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� ABSTRACT: The identification of epistasis or interactions among genes plays an important step 

for understanding the genetic regulatory network of complex diseases. When there are more than 

one genetic locus influencing the phenotype, interaction effects among loci are probably 

involved. Nevertheless, despite of the advances in genetic mapping studies the analytical 

detection of epistasis is still considered a challenge. In this work, we apply the genetic algorithm 

(GA) jointly with different criteria for model selection to search for molecular markers 

associated with multiple QTL´s (Quantitative Trait Loci) and their interaction effects. GA 

represents a more efficient alternative for searching high dimensional spaces and it is less 

affected to general problems of identification of epistatic genes. We use simulation studies to 

compare the performance of GA with the classic search procedures, exhaustive and conditional, 

under different configurations. Finally, we analyze data from a F2 rats design and the AG found 

more optimal results when compared to conditional procedure. Two QTL´s with epistatic effect 

on systolic blood pressure were identified, located in chromosomes 5 and 9 of the rat genome. 

� KEYWORDS: Interval mapping, gene interaction, model selection, quantitative trait loci. 

1 Introduction 

Epistasis is a phenomenon theoretically known and very important in genetic studies, 

which describes how interaction among genes can affect phenotypes. However, 

empirically it is difficult to investigate this phenomenon, possibly due the limitations on 

the methodological tools that have been used. Many studies have focused on the epistasis 

detection problem in complex diseases, such as hypertension, asthma, diabetes and 

multiple sclerosis (Cordell, 2002; Carlborg and Haley, 2004; Moore and Williams, 2005; 

Gao et al., 2010), but the analytical identification of epistatic genes continues to be a 

challenge. 

The term epistasis was first used by Batenson (1909) to describe a biological 

phenomenon in which the expression of a gene depends on the presence of one or more 
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genes. Later, Fisher (1918) proposed a statistical interpretation through the linear 

regression framework allowing to model epistasis as an interaction effect among predictor 

variables.  In this paper predictor variables will be represented by molecular markers that 

will take three possible values 0, 1 and 2 corresponding to their aa, Aa and AA genotypes, 

respectively.   One of the goals of the genetic analysis is to identify quantitative trait locus 

(QTL) that is a genetic locus associated to a quantitative trait.  Inbred populations, such as 

F2 design, are one of the most used for QTL analysis due to the direct calculation of the 

genetic values of a series of observed or putative loci (Haley and Knott, 1992). 

Genetic mapping consists of experimental and statistical procedures for detection, 

localization and effect estimation of genes associated with etiology and regulation of 

diseases. By considering design of experiments involving controlled crossing of animals 

or plants, different formulations of regression models can be used to identify  QTL’s, 

including their major effects and possible interaction effects (epistasis). The challenge in 

these studies lies on the comparison of models or likelihood functions that, in general, 

show only a small variation around an optimum point and involve a high dimensional 

search space.  

For epistatic QTL identification the exhaustive and conditional search are the mostly 

common used methods (Carlborg et al. 2000; Sen and Churchill, 2001; Goldberg, 1996; 

Holland, 1998). Considering a set of finite points, the exhaustive procedure assess all 

possible solutions to the combinatory problem, but for high dimensional maps the 

computational costs, in both time and memory, are severe. The conditional search method 

is much faster, but it has limited power for interaction effect detection, since it takes no 

account of all possible locus combinations and the selection of a locus depends on the 

previous selections (Churchill, 2001; Jannink and Jansen, 2001; Kao and Zeng, 2002).  

Furthermore, for epistatic mapping problem the use of Genetic Algorithm (GA) was 

first proposed by Carlborg et al. (2000) and Nakamichi et al. (2001), who showed the 

efficiency and applicability of GA when searching dense markers maps and using residual 

sum of squares as objective-function. Genetic algorithm (GA) is a general and flexible 

method for searching optimum solutions in complex spaces (Tsutsui and Gosh, 1986; 

Carlborg et al., 2000). For mapping of epistasis, GA represents an analytically useful tool 

that can increase the computational efficiency for searching bigger genomes and compact 

maps of molecular markers. Further, GA can be adaptable to the apparently non-linear 

optimization problem involved on epistasis detection.  

For quantitative responses the regression models have been applied for epistasis 

mapping through interaction effects of predictor variables. The same approaches have 

been used in the context of logistic regression models for binary responses associated to 

diseases. Recently, Satagopan and Elston (2013) proposed a test statistic for detecting the 

presence of removable interaction in order to fit parsimonious additive models for 

searching epistasis. Despite of all efforts, epistasis still remains an opened research field 

and our limitation for identification of epistatic loci has been one factor responsible for 

the failure of many genetic studies, including hypertension genetic mapping using 

experimental designs as F2 inbred (Garret and Rapp, 2002; Levy et al., 2010; Newton-

Cheh et al., 2009; Krieger, 2010; Gopalakrishnan et al., 2010).  

In this article, we formalize the GA in the context of genetic mapping and applied it 

to identify epistatic QTLs using simulation data and   F2 controlled crosses.   In section 2, 

we describe the classic methods and our proposed GA.  In section 3 we describe our 

simulation and real data. In Section 4  we show the results of our GA algorithm using 
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simulated data under different scenarios, and analyzing F2 rat data (Schork et al., 1995).  

In section 5, we presented our final remarks. 

2 Method 

2.1 Epistatic regression model 

The multiple interval mapping model (MIM) proposed by Kao et al. (1999) is based 

on a regression model with the predictor variable defined as genetic values associated 

with the effects of multiple QTLs and their interactions.  Using this model to detect 

epistasis may increase the precision and power for identification of QTLs and their 

interaction effects.  We assume that the QTLs are either observed or imputed molecular 

markers. 
In this article, MIM is applied by considering two QTLs randomly sampled from the 

genome and analyzed as predictor variables and using three different search procedures 

(exhaustive, conditional and GA).  We assume that all F2 rats have phenotype and 

genotype data available for analysis. By genotype data it means any molecular marker 

platform as microsatellite or SNPs (Single Nucleotide Polymorphisms).   By setting two 

QTLs, Q1 and Q2, located on positionspos1 and pos2in two different intervals, I1 and I2, 

respectively, the following regression model is used for epistasis detection between such 

QTLs,  

iiiiii XXiXaXamy ε++++= 21122211 *  (1) 

where yi is a phenotype of interest (quantitative response) observed on the i-th individual; 

m is the general mean;a1, a2 andi12 represent additive and interaction effects for Q1and 

Q2, respectively;X1i and X2i  are predictor variables that can be defined in terms of both 

observed or putative genotype values for loci in the I1 and I2 intervals, respectively. The 

error components, εi, are assumed uncorrelated, homoscedastic and following a Normal 

distribution (Haley and Knott, 1992) or, as proposed by Zeng (1994), be a Normal 

Mixture distribution. 
Churchill (2001) considered regression models similar to equation (1) and proposed 

a  test for interaction effect with one, two or three degrees of freedom (df), i.e., the  

interaction test can be assessed in the presence of both additive effects (H0: i12=0 ∧a1≠0 

∧a2≠0; using one df), or in the presence of only one additive effect (H0: i12=0 ∧a1=0 

∧a2≠0; using two df) or without additive effects (H0: i12=0 ∧a1=0 ∧a2=0; using three df).  

In our article, we use the one df interaction test.  

For search genetic maps using exhaustive method the interaction effect test is 

conducted for all possible pairs of positions extracted from the genomic map, for instance, 

using slices of 1cM (centi Morgan molecular unit) to cover the map. Under GA, an 

interaction test is accomplished only for pairs of positions randomly selected by the 

algorithm path. For the conditional search, first we test for one major additive effect (H0: 

a1=0) to identify a QTL with the greatest effect, say Q1;  second we include Q1 in the 

model, and interaction tests are conducted to find the next QTL, Q2, considering all 

remaining loci (H0: i12=0 ∧a1≠0 ∧a2≠0). 

For each pair of loci, Q1 and Q2,the model in equation (1) is fitted and statistics SSE 

(residual sum of squares), AIC (Akaike Information Criterion) and BIC (Bayesian 
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Information Criterion) are calculated and used as criteria for model selection (Paulino et 

al., 2003). In our implementation, SSE was calculated by the classical quadratic form 

given by 

[ ]YXXXXIYSSE ´)´(´ 1−
−=  (2) 

where Y is the response variable vector; X is the predictor variables matrix, with the 

columns defined by the values corresponding the general mean effect,Q1 and Q2 additive 

effects and its interaction. AIC statistics was calculated by the following expression, 

( ) pLRAIC 2ln2 +−=  (3) 

where LR is the likelihood ratio, ln is the natural logarithm  and p is the difference 

between the number of the parameters of the two models under comparison (under H0 and 

H1).BIC statistics was calculated by (Raftery, 1995) 

( ) ( )npLRBIC ln2ln2 −−=  (4) 

where LR and pare defined as in the expression (3) and n is the number of the rats. 

Equivalences among these criteria can be assessed (for instance, Sakamoto et al., 1986): 
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where SSR is the regression sum of square. The main difference between AIC and BIC is 

the penalization factor. BIC assumes that the “true” model is among the set of candidate 

models, while AIC searches for the best model among the available models. For model 

comparison with different number of parameters, the SSE criterion is easy to implement, 

ensures a good performance of the model selection procedure and can well discriminate 

the quality of adjusts between two or more competitive models (Carlborg et al., 2000; 

Wang, 2000). 

2.2 Genetic algorithm (GA) 

The major reason to use GA for epistasis search is its potential for optimization of 

high dimensional spaces. To search the genome for detection of epistatic QTLs, each pair 

of positions (pos1, pos2) extracted from the possible positions population defines a 

solution to be assessed and updated. GA reaches the pair of positions that represents the 

best solution taking into account the optimization of an objective-function. In our 
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situation, the three model selection statistics, SSE, AIC, and BIC, are used as objective-

functions for our proposed GA. 

In this article, for the GA implementation we used a real codification where real 

values were assigned either for pairs of candidate positions and their correspondent 

objective-function. To cover the genome, we assume that the positions are fixed 1cM 

apart along the genome, and they can be observed or imputed positions. For 

implementation of the GA the following steps were considered, (see, Figure 1): 
 

Step 1 – Evaluation: Assignment of a worse pair of positions (pos1, pos2) that reaches a 

high value for the objective-function assuming that the pair will be replaced during the 

process. 
 

Step 2 – Initialization: Random selection, without replacement, of four different pairs of 

positions. Such pairs are sampled from the population of possible positions defined by the 

combination









k

K
, where K is the number of positions fixed into the genomic map and k is 

the number of positions selected at a time (we use k = 2 loci). Objective-functions are 

calculated for the four pairs and one is selected using two tournaments procedure, which 

has the advantage to provide diversity (Thierens and Goldberg, 1994; Blickle and Thiele, 

1995; Carlborg et al., 2000; Nakamichi et al., 2001). 
 

Step 3 – New Set of Positions: Generation of new positions through the following steps: 
 

Step 3.1 – Selection: In this stage, one pair of positions is selected from the group of 

four candidates for further recombination via a BLX-h or a mutation method. For 

decision between recombination (BLX-h)or mutation, a random variable is generated 

under uniform distribution, U[0,1]; if the result is lower than a fixed mutation 

probability (pm parameter, set to 0.1 or 0.4) the program will execute a mutation 

procedure; otherwise, it will execute recombination procedure. 
 

Step 3.2 – Recombination: Conduction of the BLX-h routine (Eshelman et 

al., 1997). This operator sustains the intuitive idea that information must be 

exchanged among different candidate solutions. The probabilities of recombination 

are set to 0.9 or 0.6 (corresponding to pm equal to 0.1 or 0.4, respectively). 
 

Step 3.3 – Mutation: A random operator is used that attribute equal probability for 

occurrence of a stronger mutation (limit mutation) or a lighter mutation (uniform 

mutation). 
 

Step 4– Updating: In the initialization matrix including the four candidate pairs, the pair 

of positions with the worse adjustment (using SSE, BIC or AIC criteria) is excluded in 

favor of the new pair of positions obtained from recombination or mutation steps. This 

pair is included in the updating if its adjustment is “better” than the one previously 

inserted. 
 

Step 5 – Stopping rule: The algorithm is run for a fixed number of generations (ng) and 

the best solution is obtained. Then, the algorithm is run for a number of solutions (ns) and 

global best solution is finally obtained by comparing all ns solutions. 
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Step 6 – Loop: If the stopping rule, ns, for one solution is not attained, the algorithm 

returns to step 2 for the next GA generation, until a given number of generations is 

completed, and a solution is achieved. 

 

 

Figura 1 - Genetic Algorithm for epistasis search. 
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3 Data description 

3.1 Simulation study  

We consider eight different scenarios for data simulation based on the following 

parameters: dimension of the markers map (MAP), sample size (n), mutation probability 

(pm), number of solutions (ns) and number of generations (ng). The first parameter, MAP, 

refers to the number of chromosomes, number of observed markers per chromosome and 

the distance between markers for a map. The parameter n is the number of F2 rats and 

corresponds to the number of phenotype data simulated. The last three parameters are 

related to the GA application. Table 1 shows the parameter values used for simulation and 

data analysis.  

Table 1.  Characterization of simulated and real data 

Data MAP 

 Chr  Mark/Chr  Dist 

Total 

(cM) 
n QTL1 

(cM) 

QTL2 

(cM) 
pm ns ng 

1    2           4          4 24 50 5 26 0.1 100 100 

2    2           4          4 24 50 5 26 0.4 100 100 

3    2           4          4 24 50 5 26 0.4 100 1000 

4    2           4          4 24 200 1 13 0.4 100 1000 

5    2           4          4 24 200 5 22 0.4 100 1000 

6    2           4          4 24 200 5 26 0.4 100 1000 

7  10           4          4 120 200 104 113 0.4 100 1000 

8  10         10          8  720 200 9 633 0.4 100 1000 

9  21         8.7*    26.7* 6,436 221   0.4 100 100 

10  21         8.7*    26.7* 6,436 221   0.4 100 1000 

*: mean values for real data.  

 

For the simulation of the markers map we consider two scenarios:  first, smaller 

genome window (Data 1 to Data 6) with 2 chromosomes including 4 markers per 

chromosome equally 4cM spaced, totalizing 24cM for search; second,   larger windows 

(Data 7 and Data 8) with 10 chromosomes, 4 markers per chromosome equally spaced by 

4cM and by 8cM, totalizing 120cM and 720cM, respectively. Positions were imputed for 

covering the map in each 1cM. For each observed marker position, genotype data was 

generated, but for putative positions genotype data was calculated from the observed 

genotype of adjacent markers, as proposed by Haley and Knott (1992). 

Data sets 1, 2 and 3 were generated using n=50 observations and MAP defined by 

24cM totalizing 276 possible pair of positions to search for epistasis. Data from 4 to 6 

used n=200 observations and the same MAP. Data 7 was generated using n=200and a 

MAP defined by 120cM totalizing 7,140 possible pair of positions to search for epistasis. 

Finally Data 8, also with n=200 observations, but a MAP with 720cM, totalizing 259,560 

possible pair of positions to search for epistasis. 

For the genotype and phenotype data simulation we used Win QTL Cart (Wang et 

al., 2007) for a F2 population. We assume markers in linkage equilibrium. We generate 
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the phenotype from a Normal distribution with mean and variance equal to 130 and 2, 

respectively. In each simulation scenario, two QTLs with epistatic effect were generated 

in fixed positions from the map (QTL1 and QTL2, indicated in Table 1). We use R 

package (R Development Core team, 2008) to implement our method.  

3.2 Rats F2 

We analyze data from Schork et al. (1995) involving 221 rats from a F2 design 

obtained from a crossing between a male Spontaneous Hypertensive Rat strain (SHR) 

with a female normotensive Brown-Norway rat (BN). Many cardiovascular variables were 

evaluated in each animal, such as systolic and diastolic blood pressure, measured before 

and after a salt diet exposition. Genotype data were also obtained for each animal 

considering a map with 182 molecular markers (microsatellite platform) distributed along 

the 21 rat chromosomes.  

Schork et al. (1995) analyzed these data and identified 5 QTL’s with additive effects 

associated with systolic blood pressure after salt loading (denoted by SBPS). They did not 

identify any locus with epistatic effect using conditional research.  Thus, our goal is to use 

the same data and our proposed method to see if our GA method will be able to identify 

an epistatic effect.  

4 Results and discussion 

Considering simulated data (Data 1 to Data 8) and real data (Data 9 and 10), we 

apply exhaustive, conditional and GA methodology to search the genomic map looking 

for epistatic QTLs. In each case, the objective-functions, SSE, AIC and BIC, were used 

for model selection. For Data 1 to Data 8, Table 2 shows the results obtained when GA is 

applied. In this table is indicated the objective function (fc); the global optimum value 

(vog), which is the fc value obtained by the exhaustive search; the percentage of 

convergence toward the global optimum fc value (pc vog), corresponding to the number of 

solutions in ns equal to vog; the minimum and maximum fc values(lim_inf and lim_sup, 

respectively) considering all (ng x ns) pair of positions searched; and the pair of the best 

global positions (pos1 and pos2), in centimorgan, for epistatic QTLs. 

When the mutation probability (pm) changes from 0.1 to 0.4(Data sets 1 and 2) and 

the number of generations (ng) changes from 100 to 1000 (Data 2 and Data 3), we observe 

a reduction in the value of the difference between lim_inf and lim_sup values obtained by 

GA, and an increase in pc vog.  

Table 3 shows the optimum value of the objective-functions for GA, exhaustive and 

conditional searches using Data sets 1 to 8. The results indicate that the best global 

solution was found for the same pair of positions using exhaustive search and GA, for the 

three objective-functions (SSE, AIC and BIC). The conditional search did not attain such 

optimum solutions. 
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Table 2. GA results obtained for simulated data analysis 

Data fc vog pcvog liminf li

m
pos1 pos2 

1 SSE 47.89 14 47.89 6

7
5 26 

1 AIC 0.04 4 0.04 8

.
5 26 

1 BIC -23.61 4 -23.61 -

1
5 26 

2 SSE 47.89 20 47.89 6

2
5 26 

2 AIC 0.04 6 0.04 7

.
5 26 

2 BIC -23.61 5 -23.61 -

1
5 26 

3 SSE 47.89 36 47.89 6

0
5 26 

3 AIC 0.04 18 0.04 7

.
5 26 

3 BIC -23.61 17 -23.61 -

1
5 26 

4 SSE 197.66 2 197.66 2

1
1 13 

4 AIC -31.65 4 -31.65 1

.
1 13 

4 BIC -2.46 1 -2.46 -

1
1 13 

5 SSE 57.50 28 57.50 6

7
5 22 

5 AIC 0.72 18 0.72 7

.
5 22 

5 BIC -22.92 17 -22.92 -

1
5 22 

6 SSE 64.39 32 64.39 7

3
5 26 

6 AIC -0.38 21 -0.38 1

5
5 26 

6 BIC -24.03 22 -24.03 -

1
5 26 

7 SSE 185.84 1 185.84 3

5
104 113 

7 AIC -3.15 1 -3.15 1

3
104 113 

7 BIC -32.52 1 -32.52 -

1
104 113 

8 SSE 192.05 1 192.05 3

1
9 633 

8 AIC -7.94 0 0.49 1

5
1 601 

8 BIC -32.13 0 -31.48 -

1
1 641 

 

Table 3. Results of GA, exhaustive and conditional searches for the global optimum 

solution 

DATA 
GA  EXHAUSTIVE 

SEARCH 

 CONDITIONAL 

SEARCH SSE AIC BIC  SSE AIC BIC  SSE AIC BIC 

1 47.89 0.04 -23.61  47.89 0.04 -23.01  47.8

9 
0,19 -

23.45 2 47.89 0.04 -23.61  47.89 0.04 -23.01  47.8

9 
0,19 -

23.45 3 47.89 0.04 -23.61  47.89 0.04 -23.01  47.8

9 
0,19 -

23.45 4 197.6

6 
-2.46 -31.65  197.6

6 
-2.46 -31.65  248.

56 
9.30 -

19.89 5 57.50 0.72 -22.92  57.50 0.72 -22.92  57.5

0 
0.72 -

22.92 6 64.39 -0.38 -24.03  64.39 -0.38 -24.03  57.5

0 
0.72 -

22.92 7 185.8

4 
-3.15 -32.52  185.8

4 
-3.15 -32.52  334.

01 
-3.15 -

32.52 8 192.0

5 
0.49 -31.48  192.0

5 
0.49 -31.48  305,

94 
10.93 -

31.92 9 385.5

9 
2.44 -2.31        404.

46 
4.53 -2.87 

10 170.8

3 
-4.74 -34.33         404.

46 
4.53 -2.87 
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When we increase the number of rats from 50 to 200 (Table 2, Data sets 3, 4, 5 

and 6), we observe an increase in SSE values, a reduction in AIC and BIC values, and a 

strong reduction in the time that took GA search to attain the global optimum point 

(pcvog). These results are expected since AIC and BIC incorporate a penalty as a result of 

the sample size and SSE does not it. 

For Data set 7 (Table 2), we observe that the simulated epistatic positions 104cM 

(chromosome 8) and 113cM (chromosome 9) were identified for three objective functions 

using exhaustive and GA searches. When using the conditional search this solution was 

attained for SSE and BIC methods, whereas a different epistatic pair on positions, 100cM 

(chromosome 8) and 113cM (chromosome 9), was identified using the AIC method.  

By increasing the window size from 24cM to 120cM (Table 2, Data sets 6 and 7), we 

observe a decrease in tied solutions, i.e., solutions with equal objective-function values. 

Moreover, we also observed a reduction in the number of times that GA attains the global 

optimum point (pcvog).It occurred in a single solution among the hundreds researched (by 

assessing 1,000 generations in each solution). Empirically, it indicates that the greater the 

genome greater is the requirement to increase the number of generations (ng) to have a 

higher probability to attain the global optimum solution. Furthermore, when we increase 

the genome size from 120 to 720 (Table 2, Data sets 7 and 8) the computational time to 

run the exhaustive search increases significantly (Data 7, around 24 hours, and Data 8, 

around 13 days, using a 2 Gb RAM memory and a 3.4 Ghz clock computer) and GA 

failed to attain the global optimum point, suggesting that 1,000 generations per/solution 

might be insufficient due the great increase in the search space dimension, from 7,260 to 

259,560 points (epistatic positions). 

Figure 2 shows the dispersion of the SSE, AIC and BIC values using GA for one 

solution with 10,000 generations. The horizontal axis represents the number of 

generations (index) and the vertical axis represents the values of the objective-functions. 

These values tend to decrease as the generations increase until they attain the global 

optimum solution. The lower value corresponds to the best pair of positions that detects 

the epistatic loci. 

 

SSE AIC BIC 

   

Figura 2 - Dispersion of SSE, AIC and BIC values using GA (Data 8). 
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Considering the analysis of F2 rats data (Data sets 9 and 10), Table 3 depicts the 

optimum value of the objective-functions (SSE, AIC and BIC) obtained via GA and 

conditional searches. For both procedures, the optimum pair of positions (in cM) is 

located in putative positions on the map. AG found more optimal results when compared 

to conditional procedure. We found the following markers, R1335and R5175, located on 

chromosomes5 and 9, respectively, using the optimum pair of position identified by GA 

(considering 100 solutions with 1,000 generations/solution). Figure 3 shows the 

interaction effect of these markers for the systolic blood pressure mean values after salt 

diet. We assumed that alleles B and S are segregating from normotensive (BN) and 

spontaneously hypertensive (SHR) parents for genotypes BB, BS and SS in F2 animals. 

The graph depicted in Figure 3 strongly suggests the presence of an epistatic effect 

since the three mean lines are not parallel. 

 

 

 

Figura 3 - Systolic blood pressure means for markers R1135 and R5175. 

Figure 4 shows contour graphs for SSE, AIC and BIC values, obtained from the 

regression model in equation (1),  considering all possible pairs of positions located 

precisely on 182 observed markers on the F2 rats map (a total of 16,471 possibilities). 

Lower values attained to SSE (SSE lower than 200), AIC (AIC lower than -1) and BIC 

(BIC lower than -10) are represented in dark blue, which correspond to the best pairs of 

positions for epistatic markers, whereas higher values of these objective-functions (SSE 

higher than 1,000, AIC between 0 and 2, and BIC between (-10,-2]) are represented in 

light blue and green. The optimum pair of positions found via GA is indicated in the 

graphs as a red asterisk. 
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Figura 4 - Contour graphs for SSE, AIC and BIC values considering all pair of positions of the 

observed markers in the F2 rat map. 

Figure 4 showed only results from observed marker data, without assessing imputed 

positions along the map (putative markers). Since the inclusion of imputed positions in the 

analysis might improve precision and power for the identification of epistatic loci, we 

have also evaluated our method using imputed positions.  The, optimum pair of positions 

identified using GA is indicated in the graphs as a red asterisk (chromosomes 5 and 9, the 

solution by GA, Data set 10). When we combine the observed and putative positions, the 

optimum SSE, AIC, and BIC values using GA was 170.83, -4.74, and -34.33, respectively 

(Table 3, Data set 10).   It is worth noting that regions in the contour graph include points 

that do not correspond to the best solutions, indicating that the optimization process used 

to identify pairs of epistatic loci is non-linear and the optimum solution found depends on 

the gradient used to refine the search space. 

Conclusions  

In this paper, we applied the genetic algorithm to find epistatic loci in molecular 

markers maps considering data from F2 inbred designs. For epistatic QTL search 

exhaustive and conditional methods were also used, but they had their own limitations. In 

our application we consider GA with three different objective-functions, SSE, AIC and 

BIC. Our results using simulated data showed that the conditional search method may lose 

power by disregarding pairs of positions, including optimum pairs of positions found 

using GA. Furthermore, GA not only showed  to be as powerful as the exhaustive method 

for epistasis detection, since both methods found the same solutions when analyzing 

moderate size data set (10 Chr, 4 M\Chr and Genome 120 cM), but also GA is feasible to 

analyze dense maps while the other two methods cannot. 

The GA search had a fast convergence process toward a global optimum point (with 

a more significant epistatic effect) regardless of the mutation probability values, the 

number of generations, and the number of solutions by generations. We also observed that 

for established given computing time it was more efficient to increase the number of 

generations than to increase the number of solutions. Our simulation results showed that 

for GA to converge it was important to keep a moderate number of solutions (around 

100). 

By applying GA to analyze F2 rat data a pair of QTLs, located in chromosome 5 

and 9, was identified with epistatic effect in the regulation of the blood pressure. These 
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loci were identified considering imputed positions on the marker map with 1cM apart and 

using GA with mutation probability equal 0.4 (recombination probability equal 0.6), 1,000 

generations and 100 solutions/generation. Nevertheless, the chromosomal region that 

contains such optimum solution was not identified when exhaustive search was applied 

considering only positions of observed markers on the map. This indicates that the 

optimum solution depends on the gradient adopted to search the marker map, and the GA 

is flexible enough to move towards this solution.  

Our map with 182 markers available was refined in distances from 1 to 1 cM, but by 

exploring the flexibility of GA to work on high dimensional search spaces additional 

epistasis studies can be conducted by using more severe genotype imputation or adopting 

more dense maps. In this context, surveys of the genetic variation based on SNP (Single 

Nucleotide Polymorphism) platforms can be used for mapping in rat strains (STAR 

Consortium, 2008).  Thus, based on our QTLs currently identified, such chromosome 

regions can be refined by covering them with SNP data and finding significant QTNs 

(Quantitative Trait Nucleotides) associated to blood pressure.  

An R source code considering the GA implementation is available on the webpage 

www.ime.usp.br/~poliveir and also it can be obtained from the authors upon request.  
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� RESUMO: A identificação de epistasia ou interação entre genes é um passo importante para a 

compreensão da rede de regulação genética de doenças complexas. No entanto, apesar dos 

avanços em estudos de mapeamento genético a detecção analítica de epistasia ainda é 

considerada um desafio. Neste trabalho, aplicamos o algoritmo genético (GA), em conjunto com 

diferentes critérios para a seleção de modelos, para pesquisar o espaço de marcadores 

moleculares em busca de QTLs (do inglês, Quantitative Trait Loci) epistáticos (com efeitos de 

interação). Estudos de simulação sob diferentes configurações são usados para comparar o 

desempenho do GA com procedimentos de busca clássicos, como a exaustiva e condicional. Para 

o mapeamento epistático, dados de um projeto com ratos F2 são analisados sob o procedimento 

de busca condicional e GA. Por meio deste último fomos capazes de identificar dois QTL’s com 

efeito epistático sobre a pressão arterial sistólica, localizados nos cromossomos 5 e 9 do genoma 

do rato. OGA representa uma alternativa eficiente para pesquisar espaços de alta dimensão, 

sendo menos afetado por problemas gerais de identificação de genes epistáticos. Apesar do GA 

ser suficientemente flexível para se mover para uma solução ótima, o procedimento de busca 

depende do gradiente (locos imputados) adotado para pesquisar o mapa de marcadores. Foi 

observado que para um tempo computacional de cálculo fixado é mais eficiente aumentar o 

número de gerações/solução do que aumentar o número de soluções, mas para garantir a 

convergência do GA é importante manter um número moderado de soluções (cerca de 100, em 

nossa aplicação). 

� PALAVRAS-CHAVE: Mapeamento intervalar; interação gênica; seleção de modelos; QTL, 

genes da hipertensão. 
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