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" ABSTRACT: The identification of epistasis or interactions among genes plays an important step
for understanding the genetic regulatory network of complex diseases. When there are more than
one genetic locus influencing the phenotype, interaction effects among loci are probably
involved. Nevertheless, despite of the advances in genetic mapping studies the analytical
detection of epistasis is still considered a challenge. In this work, we apply the genetic algorithm
(GA) jointly with different criteria for model selection to search for molecular markers
associated with multiple QTL’s (Quantitative Trait Loci) and their interaction effects. GA
represents a more efficient alternative for searching high dimensional spaces and it is less
affected to general problems of identification of epistatic genes. We use simulation studies to
compare the performance of GA with the classic search procedures, exhaustive and conditional,
under different configurations. Finally, we analyze data from a F2 rats design and the AG found
more optimal results when compared to conditional procedure. Two QTL’s with epistatic effect
on systolic blood pressure were identified, located in chromosomes 5 and 9 of the rat genome.
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1 Introduction

Epistasis is a phenomenon theoretically known and very important in genetic studies,
which describes how interaction among genes can affect phenotypes. However,
empirically it is difficult to investigate this phenomenon, possibly due the limitations on
the methodological tools that have been used. Many studies have focused on the epistasis
detection problem in complex diseases, such as hypertension, asthma, diabetes and
multiple sclerosis (Cordell, 2002; Carlborg and Haley, 2004; Moore and Williams, 2005;
Gao et al., 2010), but the analytical identification of epistatic genes continues to be a
challenge.

The term epistasis was first used by Batenson (1909) to describe a biological
phenomenon in which the expression of a gene depends on the presence of one or more
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genes. Later, Fisher (1918) proposed a statistical interpretation through the linear
regression framework allowing to model epistasis as an interaction effect among predictor
variables. In this paper predictor variables will be represented by molecular markers that
will take three possible values 0, 1 and 2 corresponding to their aa, Aa and AA genotypes,
respectively. One of the goals of the genetic analysis is to identify quantitative trait locus
(QTL) that is a genetic locus associated to a quantitative trait. Inbred populations, such as
F2 design, are one of the most used for QTL analysis due to the direct calculation of the
genetic values of a series of observed or putative loci (Haley and Knott, 1992).

Genetic mapping consists of experimental and statistical procedures for detection,
localization and effect estimation of genes associated with etiology and regulation of
diseases. By considering design of experiments involving controlled crossing of animals
or plants, different formulations of regression models can be used to identify QTL’s,
including their major effects and possible interaction effects (epistasis). The challenge in
these studies lies on the comparison of models or likelihood functions that, in general,
show only a small variation around an optimum point and involve a high dimensional
search space.

For epistatic QTL identification the exhaustive and conditional search are the mostly
common used methods (Carlborg et al. 2000; Sen and Churchill, 2001; Goldberg, 1996;
Holland, 1998). Considering a set of finite points, the exhaustive procedure assess all
possible solutions to the combinatory problem, but for high dimensional maps the
computational costs, in both time and memory, are severe. The conditional search method
is much faster, but it has limited power for interaction effect detection, since it takes no
account of all possible locus combinations and the selection of a locus depends on the
previous selections (Churchill, 2001; Jannink and Jansen, 2001; Kao and Zeng, 2002).

Furthermore, for epistatic mapping problem the use of Genetic Algorithm (GA) was
first proposed by Carlborg et al. (2000) and Nakamichi et al. (2001), who showed the
efficiency and applicability of GA when searching dense markers maps and using residual
sum of squares as objective-function. Genetic algorithm (GA) is a general and flexible
method for searching optimum solutions in complex spaces (Tsutsui and Gosh, 1986;
Carlborg et al., 2000). For mapping of epistasis, GA represents an analytically useful tool
that can increase the computational efficiency for searching bigger genomes and compact
maps of molecular markers. Further, GA can be adaptable to the apparently non-linear
optimization problem involved on epistasis detection.

For quantitative responses the regression models have been applied for epistasis
mapping through interaction effects of predictor variables. The same approaches have
been used in the context of logistic regression models for binary responses associated to
diseases. Recently, Satagopan and Elston (2013) proposed a test statistic for detecting the
presence of removable interaction in order to fit parsimonious additive models for
searching epistasis. Despite of all efforts, epistasis still remains an opened research field
and our limitation for identification of epistatic loci has been one factor responsible for
the failure of many genetic studies, including hypertension genetic mapping using
experimental designs as F2 inbred (Garret and Rapp, 2002; Levy et al., 2010; Newton-
Cheh et al., 2009; Krieger, 2010; Gopalakrishnan et al., 2010).

In this article, we formalize the GA in the context of genetic mapping and applied it
to identify epistatic QTLs using simulation data and F2 controlled crosses. In section 2,
we describe the classic methods and our proposed GA. In section 3 we describe our
simulation and real data. In Section 4 we show the results of our GA algorithm using
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simulated data under different scenarios, and analyzing F2 rat data (Schork et al., 1995).
In section 5, we presented our final remarks.

2 Method

2.1 Epistatic regression model

The multiple interval mapping model (MIM) proposed by Kao et al. (1999) is based
on a regression model with the predictor variable defined as genetic values associated
with the effects of multiple QTLs and their interactions. Using this model to detect
epistasis may increase the precision and power for identification of QTLs and their
interaction effects. We assume that the QTLs are either observed or imputed molecular
markers.

In this article, MIM is applied by considering two QTLs randomly sampled from the
genome and analyzed as predictor variables and using three different search procedures
(exhaustive, conditional and GA). We assume that all F2 rats have phenotype and
genotype data available for analysis. By genotype data it means any molecular marker
platform as microsatellite or SNPs (Single Nucleotide Polymorphisms). By setting two
QTLs, QI and Q2, located on positionspos! and pos2in two different intervals, I; and I,
respectively, the following regression model is used for epistasis detection between such
QTLs,

yi=m+a X, +a,X, +i, X, * X, +& )

where y; is a phenotype of interest (quantitative response) observed on the i-th individual;
m is the general mean;a,, a, andi|, represent additive and interaction effects for Qland
Q2, respectively;X;; and X,; are predictor variables that can be defined in terms of both
observed or putative genotype values for loci in the I; and I, intervals, respectively. The
error components, &, are assumed uncorrelated, homoscedastic and following a Normal
distribution (Haley and Knott, 1992) or, as proposed by Zeng (1994), be a Normal
Mixture distribution.

Churchill (2001) considered regression models similar to equation (1) and proposed
a test for interaction effect with one, two or three degrees of freedom (df), i.e., the
interaction test can be assessed in the presence of both additive effects (Hy: i1,=0 Aa;#20
Aay#0; using one df), or in the presence of only one additive effect (Hy: i;,=0 Aa;=0
Aay#0; using two df) or without additive effects (Hy: #1,=0 Aa;=0 Aa,=0; using three df).
In our article, we use the one df interaction test.

For search genetic maps using exhaustive method the interaction effect test is
conducted for all possible pairs of positions extracted from the genomic map, for instance,
using slices of 1cM (centi Morgan molecular unit) to cover the map. Under GA, an
interaction test is accomplished only for pairs of positions randomly selected by the
algorithm path. For the conditional search, first we test for one major additive effect (Hy:
a,=0) to identify a QTL with the greatest effect, say Q1; second we include Q1 in the
model, and interaction tests are conducted to find the next QTL, Q2, considering all
remaining loci (Hy: i1,=0 Aa;20 Aay#0).

For each pair of loci, Q1 and Q2,the model in equation (1) is fitted and statistics SSE
(residual sum of squares), AIC (Akaike Information Criterion) and BIC (Bayesian
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Information Criterion) are calculated and used as criteria for model selection (Paulino et
al., 2003). In our implementation, SSE was calculated by the classical quadratic form
given by

SSE=Y{r-x(x'x)" x|y )

where Y is the response variable vector; X is the predictor variables matrix, with the
columns defined by the values corresponding the general mean effect,Q1 and Q2 additive
effects and its interaction. AIC statistics was calculated by the following expression,

AIC =—2In(LR)+2p 3)

where LR is the likelihood ratio, In is the natural logarithm and p is the difference
between the number of the parameters of the two models under comparison (under H, and
H;).BIC statistics was calculated by (Raftery, 1995)

BIC =-21In(LR)-2pIn(n) (4)

where LR and pare defined as in the expression (3) and n is the number of the rats.
Equivalences among these criteria can be assessed (for instance, Sakamoto et al., 1986):

AIC - BIC =2 p(1+1In(n)),

AIC:—ann(l+%j+2p,
SSE

and

BIC =-2n ln(l + SS—RJ —2pln(n),
SSE

where SSR is the regression sum of square. The main difference between AIC and BIC is
the penalization factor. BIC assumes that the “true” model is among the set of candidate
models, while AIC searches for the best model among the available models. For model
comparison with different number of parameters, the SSE criterion is easy to implement,
ensures a good performance of the model selection procedure and can well discriminate
the quality of adjusts between two or more competitive models (Carlborg et al., 2000;
Wang, 2000).

2.2 Genetic algorithm (GA)

The major reason to use GA for epistasis search is its potential for optimization of
high dimensional spaces. To search the genome for detection of epistatic QTLs, each pair
of positions (posl, pos2) extracted from the possible positions population defines a
solution to be assessed and updated. GA reaches the pair of positions that represents the
best solution taking into account the optimization of an objective-function. In our
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situation, the three model selection statistics, SSE, AIC, and BIC, are used as objective-
functions for our proposed GA.

In this article, for the GA implementation we used a real codification where real
values were assigned either for pairs of candidate positions and their correspondent
objective-function. To cover the genome, we assume that the positions are fixed 1cM
apart along the genome, and they can be observed or imputed positions. For
implementation of the GA the following steps were considered, (see, Figure 1):

Step 1 — Evaluation: Assignment of a worse pair of positions (posi, pos2) that reaches a
high value for the objective-function assuming that the pair will be replaced during the
process.

Step 2 - Initialization: Random selection, without replacement, of four different pairs of
positions. Such pairs are sampled from the population of possible positions defined by the

k

the number of positions selected at a time (we use k = 2 loci). Objective-functions are
calculated for the four pairs and one is selected using two tournaments procedure, which
has the advantage to provide diversity (Thierens and Goldberg, 1994; Blickle and Thiele,
1995; Carlborg et al., 2000; Nakamichi et al., 2001).

combination(Kj , where K is the number of positions fixed into the genomic map and k is

Step 3 — New Set of Positions: Generation of new positions through the following steps:

Step 3.1 — Selection: In this stage, one pair of positions is selected from the group of
four candidates for further recombination via a BLX-h or a mutation method. For
decision between recombination (BLX-h)or mutation, a random variable is generated
under uniform distribution, U[0,1]; if the result is lower than a fixed mutation
probability (pm parameter, set to 0.1 or 0.4) the program will execute a mutation
procedure; otherwise, it will execute recombination procedure.

Step 3.2 - Recombination: Conduction of the BLX-h routine (Eshelman et
al., 1997). This operator sustains the intuitive idea that information must be
exchanged among different candidate solutions. The probabilities of recombination
are set to 0.9 or 0.6 (corresponding to pm equal to 0.1 or 0.4, respectively).

Step 3.3 — Mutation: A random operator is used that attribute equal probability for
occurrence of a stronger mutation (limit mutation) or a lighter mutation (uniform
mutation).

Step 4- Updating: In the initialization matrix including the four candidate pairs, the pair
of positions with the worse adjustment (using SSE, BIC or AIC criteria) is excluded in
favor of the new pair of positions obtained from recombination or mutation steps. This
pair is included in the updating if its adjustment is “better” than the one previously
inserted.

Step 5 — Stopping rule: The algorithm is run for a fixed number of generations (ng) and
the best solution is obtained. Then, the algorithm is run for a number of solutions (ns) and
global best solution is finally obtained by comparing all ns solutions.
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Step 6 — Loop: If the stopping rule, ns, for one solution is not attained, the algorithm
returns to step 2 for the next GA generation, until a given number of generations is
completed, and a solution is achieved.
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Figura 1 - Genetic Algorithm for epistasis search.
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3 Data description

3.1 Simulation study

We consider eight different scenarios for data simulation based on the following
parameters: dimension of the markers map (MAP), sample size (n), mutation probability
(pm), number of solutions (ns) and number of generations (ng). The first parameter, MAP,
refers to the number of chromosomes, number of observed markers per chromosome and
the distance between markers for a map. The parameter n is the number of F2 rats and
corresponds to the number of phenotype data simulated. The last three parameters are
related to the GA application. Table 1 shows the parameter values used for simulation and
data analysis.

Table 1. Characterization of simulated and real data

Data MAP Total , QTL1 QTL2 pm  gs ng
1 2 4 4 24 50 5 26 0.1 100 100
2 2 4 4 24 50 5 26 04 100 100
3 2 4 4 24 50 5 26 0.4 100 1000
4 2 4 4 24 200 1 13 0.4 100 1000
5 2 4 4 24 200 5 22 0.4 100 1000
6 2 4 4 24 200 5 26 0.4 100 1000
7 10 4 4 120 200 104 113 0.4 100 1000
8 10 10 8 720 200 9 633 0.4 100 1000
9 21 8.7% 26.7% 6,436 221 0.4 100 100
10 21 8.7% 26.7% 6,436 221 0.4 100 1000

*: mean values for real data.

For the simulation of the markers map we consider two scenarios: first, smaller
genome window (Data 1 to Data 6) with 2 chromosomes including 4 markers per
chromosome equally 4cM spaced, totalizing 24cM for search; second, larger windows
(Data 7 and Data 8) with 10 chromosomes, 4 markers per chromosome equally spaced by
4cM and by 8cM, totalizing 120cM and 720cM, respectively. Positions were imputed for
covering the map in each 1cM. For each observed marker position, genotype data was
generated, but for putative positions genotype data was calculated from the observed
genotype of adjacent markers, as proposed by Haley and Knott (1992).

Data sets 1, 2 and 3 were generated using n=50 observations and MAP defined by
24cM totalizing 276 possible pair of positions to search for epistasis. Data from 4 to 6
used n=200 observations and the same MAP. Data 7 was generated using n=200and a
MAP defined by 120cM totalizing 7,140 possible pair of positions to search for epistasis.
Finally Data 8, also with n=200 observations, but a MAP with 720cM, totalizing 259,560
possible pair of positions to search for epistasis.

For the genotype and phenotype data simulation we used Win QTL Cart (Wang et
al., 2007) for a F2 population. We assume markers in linkage equilibrium. We generate
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the phenotype from a Normal distribution with mean and variance equal to 130 and 2,
respectively. In each simulation scenario, two QTLs with epistatic effect were generated
in fixed positions from the map (QTL1 and QTL2, indicated in Table 1). We use R
package (R Development Core team, 2008) to implement our method.

3.2 RatsF2

We analyze data from Schork et al. (1995) involving 221 rats from a F2 design
obtained from a crossing between a male Spontaneous Hypertensive Rat strain (SHR)
with a female normotensive Brown-Norway rat (BN). Many cardiovascular variables were
evaluated in each animal, such as systolic and diastolic blood pressure, measured before
and after a salt diet exposition. Genotype data were also obtained for each animal
considering a map with 182 molecular markers (microsatellite platform) distributed along
the 21 rat chromosomes.

Schork et al. (1995) analyzed these data and identified 5 QTL’s with additive effects
associated with systolic blood pressure after salt loading (denoted by SBPS). They did not
identify any locus with epistatic effect using conditional research. Thus, our goal is to use
the same data and our proposed method to see if our GA method will be able to identify
an epistatic effect.

4 Results and discussion

Considering simulated data (Data 1 to Data 8) and real data (Data 9 and 10), we
apply exhaustive, conditional and GA methodology to search the genomic map looking
for epistatic QTLs. In each case, the objective-functions, SSE, AIC and BIC, were used
for model selection. For Data 1 to Data 8, Table 2 shows the results obtained when GA is
applied. In this table is indicated the objective function (fc); the global optimum value
(vog), which is the fc value obtained by the exhaustive search; the percentage of
convergence toward the global optimum fc value (pc vog), corresponding to the number of
solutions in ns equal to vog; the minimum and maximum fc values(lim_inf and lim_sup,
respectively) considering all (ng x ns) pair of positions searched; and the pair of the best
global positions (pos1 and pos2), in centimorgan, for epistatic QTLs.

When the mutation probability (pm) changes from 0.1 to 0.4(Data sets 1 and 2) and
the number of generations (ng) changes from 100 to 1000 (Data 2 and Data 3), we observe
a reduction in the value of the difference between lim_inf and lim_sup values obtained by
GA, and an increase in pc vog.

Table 3 shows the optimum value of the objective-functions for GA, exhaustive and
conditional searches using Data sets 1 to 8. The results indicate that the best global
solution was found for the same pair of positions using exhaustive search and GA, for the
three objective-functions (SSE, AIC and BIC). The conditional search did not attain such
optimum solutions.
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Table 2. GA results obtained for simulated data analysis

Data fc vog  pcvog liminf li  posl pos2
1 SSE  47.89 14 47.89 6 5 26
1 AIC 0.04 4 0.04 8 5 26
1 BIC -23.61 4 -23.61 - 5 26
2 SSE 4789 20 4789 6 5 26
2 AIC 0.04 6 0.04 7 5 26
2 BIC -23.61 5 -23.61 - 5 26
3 SSE  47.89 36 47.89 6 5 26
3 AIC 0.04 18 0.04 7 5 26
3 BIC -23.61 17 -23.61 - 5 26
4 SSE  197.66 2 197.66 2 1 13
4 AIC  -31.65 4 -31.65 1 1 13
4 BIC  -2.46 1 -2.46 - 1 13
5 SSE 5750 28 57.50 6 5 22
5 AIC 0.72 18 0.72 7 5 22
5 BIC -2292 17 -22.92 - 5 22
6 SSE 6439 32 64.39 7 5 26
6 AIC  -0.38 21 -0.38 1 5 26
6 BIC -24.03 22 -24.03 - 5 26
7 SSE  185.84 1 185.84 3 104 113
7 AIC  -3.15 1 -3.15 1 104 113
7 BIC -32.52 1 -32.52 - 104 113
8 SSE  192.05 1 192.05 3 9 633
8 AIC  -7.94 0 0.49 1 1 601
8 BIC -32.13 0 -31.48 - 1 641

Table 3. Results of GA, exhaustive and conditional searches for the global optimum

solution
DATA GA EXHAUSTIVE CONDITIONAL
SSE AIC BIC SSE AIC BIC SSE AIC BIC
1 4789 0.04 -23.61 47.89 0.04 -23.01 47.8 0,19 -
2 4789 0.04 -23.61 47.89 0.04 -23.01 478 0,19 -
3 4789 0.04 -23.61 47.89 0.04 -23.01 47.8 0,19 -
4 197.6 -246 -31.65 197.6 246 -31.65 248. 930 -
5 57.50 0.72 -22.92 5750 0.72 -2292 575 072 -
6 64.39 -0.38 -24.03 64.39 -0.38 -2403 575 072 -
7 185.8 -3.15 -32.52 185.8 -3.15 -3252 334 315 -
8 1920 049 -3148 1920 049 -3148 305, 1093 -
9 3855 244 231 404. 453 -2.87
10 1708 -474 -3433 404. 453 -2.87
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When we increase the number of rats from 50 to 200 (Table 2, Data sets 3, 4, 5
and 6), we observe an increase in SSE values, a reduction in AIC and BIC values, and a
strong reduction in the time that took GA search to attain the global optimum point
(pcvog). These results are expected since AIC and BIC incorporate a penalty as a result of
the sample size and SSE does not it.

For Data set 7 (Table 2), we observe that the simulated epistatic positions 104cM
(chromosome 8) and 113cM (chromosome 9) were identified for three objective functions
using exhaustive and GA searches. When using the conditional search this solution was
attained for SSE and BIC methods, whereas a different epistatic pair on positions, 100cM
(chromosome 8) and 113cM (chromosome 9), was identified using the AIC method.

By increasing the window size from 24cM to 120cM (Table 2, Data sets 6 and 7), we
observe a decrease in tied solutions, i.e., solutions with equal objective-function values.
Moreover, we also observed a reduction in the number of times that GA attains the global
optimum point (pcvog).It occurred in a single solution among the hundreds researched (by
assessing 1,000 generations in each solution). Empirically, it indicates that the greater the
genome greater is the requirement to increase the number of generations (ng) to have a
higher probability to attain the global optimum solution. Furthermore, when we increase
the genome size from 120 to 720 (Table 2, Data sets 7 and 8) the computational time to
run the exhaustive search increases significantly (Data 7, around 24 hours, and Data 8,
around 13 days, using a 2 Gb RAM memory and a 3.4 Ghz clock computer) and GA
failed to attain the global optimum point, suggesting that 1,000 generations per/solution
might be insufficient due the great increase in the search space dimension, from 7,260 to
259,560 points (epistatic positions).

Figure 2 shows the dispersion of the SSE, AIC and BIC values using GA for one
solution with 10,000 generations. The horizontal axis represents the number of
generations (index) and the vertical axis represents the values of the objective-functions.
These values tend to decrease as the generations increase until they attain the global
optimum solution. The lower value corresponds to the best pair of positions that detects
the epistatic loci.

SSE AIC BIC
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Figura 2 - Dispersion of SSE, AIC and BIC values using GA (Data 8).
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Considering the analysis of F2 rats data (Data sets 9 and 10), Table 3 depicts the
optimum value of the objective-functions (SSE, AIC and BIC) obtained via GA and
conditional searches. For both procedures, the optimum pair of positions (in cM) is
located in putative positions on the map. AG found more optimal results when compared
to conditional procedure. We found the following markers, R1335and R5175, located on
chromosomes5 and 9, respectively, using the optimum pair of position identified by GA
(considering 100 solutions with 1,000 generations/solution). Figure 3 shows the
interaction effect of these markers for the systolic blood pressure mean values after salt
diet. We assumed that alleles B and S are segregating from normotensive (BN) and
spontaneously hypertensive (SHR) parents for genotypes BB, BS and SS in F2 animals.

The graph depicted in Figure 3 strongly suggests the presence of an epistatic effect
since the three mean lines are not parallel.
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Figura 3 -  Systolic blood pressure means for markers R1135 and R5175.

Figure 4 shows contour graphs for SSE, AIC and BIC values, obtained from the
regression model in equation (1), considering all possible pairs of positions located
precisely on 182 observed markers on the F2 rats map (a total of 16,471 possibilities).
Lower values attained to SSE (SSE lower than 200), AIC (AIC lower than -1) and BIC
(BIC lower than -10) are represented in dark blue, which correspond to the best pairs of
positions for epistatic markers, whereas higher values of these objective-functions (SSE
higher than 1,000, AIC between 0 and 2, and BIC between (-10,-2]) are represented in
light blue and green. The optimum pair of positions found via GA is indicated in the
graphs as a red asterisk.
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Figura4 -  Contour graphs for SSE, AIC and BIC values considering all pair of positions of the
observed markers in the F2 rat map.

Figure 4 showed only results from observed marker data, without assessing imputed
positions along the map (putative markers). Since the inclusion of imputed positions in the
analysis might improve precision and power for the identification of epistatic loci, we
have also evaluated our method using imputed positions. The, optimum pair of positions
identified using GA is indicated in the graphs as a red asterisk (chromosomes 5 and 9, the
solution by GA, Data set 10). When we combine the observed and putative positions, the
optimum SSE, AIC, and BIC values using GA was 170.83, -4.74, and -34.33, respectively
(Table 3, Data set 10). It is worth noting that regions in the contour graph include points
that do not correspond to the best solutions, indicating that the optimization process used
to identify pairs of epistatic loci is non-linear and the optimum solution found depends on
the gradient used to refine the search space.

Conclusions

In this paper, we applied the genetic algorithm to find epistatic loci in molecular
markers maps considering data from F2 inbred designs. For epistatic QTL search
exhaustive and conditional methods were also used, but they had their own limitations. In
our application we consider GA with three different objective-functions, SSE, AIC and
BIC. Our results using simulated data showed that the conditional search method may lose
power by disregarding pairs of positions, including optimum pairs of positions found
using GA. Furthermore, GA not only showed to be as powerful as the exhaustive method
for epistasis detection, since both methods found the same solutions when analyzing
moderate size data set (10 Chr, 4 M\Chr and Genome 120 cM), but also GA is feasible to
analyze dense maps while the other two methods cannot.

The GA search had a fast convergence process toward a global optimum point (with
a more significant epistatic effect) regardless of the mutation probability values, the
number of generations, and the number of solutions by generations. We also observed that
for established given computing time it was more efficient to increase the number of
generations than to increase the number of solutions. Our simulation results showed that
for GA to converge it was important to keep a moderate number of solutions (around
100).

By applying GA to analyze F2 rat data a pair of QTLs, located in chromosome 5
and 9, was identified with epistatic effect in the regulation of the blood pressure. These
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loci were identified considering imputed positions on the marker map with 1cM apart and
using GA with mutation probability equal 0.4 (recombination probability equal 0.6), 1,000
generations and 100 solutions/generation. Nevertheless, the chromosomal region that
contains such optimum solution was not identified when exhaustive search was applied
considering only positions of observed markers on the map. This indicates that the
optimum solution depends on the gradient adopted to search the marker map, and the GA
is flexible enough to move towards this solution.

Our map with 182 markers available was refined in distances from 1 to 1 cM, but by
exploring the flexibility of GA to work on high dimensional search spaces additional
epistasis studies can be conducted by using more severe genotype imputation or adopting
more dense maps. In this context, surveys of the genetic variation based on SNP (Single
Nucleotide Polymorphism) platforms can be used for mapping in rat strains (STAR
Consortium, 2008). Thus, based on our QTLs currently identified, such chromosome
regions can be refined by covering them with SNP data and finding significant QTNs
(Quantitative Trait Nucleotides) associated to blood pressure.

An R source code considering the GA implementation is available on the webpage
www.ime.usp.br/~poliveir and also it can be obtained from the authors upon request.
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= RESUMO: A identificac@o de epistasia ou interacdo entre genes € um passo importante para a
compreensdo da rede de regulagdo genética de doencas complexas. No entanto, apesar dos
avancos em estudos de mapeamento genético a deteccdo analitica de epistasia ainda é
considerada um desafio. Neste trabalho, aplicamos o algoritmo genético (GA), em conjunto com
diferentes critérios para a selecdo de modelos, para pesquisar o espaco de marcadores
moleculares em busca de QTLs (do inglés, Quantitative Trait Loci) epistaticos (com efeitos de
intera¢@o). Estudos de simulag¢@o sob diferentes configuracdes sdo usados para comparar o
desempenho do GA com procedimentos de busca cldssicos, como a exaustiva e condicional. Para
0 mapeamento epistatico, dados de um projeto com ratos F2 sdo analisados sob o procedimento
de busca condicional e GA. Por meio deste tltimo fomos capazes de identificar dois QTL’s com
efeito epistdtico sobre a pressdo arterial sistdlica, localizados nos cromossomos 5 e 9 do genoma
do rato. OGA representa uma alternativa eficiente para pesquisar espagos de alta dimensdo,
sendo menos afetado por problemas gerais de identificacdo de genes epistdticos. Apesar do GA
ser suficientemente flexivel para se mover para uma solugdo 6tima, o procedimento de busca
depende do gradiente (locos imputados) adotado para pesquisar o mapa de marcadores. Foi
observado que para um tempo computacional de cédlculo fixado é mais eficiente aumentar o
nimero de geracdes/solucdo do que aumentar o nimero de solu¢des, mas para garantir a
convergéncia do GA ¢ importante manter um nimero moderado de solucdes (cerca de 100, em
nossa aplicagio).

= PALAVRAS-CHAVE: Mapeamento intervalar; interagdo génica; selecdo de modelos; QTL,
genes da hipertensao.
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