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SUMMARY 

Wald statistics are proposed as alternatives to test for 

. the Hardy-Weinberg equilibrium in some genetic systems. Such statis­

tics are asymptotically equivalent to Pearson's x2 statistics and in 

many cases are computationally simpler, since they do not require 

the calculation of the restricted maximum likelihood estimates of 

the gene frequencies. The proposed technique is illustrated through 

examples•involving· the MN and ABO blood classification systems. Al­

though the required calculations may be easily performed on a pocket 

calculator. indication for the use of a categorical data computer su 

broutine (GENCAT) is provided. 
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1. INTRODUCTION 

Consider a genetic system with r condominant alleles, 
r A1 , ••. ,Ar. in a single locus; let q., i•l,., •• r, r q . •l denote the , 1 i•l i _,corresponding probabilities of ocurrence in a given population, The 

system is said to be in Hardy-Weinberg equilibrium if the cr;1) geno 
types A1Aj, i,j•l, •.• ,r, j!i occur with probabilities 

(1) 

A problem of general concern to geneticists is to test whether a g! 
ven population satisfies the Hardy-Weinberg equilibrium conditionsh! 
sed on the evidence provided by a sample of n observational units for 
which the observed genotype frequencies are nij' i,j•l, .•• ,r, j!i 
Among the available test statistics, the most frequently used are 
Pearson's xz criterion for_ large samples (see Li(l976} for example) 
and a few variations of Fisher's exact test for small samples (see, 
Chapco(1976) or Elston and Forthofer (1977), for example). More re­
cently," a Bayesian test was suggested by Pereira and Rogatko (1984) 
for some special cases. 

In situations where dominance relations are present the 
Hardy-Weinberg equilibrium hypot~esis no longer corresponds to (1) 
and depends on the specific dominance patterns. For example, in the 
ABO blood group classification system, where the O allele is recessi 
ve and the A and B alleles are codominant the relations are: 



.: 
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Po • qt 

PA -qi + ZqOqA 
(2) 

PB• q~ + ZqOqB 

PAs• ZqAqB 

where qA,qB and q0 are the probabilities of occurence of the A,B and 

0 alleles, respectively and p0 ,pA,pB and pAB correspond to the prob! 

bilities of the 00, (AA,AO), (BB,BO) and AB phen~types respectively , 

Tests of the hypothesis (2) may be conducted via the same statistics 

mentioned above, although the corresponding computational aspects are 

fairly more complicated. In particular, it involves iterative proce­

dures to obtain the maximum likelihood estimates of q0
.qA and qB re 

quired fo~ Pearson's ~2 statistic (see Rao (1973, p.370),for exan-ple). 

' In this paper we propose an alternative test statistic for 

Hardy-Weinberg equilibrium hypothesis which is asymptotically equiv! 

lent to Pearson's x2 statistic and avoids the computation of the res 

tricted maximum likelihood estimates of the gene frequencies. In Sec 

tion 2 we outline the rationale for the proposed test and comment on 

its asymptotic properties. In Section 3 we illustrate the applica-

tion of the technique with numerical examples from the literature,i~ 

dicating how to use a computer package for the analysis of categori­

cal data to perform . the calculations • . 

2. THE PROPOSED TEST PROCEDURE AND ITS ASYMPTOTIC PROPERTIES 

Consider initially a genetic system with r condominant alle 
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les in a single locus. Let e•(p11,P1z,··••P1r•Pzz••·••Pzr•''~'Prr)' 
denote the r(r+l)/2 vector of genotype probabilities and 

: ~•(n11 .n12 , ••• ,n1r,n22 •••• ,nzr•···•nrr)' the r(r+l)/2 vector of ob­
served genotype frequencies which follows the multinomial distribu-

·• 
tion: 

n-. 
l. J ' 

P{~} • n: II A 
j?i nij. 

. It can be easily shown that the r(r+l) /2 relations in (1) are 
valent to the following r(r-1)/2 ones: 

Then, letting rce) be a r(r-1)/2 vector valued function for 
the (ij) th element, . j>i is p~--4p .. p .. it follows that the - l.J l.l JJ 
Weinberg equilibrium hypothesis (1) may be written as: 

equ!_ 

(3) 

which 

Hardy-

( 4) 

If the pij's are sufficiently large it follows by Central 
Limit Theory that e•~/n has an asymptotic multinormal distribution 
with mean vector e and covariance matrix V(n)•n-1 (D -nn') where D - ' -e 'i;. -e is a diagonal matrix with the elements of e along the main diagonal. 
As indicated in Bhapkar (1966), a Wald statistic to test (4) is. g.!, 
ven by: 

(5) 

where YFCeJ is a consistent estimate of the asymptotic covarianre ma 
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trix of~(~), say Yp(e). Using Taylor series methods, it can be 

shown that ~p(P) "'l!{e) Y(e)'i. Ce). where J:!(e). en~) 1 zaJ. Under the 

hypothesis (4) the statistic Q follows an asymptotic-x 2 distribution 

with r(r-1)/Z degrees of freedom. Bhapkar (1966) demonstrated that Q 

is algebraically identical to Neyman's minimum t 2 statistic and thus 

shares the same asymptotic optimality properties of Pearson's x2 sta 

tistic or Wilks'· likelihood ratio criterion. 

Consider, for example, the MN blood group classification 

system. The Hardy-Weinberg equilibrium hypothesis in this case, cor­

responds top~• 4pMpN, where pM,pMN and pN denote the probabilities 

of the M. MN and N genotypes, respectively. Taking F(e)•p~-4pMpNwh_!' 

re e•(PM-Pt,w~)• we obtain 

~(e}•2 (-2pN, pMN,-ZpM} and the Wald statistic{~} reduces to: 

Q • (6) 

where pM, pMN and pN correspond to the observed proportions of geno­

types M, MN and N respectively. Under the null hypothesis, Q follows 

an asymptotic xi distribution with 1 degree of freedom. 

From (5) it is clear that the proposed procedure does not 

require the computation of restricted maximum likelihood estimates; 

therefore it is of special interest in cases where such computations 

involve elaborate procedures. This is generally the situation when 

dominanc~ relations are present, as in the ABO blood group classifi-
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cation system, which 1;e consider next. Fir:,;t n:>te that (2) is equi­
valent to: 

( 7) 

(an outline of the proof is indicated in the appendi~). Now, follo­
wing Bhapkar (1966), a test of (7) can be· undertaken via a Wald sta 
tistic of the form (5) where Ea(pA,Ps,Po,PAsl' is the vector of o~ 
served phenotype proportions and F(e)•(pA+p0}(pB+p0)-(pAB/2+/p0)2 • 
Since here H(~) •(A,B,C,D) with A=pB+p0 , B•pA+p0 , C•p0_-pAB-PAB/2 ~ 
and D•-(pAB/2+/i>o) it follows that (5) reduces to: 

n{AB - D2
} 

2 

Q • 2- 2- 2- 2- · 2 A pA+B pB+C p0+D PAB-E 
(8) 

where E•ApA+Bp8+cp0+DpAB' Under the null hypothesis Q follows an 
asymptotic .x2 distribution with 1 degree of freedom. 

3, NUMERICAL ILLUSTRATION 

Here we compare the observed values of the Wald statis­
tics (6) and (8) . with the corresponding Pearson x2 statistics for 
sets of M-1 and.Aro blood group classification data obtained from the Ii 
terature. Results are indicated in Table 1; in all cases there was 
close agreement between the two statistics. 
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Table 1 

Observed values of Wald and Pearson x2 sta­

tistics for Hardy-Weinberg equilibrium tests 

· in MN and ABO blood group classification da­

tasets. 

Observed plienotype frequencies Wald statistic Pearsm i statistic 

Crow(1950,p.154) 1\.{=137; iw•l96; ~=87 l.19(P=-0,275) 1. 22(P=0. 269) 

Crow and Ifowra 1\.{•362; 'wz634; l'lri=282 0,027(P=0,869) 0 .029(P=O ,R65) 
(1970,p.36) 

Rao(l973,p.402) nA•l20; ~•79; 'b•121;nAB•33 0. 412(P=O .521) 0,44(P-0,507) 

.Rao(l973,p.402) nA-95; . ~=-121; no•ll8;nAB•30 0,367(P=0.544) 0.3S(P-0.554) 

Elandt-Johnson nA•725; 7;J•258;1\)•l073;nAB•72 0 ,00012!B(P• 1 .lllQl 0 .0001293(P• 1. 000) 
(1971,p.401) 

Although the observed values of the above Wald statistics 

may be eils~ly obtained by hand, it is possible to carry out the calcu­

lations via appropriate computer software. This is particularly attr.1£ 

tive in cases where either yF(e) is a matrix or the corresponding e! 

pression involves cumbersome algebraic manipulation. In this direc­

tion, a convenient computer program is GENCAT (Landis et al.(1976)) • 

Among other capabilities related to the analysis of categorical dat~ 

it provides estimates oI asymptotic covariance matrices of functions 

of the parameters of multinomial distributions. ~ssentially, the par 

tial derivatives ~Ce) ·are computed as a product of standard terms via 

the "chain rule" for functions which may be expressed as compositions 

-

• 
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• 
of linear, logarithmic and exponential operations. 

In the case of the MN system, we have F(e)•~2e~p{~1l~gE+c} 
where 1£&( .) and e~p( .) are the elementwise vector logarithmic and 
exponential operators, respectively (i.e. the i th element of l~~ is 
logpi and of e~pe is exppi), ~1- [~ ~ ~]. c•log4 and ~2• (1 -1] 

-1 Thus ~Ce)•~2 ~~l ~l QE where ~x denotes a diagonal matrix with the 
clements of~ along the main diagonal and ~1•e~p~11~&E• In the c~se 

where 

-1 -1 Here, ~(£)•~4Q~3Q~2 ~zQ~l~1Qe where ~1•e~~ll~~e_, !2•~2e~p~1l~ge 
and !3c ~31~~2e~~ll~&E• 
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• 
APPENDIX 

We present here a short proof of the following fact: 

If pA,Ps•Po and pAB are nonnegative real numbers 

fying ( 7) and 

satis-

(9) 

then the real numbers qO•1i>c), qAa ✓pA+pO - 'Pc) and qB• ✓pB+pO' -'Pc) are 

nonnegative and satisfy both (2) and 

Proof: A simple calculation shows that the first three relations in 

(Z) are verified. Expressing x~~+qA+qB in terms of pA,PB• pO and 

pAB we obtain ✓pA +p0 + ✓pB+p0 • x+ 'Po· Squaring both me.mbers we get: 

(11) 

Also, from (7) and (9) we get: 

From (11) and (12) it follows that x must be a solution of the qua­

dratic equation: 

(13) 

Since such equation has 1 as its unique positive solution (10) follows 

The last relation in (2) is a consequence of (7), (9) and (10). 
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