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SUMMARY

Wald statistics are proposed as alternatives to test for
the Hardy-Weinberg equilibrium in some genetic systems. Such statis-
tics are asymptotically equivalent to Pearson's xz statistics and in
many cases are computationally simpler, since they do not require
the calculation of the restricted maximum likelihood estimates of
the gehe frequencies. The proposed technique is jllustrated through
examples‘involving‘the MN and ABO blood classification systems. Al-
though the required calculations may be easily performed on a pocket
calculator, indication for the use of a categorical data computer su

broutine (GENCAT) is provided. o
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1. INTRODUCTION

Consider a genetic system with r condominant alleles,
Al”"'Ar in a single locusi let 9;» i=1,...,r, igl qi=1 denote the
) .corresponding probabilities of ocurrence in a given population. The
- system is said to be in Hardy—WeinEerg equilibrium i% the (rzl) geno

types AlAj' i,j=1,...,r, j>i occur with probabilities

2 T A
pyy = {1t ¢
' 2q;q; if j>i
A problem of general concern to geneiicist; is to test whether a gi
ven population satisfies the Hardy-Weinberg equilibrium conditions ba
sed on the evidence provided by a sample of n observational units for
which the observed genotype frequencies are nij' i,j=1,...,r, j>i .
Among the available test statistics, the most frequently used are
Pearson's xz criterion for large samples (see Li(1976) for example )
and a few variations of Fisher's exact test for small samples (see,
Chapco(1976) or Elston and Forthofer (1977), for example). More re-
cently, a Bayesian test was suggested by Pereira and Rogatko (1984)

for some special cases.

In situations where dominance relatlons are present the
Hardy—Welnberg equilibrium hypothe51s no longer corresponds to (1)
and depends on the specific dominance patterns. For example, in the
ABO blood group classification system, where the 0 allele is recessi

ve and the A and B alleles are codominant the relations are:
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Po © qg

a2

Py = 94 * 2909 2
2

Pg = dg * 29993

Pap™ 24p93

where q,.qg and q, are the probabilities of occurence of the A,B and
0 alleles, respectively and py.P,.Pp and PaB correspond to the proba
bilities of the 00, (AA,AQ), (BB,BO) and AB phenotypes respect{veiy .
Tests of the hypothesis (2) may be conducted via the same statistics
mentioned above, although the corresponding computational aspects are
fairly more complicated. In particular, it involves iterative proce-
dures to obtain the maximum likelihood est?mates of ag5-9p and qp TE

quired for Pearson's xz statistic (see Rao (1973, p.370),f0r example).

‘In this paper we propose an alternative test statistic for
Hardy-Weinberg equilibrium hypothesis which is asymptotically equiva
lent to Pearson's XZ statistic and avoids the computation of the res
tricted maximum likelihood estimates of the gene frequencies. In Sec
tion 2 we outline the rationale for the proposed test and comment on
its asymptotic properties. In Section 3 we illustrate the applica-
tion of the technique with numerical examples from the literature,in
dicating how to use a computer package for the analysis of categori-

cal data to perform the calculations. .

2. THE PROPOSED TEST PROCEDURE AND ITS ASYMPTOTIC PROPERTIES

Consider initially a genetic system with r condominant alle
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les in a single locus. Let p= (pll,plz,....plr,pzz,...,er,..;,prr)’
denote the r(r+1)/2 vector of genotype probabilities and

n= (nll, 12""’n1r’n22"“'n2r""'nrr)' the r(r+1)/2 vector of ob-
served genotype frequencies which follows the multinomial distribu-

tion:
pllJ "
P{n} = n! 1

j2i Mij®
It can be easily shown that the r{(r+1)/2 relations in (1) are equi

valent to the following r(r-1)/2 ones:

2 e .. .
Pi; = 4Piinj v i,§=1,...,r,j5i (3)

Then, letting F(p) be a r(r-1)/2 vector valued function for which
the (ij)t element, j>i is pr 4pnpJJ it follows that the Hardy-
Weinberg equilibrium hypothesis (1) may be written as:

Ep =0

(4)

If the pij's are sufficiently large it follows by Central
Limit Theory that §=n/n has an asymptotic multinormal distribution
with mean vector P and covariance matrix V(E)tn (D 'EE ) where QE
is a diagonal matrix with the elements of p along the main diagonal.
As indicated in Bhapkar (1966), a Wald statistic to test (4) is gi

ven by: .
Q= F(p)" [YF(E)]-}E(E) : (5)

where VF(E) is a cons1stent estimate of the asymptotic covariance ma



trix of E(ﬁ), say YF(B)' Using Taylor series methods, it can be
shown that !F(g)=§(é)y(2)ﬁ'(g). where H(E)= [—Eiil é]. Under the
- ZB

hypothesis (4) the statistic Q follows an asymptotic xz distribution

with r(r-1)/2 degrees of freedom. Bhapkar (1966) demonstrated that Q
is algebraically identical to Neyman's minimum iz statistic and thus
shares the same asymptotic optimality properties of Pearson’s iz sta

tistic or Wilks' likelihood ratio criterion.

Consider, for example, the MN blood group classification
system. The Hardy-Weinberg equilibrium hypothesis in this case, cor-
responds to pMN = 4pMpN. where py.Pyy and py denote the probabilities
of the M, MN and N genotypes, respectively. Taking F(E)-pMN-4pMpNume
Te g-(pMJMNPNT we obtain

H(p)=2 (-2py. pMN"ZPM? and the Wald statistic (5) reduces to:

' NNy
Q - n(PMN'4PMPN) (6)
-~ o~ - = P ~2 -3 -~
165y [(Byy*By) ~*BaePr* 20wn] * *Pren (1P

where Py, ﬁMN and Py correspond to the observed proportions of geno-
types M, MN and N respectively. Under the null hypothesis, Q follows

an asymptotic xz distribution with 1 degree ¢f freedom.

From (5) it is clear that the proposed procedure does not
require the computation of restricted maximum likelihood estimates ;
therefore it is of special interest in cases where such computations
involve elaborate procedures. This is generally the situation when

dominance relations are present, as in the ABO blood group classifi-
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cation system, which we coasider next. First note that (2) is equi-
valent to:

2 (7

(PA"'po) (PB"'po) = (PAB/Z*"/I%)
(an outline of the proof is indicated in the appendix). Now, follo-
wing Bhapkar (1966), a test of (7) can be undertaken via a Wald sta
tistic of the form (5) where §=(ﬁA,ﬁB,ﬁo,ﬁAB)' is the vector of ob

2 2

served phenotype proportions and F(E)=(pA+pO)(pB+pO)~(pAB/2+/55) a
Since here H(p)=(A,B,C,D) with A=Pp+Bg., B=pp+Bg. C=Bp-Pap-Pan/2 "By
and D-—(ﬁAB/2+/56) it follows that (5) reduces to:

2
n{AB - D%}
Q:

8)
e ol ol (!
A"PA*B Pp+C P+ Pyp-E

where E=AﬁA*BﬁB+CﬁO+D§AB. Under the null hypothesis Q follows an

asymptotic xz distribution with 1 degree of freedom.

3. NUMERICAL ILLUSTRATION

Here we compare the observed values of the Wald statis;
tics (6) and (8) with the corresponding Pearson xz statistics for
Sets of MNand ABO blood group classification data obtained from the 1i
terature. Results are indicated in Table 1; in all cases there was

close agreement between the two statistics.
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Table 1

Observed values of Wald and Pearson xz sta-
tistics for Hardy-Weinberg equilibrium tests

in MN and ABO blood group classification da-

tasets.
Source Observed phenotype frequencies Wald statistic Pearson 'xz statistic
Crow(1950,p.154) nM=137; nMN=196; nN=87 1.19(P=0.275) 1.22(P=0.269)
Crow and Kimura nM=362; an=634; nN=282 0,027(P=0.869) 0.029(P=0.865)

(1970,p.36)
Rao(1973,p.402) n,=120; my=79; n0=121;nAB=33 0.412(P=0.521) 0.44(P=0,507)
Rao(1973,p.402) n,=95; ny=121;n;=118:n,5=30 0,367(P=0.544)  0.35(P=0.554)

Elandt-Johnson nA=725; n.B=258; n0-1073;nAB-72 0.0001293(P=1.000 0.0001293(P=1.000)
(1971,p.401) .

Although the observed values of the above Wald statistics
may be easily obtained by hand, it is possible to carry out the calcu-
lations via appropriate computer software. This is particularly attrac
tive in cases where either YF(E) is a matrix or the corresponding ex
pression involves cumbersome-algebraic manipulation. In this direc-
tion, a convenient computer progran is GENCAT (Landis et al.(1976)).
Among other capabilities related to the analysis of categorical data,
it provides estimates of asymptotic covariance matrices of functions
of the parameters of multinomial distributions. Essentially, the par

tial derivatives H(p) are computed as a product of standard terms via

the "chain rule" for functions which may be expressed as compositions




of linear, logarithmic and exponential operations.

In the case of the MN system, we have F(E)=A exp{A 10gp+c}
where log(.) and exp(.) are the elementwise vector logarithmic and

exponential operators, respéctively (i.e. the ith element of logp is

020

logp; and of expp is expp,), A= [; 0 1|+ c=log4 and A= 1 -1]

Thus 5(2)’52 931 él Qél where 9x denotes a diagonal matrix with the

clements of X along the main diagonal and gl=e§p5119gg. In the case
of the ABO system, we have F(p)=é4e§pé3logkze§péllggp where
00

10100
. 01100[, Ay= [119] 4ng a,[1 -1
o * <2 1 v <3 00 2 ~4 <
1 000 71

S O = o

1
ey
C O O e
N = O

-1 -1 :
Here, H(p)=AgDy Dy A;D, A\Dp' where a;=expA;logp . a,-A;expA;logp

and a;= Azlogh,expA; logp.
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APPENDIX

We present here a short proof of the following fact:

If PosPpsPp and Ppp @re nonnegative real numbers satis-
fying (7) and

PA+PB+P0*PAB =1 (9)

then the real numbers q,=vpg., 94="Pp*Pg - 'P, and ag="/Pg*Py -'P, are

nonnegative and satisfy both (2) and
qp*qp*dy = 1 ; (10)

Proof: A simple calculation shows that the first three relations in
(2) are verified. Expressing X=qn*q,+qp in terms of PpsPp: Pg and
Ppp We obtain /p,+pg + YPg*Pg = X*7py. Squaring both members we get:

—
27(pp*pg) (Pg*Pg) = x“+2x7Dg - Py=PA-Py (11)

Also, from (7) and (9) we get:

2 /lpp*Po) (Pg*Pg) = 1-Pp-Py-Py*27P, (12)

From (11) and (12) it follows that x must be a solution of the qua-

dratic equation:
xZ*Zx/f); - (1+2/§'6) = 0 - {13)

Since such equation has 1 as its unique positive solution (10) follows

The last relation in (2) is a consequence of (7, (9) and (10).
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