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Abstract

Background: Comparative genomics, genetic spread analysis, and context-aware ranking are crucial in understanding microbial dy-
namics’ impact on public health. gSpreadComp streamlines the path from in silico analysis to hypothesis generation. By integrating
comparative genomics, genome annotation, normalization, plasmid-mediated gene transfer, and microbial resistance-virulence risk-
ranking into a unified workflow, gSpreadComp facilitates hypothesis generation from complex microbial datasets.

Findings: The gSpreadComp workflow works through 6 modular steps: taxonomy assignment, genome quality estimation, antimicro-
bial resistance (AMR) gene annotation, plasmid/chromosome classification, virulence factor annotation, and downstream analysis.
Our workflow calculates gene spread using normalized weighted average prevalence and ranks potential resistance-virulence risk
by integrating microbial resistance, virulence, and plasmid transmissibility data and producing an HTML report. As a use case, we
analyzed 3,566 metagenome-assembled genomes recovered from human gut microbiomes across diets. Our findings indicated con-
sistent AMR across diets, with diet-specific resistance patterns, such as increased bacitracin in vegans and tetracycline in omnivores.
Notably, ketogenic diets showed a slightly higher resistance-virulence rank, while vegan and vegetarian diets encompassed more
plasmid-mediated gene transfer.

Conclusions: The gSpreadComp workflow aims to facilitate hypothesis generation for targeted experimental validations by the iden-
tification of concerning resistant hotspots in complex microbial datasets. Our study raises attention to a more thorough study of the
critical role of diet in microbial community dynamics and the spread of AMR. This research underscores the importance of integrating
genomic data into public health strategies to combat AMR. The gSpreadComp workflow is available at https://github.com/mdsufz/gS
preadComp/.

Keywords: risk-ranking, comparative genomics, gene spread, human microbiome, virulence factors, horizontal transmission,
metagenome-assembled genomes, antimicrobial resistance

Background

communities with increased detail. Advances in sequencing

The microbial safety of food, water, and environmental matrices
has been a critical concern for public health since the 1990s
[1]. Different approaches, such as quantitative microbial risk
assessment, have provided valuable insights and have been
fundamental in evidence-based policymaking in public health.
Typically, these approaches involve 4 steps: hazard identification,
exposure assessment, dose-response analysis, and risk charac-
terization [2]. However, traditional microbial safety approaches
often focus on individual potential pathogens and may overlook
community interactions.

Additionally, the advent of high-throughput sequencing
technologies has improved our ability to study microbial

technologies can potentially enhance our understanding of
microbial ecology and improve microbial analysis’'s accuracy,
precision, and speed [3]. Concomitantly to the advances in
understanding microbial ecology, there is a growing need for
community-focused approaches to assess relative impacts
across diverse microbial populations. When integrated with
exposure and dose-response data, such an approach would
equip decision-makers and stakeholders with a more robust
risk statement. Specifically, identifying antimicrobial resistance
(AMR) spread, virulence factor (VF) spread, and genetic mobility
factors are crucial for enhanced microbial risk characterization
(3, 4].
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Genetic information is spread among entities by vertical gene
transfer (VGT) and horizontal gene transfer (HGT). While VGT is
relevant for preserving and stabilizing genetic material, HGT has
a crucial role in the evolutionary and adaptive process [5]. Conse-
quently, HGT allows microbes in microbial communities to per-
form functional leaps and rapidly adapt to new environments.
There are 3 most recognized mechanisms of HGT in prokaryotes:
conjugation, transformation, and transduction. Conjugation re-
quires physical contact between the cells. Transformation is the
uptake of exogenous DNA, mostly plasmids, from the environ-
ment. Transduction is the delivery of genetic material through
viruses and virus-like agents [6]. However, even though transduc-
tion and transformation events are effective for gene exchange,
plasmid-mediated conjugation is often recognized as the most
impactful HGT mechanism [7]. Plasmids often carry genes that
allow potential selective advantages (e.g., AMR or heavy metal re-
sistance, VFs, and degradation of xenobiotics) [8, 9].

Specifically, the spread of AMR in clinical and natural environ-
ments is recognized as one of the most significant global threats
[10, 11]. The misuse of antibiotics in agriculture, the environment,
and human medicine creates selective pressure on antimicrobial-
resistant bacteria (ARB), which may facilitate the HGT of those
resistances. Antibiotics are extensively used for farm animal and
plant production [12, 13]. In 2015, a notable trend emerged in
the United States, where 62% of antibiotics initially intended for
use in food-producing animals were ultimately used in human
medicine. Additionally, 70% of medically relevant antibiotics were
sold for animal use [14]. Furthermore, while the use of antibiotics
in plant agriculture is generally considered lower than in human
and veterinary medicine, recent studies suggest it may be more
widespread than previously thought. Streptomycin, oxytetracy-
cline, kasugamycin, oxolinic acid, and gentamicin are commonly
used in crop protection, particularly in the American and Asian
continents [15].

In addition, HGT events provide rapid adaptation to bacteria
strains, including AMR, making the development of novel an-
timicrobials only a short-term palliative measure [16]. Minimiz-
ing problematic HGT and disseminating antimicrobial resistance
genes (ARGs) is the potential long-term solution to the AMR prob-
lem. Inherently, advances in understanding plasmid-mediated
HGT dynamics in complex microbiomes are a powerful tool to
control horizontal dissemination [17, 18].

Although HGT events, specifically plasmid-mediated transfers,
play a significant role in the evolution and adaptation of micro-
bial populations, most of those events remain undetected. Con-
sequently, several bioinformatics tools and algorithms were de-
veloped to tackle HGT events. For instance, GIST [19] and Island-
Viewer [20] use genome sequences’ features to assign HGT. Dark-
Horse [21] and HGTector [22] use the “best matches” approach to
identify HGT events based on reference genomes. Other methods,
such as Ranger-DTL [23] and AnGST [24], require the reconcilia-
tion of gene trees with the corresponding species trees to make
the HGT prediction. Finally, the MetaCHIP [25] tool combines the
results of the similarity and phylogenetic approaches.

A significant limitation of most current HGT detection meth-
ods is that they are not directly applicable to the entire micro-
biome but more for single bacteria taxa. In addition, most meth-
ods require reference genomes. For instance, the HGTector [22] is
restricted to HGT events from a defined distal group to designated
self-group members, while DarkHorse [21] requires a reference
genome, a bottleneck for uncultured microorganisms. MetaCHIP
[25] can be applied at the community level, given a set of re-
covered genomes. However, MetaCHIP [25] does not directly inte-

grate its results into relevant sample metadata (i.e., biome, clin-
ical data, environmental condition), reducing its usage for com-
parative genomics. In addition, none of the mentioned tools al-
lows for direct integration of plasmid-mediated transfer of anno-
tated genes to potential pathogenic bacteria by using, for example,
comparative genomics, which creates a significant barrier for non-
bioinformaticians, mainly clinicians, to use such datasets. Finally,
plasmids have also been reported to be transferred over consid-
erable taxonomic distances, adding complexity for HGT detection
tools to identify plasmid-mediated transfer in complex microbial
communities [25, 26].

We designed the gSpreadComp workflow to tackle the follow-
ing bottlenecks: (i) reduce the barrier of comparative genomics
by integrating genome annotation, normalization, and sequence
comparison into a unified approach; (ii) create a systematic ap-
proach to quantify gene spread; (iii) integrate plasmid-mediated
gene transfer annotation to target metadata with the whole-
microbiome community in a genome-reference independent ap-
proach; and (iv) provide a resistance-virulence risk-ranking metric
that considers gene spread, prokaryotic resistance potential, and
virulence potential in the era of high-throughput microbial com-
munity sequencing. Consequently, gSpreadComp is a UNIX-based
workflow for genome analysis (Fig. 1) that provides 6 modules
to perform the following tasks: taxonomy assignment, genome
quality estimation, ARG annotation, plasmid/chromosome
classification, VF annotation, and in-depth downstream
analysis.

To demonstrate the potential of the gSpreadComp workflow, we
analyzed the spread of ARGs in the human gut microbiome from
human subjects with different diets. To this end, we gathered pub-
licly available metagenomes from the human gut containing in-
formation about the subjects’ diet: (i) ancient, diet based on the
analysis of ancient human fecal remains; (ii) ketogenic, fecal sam-
ples from subjects with a high-fat, high-protein, low-carbohydrate
diet; (iil) omnivore, fecal samples from subjects with a diverse
diet, including both plant- and animal-derived foods; (iv) vegan,
fecal samples from subjects with a plant-based diet, excluding all
animal-derived products; and (v) vegetarian, fecal samples from
subjects with diet excluding meat but may include other animal-
derived products. We then recovered the metagenome-assembled
genomes (MAGs) from those samples and annotated their ARGs
and taxonomy. Finally, those MAGs were analyzed using gSpread-
Comp using the subjects’ diet as the target metadata. Notably, the
primary objective of this use case is not to draw definitive conclu-
sions about the relationship between diet and antimicrobial re-
sistance or virulence but to exemplify how gSpreadComp can be
applied to complex metagenomic datasets.

Our data revealed antimicrobial resistance, particularly to mul-
tidrug and glycopeptide classes, to be widespread across all di-
ets, with specific resistances like bacitracin being more preva-
lent in vegans. Additionally, while all diets exhibited similar over-
all resistance spread, nuances like increased tetracycline resis-
tance in omnivores were observed. The study also highlighted a
complex relationship between diet and VFs, with specific diets
showing heightened resistance-virulence risks, like ketogenic. Fi-
nally, vegans and vegetarians were associated with a higher po-
tential to participate in plasmid-mediated HGT events, under-
scoring the significant role of diet in shaping microbial com-
munities and antimicrobial resistance patterns. While further
laboratory validation is required, gSpreadComp accelerates the
identification of potential targets, streamlining the path from
in silico analysis to hypothesis validation through experimental
verification.
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Figure 1: gSpreadComp workflow. The minimal input necessary for gSpreadComp is the genome and its associated metadata. gSpreadComp offers the
possibility to use the built-in prokaryotic taxonomy assignment using GTDBtk, prokaryotic quality estimation using CheckM, plasmid identification
using PlasFlow, and ARG annotation using DeepARG. Alternatively, any other tool could be used outside gSpreadComp and later used as input to
estimate gene spread, microbial resistance-virulence risk, and gene plasmid-mediated HGT events. The gSpreadComp can use the Victors or the VFDB
to annotate virulence potential on target genomes and the NCBI human Pathogens Species database as a reference to estimate potential pathogens.

Findings
The gSpreadComp workflow

The gSpreadComp workflow is a UNIX-based integrated set of
tools for genome analysis (Fig. 1). For such, it provides 6 modules
to perform the following tasks: taxonomy assignment, genome
quality estimation, ARG annotation, plasmid/chromosome classi-
fication, VF annotation, and in-depth downstream analysis. This
downstream analysis includes target-based gene spread analysis,
plasmid-mediated HGT of target genes and VFs, and a prokaryotic
resistance-virulence risk-ranking within the analyzed genomes.
It is important to note that gSpreadComp is essentially modu-
lar, allowing for the integration of new advances in its component
methods and tools as they become available.

The spread of target genes was calculated using the genes’
weighted average prevalence (WAP), which estimates the gene
spread at different taxonomical levels or target groups (e.g., omni-
vores, vegans, ketogenic). More details can be found in the Meth-
ods section. For resistance-virulence risk-ranking, we defined the
“resistance-virulence potential factors” that consider target genes
(ARGs, by default), virulence, and their plasmid transmissibility
potential. Reference potential pathogens were identified by com-
paring genomes to the NCBI pathogens database [27]. Following,
we used the average of the resistance-virulence factors from the
reference potential pathogens, based on the NCBI Pathogens Or-
ganism groups, as weights and quantified the resistance-virulence
risk using the Technique for Order Preference by Similarity to
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Ideal Solution (TOPSIS) [28], with the resistance-virulence factors
serving as input vectors. After the complete downstream analysis,
gSpreadComp produced an HTML report.

The gSpreadComp workflow includes an easy-to-use script that
downloads and configures the required databases automatically.
Consequently, if the user is interested in ARG spread, the only
mandatory inputs for gSpreadComp are the genomes and their
target metadata. Suppose the user is interested in a different tar-
get gene group. In that case, they should provide the annotation
table formatted as described in the gSpreadComp documentation.
A database update is scheduled to happen every January and July.

Part of gSpreadComp is a wrapper of several bioinformatic ap-
proaches. Its modular nature makes it possible to use the tools
independently, allowing the use of the tools’ main analysis and
the related report without the need to annotate it within the soft-
ware completely. Additionally, the modular nature of the software
facilitates its update and allows the more experienced user to
integrate only pieces of gSpreadComp into their pipeline. Conse-
quently, gSpreadComp modularity can give the researcher flexibil-
ity in their analysis and facilitate the investigator’s software man-
agement necessities. The gSpreadComp workflow was designed to
support Linux x64 systems. The complete software installation
requires approximately 15 GB. The whole database currently re-
quires around 92 GB.

Critical usage and key considerations

Before presenting the experimental results, it is crucial to address
specific methodological considerations and limitations in the
methods. The gSpreadComp workflow can be used with both com-
plete genomes and MAGs. In our use case, we applied gSpread-
Comp to MAGs, which are prone to higher potential bias [29]; for
example, MAGs are subject to detection bias, particularly for low-
abundance organisms, which may lead to the underrepresenta-
tion of certain species and their associated ARGs. Additionally,
even high-quality MAGs (completeness >90% and contamination
<5%) may be exposed to contig binning error, causing contamina-
tion [30]. Finally, there are sample size effects. To mitigate the im-
pact of sample size, gSpreadComp employs normalization tech-
niques and weighted average prevalence for spread calculations
[31]. Nevertheless, users should note that the resulting resistance-
virulence risk-ranking is relative to the analyzed community and
not an absolute measure across environments.

The ARG annotation module provided within gSpread-
Comp uses a machine learning-based classification tool named
DeepARG [32]. While DeepARG has demonstrated high accuracy
in ARG prediction, its performance can vary according to the an-
tibiotic category and its representation in the training database.
For long sequences (DeepARG-LS), the tool achieved precision and
recall values equal to 0.99 in the prediction of different categories
of ARGs. To minimize false positives, we followed benchmarked
recommendations, including using a minimum 80% prediction
probability, an e-value alignment lower than 1e-10, and a percent
identity of 35% or higher [33]. It is important to note that the
user can alter the hyperparameters (e.g., prediction probability,
e-value alignment). Users should interpret results with these
constraints in mind. Similarly, for plasmid detection, we cur-
rently use PlasFlow [34]. While effective, PlasFlow has limitations
in classifying shorter sequences. We increased the classification
threshold parameter (0.7 > threshold) in our analysis to improve
precision while maintaining the high sensitivity, or recall, offered
by PlasFlow’s models [34, 35]. However, it must be observed
that automatically classifying plasmids remains complex, with

significant advances currently in development. Those approaches
were selected because of their ability to streamline large-scale
annotation and detection while having higher recall, which is
particularly important when dealing with MAGs.

The gSpreadComp workflow was designed to be modular and
extendable, allowing a more straightforward incorporation of ad-
ditional features in its future versions as the field rapidly evolves.
For instance, ARG detection tools like ARG-SHINE [36] or CARD-
RGI [37] or plasmid classification tools like PlasClass [35] or
PLASMe [38] can be used, and their results are integrated into
gSpreadComp downstream analysis, provided that the users for-
mat their data according to the gSpreadComp documentation. We
encourage users to consider the strengths and limitations of each
tool when interpreting results and to validate findings through
complementary experimental approaches when possible. It is im-
portant to note that gSpreadComp’s downstream results rely on
the tools’ annotations, and results for simulated communities
would closely follow their benchmarked performance.

Use case: gSpreadComp in the human gut microbiome of
subjects with different diets

To show the potential of gSpreadComp to generate hypotheses,
we analyzed the spread of ARGs and virulence factors in the hu-
man gut microbiome from subjects with different diets. It is im-
portant to mention that the primary objective of this use case is
not to draw definitive conclusions about the relationship between
diet and antimicrobial resistance or virulence but to illustrate how
gSpreadComp can be applied to complex metagenomic datasets
to generate insights that could inform more comprehensive risk
assessments.

We recovered MAGs of 17 ketogenic, 10 vegan, 40 vegetarian,
and 140 omnivore subjects from the human gut. In addition, we
recovered MAGs from 24 palaeofeces samples dating from 1,300
and 5,300 years old (Additional File 1: Supplementary Table S1).
We recovered 3,566 MAGs (1,806 high and 1,760 medium quality)
from 231 samples (Additional File 2: Supplementary Table S2). The
taxonomic assignment indicated that the MAGs came from 637
species of 12 phyla (Additional File 2: Supplementary Table S2a).
According to GTDB-tk, 594 recovered species were assigned to pre-
viously recovered genomes, and 43 species groups found are po-
tentially new.

Our analysis included ancient DNA samples, which present
unique challenges. Ancient DNA is typically degraded and frag-
mented, potentially affecting gene annotation accuracy. More-
over, these samples are highly susceptible to contamination from
modern sources and postmortem microbial colonization. For in-
stance, DNA degradation and potential contamination may lead
to a skewed number of false negatives detected due to incom-
plete gene sequences or false positives due to modern contam-
ination [39]. While we have taken steps to address these issues,
distinguishing endogenous ancient DNA from contaminants re-
mains challenging. These factors do not invalidate our findings
but underscore the need for cautious interpretation, especially
when comparing ancient and modern microbiomes [39].

We annotated 356 ARG subtypes distributed in 24 different ARG
classes (Additional File 3: Supplementary Table S3a). In the an-
cient samples, we annotated 211 unique ARGs belonging to 22
unique ARG classes. In contrast, ketogenic had 234 and 18, om-
nivores had 320 and 22, vegans had 238 and 21, and vegetarians
had 246 and 20, respectively, in their gut microbiome. We also
normalized ARG class prevalence per sample (Additional File 3:
Supplementary Table S3b). We kept only the samples that recov-
ered more than 6 genomes for further prevalence analysis. Fig-
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Figure 2: gSpreadComp estimated target gene spread in given metadata. (A) Boxplot from normalized ARG class prevalence per sample colored by diet.
The ARG classes are sorted left to right in ascending order according to average ARG class prevalence. (B) Heatmap colored by WAP, used to estimate
the spread at the phylum level across all analyzed diets. Values from 0 to 0.25 are considered sparse, 0.25 to 0.5 common, 0.5 to 0.75 widespread, and
0.75 to 1 ubiquitous. (C) Boxplot from normalized bacitracin prevalence per sample colored by diet. A pairwise comparison between the diets was
made using the Bonferroni-adjusted t-test. Statistically significant comparisons (adjusted P < 0.05) are indicated by *. The higher the number of %, the

closer to 0 the adjusted P-value.

ure 2A shows the normalized prevalence of the ARG classes per
sample for all eating habits. In addition, we performed pairwise
ARG class prevalence comparisons for all diets (Additional File 3:
Supplementary Table S3c and Additional File 4: Supplementary
Fig. S1). The bacitracin resistance boxplot comparisons can be
found in Fig. 2C.

Further, we estimated the ARG class spread at the phylum level
in gut samples of subjects across the different diets (Additional
File 5: Supplementary Table S4a). We defined the following ranges
to describe the distribution of ARG classes: sparse (0-0.25), com-

mon (0.25-0.5), widespread (0.5-0.75), and ubiquitous (0.75-1). A
heatmap with the distribution at the phylum level value per ARG
class for all diets can be found in Fig. 2B. Multidrug and gly-
copeptide resistance were ubiquitous in all subjects, irrespective
of the diet. For further analysis, we excluded ARG classes exhibit-
ing a distribution of less than 0.1 across all dietary patterns. The
results revealed that among the diets, omnivores exhibited the
highest spread in six ARG classes: multidrug, MLS (macrolides,
lincosamides, streptogramins), phenicol, aminoglycoside, tetracy-
cline, and mupirocin. In contrast, vegans demonstrated the high-
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est spread in 4 ARG classes: glycopeptide, bacitracin, diaminopy-
rimidine, and fluoroquinolone. For the remaining dietary patterns,
the ketogenic diet had the highest spread in 2 ARG classes (pleu-
romutilin and beta-lactam), the vegetarian diet in 2 (peptide and
fosmidomycin), and the ancient subjects in 1 (sulfonamide). How-
ever, considering only the ARG classes with at least a 5% differ-
ence between all other diets, bacitracin is more spread in vegans,
tetracycline in omnivores, and sulfonamide in the ancient diet.
When we compared ketogenic and omnivore (meat eaters) against
vegans and vegetarians (not meat eaters) according to the mean
spread value, we observed that meat eaters had a higher spread
for MLS, aminoglycoside, and mupirocin, and non-meat eaters for
diaminopyrimidine.

Finally, gSpreadComp also allowed us to individually com-
pare the spread of ARGs among phyla (Additional File 5:
Supplementary Table S4b-f and Additional File 6: Supplementary
Fig. S2). The results are summarized in Table 1. The subsequent
results that gSpreadComp provided were the annotation of VF
(Additional File 7: Supplementary Table S5a). The average num-
bers of unique VFs annotated per diet were 479.75 + 116.41 for
ancient, 444.56 + 88.03 for ketogenic, 444.54 + 106.24 for omni-
vore, 475.86 + 163.95 for vegan, and 438.13 + 108.40 for vegetarian.
We also verified the average number of unique VFs per phylum
per diet (Additional File 7: Supplementary Table S5b). Specifically,
Bacteroidota related to the ketogenic diet had statistically more
unique VFs than all the other diets (Fig. 3C and Additional File 7:
Supplementary Table S5c¢). Additionally, gSpreadComp calculated
all the statistical significance comparisons associated with the
unique number of VFs (Additional File 7: Supplementary Table
S5¢). We verified, as expected, that MAGs with high pathogenic
potential, irrespective of the diet, have a higher number of unique
VFs in the gut samples (Additional File 2: Supplementary Table
S2a and Additional File 8: Supplementary Fig. S3a). More inter-
estingly, we observed that, irrespective of the diet, highly virulent
bacteria had statistically more ARGs in the respective gut samples
(Fig. 3B and Additional File 7: Supplementary Table S5d).

Finally, we rank the potential resistance-virulence risk for all
recovered MAGs (Additional File 2: Supplementary Table S2a). Fig-
ure 3A shows a graph where the nodes are sized according to the
risk criteria. For the risk criteria, we highlight the results found
for the Firmicutes phylum, where statistically significant differ-
ences were found between omnivores vs. vegetarians and veg-
ans, as well as between ketogenic vs. vegetarians and vegans,
with an increased rank observed for the vegetarian and vegan
MAGs. However, there was no difference between omnivores and
ketogenic, or between vegans and vegetarians (Additional File 7:
Supplementary Table S5e and Additional File 8: Supplementary
Fig. S3b, c). Finally, gSpreadComp compiled all potential plasmid-
mediated HGTs for the target gene (ARGs, in this use case)
and the VFs at a defined taxonomical level (Additional File 9:
Supplementary Table S6a for ARG HGT events and Additional File
9: Supplementary Table S6b for VF HGT events). We removed the
libraries that recovered fewer than 12 MAGs before the HGT analy-
sis to reduce comparison bias due to limited MAG reconstruction.
After filtering, all diets had an average of 26 MAGs per sample.
However, vegans and vegetarians had 12 ARG plasmid-mediated
HGTs per sample, while omnivores had 3.88 and ketogenic 1.84
(Additional File 9: Supplementary Table S6c¢). We observed a signif-
icant increase in the ARGs and VFs involved in potential plasmid-
mediated HGT in the vegans and vegetarians compared to an-
cient, omnivore, and ketogenic. Then, we performed pairwise Bon-
ferroni statistical comparisons related to the HGT events be-
tween the diets (Additional File 9: Supplementary Table S6c-e and

Additional File 8: Supplementary Fig. S3b—e). All pairwise compar-
isons against vegans or vegetarians were significant (adjusted P
< 0.05), but there was no significant difference among any other
comparison, or between vegans and vegetarians. Similarly, veg-
ans and vegetarians had significantly more VFs plasmid-mediated
HGT events per sample (Additional File 9: Supplementary Table
S6d, e). Additionally, gSpreadComp allowed for the calculation of
the pairwise comparisons related to the occurrence of HGT events
per defined taxonomical level (family) per diet (Additional File 9:
Supplementary Table S6f-h). We identified HGT events of VFs, and
a significant difference was observed for the cases in Table 2. In
the HGT events of ARGs, a significant difference was only accessed
for Ruminococcaceae in omnivores and vegans and Lachnospiraceae
in vegetarians and ketogenic.

Discussion
The gSpreadComp

gSpreadComp was designed for 2 main goals: (i) to facilitate com-
parative genomics and (ii) to integrate high-throughput sequenc-
ing information into microbiome relative resistance-virulence
risk-ranking, with a focus on the potential presence of antimicro-
bial resistance genes and virulence factors.

At its core, gSpreadComp integrates genome annotation, gene
prevalence normalization, and sequence comparison into a
streamlined approach, thereby reducing the complexities often
associated with disparate tools. Furthermore, the tool introduced
a systematic methodology to quantify gene spread, a crucial as-
pect in understanding gene dispersion populations.

Second, gSpreadComp effectively uses whole-genome se-
quencing (WGS) data by providing a standardized method to rank
potential microbial communities of concern using metagenomic
samples. Highlighting hotspots of resistance and virulence fac-
tors narrows the focus for subsequent hypothesis testing through
laboratory-based assessments. While not performing risk assess-
ments directly, gSpreadComp may guide more targeted and effi-
cient laboratory studies, ultimately improving resource allocation
and preventive measures. Finally, tracking plasmid-mediated HGT
can contribute insights into antimicrobial resistance, or any tar-
get gene, transfer routes that remain largely uncharted. gSpread-
Comp also contributes to identifying key disseminating taxa and
potential propagation pathways. Such knowledge is vital for de-
veloping strategies to combat the rise of antimicrobial-resistant
pathogens and constructing more comprehensive microbial risk
assessment models [40].

While gSpreadComp’s main strengths lie in its downstream
analysis and unified workflow, it has limitations and biases that
should be considered when interpreting results. These may stem
from genome recovery techniques, reference databases, or ma-
chine learning algorithms used in the tool. As with any bioinfor-
matic approach, we recommend a critical usage.

Critical usage and key considerations

While not a standalone risk assessment tool, gSpreadComp pro-
vides a framework for comparing the relative rank associated
with resistance and virulence genes across microbial populations.
When used with established microbial risk assessment guidelines,
gSpreadComp can enhance the depth and precision of risk-rank
evaluations. By integrating genomic data analysis with traditional
risk assessment approaches, researchers may gain more compre-
hensive insights into potential microbial hazards, thereby sup-
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Table 1: ARG class spread summary for the common phyla across the different diets. The values represent ARG classes with a spread
difference greater than 0.05 in the respective diet for the respective phylum compared to other diets. While measures were taken to
reduce false positives, some errors may still be present, particularly for ARGs underrepresented in databases (e.g., triclosan). Caution is
advised when interpreting results from ancient samples due to potential DNA degradation and contamination issues. It is important to
note that despite the 0.05 difference threshold used here, most ARG classes fell into the same spread category (e.g., sparse, common,
widespread, or ubiquitous) across all diets, indicating a general consistency in ARG distribution patterns.

Diet Phylum
Bacteroidota Firmicutes Proteobacteria
Ompnivore MLS, beta-lactam, fluoroquinolone, MLS, aminoglycoside, mupirocin, Diaminopyrimidine
multidrug, mupirocin tetracycline
Vegan Aminoglycoside, Bacitracin, diaminopyrimidine Aminoglycoside, bacitracin,
diaminopyrimidine, phenicol, fluoroquinolone, pleuromutilin,
pleuromutilin tetracycline
Ketogenic Bacitracin, glycopeptide, peptide — —
Vegetarian Fosmidomycin, tetracycline Fluoroquinolone Mupirocin, phenicol
Ancient Sulfonamide Phenicol, sulfonamide MLS, beta-lactam, fosmidomycin,

glycopeptide, multidrug, peptide,
sulfonamide, triclosan

porting more informed decision-makingin public health, environ-
mental management, and food production contexts [1].

In particular, it is relevant to notice the distinction between rel-
ative resistance-virulence risk-ranking, which gSpreadComp pro-
vides, and risk assessment. While our tool offers insights into the
comparative potential resistance-virulence risks within microbial
populations based on their genomic profiles, it does not account
for all factors considered in a full risk assessment, such as ex-
posure routes, dose-response relationships, and specific environ-
mental conditions [3]. Users should view gSpreadComp’s output
as a starting point for prioritizing further investigation.

When considering ARG annotation using machine learning al-
gorithms, one must know that ARG prediction accuracy varies
per gene and class based on the representation and degree of
similarity to known resistance genes in the training databases.
For sequences with high identity scores (>50%) to the train-
ing data, both alignment-based methods, such as BLAST, and
classification-based approaches, such as DeepARG or ARG-SHINE,
perform well, with around 95% accuracy [36]. However, classi-
fication models tend to perform better for sequences with low
identity scores. For instance, sequences conferring resistance to
bacitracin, beta-lactams, and MLS are more represented in the
databases and more accurately predicted by DeepARG than resis-
tances such as triclosan or quinolone. The more drastic improve-
ment of classification-based methods is in reducing false-negative
rates while maintaining overall high precision. For long ARG-like
sequences, DeepARG-LS achieved 0.974+0.03 precision and 0.99
+0.01 recall for bacitracin, beta-lactamase, chloramphenicol, and
aminoglycoside, while the best-hit approach achieved perfect pre-
cision but 0.48 £0.2 recall [32]. This significant difference in re-
callis particularly crucial when annotating MAGs, which are often
fragmented. Importantly, the presence of an ARG does not neces-
sarily equate to phenotypic resistance but also depends on gene
expression and host factors and potential bias in the resistance
genotype-phenotype concordance on less characterized taxa [41].

Generally, using machine learning-based methods for the clas-
sification of biological sequences, while promising, has challenges
and limitations. Classifying plasmids can be particularly chal-
lenging since they usually exhibit high genetic diversity [38] and
shared sequence segments between plasmids and chromosomes.
Tools like PlasFlow and PlasClass provide a promising alternative
for detecting more diverged plasmids via learning patterns be-

yond sequence similarity but tend to have decreased precision.
On the other hand, hybrid methods, like PLASMe, tend to be com-
putationally more costly. Consequently, users should be aware of
these methodological differences when interpreting results and
consider the strengths and limitations of each approach in the
context of their specific research questions. For gSpreadComp, as
an auxiliary tool for hypothesis generation, we decided to initially
deploy it with the machine learning-based method PlasFlow for
its comparative results with PlasClass, but with slightly higher re-
call [35]. However, as the plasmid detection tools rapidly evolve,
we expect to update the gSpreadComp plasmid detection module
in the future.

Similarly, machine learning-based methods have been used for
VF annotation [42—44]. However, to the best of our knowledge, less
work has been done on the reliability of those tools when applied
to MAGs, specifically when looking for individual VE. Therefore,
for VF annotation, we implemented a best hit-based method in
gSpreadComp, potentially increasing the number of false nega-
tives for the sake of precision.

Use case: gSpreadComp in the human gut microbiome of
subjects with different diets

Previous studies have suggested potential links between diet and
antibiotic resistance patterns, with some focusing on meat con-
sumption [45-47]. Simultaneously, growing evidence shows that
uncooked produce could contribute to higher HGT events and
potential antibiotic resistance spread [48-51]. While these find-
ings provide interesting hypotheses, our use of gSpreadComp aims
to demonstrate a streamlined approach for analyzing resistance
gene spread across diverse groups and draw attention to poten-
tial resistance-virulence transmissibility hotspots rather than to
draw definitive conclusions about diet-resistance relationships.

Antimicrobial resistance spread

We identified multidrug and glycopeptide resistance genes as
ubiquitous in fecal samples from subjects of every diet, includ-
ing ancient. Glycopeptide antibiotics have been mainly used to
treat multidrug-resistant Gram-positive infections, and increased
resistance occurrence has already become a cause of concern
[52]. Specifically, its overuse in the livestock industry was pointed
out almost 20 years ago [53]. Glycopeptide resistance genes were,
however, also found in permafrost from >10,000 years ago [54].
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Figure 3: gSpreadComp estimates the resistance-virulence risk from MAGs. (A) Network representation from the recovered MAGs (nodes) distributed
according to the co-occurrence of ARGs for the 5 different diets. The node size represents the resistance-virulence risk of a MAG. The node color
represents the phylum. As expected, the potential pathogens (identified based on the NCBI Pathogen detection database), marked with a star,
systematically have a high risk, but in the ancient diet. The highest resistance-virulence MAG was found in the omnivore diet, followed by
Proteobacteria MAGs from vegans. Interestingly, the number of ARGs in plasmids is the most significant metric to calculate the risk, followed by VFs in
plasmids. This result indicates that a higher resistance-virulence risk is associated with the presence of the observed genes in mobile elements. This
may be intuitive, as those MAGs are more likely to participate in plasmid-mediated horizontal transmission and contribute to a resistant microbiome.
(B) Boxplot from MAGs grouped by pathogen potential on the x-axis and the number of unique ARGs annotated in the MAG on the y-axis. A “high”
pathogen potential indicates that the MAG is from a species present in the NCBI Pathogen Detection Database, and “medium” and “low” indicate a
MAG from the same genus and family, respectively. The boxplot indicates high antimicrobial resistance from high potential pathogens compared with
the other MAGs. (C) The density of MAGs from the Bacteroidota phylum, based on the total number of annotated unique VFs. The density plot shows a
significant negative skew for the ketogenic diet, while the ancient diet has a positive skewness, and the other diets tend to have a normal distribution.
This indicates that the ketogenic diet may potentially increase the resistance-virulence risk from Bacteroidota.
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Table 2: Pairwise comparison of the number of plasmid-mediated HGT events involving VFs in which specific bacterial families partic-

ipated. The comparison is made between samples from individuals following different diets. The columns represent the 2 diets being

compared, the adjusted P-value for statistical significance, and the bacterial family involved.

Diet 1 Diet 2 Adjusted P-value? Family

Omnivore Vegetarian 0.0014 Lachnospiraceae
Omnivore Vegan 0.0030 Lachnospiraceae
Omnivore Vegan 0.0032 Ruminococcaceae
Vegetarian Ketogenic 0.0051 Lachnospiraceae
Omnivore Vegetarian 0.0136 Oscillospiraceae
Vegan Ketogenic 0.0142 Ruminococcaceae
Vegetarian Ketogenic 0.0204 Oscillospiraceae
Vegan Ketogenic 0.0433 Lachnospiraceae
Omnivore Vegetarian 0.0439 Ruminococcaceae

@Bonferroni adjusted t-test.

In addition, an extensive metagenomic study of soil, ocean, and
animal sources found that glycopeptide resistance-related genes
were prevalent in all samples, accounting for 17% of global resis-
tant sequences, second only to multidrug resistance efflux pumps
[55].

When analyzing resistance with at least a 0.05 increase in the
spread in one particular diet, we observed a specific increase in
bacitracin resistance for vegans (0.7-widespread), followed by om-
nivores (0.64—widespread), and then the subjects from the other
3 diets (0.55 on average). Interestingly, bacitracin is not typically
used orally but instead applied topically in ointments [56]. In addi-
tion, bacitracin has been extensively used as an animal feed addi-
tive [57]. Although still under the “low” widespread category pre-
viously established, tetracycline resistance genes were more dis-
seminated in omnivores, 0.51, while subjects preferring the other
diets had a similar spread of 0.40, considered “common.” Tetracy-
cline is typically used for therapeutic purposes but is reportedly
frequently added to livestock feed at doses below therapeutic lev-
els, and it has been used as a growth enhancer for swine, poultry,
and aquaculture mainly in the past century [58].

When we grouped the subjects with diets exposed to animal
meat (ketogenic and omnivore) against the nonexposed (vegans
and vegetarians), we saw an increase in spread for the MLS,
aminoglycoside, and mupirocin resistance. It is relevant to notice
that MLS was considered ubiquitous-widespread and aminogly-
coside widespread-common in all diets. MLS has been used in Eu-
ropean cattle and pig husbandry [59]. Similarly, a 2023 study has
explored aminoglycoside detection in several animal muscles, tis-
sues, honey, milk, and other food sources. They were able to detect
the antibiotic in 17% of the samples. Most of these samples were
retrieved from cattle and swine [60]. The mupirocin resistance was
less spread than the others mentioned. We considered mupirocin
in the sparse-common range for all diets.

In our investigation of ARG classes, we observed an elevated
spread of diaminopyrimidines that exhibited a more pronounced
distribution among vegetarians and vegans, closely followed by
omnivores and a lower spread in the ketogenic diet group. A re-
cent study found ubiquitously accumulating diaminopyrimidines,
fluoroquinolones, and sulfonamides in rice farms [61]. The study
found a higher accumulation of fluoroquinolones and sulfon-
amide. Consistent with our results, the ancient subjects exhibited
the highest prevalence of sulfonamide, 0.37, followed by vegans,
0.31, and vegetarians, 0.24.

It is worth noticing that although there are specific differences
in resistance spread, all modern diets showed a similar overall
spread distribution. On the other hand, by calculating the aver-
age ARG class spread in the modern diets, we saw a systematic in-

crease in spread in the modern samples compared to the ancient
diet (10%-20% increase). These findings exemplify gSpreadComp’s
capacity to quantify and compare ARG spread across diverse sam-
ples. However, it is crucial to emphasize that these observations
showcase the tool’s capabilities rather than draw definitive con-
clusions about diet-resistance relationships. The patterns identi-
fied by gSpreadComp can serve as starting points for more com-
prehensive studies, incorporating additional data sources and ex-
perimental validation to fully understand the complex interplay
between diet and antimicrobial resistance.

Virulence factor and resistance-virulence
risk-ranking

Our results revealed a nuanced relationship between diet, the dis-
tribution of VFs, and the calculated resistance-virulence potential
risk in the human gut microbiome. The average number of unique
VFs was statistically similar among the diets. However, Bacteroidota
associated with subjects from the ketogenic diet had a statistically
higher number of unique VFs than subjects with other diets. More-
over, bacteria with high virulence potential consistently exhibited
the highest number of unique antibiotic resistances, irrespective
of the subject’s diet. Although alarming, this might be expected,
as pathogenic bacteria should constantly be exposed to selective
pressure.

In ranking relative resistance-virulence potential risk in our
dataset, the tool consistently ranked higher risk to known po-
tential pathogenic species. Interestingly, the subtle effects of diet
on risk are evidenced in the Firmicutes phylum. A risk difference
emerged between omnivores and vegetarians/vegans, and simi-
larly between those on the ketogenic diet and vegetarians/vegans.
However, no significant risk disparity was observed when com-
paring meat-consuming and nonmeat diets. These observations
demonstrate gSpreadComp’s ability to detect nuanced patterns
that could inform more targeted investigations.

Finally, our data indicated that vegans and vegetarians have
significantly more ARGs and VFs involved in potential plasmid-
mediated HGT than ancient, omnivore, and ketogenic groups.
Specifically, a higher HGT potential was observed for the Ru-
minococcaceae and Lachnospiraceae families. These findings echo
some of the discoveries by Reid et al. [49], which highlighted the
predilection of produce from supermarkets to harbor Escherichia
coli strains endowed with virulence plasmid carriage, thereby pro-
viding a potential conduit for HGT. Reid et al. [49] also discussed
the possibility of producing drug-resistant E. coli from animal
manure fertilizers, contaminated irrigation water, and wildlife.
Specifically, they characterized resistant E. coli from supermarket-
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bought, ready-to-eat cilantro, arugula, and mixed salad from 2
German cities [49]. Another study underscored produce as a reser-
voir of transferable antibiotic resistance genes, further elucidating
the plausible link between plant-based diets and amplified inci-
dences of ARG in plasmid-mediated HGT owing to higher expo-
sure to the transferable resistome inherent in produce [48]. Blau
et al. [48] found an impressive diversity of self-transmissible mul-
tiple resistance plasmids in bacteria associated with produce that
is consumed raw. Finally, Blau et al. [48] discussed the possibility
of multiple resistance plasmids being exogenously captured by E.
coli and transferred to gut bacteria, thus spreading resistance.

Although, to the best of our knowledge, no direct study com-
paring the abundance of plasmids in the human gut and soil was
made, several studies indicated the potential increase in the abun-
dance of plasmids in soil environments [62, 63]. Therefore, we hy-
pothesize that gut microbiomes from plant-based diets have a
higher chance of participating in plasmid-mediated HGT and in-
dicate that targeted research should be performed to confirm or
deny this hypothesis.

Tools comparison

In comparative genomics, gSpreadComp gives a step forward as a
tool that integrates genome annotation, gene spread calculation,
virulence factor identification, plasmid-mediated HGT detection,
and antimicrobial resistance-virulence risk-ranking. While previ-
ously mentioned existing tools have limitations, such as applica-
bility to single taxa or reliance on reference genomes, gSpread-
Comp offers a comprehensive approach to applying comparative
genomics to the entire microbiome. To our knowledge, PathoFact
[42] and MetaCHIP [25] are the closest counterparts to gSpread-
Comp; however, they have different focal points (Table 3). Patho-
Fact focuses on virulence and resistance gene prediction, while
MetaCHIP can detect HGT events directly in a microbiome com-
munity in a reference-independent way. gSpreadComp focuses on
these approaches, while offering a comprehensive analysis plat-
form for microbial genomic studies.

gSpreadComp and PathoFact both target ARG, VF, and MGE an-
notation in microbial genome analysis, sharing similar objectives.
Both approaches use key tools like PlasFlow for plasmid identi-
fication, DeepARG for antimicrobial resistance gene annotation,
and the Virulence Factors Database (VFDB) for annotating viru-
lence factors, which yield similar results in these aspects. How-
ever, gSpreadComp adds a unique dimension with its resistance-
virulence risk-ranking using TOPSIS, gene spread calculation, and
detailed downstream analysis. PathoFact, on the other hand, em-
phasizes precision in virulence and toxin prediction through a
blend of HMM profiles and machine learning approaches.

Against MetaCHIP, gSpreadComp focuses on plasmid-mediated
HGT. While MetaCHIP provides robust HGT detection by combin-
ing similarity and phylogenetic approaches, gSpreadComp adds
value by directly linking these events to sample metadata, which
is crucial for comparative genomics and useful for nonspecial-
ist users like clinicians. Naturally, the HGT events detected by
gSpreadComp should be present in the results from MetaCHIP.

gSpreadComp’s streamlined approach makes it a versatile tool
that addresses gaps left by existing methodologies. The approach
is particularly advantageous for non-bioinformaticians, as it sim-
plifies complex analyses, making the data accessible and action-
able for a broader audience. While gSpreadComp offers a compre-
hensive approach, it is not intended to replace specialized tools.
Instead, it aims to complement existing methodologies by pro-
viding an integrated approach for microbial genomic analysis.

Users should consider their specific research questions and re-
quirements when choosing the most appropriate tool or combi-
nation of tools for their studies. The analyses performed using
gSpreadComp are not conclusive but serve to raise testable hy-
potheses and focus subsequent laboratory experimentation. By
identifying potential antimicrobial resistance and virulence fac-
tors, along with their likely bacterial hosts, gSpreadComp narrows
the search space for targeted experimental validation.

Conclusion

gSpreadComp combines genome annotation, gene prevalence
normalization, and target (i.e., diet) analysis into a comprehen-
sive workflow for quantifying gene spread and assessing po-
tential resistance-virulence risk-ranking in microbial communi-
ties. The tool’'s modular design allows for flexibility and future
updates. The tool’s application to explore dietary impacts on
gut microbiome antibiotic resistance demonstrated its ability to
identify complex patterns across different dietary groups. More-
over, nuanced evidence suggested that meat and uncooked pro-
duce influence resistance-virulence spread, particularly concern-
ing plasmid-mediated HGT, emphasizing the intricate relation-
ship between diet and microbial dynamics in the human gut.
However, it is crucial to emphasize that these findings are in-
tended to showcase gSpreadComp’s capabilities rather than draw
definitive conclusions about diet-resistance relationships.

The patterns identified by gSpreadComp can serve as valu-
able starting points for more comprehensive studies, incorporat-
ing larger sample sizes or focused experiments, additional data
sources, and experimental validation. As with any bioinformatics
tool, results should be interpreted cautiously and used to guide
hypothesis generation and further investigation. gSpreadComp
aims to complement existing methodologies by providing an inte-
grated platform for microbial genomic analysis, potentially bene-
fiting a wide range of users.

Data and Methods

Implementation
The gSpreadComp

gSpreadComp is designed for UNIX-based systems. The user can
refer to the manual [64] for detailed instructions. Fundamentally,
our approach works in 6 modular steps: (i) prokaryotic genome
taxonomy assignment, (i) genome quality estimation, (iii) ARG
annotation, (iv) plasmid and chromosome classification, (v) VF
annotation, and (vi) downstream analysis, which involves target-
based gene spread analysis, plasmid-mediated HGT of the target
gene and VF, prokaryotic resistance-virulence risk-ranking, and
report generation.

Each module can be applied separately. Consequently, as new
sequence classification tools surge, gSpreadComp downstream
analysis can continue to be used independently. Another advan-
tage of a modular implementation is that the approach can be
easily updated. Figure 1indicates the gSpreadComp structure. The
approach was written in Bash and R (version 4.2.2) [65]. Finally,
we use conda [66] (conda 22.11.1) environments to install all nec-
essary software dependencies and third-party software wherever
possible. Using conda allows software management with different
and potentially conflicting dependencies in the same system. In
the future, we will develop a Singularity container [67] to facilitate
installation and ensure reproducibility across diverse computing
infrastructures.
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Table 3: Feature comparison of gSpreadComp, PathoFact, and MetaCHIP across 4 key dimensions. Each tool offers distinct capabili-
ties: gSpreadComp provides integrated metadata analysis with resistance-virulence risk-ranking, comparative genomics, and plasmid-
mediated gene transfer detection; PathoFact specializes in antimicrobial resistance, virulence factors, toxins, and mobile genetic ele-
ments annotation; and MetaCHIP focuses on robust horizontal gene transfer detection within microbial communities. This comparison
highlights complementary strengths that researchers can select based on their specific research questions.

Tool Inputs Analysistypes Key outputs Interpretability
gSpreadComp MAGs/genomes with ARG/VF annotation, ARG and VF Integrates metadata
target metadata plasmid detection, gene annotation, target gene context, statistical
spread calculation, spread calculation comparison among
resistance-virulence within the metadata metadata groups,
risk-ranking groups; potential provides relative
plasmid-mediated HGT risk-ranking within
events of ARG/VF in the communities, HTML
community, visual reports
resistance-virulence accessible to
risk-ranking nonspecialists
PathoFact Assembly FASTA files ARG/VF, bacterial ARG/VF/toxin Detailed annotation
toxins genes, plasmid predictions with table ready for further
and phages detection confidence levels, analysis
secretion status
MetaCHIP MAGs/genomes with Robust HGT events within the Focuses on technical
taxonomic community-level HGT community HGT outputs
classifications identification

In step (i), the user can directly assign taxonomy using GTDB-tk
[68] and format the result table automatically. In step (ii), gSpread-
Comp orchestrates CheckM [69] to estimate prokaryotic genome
quality and format the resulting files. Following step (iii), the user
can automatically annotate ARG and format its resulting files. To
minimize the risk of false-positive ARG prediction, gSpreadComp
uses the DeepARG-LS [32] with the following parameter values:
a minimum of 80% prediction probability, an e-value alignment
lower than le-10, and a percent identity of 35% or higher [33].

In step (iv), plasmids are predicted using PlasFlow with default
parameters (i.e., 0.7 probability threshold) [34]. PlasFlow uses only
genomic signatures to identify bacterial plasmids using a neural
network model with increased performance compared to similar
tools [34]. In addition, this tool is also optimized for metagenomic
data, the type of data we expect to use mainly with gSpread-
Comp. Then, in step (v), we use the Victors VF database (down-
loaded in December 2022) [70] and the Virulence Factors Database
(downloaded in December 2022) [71] to annotate VF on provided
genomes. We use the protein sequences from both databases from
their core dataset associated with experimentally verified viru-
lence factors. We use BLASTX [72] with an e-value of 1e-50 as the
cutoff to locate the VFs.

Finally, in step (vi), gSpreadComp starts by optionally filtering
out genomes based on the quality (Completeness — 5 x Contami-
nation > 50). It can then remove samples based on the total num-
ber of genomes per sample (by default, no sample is removed).
Next, we calculated the normalized prevalence of the target gene
in a defined group (Pgroup, gene)- It considers the presence or absence
of the target gene in a genome divided by the total number of
genomes in a group, similar to the definition used by Danko et
al. [4]. A Bonferroni-adjusted t-test is used pairwise to compare
the target gene prevalence across the groups. When the adjusted
P-value was less than 0.05, we assigned a significant difference
between the groups. The user can refer to the manual [64] for a
detailed description of the intermediate files generated.

> Genomegroup, gene

P, =
group. gene Z Genomegmup

We use the defined WAP to estimate the gene spread per tax-
onomical level per target metadata group, as described by Mag-
nusdottir et al. [31]. P; is the gene prevalence per specified taxo-
nomical group, and T is the number of unique taxa in the defined
taxonomical level.

T P; x Genome;
WAP =3 Zf
Finally, gSpreadComp extracts what we defined as “resistance-
virulence risk factors” for each genome. Those are the genetic
potential related to the target gene, represented by the number
of unique target genes; the virulence potential, represented by
the number of unique VFs; the potential of transmitting the tar-
get gene, represented by the number of unique target genes lo-
cated in plasmids; and the potential of transmitting virulence
potential, represented by the number of unique VFs located in
plasmids. We use the taxonomical distances to the species in
the NCBI pathogens database [27] to define the reference po-
tential pathogens. Finally, we use the TOPSIS [28] to rank the
resistance-virulence risk from the genomes. Essentially, we ex-
tract from each genome (g;) its resistance-virulence risk factors
(f;), 9; = (fia. fioo -+ fin), With n resistance-virulence risk fac-
tors.
Following this, we normalized the resistance-virulence risk fac-
tors using

o di

VIR f5

where f;; is the value of the j™ risk factor for the i genome,
and m is the total number of genomes. Then, we computed
the weighted normalized decision matrix. The defined weights,
W = {wq, wy, ... wy}, are the average of the resistance-virulence
risk factors extracted from the reference potential pathogens. The
weighted normalized decision matrix is represented by

Ui}' = W) X Ti]'

Gz0z AIne 20 uo Jasn 4sn-seosjolqig op opeibaiul ewalsis Aq 8661/ 18/Z.01elb/eousiosebib/ca0 L 0 1 /10p/ao1le/aousioselib/woo dno-olwapeoe)/:sdiy Wolj papeojuMo(]



12 | GigaScience, 2025, Vol. 14

We defined the ideal, A* = {v%, v}, ... v}}, and the negative-ideal,
A” ={v],v;,...v,}, solutions as v = max(v;;) and vy = min (vj;).
1 1
Next, for each genome, we calculated the separation from the
ideal solution (S}) and from the negative-ideal solution (S;) as
n 2
ST = Z (Uij — U;)
j=1
n 2
S: = Z (Ui)' — U;)

j=1

Finally, the prokaryotic risk (R;) is the relative closeness to the
ideal solution.

S;
CSt+S;

The genome with the highest R; value ranks higher in the mi-
crobial community resistance-virulence risk scale. We used the
TOPSIS implementation in the MCDA R package.

To extract the plasmid-mediated HGT events, we implemented
a similar heuristicin gSpreadComp, as defined by Smillie et al. [73].
Briefly, 1 recent HGT event could be identified between 2 distantly
related genomes (from a defined taxonomical level) through the
shared region of DNA corresponding to an annotated sequence
with 99% or greater similarity.

Lastly, gSpreadComp uses the files, metrics, and figures to gen-
erate an HTML report automatically from the rmarkdown [74]
package.

i

Use case: gSpreadComp in the human gut microbiome of
subjects with different diets

The gSpreadComp approach requires genomes or MAGs in fasta
format; the genomes metadata table, including the identification
of its source sample and the target feature to be compared; a
genome taxonomic assignment table; a genome quality assign-
ment table; and a target gene annotation table.

Metagenome data selection

Initially, we selected metagenomic samples from the human
gut of subjects over 18 years old containing information about
the host diet using the HumanMetagenomeDB (HMgDB) [75].
We selected only WGS libraries available in the Sequence Read
Archive (SRA) [76]. After filtering, we had metagenomic samples
from the following BioProjects: PRINA340216, PRINA397112, PR-
JNA324129, and PRJNA529487. Afterward, we examined the sam-
ple’s metadata information on the original studies and assigned
the libraries in “omnivore,” “vegetarian,” “vegan,” and “ketogenic”
diet types according to the original studies’ definitions. Addi-
tionally, we included metagenomic libraries from the Ancient-
MetagenomeDir v20.12 [77]. From the libraries provided on the
ancientmetagenome-hostassociated file, we selected those with
the following parameters: “sample_host” equal to “Homo sapi-
ens,” “community_type” equal to “gut,” and “archive” equal to
“ENA” or “SRA.” We assigned libraries that originated from the
AncientMetagenomeDir as “ancient.” The complete table of li-
braries and accompanying metadata used is in Additional File 1:
Supplementary Table S1. Finally, we downloaded the library reads
from the SRA using the SRAtoolkit version 2.10.9 [78].

” o«

Data preparation

The MAGs were recovered using the Multi-Domain Genome Re-
covery tool (MuDoGeR) [79]. The raw reads were quality-controlled
using metaWrap [80] with default parameters. The reads trim-
ming was performed using TrimGalore (RRID:SCR_011847) [81]

with the default settings. After, BMTagger (RRID:SCR_014619) [82]
was used with the human build 38 patch release 13 (GRCh38.p13
[83]) to remove potential host genomes using default parameters.
Then, reads were assembled using metaSpades [84] from within
the MuDoGeR approach. Once assembled, the sequence contigs
were binned using Metabat2 [85], Maxbin2 [86], and CONCOCT
[87]. Next, the recovered bins were refined and dereplicated using
MuDoGeR. The bins were quality-checked using CheckM (RRID:
SCR_016646) [69] and taxonomically assigned using GTDB-tk
(RRID:SCR_019136) [68], and assembly statistics were calculated
with BBTools [88]. Finally, the bins were filtered for MAGs based
on the following criteria: at least 50% completeness, less than
10% contamination based on CheckM results, and a quality score
higher than or equal to 50, where quality score = completeness —
5 % contamination [89]. High-quality MAGs were defined as com-
pleteness >90% and contamination <5%. Medium-quality MAGs
were defined as completeness >50% and contamination <10%.
Then, we used the ARG annotation workflow from gSpreadComp
to annotate ARGs in each MAG. This annotation step means we
used DeepARG-LS with a minimum of 80% prediction probability,
an e-value alignment lower than le-10, and a percent identity of
35% or higher to minimize the risk of false positives. Next, we used
the gSpreadComp methods described earlier to classify plasmid
sequences and annotate and format VFs. We removed samples
with fewer than 6 genome representatives to calculate the gene
prevalence per sample, as a lower number of recovered genomes
typically indicates insufficient sequencing depth [29], which can
introduce statistical bias and skew prevalence analyses to values
significantly different from those that would be obtained with ad-
equate genome representation. Finally, we integrated the recov-
ered MAGs and the following tables into the gSpreadComp ap-
proach: formatted taxonomic assessment, the prokaryotic qual-
ity estimation, the ARG annotation, the plasmid identification, the
VF annotation, and the library metadata. In addition, we also used
the gSpreadComp approach to estimate the spread of the ARG an-
tibiotic resistance group (e.g., bacitracin and glycopeptide), here-
after referred to as ARG classes.

Availability of Source Code and
Requirements

Project name: gSpreadComp

Project homepage: https://github.com/mdsufz/gSpreadComp/
Operating system(s): Linux

Programming language: C, Shell, R, Python

Other requirements: Bash, Conda, Mamba, and other packages au-
tomatically installed with gSpreadComp

License: GNU GPL v3.0

RRID: SCR_026,798

A version of record snapshot of the GitHub repository
has been archived in the Software Heritage Library (PID
swh:1:dir:26ba1978f7b6cf8eb968e3728d4adee62fa4034e [90]).
The tool is also available via WorkflowHub [91].

Additional Files

Additional File 1. 01_Kasmanas_gSpread_AddFilel_Table S1.xlsx
Additional File 2. 02_Kasmanas_gSpread_AddFile2_Table_S2.xlsx
Additional File 3. 03_Kasmanas_gSpread_AddFile3_Table_S3.xlsx
Additional File 4. 04_Kasmanas_gSpread_AddFile4 Fig S1.docx
Additional File 5. 05_Kasmanas_gSpread_AddFile5_Table_S4.xlsx
Additional File 6. 06_Kasmanas_gSpread_AddFile6_Fig S2.docx
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https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_011847
https://scicrunch.org/resolver/RRID:SCR_014619
https://scicrunch.org/resolver/RRID:SCR_016646
https://scicrunch.org/resolver/RRID:SCR_019136
https://github.com/mdsufz/gSpreadComp/
https://scicrunch.org/resolver/RRID:

Additional File 7. 07_Kasmanas_gSpread_AddFile7_Table_S5.xlsx
Additional File 8. 08_Kasmanas_gSpread_AddFile8_Fig S3.docx
Additional File 9. 09_Kasmanas_gSpread_AddFile9_Table_S6.xlsx
Supplementary Fig. S1. Boxplots from the ARG class prevalence
per sample (y-axis) colored by Target Diet. The boxplot title is the
ARG class. The statistically significant pairwise comparisons are
indicated with the % symbol.

Supplementary Fig. S2. Heatmaps containing the spread, calcu-
lated as weighted average prevalence (WAP) of the antimicrobial
resistance gene (ARG) classes (rows) per phylum (columns) per
target diet (title). The number within parentheses after the phy-
lum indicates the number of genomes used for the calculation
from that phylum. The number within parentheses from the ARG
classes is the average spread for that ARG class.

Supplementary Fig. S3. (a) Boxplots colored by target diet. The
x-axis is grouped by pathogenic potential defined by the taxo-
nomical distance to potential pathogens from the NCBI pathogen
database. The y-axis is the number of unique virulence factors
(VF) per sample. (b) Group of boxplots per phylum that are com-
mon to all target diets. The x-axis is grouped and colored by
target diet. The y-axis has the calculated resistance-virulence
risk metric. (c) Density plots of the resistance-virulence risk for
each common phylum colored by target diet. The y-axis indicates
the estimated probability density of the respective resistance-
virulence risk on the x-axis. Density plots are calculated using the
seaborn.kdeplot in Python 3.9. (d) Boxplot for the number of an-
timicrobial resistance genes (ARGs) involved in plasmid-mediated
horizontal gene transfer (HGT) events found per sample on the y-
axis. The x-axis is grouped and colored by target diet. (e) Boxplot
for the number of VFs involved in plasmid-mediated HGT events
found per sample on the y-axis. The x-axis is grouped and colored
by target diet.

Supplementary Table S1. Metadata table from the selected
whole-genome sequencing (WGS) samples. Columns are stan-
dardized as described by Kasmanas et al. [75]. Samples col-
lected from the AncientMetagenomeDir had the host diet as-
signed as “Ancient.” The “sample” column is equivalent to the SRA
project_id.

Supplementary Table S2. (a) Summary information retrieved
from the recovered metagenome-assembled genomes (MAGS).
Completeness, Contamination, and Strain.heterogeneity are as-
signed with CheckM through MuDoGeR [79]. Quality and qual-
ity.score are determined as described in Methods. The Target col-
umn refers to the source patient’s diet. The taxonomical informa-
tion was assigned with GTDBtk through MuDoGeR. Pathogen po-
tential is determined based on the taxonomical distance to ref-
erence potential pathogens from the NCBI pathogen database.
The risk_criteria ranks the relative resistance-virulence risk cal-
culated as described in Methods. The columns named “unique_x"
are defined as “Resistance-virulence Risk Factors” and are used
to rank the relative resistance-virulence risk. The Factors are sys-
tematically named as follows: “unique_,” virulence factors (vf) or
target gene (ARGs in our use case), “_in_,” sequence type location
(i.e., chromosome, plasmids, or unclassified). The last 19 columns
are assembly statistics extracted using BBTools [88]. (b) Distribu-
tion of the number of MAGs per diet per quality.

Supplementary Table S3. (a) DeepARG [32] antimicrobial resis-
tance gene (ARG) annotation table. gSpreadComp expects to re-
celve a gene annotation csv table in a similar format, indicat-
ing the Genome column as “Genome,” the target gene column as
“Gene_id,” and the sequence name from the fasta file where the
gene was annotated as “Gene_sequence_location.” The probabil-
ity and identity columns are defined by DeepARG. The “probabil-
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ity” column is the probability that the gene annotation is correct
according to their highly accurate ARG predicting model. (b) Tar-
get gene prevalence normalization table per sample (Library). The
target gene was the ARG class (Gene_class) from the DeepARG
annotation table. The present.gene column indicates how many
metagenome-assembled genomes (MAGs) in that Library had the
specified Gene_class annotated. The Target column indicates the
diet from the Library. The t_mags column indicates the total num-
ber of MAGs recovered, and the gene.genome.prev column indi-
cates the prevalence of the Gene_class. (c) Bonferroni-adjusted t-
test pairwise comparison from the ARG class (Gene_class) preva-
lence per diet. The y column shows the variable’s name used in
comparing groupl and group2. The n1 and n2 columns show the
number of samples compared. The statistic column is the result-
ing t-test statistic, and df is the degrees of freedom associated with
the test. The p is the P-value from the comparison, p.adj is the
Bonferroni-adjusted result, and p.adj.signif is an indication of sig-
nificance (P < 0.05).

Supplementary Table S4. (a) Antimicrobial resistance gene (ARG)
class, as assigned by DeepARG [32], spread at the phylum level per
target diet. The spread was calculated using the weighted average
prevalence (WAP). (b) The ARG class spread, calculated using WAP
per phylum for the Ancient diet. (c) The ARG class spread, calcu-
lated using WAP per phylum for the ketogenic diet. (d) The ARG
class spread, calculated using WAP per phylum for the omnivore
diet. (e) The ARG class spread, calculated using WAP per phylum
for the vegan diet. (f) The ARG class spread, calculated using WAP
per phylum for the vegetarian diet.

Supplementary Table S5. (a) Virulence factors (VFs) from the
Victors virulence factors database [70] (downloaded in Decem-
ber 2022) annotated on the Genomes (Genome column) recovered
from the whole-genome sequence (WGS) samples (Library) using
BLASTX. Sequence_id indicates the sequence header where the
VF (Victor_VF_found) was aligned. Victor_VF_class is the class of
the VF given by Victors database. The e-value and bitscore are
aligning metrics provided by BLASTX. (b) The average number of
unique VFs per phylum per target diet (column avg unique_VFs).
The n column indicates the number of samples used for the cal-
culation, and the column sd_unique_VFs shows the standard de-
viation from the calculated metrics. (c) All statistically signifi-
cant Bonferroni-adjusted t-test pairwise comparisons from the
unique number of VFs grouped per phylum per target diet. The
comparison was made between the diets indicated in groupl
and group2. The n1 and n2 columns show the number of sam-
ples compared. The p is the P-value from the comparison, p.adj
is the Bonferroni-adjusted result, and p.adj.signif is an indica-
tion of significance (P < 0.05). The unique number of VFs per
genome can be found in Supplementary Table S2a. (d) All statisti-
cally significant Bonferroni-adjusted t-test pairwise comparisons
from the unique number of antimicrobial resistance genes (ARGs)
grouped per pathogenic potential based on the NCBI pathogens
database. The comparison was made between the pathogenic po-
tential indicated in groupl and group2. The n1 and n2 columns
show the number of samples compared for groupl and group
2, respectively. The p is the P-value from the comparison, p.adj
is the Bonferroni-adjusted result, and p.adj.signif is an indica-
tion of significance (P < 0.05). Values equal to 0 were extremely
close to 0. The unique number of ARGs per genome can be
found in Supplementary Table S2a. (e) All statistically signifi-
cant Bonferroni-adjusted t-test pairwise comparisons from the
resistance-virulence risk per phylum grouped per target diet. The
comparison was made between the target diets indicated in diet
1 and diet 2. The p.adj is the Bonferroni-adjusted P-value result.
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The resistance-virulence risk value per genome can be found in
Supplementary Table S2a.

Supplementary Table S6. (a) List of identified antimicrobial re-
sistance gene (ARG) plasmid-mediated horizontal gene transfer
(HGT) events. The library is the sample where the event was
found, and Family1 and Family2 are the taxonomical families in-
volved in the event. The Gene_id column identifies the ARG name
involved, and the Target column identifies the target diet from
the respective library. (b) List of identified virulence factor (VF)
plasmid-mediated HGT events. The Library is the sample where
the event was found, and Family1 and Family? are the taxonom-
ical families involved in the event. The Gene_id column identi-
fies the VF name from the Victors database [70] involved, and
the Target column identifies the target diet from the respective
library. (c) Summary from the HGT events per library per tar-
get diet after removing the libraries that recovered fewer than
12 metagenome-assembled genomes. (d) Bonferroni-corrected t-
test pairwise comparison between the number of ARG HGT events
grouped by the target diet after removing the libraries that re-
covered fewer than 12 metagenome-assembled genomes. Target
1 and Target 2 are the diets compared. T-statistic, P-value, and
adjusted P-value are the statistical test results. () Bonferroni-
corrected t-test pairwise comparison between the number of VF
HGT events grouped by the target diet after removing the libraries
that recovered fewer than 12 metagenome-assembled genomes.
Target 1 and Target 2 are the diets compared. T-statistic, P-value,
and adjusted P-value are the statistical test results. (f) Summary
from the HGT events per family target diet after removing the
libraries that recovered fewer than 12 metagenome-assembled
genomes. (g) Bonferroni-corrected t-test pairwise comparison be-
tween the number of ARG HGT events per family grouped by
the target diet after removing the libraries that recovered fewer
than 12 metagenome-assembled genomes. Target 1 and Target
2 are the diets compared for the respective family. T-statistic, P-
value, and adjusted P-value are the statistical test results. Sam-
ple sizes indicate the number of samples used for each target,
respectively. (h) Bonferroni-corrected t-test pairwise comparison
between the number of VF HGT events per family grouped by the
target diet after removing the libraries that recovered fewer than
12 metagenome-assembled genomes. Target 1 and Target 2 are
the diets compared for the respective family. T-statistic, P-value,
and adjusted P-value are the statistical test results. Sample sizes
indicate the number of samples used for each target, respectively.
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