth-
ods to solve any kind of problem, but sometimes simplified
problems can give important clues to the designer during the
trade-off phases of a decision.

The present work aims to bring new approaches to solve
multiobjective optimization problems, providing a rapid
solution for the Pareto set if the objective functions involved
are quadratic.

The rest of the paper is organized into 3 sections. In the
first section a general multiobjective optimization problem
is formulated and the nature of optimal solutions from the
Pareto perspective and the necessary conditions to be met
are defined. In the second section, three propositions are
done to solve the unconstrained multiobjective optimization
problems involving quadratic functions. In the first section
the general problem comprises two bidimensional functions.
In this case, the proposition permits to find the Pareto front
analyticaly. In the second section, the problem considers the
minimization problem with three or more functions, keeping
the decision space in two dimensions. In this case the propo-
sition helps to find the Pareto points and their boundary in
the decision space. In the third section, proposition of the
decision space is expanded to any dimensional size. Finally,
a section with the conclusions and the proposed future work
is presented.

2. Multiobjective Optimization Problem

Multiobjective optimization problems (MOOP) can be
defined by the following equations:

minimize: f(X) (1a)
subject to:  g;(X) <0, i=1,2,...,m, (1b)
h;(X)=0, j=1,2...,1 (1c)
Xy X< Xsup, (1d)

where £(X) = [f1, for far--» fil - : R" — RFisavector with
the values of scalar objective functions f;(X) : R” — R to
be minimized. X € R" is the vector containing the design
variables, also called decision variables, defined in design
space R". X;,¢ and X, are, respectively, the lower and upper
bounds of the design variables. g;(X) : R” — R represents
the ith inequality constraint function and h,(X) : R" — R
the jth equality constraint function. Equations (Ib) to (1d)
define the region of feasible solutions, S, in design space R".
The constraints g;(X) are of type “g;(x) < 0” functions in
view of the fact that “g;(x) > 0” functions may be converted
to the first type if they are multiplied by —1. Similarly, the
problem considers the “minimization” of f;(X), given the fact
that function “maximization” can be transformed into the
former by multiplying it by —1.
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2.1. Pareto Optimal Solution. The notion of “optimum” in
solving problems of multiobjective optimization is known as
“Pareto optimal” A solution is said to be Pareto optimal if
there is no way to improve one objective without worsening
at least another; that is, the feasible point X* € S is Pareto
optimal if there is no other feasible point X € S such
that for all i <> j f;(X) < f;(X*) and fiX) < f]-(X*).
Due to the conflicting nature of the objective functions,
the Pareto optimal solutions are usually scattered in the
region S, a consequence of not being able to minimize
all the objective functions simultaneously. In solving the
optimization problem we obtain the Pareto set or the Pareto
optimal solutions defined in the design space and the Pareto
front, an image of the objective functions, in the criterion
space, calculated over the set of optimal solutions.

2.2. Necessary Condition for Pareto Optimality. In fact, opti-
mizing multiobjective problems expressed by (la)-(1d) is
of general character. The equations represent the problem
of single-objective optimization when k = 1. According
to Miettinen [4], such as in single-objective optimization
problems, the solution X* € S for the Pareto optimality must
satisty the Karush-Kuhn-Tucker (KKT) condition, expressed
as follows:

k m 1
Zwivfi (X*) + ZA]'VEL‘ (X*) + Z#thi (X*) =0, (2a)
i=1 j:1

i=1

Aig;(X7) =0, (2b)
A 20, (20)
Y =0, (2d)
k
w; > 0; Z“’i =1, (2e)

where w; is the weighting factor for the gradient of the ith
objective function, calculated at the point X*, Vf(X"). A;
represents the weighting factor for the gradient of the jth
inequality constraint function, Vg;(X"), and is zero when the
constraint function associated is not active; that is, g j(X*) <
0. u; represents the weighting factor for the gradient of the ith
equality constraint function, Vh;(X").

Equations (2a) to (2e) form the necessary conditions for
X" to be a Pareto optimal as described by Miettinen [4].
They are sufficient for complete mapping of the Pareto front
if the problem is convex and the objective functions are
continuously differentiable in the S space. Otherwise, the
solution will depend on additional conditions, as shown by
Marler and Arora [7].

The methods we will propose in the next sections can
be classified in posteriori preference articulation and an
extensive literature review of the most important methods to
solve multiobjective optimization problems can be found in
Augusto et al. [8].
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3. Two-Dimensional Functions of Class C'

In this section we propose a simple strategy to determine
the Pareto set in the decision space and the corresponding
Pareto front in the function space, for MOOP involving two
bidimensional differentiable functions. Consider an uncon-
strained multiobjective optimization problem. From (2a),
the optimality condition can be interpreted by the following
proposition.

Proposition 1. If there exists a Pareto front for the minimiza-
tion problem with two continuous and differentiable functions
defined in R?, say f,(x,,x,) and f,(x,,x,), then the points
in the decision space, where the gradients of both functions
are parallel and opposite, define a continuous Pareto set that
connects both functions minima.

As the gradients of each function are orthogonal to con-
tours and point outwards from the minimum, the curve
mentioned in Proposition 11is the locus where the gradients of
both functions are parallel and opposite, as shown in Figure
1.

3.1. Two Quadratic Functions Defined in R* Space. Proposi-
tion 1 is quite general, but as our focus is on quadratic func-
tions let us solve an unconstrained biobjective optimization
problem involving quadratic functions defined in the two-
dimensional decision space; that is, f(x,,x,) = [f;, 2] :
R* — R The problem is defined as follows:

minimize:
2 2
fi(x1,%,) = ayx) + (byx, +e;) x, + x5 +dyx; +csty,
(3a)

o (x1,x,) = azxf +(byx, +e)x, + czxi +d,x, + cst,.
(3b)

Applying the optimality condition, Z:.;l w,Vf;(X*) = 0,to
(3a) and (3b) results in the following:

2%, +bix, +d; 2a,x, +byx, +d, | [w;| _ [0 (4)
bx, +2c,x,+e; bx, +20,x,+e, | |w,| ~ |0]"

As the system of (4) is homogeneous, the nontrivial
solution, with w # 0, requires a singularity; that is, the
determinant of the coeflicient matrix must be null. Consider

2a,x, +bix, +d, 2a,x, +byx, +d,
byx; +2c,x,+e; bx,+2c,x,+e,

=0 (5)
which results in the following quadratic curve for (x;, x,):
axt + (Bx, +€) x, + yx5 +0x, + 7 =0, (6)
where
a=2(ab - ab,),

B=4(a-ac),

V f, and V f, are parallel

V2

Vh

f> contours

f1 contours

Vfiand Vf, are-parallel and opposite

FIGURE 1: Graphical representation of Proposition 1. The continuous
Pareto set as the locus, where objective function gradients are
parallel and opposite.

Y= z(blcz - bzc1) >
8 =2(ae, —me,) + (dib, - dyb)),
e=2(di, —dyc)) + (bie, — be,),

7= (de, — dye,).
™)

Function gradients Vf, (X) and Vf,(X) are parallel on the
curve defined by (6), but they have to be opposite, resulting
in positive weights in (4). Being the system singular, to find a
relation between the weights w; and w, we can use only one
of the equations as the other is its linear combination. Using
the first equation, this relation can be deduced as follows:

W, 2% + b x, +d, ®)

w, 2a,x, + byx, +d,
which have positive values if and only if
(2a,x; + byx, +d)) (2a,x; + byx, +d,) < 0. 9)

Therefore, (6) provides the locus where the functions
gradients are parallel and (9) defines the Pareto set for the two
quadratic functions minimization problem. The upper bound
of (9)

(2a,x, + byx, +d;) (2a,x, +byx, +d,) =0 (10)

is reached if the first term 2a,x; + b;x, + d; = 0 or the
second 2a,x; + byx, + d, = 0. As both terms are the first
components of Vf; and Vf,, respectively, these conditions
imply that the solution (x;, x;) is over f;(x;,x,) minimum
or over f,(x;, x,) minimum. In conclusion, the Pareto set for
quadratic functions will be a quadratic curve connecting the
functions minima and where the gradients are parallel and
opposite.
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FIGURE 2: Graphical representation of Proposition 1. The continuous Pareto set as the locus, where objective function gradients are parallel

and opposite.

As an example, let us consider the following biobjective
problem:

minimize:
fi(x15,%,) = 3% + (3, + 1) x, + x5 +28%, +69,  (1la)
fo (X1, %,) = %0 = (36, + 1) x5 + x5 = 7, + 19. (11b)
From (6), the Pareto set takes the form
~8x7 + (8x, +70) x, +4x5 —29x, -21=0  (12)
and is constrained by the following inequality:
(6x; +x, +28) (2x, —x, —7) < 0. (13)

In Figure 2(a) the contours of functions f; and f, in
the two-dimensional decision space are depicted. The thicker
grey continuous curve represents (12) and the thick blue
coloured portion of this curve satisfies (13), being as expected
the continuous Pareto set, namely, the curve along which the
gradient vectors are parallel and opposite. In Figure 2(b), the
continuous curve is the image of the Pareto set in the function
space, that is, the Pareto front. In addition, the blue dots
points are the images of the optimization functions calculated
on a regular grid in the design space.

For comparison, it is shown in Figures 2(c) and 2(d),
adapted from Augusto et al. [8], that the solution was
obtained by the genetic algorithm NSGA II of Deb et al.
[9]. It can be seen that the points are evenly distributed in
the function space, but they are not in the decision space.
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That happens because the search procedure in most of GAs is
focused in the function space, trying to get a well-distributed
Pareto front.

3.2. Three or More Functions Defined in R* Space. In the
previous section we found a closed form solution for the
optimization of two quadratic functions in the bidimensional
decision space. Unfortunately, we did not find a similar
solution when we add more functions in the problem.
Nevertheless, the idea behind Proposition 1 remains useful.

Consider an optimization problem involving three con-
tinuous differentiable functions f;, f,, and f;. If a point p
belongs to the Pareto set, it must satisfy (2a), (2b), (2¢), (2d),
and (2e). Therefore, one gradient vector, Vf,(p), will be a
linear combination of the other two, Vf,(p) and Vf;(p); that
is, there will exist positive weights such that

w, V1 (p) = —w0,Vf, (p) — w3 Vf; (p) - (14)

In Figure 3 such condition with the gradient vectors
V£i(p), Vf,(p), and Vf;(p) associated with their weighted
factors w;, w,, and w;, respectively, is illustrated.

An equilibrium condition exists when Vf, (p) is oriented
through the opposite angular sector defined by the two other
gradient vectors, namely, Vf,(p) and Vf;(p).

Based on this idea we suggest the following.

Proposition 2. Let e; be the unit vector defined by e; =
V@) IV, with |[V,(p)Il # 0, and ey, the unit vector
orthogonal to e; that is, e, - e; = 0. If p belongs to the Pareto
set resulting from the multiobjective optimization problem
involving continuous and differentiable functions defined in
R?, then there exist at least three unit vectors, say, e;(p), ej(p),
and e;(p), that satisfy the following conditions:

(ej-¢) <0, (15a)
(e,-¢;) <0, (15b)
(ej . eb) (e;-¢,) <O. (15¢)

The direction of e, divides the decision space in two
semiplanes. If the vector Vf;(p) points to one side, then (15a)
and (15b) state that the vectors ij(p) and Vf;(p) point to
the other side and (15c¢) states that —Vf;(p) is placed between
them.

Equations (15a), (15b), and (15¢) form a condition test
for a point be Pareto optimum or not. This test can be
useful if the problem has few optimization functions as to
explore all distinguished sets with three gradient vectors
in a problem with k objective functions; the maximum of
k!/(k—3)! permutations of 7, j,I must be checked. Let us apply
Proposition 2 to find the solution of an unconstrained MOOP
with three quadratic objective functions with two of them
being those defined by (1la) and (11b) and the third defined
by

fs (x1,%,) = x7 +12x, + x5 + 4x, + 40. (16)

In Figure 4, the Pareto set found applying the Pareto test
in the points of a regular grid in the design space divided in

. Directiop,
sonalto vz ()

Or fho

w,V f,(p)
@V fi(p) I

FIGURE 3: Pareto optimality condition for three or more functions
in R? decision space.

fifty points in each coordinate axis, (x;, x,) € (-10, 10] for all
(%1, X,); ; = (=10+(20/50)i, ~10+(20/50) ), j = 1,..., 50, is
shown. The continuous border of the Pareto set was obtained
applying Proposition 1 for each pair of objective functions.

3.3. Quadratic Functions Defined in R" Space. In the former
two sections we have considered unconstrained MOOP with
quadratic functions defined in the two-dimensional space.
To proceed to larger dimensions, let us define a quadratic
function in the R" space, f(X) : R" — R, written as follows:

1

f(X)= EXZAXL +cst 17)

with
X, =T(X-X,) (18)

and X; € R” is a local coordinate system for a convenient
definition of f(X), X, € R" is the position of the local coor-
dinate system related to the global one, and T is the coordi-
nates transformation matrix, from local to global coordinates
systems.

Using (18), (17) can be rewritten as follows:

F(X) = %(X - X,)" (T7AT) (X - Xp) + st (19)

Calling A, = (TTAT), (19) can be rewritten as follows:

f(X) = %(x ~X,) A, (X - X,) + cst. (20)
As f(X) is smooth, its gradient vector is
Vf(X) = A (X-X,). (1)

Matrix A, as well as its transformed form A,, is the symmetric
Hessian of f(X), H(X), containing its second partial deriva-
tives.
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FIGURE 4: Pareto optimality condition applied to the three-objective optimization problem involving functions defined in the two-
dimensional decision space.
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With these definitions, let X* be the solution of an uncon-
strained MOOP involving k quadratic functions defined in
R" space. Accordingly, there exists w; > 0,7 = 1,...,k, that
satisty (2a); that is,

k
Y wVf, (X*) =0. (22)
i=1

As f;(X) is a quadratic, (21) can be used and (22) takes the
form

k
DA, (X -X,) =0. (23)
i=1

In (23), the weights w;, as well as the searched solution
X", are unknown. Let us assume that all w, are known; that is,
w; = w; . Accordingly, (23) can be rewritten as follows:

k k
Zwi* AX = Z“’: A Xoi- (24)
i=1 i=1
Calling
ok
A=) wA, (25)
i=1
kK
b= Zwi*A,iXOi (26)

then (24) can be rewritten as follows:
AX" =b. (27)

Let us assume that all A,; are positive definite; that is,
XTAH-X >0,forall X e R" | X # 0. If wi* is real, nonnegative
and satisfies the normalization equality, that is, Zf;l w =1,
then A will also be positive definite and therefore its inverse
A" will always exist.

Consequently, the Pareto optimum solution X* can easily
be found by solving (27); that is,

X*=A"'b. (28)

In this approach, we have considered that ;" are known.
Consequently, A, (25), and b, (26), are promptly found.
Although this is not the case for a general solution of (22), this
approach is very useful to find the Pareto set and the Pareto
front of unconstrained multiobjective optimization problems
involving quadratic functions considering the following.

Proposition 3. Consider a MOOP involving k quadratic
functions, with the Hessian of each function being positive
definite. To obtain n,, Pareto optimum solutions the following
steps are proposed.

(1) Sort, at random over the interval [0, 1], the components
of w*, a vector containing k weights w .

(2) Perform a normalization such as Zle w =1

7
TaBLE 1: Coefficients for objective functions f;(X) definitions.
. Semiaxis Rotation Origin
Function
a b c a B 0 Xo1  Xp»  Xg3
f1 (X) 1 2 3 0 0 -71/6 10 10
fX) 1 2 3 0 0 0 0 -10
f 5 (X) 1 2 3 0 0 /4 -10 10

(3) Calculate A = Zf;l w'A,; andb = Z:;l w; A Xy,

(4) Solve the linear system X* = A'b, getting the Pareto
point X* associated with w®.

(5) Repeat steps (1) to (4) for the number n, of Pareto points
wanted.

Even requiring solutions of ,, linear systems, the method

is very fast depending on the order of the matrix A.

Before advancing to the applications, consider an ellip-
soid enclosed in a parallelepiped of sizes 2a, 2b, and 2c, as
shown in Figure 5. Also consider local coordinates system,
X, = [x11, %15, X;3]" with origin centered inside the ellipsoid,
fixed to it, and oriented along its semiaxes.

The family of quadratic functions that represents this
ellipsoid can be written as follows:

fX) = %X{AXL +est=0 (29)
with the matrix A defined in Figure 5.

The ellipsoid can be rotated around the ith coordinate
axis; thatis, X, = r;X;. Let a, f3, and 6 be the rotation angles,
around Xxp,, x;,, and x;5 axes, respectively. Each individual
rotation matrix is depicted in Figures 9(a), 9(b), and 9(c) and

the appendix. Then, the general rotation matrix is defined by
R=r, ()1, (B)r;(0). (30)

The local coordinate system can be positioned at a point
X, relative to a global coordinates system, X = [x,, x,, x3]T.
In such a case, the points on the surface of the ellipsoid can
be referenced in the global system as

X = RX, +X,. (1)

To get the transformation matrix T of (18), we isolate X
in (31); that is,

X, =R"'(X-X,). (32)

Being R an orthogonal matrix, its inverse is equal to its
transpose; that is, T = R!'=R".

With the previous definitions, consider the following
unconstrained MOOP:

minimize: f; (X), f, (X), f5 (X) (33)

with X € R?, with f[1X), £,(X), f3(X) defined in Table 1 and
illustrated in Figure 6(a).
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FIGURE 8: Pareto set of the unconstrained MOOP with the quadratic
functions defined in Table 3 and the appendix.

The Pareto set for this problem, illustrated in Figure 6(b),
was obtained by applying Proposition 3 algorithm, with n,, =
5000. To get all the points, an ordinary 2 GHz dual processor
computer with 3 Gb RAM, running Matlab, expended 0.99
seconds of processing time.

As all ellipsoids were placed over (x;, x,) plane and were
rotated around x; axis, only, the Pareto set is over the (x, x,)
plane. Bold points at the Pareto set boundary were found with
the same method applied to the functions f;(X), f,(X), f3(X)
taken in pairs. According to Proposition 1, in such cases, the
Pareto set is necessarily a curve.

1 0 0
ri(a) =| 0 cos(e) —sin(«x)

0 sin(a) cos(x)

()

cos(B) 0 —sin(p)
n(p) = 0 1 0
sin(8) 0 cos(B)

cos(8) —sin(f) 0
sin(@) cos(0) 0
0 0 1

1’3(9) =

(c)

FIGURE 9: (a) Rotation « around x;, axis. (b) Rotation f around x,,
axis. (c) Rotation 8 around x5 axis.

The Pareto front is shown in Figure 6(d). It should be
noticed that this front was obtained by means of a straight-
forward solution of the Pareto optimality conditions without
using any iterative algorithm.

In the next example three ellipsoids with different orienta-
tions, as defined in Table 2 and the appendix, were distributed
in the (x;, x,, x3) space.
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The Pareto set of this optimization problem found by the
proposed methodology delineates the curved surface shown
in Figure 7(a). The Pareto front, in the function space, is
shown in Figure 7(b).

Adding to the unconstrained MOOP the function f,(X),
defined in Table 3 and the appendix, the proposed method
generated in 1.17 seconds the three-dimensional Pareto set
illustrated in Figure 8.

In the problems all functions were defined by conve-
nience in R” space; nevertheless, Proposition 3 can be applied
to quadratic functions defined in R" space.

4. Conclusions

Most of the real problems are multiobjective with their
objective functions being antagonistic. To solve this problem
many researchers are developing methods to solve multi-
objective optimization problems without reducing them to
single objective. Up to now, evolutionary algorithms are
widespread as a general technique to find a candidate set of
the optimal solutions. These algorithms provide a discrete
picture of the Pareto front in the function space, without
bringing too much information about the decision space.

In the framework of this paper, we have proposed differ-
ent methods to determine the Pareto set of unconstrained
multiobjective optimization problems involving quadratic
objective functions. Three different procedures were pro-
posed. One for biobjective optimization, with functions
defined in R* space, which results in an analytical solution
for the Pareto set. For three or more functions also defined in
R? space a condition test that is able to check if a point in the
decision space is Pareto optimum or not was proposed. In the
third method, suitable for multiobjective optimization with
functions defined in R" space and having Hessian positive
definite, a direct algorithm was proposed which finds a Pareto
optimum based in an arbitrary valid weighting vector. Some
illustrative examples were used to highlight the potentiality
of the methods.

It is apparent that the Pareto set for two distinct two-
dimensional functions is a curve, and for three and above,
the Pareto set is a surface. In three-dimensional space, for
two distinct three-dimensional functions, the Pareto set will
be a space curve; for three functions, a surface; and for
four functions and above, a solid. Although the proposed
methods are restricted to unconstrained optimization, the
authors believe they can be extended to constrained problems
and are working on it.

Appendix
See Figures 9(a), 9(b), and 9(c) and Tables 2 and 3.

Nomenclature

DM: Decision maker

f(X): Objective functions vector

GA:  Genetic algorithm

g;(X): jth inequality constraint function
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TABLE 2: Optimization problem with 3 objective functions.

Function Semiaxis Rotation Origin

a b c o B 0 X, X, X
f (X) 1 2 3 0 0 0 0 0 0
£, X) 1 2 3 0 /4 0 10 0 0
13 X) 1 2 3 0 0 n/6 0 10 10

TABLE 3: Optimization problem with 4 objective functions.

F . Semiaxis Rotation Origin
unction

a b c o B 0 X, X, X
X)) 1 2 3 0 0 6 0 0 0
£, (X) 1 2 3 0 -m30 0 15 0 0
LX) 1 2 3 0 0 6 0 15 0
fX) 1 2 3 0 0 0 10 10 15
h;(X): ith equality constraint function
k: Number of objective functions
KKT: Karush-Kuhn-Tucker
I: Number of equality constraint functions
m: Number of inequality constraint functions
MOOP: Multiobjective optimization problem

NSGA II: Nondominated sorting genetic algorithm,
version two
Dimension of the design space
Function or criterion space
Decision variables or design space
Feasible region in the design space
ith decision variable
Decision variable vector
Nondominated solution of a
multiobjective optimization problem
up: Lower and upper bounds of the design
space
Weighting factor for the ith objective
function gradient in KKT condition
Vector of w;,
Weighting factor for jth inequality
constraint gradient in KKT condition
A: Vector of A
U Weighting factor for ith equality
constraint gradient in KKT condition
w: Vector of p;,
V: Gradient operator.

k.

n-

*

M X ME OmE R

XS

inf>

g

~
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