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1 Introduction

Fluctuations and correlations among conserved charges, namely the net-electric charge
(Q), the net-baryon (B), and the net-strangeness (S), reveal key properties of strongly
interacting matter [1–8]. These conserved charges are defined as the event-by-event difference
between the number of particles and antiparticles carrying electric charge, baryon number, or
strangeness in the system. Studying them offers insights into the phase structure of quantum
chromodynamics (QCD), as they are accessible through both heavy-ion collision experiments
and first-principle lattice QCD (LQCD) calculations via thermodynamic susceptibilities [9–13].
At LHC energies, where the baryon chemical potential (µB) is close to zero [14], LQCD
predicts that the transition from the low-temperature hadronic matter to the high-temperature
quark−gluon plasma (QGP) occurs as a smooth crossover [15]. At larger values of µB, a
first-order phase transition line is anticipated [16]. The first-order phase transition line is
expected to end at a critical point (CP) [17–19], near which the thermodynamic susceptibilities
show a divergent behavior [20–22]. Determining the precise location of the CP remains an
active area of research, pursued through both experimental measurements and theoretical
studies. Fluctuations and correlations of these conserved quantities serve as sensitive probes
for analyzing freeze-out conditions in heavy-ion collisions and may help elucidate their
connection to the QCD phase transition [23, 24]. Active experimental programs, such as
the RHIC Beam Energy Scan (BES) and the LHC, are extensively investigating these using
cumulant analyses [25–29].

The cumulants (κlm
α,β) of net-multiplicity distributions for associated conserved charges

(α, β) can be arranged in a matrix form, where diagonal cumulants quantify fluctuations of
individual conserved charges, and off-diagonal cumulants capture correlations between different
conserved charges. They are related to the corresponding thermodynamic susceptibilities
(χlm

α,β) by the equation:

χlm
α,β = 1

V T 3 κlm
α,β , (1.1)

where V and T denote the volume and temperature of the thermodynamic system. This
study focuses on second-order fluctuations and correlations, with κ2

α and κ11
α,β measured
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using the relations:

κ2
α = ⟨(δNα)2⟩ , (1.2)

and
κ11

α,β = ⟨(δNα)(δNβ)⟩ , (1.3)

where δNα = (Nα+ − Nα−) − ⟨(Nα+ − Nα−)⟩ and angular brackets ⟨. . .⟩ denote average
over all events. Here, Nα+ and Nα− represent the event-by-event numbers of particles and
antiparticles associated with the conserved charge α, respectively. The use of cumulant ratios
eliminates the temperature and volume dependence and enables a more direct comparison
between experimental results and theoretical models. Since not all baryons and strange
particles can be measured experimentally, the net-proton (difference between number of
protons and antiprotons, calculated as ∆p = Np − Np̄) and net-kaon (calculated as ∆K =
NK+ −NK−) numbers are used as proxies for the net-baryon and the net-strangeness numbers,
respectively. The net-charged particle (∆Q) is defined as the sum of net-pion (calculated as
∆π = Nπ+ − Nπ−), net-kaon, and net-proton, i.e., ∆Q = ∆π + ∆K + ∆p. The impact of
other hadron species on the diagonal and off-diagonal susceptibilities of conserved charges
(Q, B, and S) has been investigated with the Hadron Resonance Gas (HRG) model [30].
These studies show that the baryon-electric charge (BQ) and electric charge-strangeness
(QS) correlations are dominated by contributions from protons and kaons, which, along
with pions, form the bulk of particle production in heavy-ion collisions. In contrast, the
baryon-strangeness (BS) correlation receives significant contributions from strange baryons,
including hyperons and multi-strange baryons, which are often difficult to measure on an
event-by-event basis due to limited reconstruction efficiencies. The importance of investigating
the off-diagonal cumulants was highlighted in ref. [5] through studies of BS correlations;
CB,S = −3χ11

B,S/χ2
S, referred to as “Koch ratio”. The STAR experiment at RHIC has reported

correlations among net-charged particle, net-proton, and net-kaon, i.e., Cp,K = κ11
p,K/κ2

K,
CQ,K = κ11

Q,K/κ2
K, and CQ,p = κ11

Q,p/κ2
p in Au+Au collisions at √

sNN = 7.7 to 200 GeV [31].
Since the off-diagonal cumulants κ11

Q,K and κ11
Q,p inherently include the diagonal cumulants of

net-kaons and net-protons respectively, the ratios CQ,K and CQ,p can be expanded as:

CQ,K =
κ11

p,K
κ2

K
+

κ11
π,K
κ2

K
+ 1, (1.4)

and

CQ,p =
κ11

p,K
κ2

p
+

κ11
π,p
κ2

p
+ 1. (1.5)

At LHC energies, the off-diagonal cumulants are directly related to the balance function
(BF) integrals [32, 33], which characterize correlations between oppositely charged particle
pairs. Moreover, these cumulants are sensitive to several dynamical effects that can obscure
the critical fluctuations of interest. Such effects include correlations from global and local
conservation of quantum numbers, meaning charge conservation applied to the overall system
as well as within localized regions [34, 35], volume fluctuations arising from event-by-event
changes in the system size, and resonance decays [36, 37] where unstable hadrons decay

– 2 –



J
H
E
P
0
8
(
2
0
2
5
)
2
1
0

into stable particles. Additional contributions include initial-state fluctuations, which refer
to random variations in the positions of nucleons within the colliding nuclei [38], and
thermal blurring, which reflects the smearing of measured fluctuations due to thermal motion
of particles. [39]. Thus, isolating and understanding the specific contributions of these
fluctuations and correlations is crucial to make accurate inferences about the QCD phase
structure and its critical behaviors.

In high-energy collisions, electric charge, baryon number, and strangeness are conserved
in each event when all produced particles are considered. Consequently, fluctuations in the
net-conserved charges vanish over the full phase space due to global conservation laws and
must instead be studied within a restricted phase space, which can be achieved by selecting
specific ranges in rapidity (y) and/or transverse momentum (pT) of the detected particles [40].
Although restricting the phase space suppresses global conservation effects, the selected
window should not be smaller than the system’s intrinsic dynamical correlation length, as
this may mask the fluctuations of interest [41]. The acceptance fraction (αacc), defined as the
ratio of the phase space covered by kinematic cuts to the system’s total phase space [41–43],
plays an important role in understanding how the measured fluctuations and correlations
relate to the theoretical calculations of grand-canonical susceptibilities within HRG models
and LQCD calculations. Moreover, event-by-event fluctuations in net-particle numbers can
be influenced by fluctuations in the number of participating nucleons from the projectile
and target for a given centrality selection [44]. The effect of participant fluctuations (also
known as volume fluctuations) on cumulants of the net-conserved charges has been studied
within the framework of the Wounded Nucleon Model [45] in ref. [41]. It was found that the
cumulants are significantly affected by volume fluctuations at lower energies. In contrast, at
LHC energies, where the mean net-particle numbers vanish, the cumulants are independent
of volume fluctuations up to third order.

In the early stages of high-energy heavy-ion collisions with non-zero impact parameters,
a strong magnetic field is generated by the spectator nucleons (those nucleons that do
not participate directly in the collision but continue along the beam direction). At LHC
energies, the field strength is estimated to reach eB ∼ 15m2

π ∼ 1015 T [46]. This field
is transient and decays rapidly with time [47, 48]. However, a QGP medium with finite
electrical conductivity can partially sustain it [49, 50], making the decay rate dependent on
the medium’s conductivity, which remains experimentally unconstrained. Depending on the
electrical conductivity and the formation time of the QGP medium created in heavy-ion
collisions, the initial magnetic field may influence the motion of final-state particles. There
is considerable interest in understanding how such intense magnetic fields influence the
properties and dynamics of final-state hadrons. Recently, LQCD calculations have indicated
that such a magnetic field can influence specific combinations of susceptibilities related to
electric charge, baryon number, and strangeness, which can be studied experimentally in
peripheral heavy-ion collisions [51]. In the absence of a magnetic field, up (u) and down
(d) quarks exhibit isospin symmetry, i.e., they interact with the strong nuclear force in the
same way. However, the introduction of a magnetic field breaks this symmetry because of the
different electric charges of the quarks, leading to changes in the quark-level susceptibilities (χ2

u

and χ2
d), which alter the entire second-order susceptibility matrix for electric charge, baryon
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number, and strangeness [51]. To study the effect of the magnetic field in the later (hadronic)
stages of heavy-ion collisions, examining the centrality dependence of quantities such as
(2χ11

Q,S−χ11
B,S)/χ2

S, (2χ11
Q,B−χ11

B,S)/χ2
B, and χ11

Q,B/χ2
Q has recently been proposed in refs. [51, 52].

In particular, the scaled ratio [χ11
Q,B/χ2

Q(eB)]/[χ11
Q,B/χ2

Q(eB = 0)], which shows significant
deviations from unity, may serve as a sensitive indicator of the magnetic field’s effect [52].
Experimentally, these quantities are accessed via proxies (2κ11

Q,K−κ11
p,K)/κ2

K, (2κ11
Q,p−κ11

p,K)/κ2
p,

and (κ11
Q,p/κ2

Q)/(κ11
Q,p/κ2

Q)0−5%. The latter quantity (κ11
Q,p/κ2

Q)/(κ11
Q,p/κ2

Q)0−5% represents the
ratio of κ11

Q,p/κ2
Q to its value in the 0−5% centrality interval.

The article is organized as follows. Section 2 provides a concise overview of the ALICE
detector setup, focusing on the sub-detectors that are essential for this analysis. Details
about the dataset and analysis — including event and track selection criteria, particle
identification, the efficiency correction procedure, and the estimation of statistical and
systematic uncertainties, are also elaborated. The discussion on measurements and their
comparison with HIJING and EPOS LHC event generators, as well as an HRG model
Thermal-FIST can be found in section 3. Finally, section 4 summarizes the major findings
of this analysis.

2 Experimental setup and data analysis

A comprehensive overview of the ALICE apparatus is available in refs. [53, 54]. The relevant
detectors used in this analysis are the Inner Tracking System (ITS) [55], a silicon detector
comprising 6 cylindrical layers positioned near the collision point, the Time Projection
Chamber (TPC) [56], a gaseous detector serving as ALICE’s primary tracking and particle
identification (PID) detector, and the Time-Of-Flight (TOF) [57] detector, a gaseous type
parallel plate chamber used for PID in the intermediate momentum range. Lastly, the V0
detector [58, 59], consisting of two arrays (named V0A and V0C) of 32 scintillator tiles, is
employed for triggering, event selection, and centrality determination. These arrays are located
on either side of the interaction point, covering the pseudorapidity intervals −3.7 < η < −1.6
and 2.8 < η < 5.1, respectively. Collision events are chosen using a minimum-bias (MB)
trigger, requiring hits in both the V0A and V0C scintillators. Additionally, events with
the primary vertex positioned within 10 cm relative to the nominal interaction point along
the beam axis are exclusively selected to leverage the full detector acceptance. To ensure
optimal detector performance, events with more than one reconstructed primary interaction
vertex, referred to as pileup events [60], are excluded. A total of approximately 80 million
MB events are selected for the analysis. These events are categorized into centrality intervals
based on the amplitude distribution measured in the V0 detector, corresponding to hadronic
interactions as described in ref. [61]. The measurements are performed in 18 centrality
intervals from 0% to 90%, each with a width of 5%.

Nestled within a solenoid that generates a magnetic field of up to 0.5 T along the beam
axis, ITS, TPC, and TOF provide complete azimuthal coverage for the charged particles in the
pseudorapidity interval |η| < 0.8. Particles with at least one space point in the two innermost
layers of the ITS and a minimum of 70 out of 159 space points in the TPC are selected
for the analysis. To further refine the track selection and minimize contamination from
secondary particles (i.e., particles originating from weak decays and material interactions),
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a pT-dependent selection criterion is applied to the distance of the closest approach to the
primary vertex in the perpendicular plane (DCAxy) to the beam axis. Tracks are selected
if their DCAxy is less than DCAxy(pT) = 0.0105 + 0.035/p1.1

T in cm. The largest allowed
longitudinal distance of the tracks to the primary vertex (DCAz) is 2 cm. Additionally,
the chi-square (χ2) per space point in the TPC and the ITS resulting from the track fit
must be below 2.5 and 36, respectively.

Pions (π+), kaons (K+), and protons (p) (as well as their antiparticles, π−, K−, and p̄) are
identified based on the specific energy loss dE/dx in the TPC’s gas volume and the flight time
of a particle from the primary vertex of the collision to the TOF detector. The pT ranges for
π± and K± are restricted to 0.2 < pT < 2.0 GeV/c, while for p(p̄), it is 0.4 < pT < 2.0 GeV/c.
The variable n(σTPC

i ) quantifies the PID response in the TPC, representing the deviation
between the measured and expected dE/dx for a given particle species i, normalized by
the detector resolution σ(TPC). The expected dE/dx is calculated using a parameterized
Bethe-Bloch function [54]. The π± and K± are identified with |n(σTPC

i )| < 2 in the range
0.2 < pT < 0.5 GeV/c whereas the p(p̄) is selected using |n(σTPC

i )| < 2 for 0.4 < pT <

0.6 GeV/c. The lower limit for pT is imposed because the reconstruction efficiency becomes
very low and decreases rapidly below 0.2 GeV/c [62]. Additionally, a threshold of 0.4 GeV/c is
applied for protons to reduce contributions from protons generated by interactions of charged
particles with the detector material. Given that TPC’s particle identification is limited
to low momenta (where distinct dE/dx bands are observed for different particle species),
the TOF detector’s information is also utilized for identifying tracks with pT exceeding
0.5 GeV/c (0.6 GeV/c for protons). Similar to the TPC, n(σTOF

i ) represents the normalized
difference between the measured and expected flight time of a particle species. Consequently,
in the 0.5 < pT < 2.0 GeV/c range (0.6 < pT < 2.0 GeV/c for protons), particle species
are chosen if |n(σTPC+TOF

i )| < 2, where n(σTPC+TOF
i ) =

√
n(σTPC

i )2 + n(σTOF
i )2. These

selection criteria ensure that the integrated purity of the selected samples of π+, K+, and
p (and their antiparticles) remains above 98% across the pT ranges used in the analysis.
The efficiencies for selecting the particles depend on both pT and event centrality, ranging
from 78%, 50%, and 80% at pT ∼ 0.5 GeV/c to 38%, 30%, and 40% at pT ∼ 1.0 GeV/c

for π±, K±, and p(p̄), respectively.
The results presented are based on data from Pb-Pb collisions at √

sNN = 5.02 TeV,
collected by the ALICE collaboration during the Run 2 data-taking period of the LHC in
2015. The net-particle numbers for pion, kaon, and proton (∆π, ∆K, and ∆p) are measured
event-by-event. Using these values, the associated cumulants (including both diagonal and
off-diagonal) and the correlations Cp,K, CQ,K, and CQ,p are determined for different centrality
intervals. The measurements are corrected for particle detection efficiency using the analytical
correction method described in refs. [63, 64], which assumes efficiency losses governed by the
binomial statistics. The efficiency correction procedure was validated in two steps by a full
Monte Carlo (MC) simulation using the HIJING [65] event generator, where the generated
particles are transported through the ALICE detector geometry modeled with GEANT4 [66]
and reconstructed similarly to the collision data. First, the efficiencies for both particles
and antiparticles of each species were determined independently as a function of pT for
each centrality interval. Then, the diagonal and off-diagonal cumulants obtained from the
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Sources of systematic uncertainty Cp,K (in %) CQ,K (in %) CQ,p (in %)
Vertex z-position 0.9–1.4 <0.5 <0.2
Centrality estimator 1.3–6.9 0.1–0.8 0.3–1.3
Pileup rejection 0.1–1.4 <0.3 <0.2
Space points in TPC 0.6–3.8 <0.5 <0.2
χ2 per space point in TPC 0.7–1.2 <0.4 <0.2
χ2 per space point in ITS 0.3–2.8 <0.4 <0.2
DCAxy & DCAz 1.6–3.9 0.4–1.2 0.3–1.0
PID 1.8–5.6 0.4–1.4 0.6–1.6
Total 5.5–8.8 0.8–2.1 1.1–1.8

Table 1. Contributions from various systematic uncertainty sources on Cp,K, CQ,K, and CQ,p in
Pb-Pb collisions at √

sNN = 5.02 TeV. The ranges correspond to the minimum and maximum values
across different centrality interval.

reconstructed MC tracks were corrected on a track-by-track basis using these efficiencies
and the analytical expressions detailed in refs. [63, 67]. An agreement of over 99% was
achieved between the efficiency-corrected results from the MC-reconstructed and those from
the MC-generated data.

The uncertainties in the measurements include both statistical and systematic components.
A bootstrap approach [68] is employed to evaluate statistical uncertainties. The systematic
uncertainties are estimated by tightening and loosening the event and track selection criteria.
The uncertainties related to the event selection stem from the position of the event vertex
along the beam direction and the presence of pileup events. These contributions remain
below 2% across all centralities. To account for the systematic uncertainty in estimating the
collision centrality, the centrality intervals are redefined using the midrapidity multiplicity
distribution [69]. This modification introduces an uncertainty of up to 7% in peripheral and
less than 4% in central collisions. The effects of the track selection are explored by varying
the selection criteria on DCA, the number of reconstructed space points in the TPC, and
the quality of the track fit, from their nominal values. Increasing the required number of
TPC space points has a negligible effect, while variations in the DCA of the tracks in both
transverse and longitudinal directions result in a systematic uncertainty of 1 to 3%. The
alteration of the χ2 per space point value in the TPC and the ITS leads to uncertainties
of less than 2 and 4%, respectively, across all centralities. Systematic uncertainties due to
PID are assessed by varying the default selection criteria on n(σTPC

i ) and n(σTPC+TOF
i ) for

each particle species. The default selection criterion is 2σ, which is varied to 2.5σ, resulting
in uncertainties ranging from 3% to 6%, depending on centrality. Finally, considering each
source’s contribution as uncorrelated, the total systematic uncertainty on the observables is
determined by adding them in quadrature. Table 1 shows the summary of the contributions
to the total systematic uncertainty on Cp,K, CQ,K, and CQ,p.
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3 Results

This analysis investigates the centrality dependence of the correlations Cp,K, CQ,K, and CQ,p,
for two different pT ranges, referred to as Set 1 and Set 2. In case of Set 1, π± and K± are
selected in the range 0.2 < pT < 2.0 GeV/c, while p(p̄) is selected within 0.4 < pT < 2.0 GeV/c.
In Set 2, p(p̄), π±, and K± are restricted to the narrower range 0.4 < pT < 1.6 GeV/c. All
measured diagonal and off-diagonal cumulants, κ2

π, κ2
K, κ2

p, κ11
p,K, κ11

π,K, κ11
π,p, κ2

Q, κ11
Q,K, and

κ11
Q,p, are shown in figure 1 for both sets. The observed centrality dependence is consistent with

the fact that cumulants are extensive quantities, scaling proportionally to the system volume.
The diagonal cumulants κ2

π, κ2
K, κ2

p, and κ2
Q, along with the off-diagonal cumulants κ11

p,K, κ11
π,K,

and κ11
π,p, show a dependence on the pT interval. This behavior arises from the acceptance

effect, where the chosen phase-space coverage influences the observed cumulant values [70].
It should be noted that the corrections applied in this analysis address detector inefficiencies,
such as tracking and PID, to recover the true particle numbers and their cumulants within the
selected phase-space. However, no corrections are applied for kinematic acceptance (i.e., pT, η)
itself, as this defines the physical region over which the measurement is done, consistent with
previous studies [25, 29]. The dependence of fluctuation observables on kinematic intervals is
therefore a genuine physical effect, reflecting their sensitivity to the sampled region of the
system and the underlying dynamics. On the other hand, κ11

Q,K and κ11
Q,p remain consistent

within the uncertainties across the two pT ranges, due to the interplay among their constituent
terms: κ11

Q,K = κ11
p,K + κ11

π,K + κ2
K and κ11

Q,p = κ11
p,K + κ11

π,p + κ2
p, leading to small variations.

To explore the underlying physics mechanisms, the measurements are compared with
model predictions from HIJING [65], EPOS LHC [71], and Thermal-FIST (referred to
as TheFIST in figures) [72], each offering a different approach to collision dynamics and
hadronization. Resonance decays are included in all model calculations. The HIJING model
(HIJING/BB̄ v2.0 [73]) treats nucleus-nucleus collisions as a superposition of independent
binary collisions of wounded nucleons, incorporating phenomena such as baryon junctions,
mini-jet production, parton shadowing, and jet quenching, while excluding effects like thermal
equilibrium and collectivity. The EPOS LHC model, on the other hand, introduces collective
effects through effective parton ladder splitting, separating the high-density central core
from the peripheral corona. This model, a parametrized version of EPOS 1.99 [74], does
not fully utilize the comprehensive 3D hydrodynamic calculation and subsequent hadronic
cascade employed in the original EPOS framework. The HRG model of Thermal-FIST,
employs a thermal-statistical approach to hadronization, and determines hadron abundances
at the freeze-out of inelastic interactions based on derivatives of the system’s partition
function. The key parameters of the model, the chemical freeze-out temperature (Tchem), the
volume corresponding to one unit of rapidity (dV/dy), and the strangeness saturation factor
(γs) [75, 76], are tuned using the hadron yields measured by ALICE [77–80] for different
centralities. The pT spectra are modeled using blast-wave fits from ref. [77]. This model
functions within both the grand-canonical ensemble (GCE) and canonical ensemble (CE)
frameworks. In the GCE, the electric charge, baryon number, and strangeness are conserved
only on average across the entire system, whereas in the CE, these quantities are conserved
exactly within a fixed volume (Vc) [81, 82]. The Vc, known as the correlation volume, is
a defined region in phase space that ensures local conservation of QCD charges. In this
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Figure 1. Centrality dependence of diagonal cumulants (κ2
α) and off-diagonal cumulants (κ11

α,β)
for the net-pion, net-kaon, net-proton, and net-charged particle distributions in Pb-Pb collisions
at √

sNN = 5.02 TeV. The measurements are shown for two different pT ranges. The statistical
(systematic) uncertainties are represented by vertical bars (boxes).

approach, Vc = kdV/dy implies that the system is truncated to k units around midrapidity,
i.e., |y| < k/2, making it equivalent to a global conservation model with a reduced rapidity
cut-off [83]. Therefore, in the Vc approach, the size and geometry of the correlation volume
impose certain limitations on fluctuation observables. For example, this approach provides
accurate results for rapidities |ycut| ≲ k/4 when fluctuations are measured within |y| < ycut,
but fails at higher rapidities [83]. There are also alternative methods for modeling local
conservation of charges, based on the correlation length between particle and antiparticle in
rapidity space [29, 83, 84]. In this analysis, the Vc formulation is adopted, with Vc initially
fixed to 3dV/dy for the CE calculations, following the parametrization in ref. [82], which
accurately describes the yield of light-flavored particles across all colliding systems with a
precision better than 15%. The recent ALICE measurements of the second-order cumulants
of net-proton, net-Ξ, and the correlation between net-Ξ and net-kaon are also described by
the Thermal-FIST model with Vc = 3dV/dy, within experimental uncertainties [85].

An important distinction between the models considered in this work lies in their treatment
of resonance decays. In HIJING, resonances are produced through string fragmentation and
decay promptly according to fixed branching ratios, without further interaction in a hadronic
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medium [65, 73]. As a result, the model does not capture medium-induced modifications to
resonances, due to the absence of collective flow and hadronic rescattering. In contrast, EPOS
LHC features a dynamically evolving treatment, in which resonances are produced both
during the initial string fragmentation and at the hydrodynamic freeze-out surface [71, 86].
The resonances are allowed to decay according to their lifetimes and branching ratios without
further medium-induced modifications. The Thermal-FIST model samples the resonances
from a static thermal distribution at chemical freeze-out and performs a full decay chain of all
unstable resonances based on branching ratios. The decay process is probabilistic in nature,
meaning the actual number of decay products fluctuates from event-to-event [72, 87]. The
decay kinematics are modeled assuming isotropic distributions in the resonance rest frame
for two- and three-body channels, while many-body decays are treated approximately. No
subsequent interactions such as rescattering or regeneration are considered post-decay.

The correlations CQ,p, CQ,K, and Cp,K are shown in the top, middle, and bottom
panels, respectively, in figure 2. The left column presents results obtained for Set 1 pT
acceptance, while the right column shows results for Set 2. All three correlations exhibit
a weak centrality dependence, with Cp,K following a trend opposite to that of CQ,K and
CQ,p. This weak centrality dependence is expected, as these correlations are presented in
terms of ratios, which are intensive quantities and thus largely insensitive to system size and
volume fluctuations. The deviation from the Poisson baseline (unity for CQ,p and CQ,K, and
zero for Cp,K) can be attributed to dynamic effects such as collectivity, resonance decays,
and charge conservation [34–37, 88].

The HIJING model expectations are closer to the data for CQ,p and CQ,K, but fail to
capture the observed trends and magnitudes, with significant discrepancies in Cp,K, mainly
due to the incomplete modeling of resonance decays, which affect final-state interactions and
the resulting particle correlations [65, 73]. HIJING remains constant with centrality, possibly
due to the absence of collective dynamics, whereas the EPOS LHC model shows a visible
centrality dependence driven by varying contributions from the “core” and “corona” regions.
EPOS LHC captures the decreasing trend of Cp,K with centrality, but predicts opposite
trends for CQ,p and CQ,K compared to the data. The GCE results from Thermal-FIST model
completely fail to describe the measurements in both Set 1 and Set 2 pT acceptances. At the
same time, the CE calculations show better agreement with the data compared to all the
other models discussed. It is seen that CE captures both the magnitude and the centrality
dependence of the correlations, particularly for the pT acceptance in Set 2. This indicates that
local conservation of charges in the CE formalism provides a more accurate explanation of
the observed fluctuations and correlations in the experiment. However, further adjustments,
such as varying Vc in the CE formalism, may improve the model’s agreement with the data.

In figure 3, the correlations, Cp,K, CQ,p, and CQ,K for Set 1 pT acceptance are compared
with the Thermal-FIST results in the CE formalism, incorporating different Vc values. The
model parameters, Tchem and γs are fixed to 155 MeV [89] and 1 [76], respectively, across all
centralities, while Vc is systematically varied between 2dV/dy and 4dV/dy. A quantitative
comparison is performed by calculating the χ2 values between the experimental data and
model predictions for varying Vc, considering only the statistical uncertainties. To account for
all three correlations, a combined χ2 is defined as χ2

combined = χ2
Cp,K

+χ2
CQ,p

+χ2
CQ,K

. The best
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Figure 2. Centrality dependence of correlations CQ,p (top), CQ,K (middle), and Cp,K (bottom)
in Pb-Pb collisions at √

sNN = 5.02 TeV. The measurements are shown for two different pT ranges
in left and right columns. The predictions from HIJING [65], EPOS LHC [71], and Thermal-FIST
(TheFIST) [72] model calculations with the grand canonical ensemble (GCE) and canonical ensemble
(CE) formulation are denoted by colored lines. In the CE calculations, the electric charge (Q), baryon
number (B), and strangeness (S) are conserved in a correlation volume of Vc = 3dV/dy. The statistical
(systematic) uncertainties are represented by vertical bars (boxes), and the dashed line corresponds to
the Poisson baseline.

estimate of Vc is determined by minimizing χ2
combined, with its statistical uncertainty calculated

as half of the difference between the values of Vc in which χ2
combined = MIN(χ2

combined) + 1.
Systematic uncertainties on Cp,K, CQ,p, and CQ,K are taken into account in the evaluation
of Vc. The combined χ2 minimization is repeated after shifting the observables up and
down by their respective systematic uncertainties, with half of the resulting difference
assigned as the systematic uncertainty for Vc. The total uncertainty is then obtained by
combining the statistical and systematic uncertainties in quadrature. This procedure yields
Vc = (2.60±0.11)dV/dy for the Set 1 and Vc = (2.82±0.14)dV/dy for the Set 2 pT acceptances.
It is important to note that the extracted Vc values may be affected by the treatment of
resonance decays in the Thermal-FIST model, as resonances play a significant role in shaping
particle yields and their correlations [87].
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function of centrality in Pb-Pb collisions at √

sNN = 5.02 TeV. Colored lines represent Thermal-FIST
(TheFIST) [72] model calculations for the canonical ensemble (CE) with different correlation volumes
(Vc). The statistical (systematic) uncertainties are represented by vertical bars (boxes).
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Figure 4. Correlations Cp,K (left), CQ,p (middle), and CQ,K (right) are shown as a function of cen-
trality in Pb-Pb collisions at √

sNN = 5.02 TeV. Colored lines represent Thermal-FIST (TheFIST) [72]
model calculations for canonical ensemble (CE) with (w) and without (w/o) resonance contribution.
The statistical (systematic) uncertainties are represented by vertical bars (boxes).

Figure 4 compares Cp,K, CQ,p, and CQ,K for Set 1 pT acceptance with Thermal-FIST
CE calculations (using model parameters Tchem = 155 MeV, γs = 1, and Vc = 2.6dV/dy),
both with and without the contribution of resonance decays. Including resonance decays
in the model significantly enhances the magnitude of all three correlations across the full
centrality range and allows the model to quantitatively reproduce the experimental data. In
contrast, calculations without resonance decays fails to reproduce the observed results. The
influence of resonances on the normalized second-order cumulants of net-pions and net-kaons
has also been studied previously using the HIJING model in ref. [29].

One can also study the ratios of the off-diagonal cumulants κ11
Q,p and κ11

Q,K, to the diagonal
cumulant κ2

Q to eliminate the dependence on Vc. In these ratios, the Vc dependence cancels
out due to the same linear dependence on the acceptance fraction αacc of both the numerator
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Figure 6. Centrality dependence of (2κ11
Q,K − κ11

p,K)/κ2
K (left) and (2κ11

Q,p − κ11
p,K)/κ2

p (right) in Pb-Pb
collisions at √sNN = 5.02 TeV. Thermal-FIST (TheFIST) [72] model calculation for canonical ensemble
(CE) with a correlation volume of Vc = 2.6dV/dy is represented by the colored band. The statistical
(systematic) uncertainties are represented by vertical bars (boxes).

and the denominator [43]. The measurements of κ11
Q,p/κ2

Q and κ11
Q,K/κ2

Q for Set 1 pT interval,
compared with model results, are shown in the left and right panels of figure 5, respectively.
The Thermal-FIST model results with different Vc values are comparable despite small
deviations, which can be attributed to the imperfect cancellation of the acceptance factor
(the net-charged particle is defined as the sum of the net-pion, net-kaon, and net-proton) and
the specific implementation of Vc in the model [83]. The model could not fully capture the
centrality dependence of the data, and overestimates its magnitude. This discrepancy could
be due to an incomplete description of the resonance decays, assumptions in the Vc approach,
or missing effects such as initial-state fluctuations and final-state interactions.

Another possible factor affecting the cumulants and their ratios is the initial magnetic
field generated by the spectator protons [51, 52]. Figure 6 shows the centrality dependence of
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Figure 7. Centrality dependence of (κ11
Q,p/κ2

Q)/(κ11
Q,p/κ2

Q)0−5% in Pb-Pb collisions at √sNN = 5.02 TeV
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(systematic) uncertainties are represented by vertical bars (boxes).

(2κ11
Q,K − κ11

p,K)/κ2
K and (2κ11

Q,p − κ11
p,K)/κ2

p, which have been proposed as observables sensitive
to the magnetic field [51]. Both measurements exhibit a subtle increase from semi-central to
peripheral collisions. The ratio (2κ11

Q,K − κ11
p,K)/κ2

K rises by ∼ 4% from the 50–55% to 85–90%
centrality class, while (2κ11

Q,p − κ11
p,K)/κ2

p increases by ∼ 5%, with relative significances of 2.1σ

and 2.8σ, respectively. Despite the absence of the magnetic field effect in the model, the
Thermal-FIST CE calculations describe the measurements within experimental uncertainties.
While these ratios do not show a clear signature of the magnetic field, the scaled ratio
(κ11

Q,p/κ2
Q)/(κ11

Q,p/κ2
Q)0−5% exhibits a more pronounced centrality dependence, as shown in

figure 7. For both Set 1 (left) and Set 2 (right), this ratio increases with centrality, following
a trend consistent with LQCD predictions [52]. In Set 1, the observable deviates from
unity beyond 40% centrality, increasing by nearly 20% at 85–90% centrality, while in Set 2,
the deviation starts at 25% centrality and reaches almost 50% at 85–90% centrality. The
measurements are compared to Thermal-FIST CE calculations without magnetic field for Vc

values of 2.6dV/dy, 2.8dV/dy and 3.0dV/dy, with model results consistent across these Vc

values. The model fails to explain the deviation beyond 50% centrality, which could result
from incomplete resonance decay descriptions, missing physical processes, or possibly an
influence from the initial magnetic field. Further investigation is required to confirm whether
a magnetic field effect contributes to these trends or if other factors dominate.

Figure 8 shows Cp,K, CQ,p, and CQ,K as a function of collision energy for central and
peripheral events, combining ALICE data at √

sNN = 5.02 TeV for Pb-Pb collisions and
STAR data for Au+Au collisions from √

sNN = 7.7 − 200 GeV [31]. While the STAR
results correspond to |η| < 0.5, the ALICE measurements are presented for both |η| < 0.5
and |η| < 0.8, offering insights into the effect of increasing acceptance window. All three
correlations exhibit a monotonic decrease from RHIC to LHC energies. Notably, the deviation
from the Poisson baseline increases with energy for both central and peripheral events, which
is due to several differences in the underlying physics processes. A key factor is the decreasing
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beam rapidity with decreasing energy, which leads to a higher number of stopped protons
in the kinematic acceptance and an increase in the αacc — both crucial for the description
of global and local charge conservation. In addition, volume fluctuations, which cannot be
completely suppressed even in narrow centrality bins, may contribute to the observed trend.

4 Summary

This paper presents the centrality dependence of correlations among the net-charged particle,
net-proton, and net-kaon (Cp,K, CQ,p, and CQ,K) measured in Pb-Pb collisions at √

sNN =
5.02 TeV, with net-proton and net-kaon serving as proxies for the net-baryon and the net-
strangeness. All three correlations show pronounced deviations from the Poisson baseline,
with resonance decays and charge conservation being significant contributing effects. Model
calculations from HIJING, EPOS LHC, and Thermal-FIST in the grand canonical ensemble
fail to explain the measurements. However, the Thermal-FIST model in the canonical
ensemble, based on local charge conservation of the electric charge, baryon number, and
strangeness, exhibits a better agreement with the data across all centralities. A combined χ2

analysis of the correlations yields estimates of the correlation volume as (2.60 ± 0.11)dV/dy

for the pT range 0.2 < pT < 2.0 GeV/c, and (2.82 ± 0.14)dV/dy for 0.4 < pT < 1.6 GeV/c.
The obtained correlation volumes — a specific implementation of the Thermal-FIST model
— may be influenced by an incomplete implementation of resonance decays, assumptions in
the Vc approach, or missing dynamical effects such as initial-state fluctuations and final-state
interactions. The ratios κ11

Q,p/κ2
Q and κ11

Q,K/κ2
Q, which are independent from the choice of Vc,

reveal a notable deviation from the Thermal-FIST model calculations, which underscores the
need for a better understanding of the underlying physics processes. Lattice QCD calculations
predict that specific combinations of susceptibilities for the electric charge, baryon number,
and strangeness are sensitive to the magnetic field, and these are studied experimentally using
their corresponding proxies. While (2κ11

Q,K −κ11
p,K)/κ2

K and (2κ11
Q,p −κ11

p,K)/κ2
p display a subtle

increase from semicentral to peripheral collisions, the scaled ratio (κ11
Q,p/κ2

Q)/(κ11
Q,p/κ2

Q)0−5%
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shows a more pronounced increase, in qualitative agreement with LQCD predictions. Thermal-
FIST calculations without magnetic field fail to reproduce the observed trend beyond 50%
centrality, indicating the need for further investigations to confirm the magnetic field effect
and rule out other possible explanations. The collision energy dependence of Cp,K, CQ,p,
and CQ,K shows a decrease from RHIC to LHC energies, with larger deviations from the
Poisson baseline at higher energies. Understanding the impact of physics mechanisms such
as stopped protons and changes in beam rapidity, is crucial for accurately modeling global
and local charge conservation and correcting for volume fluctuations.
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