

RT-MAE-8518

WALD TESTS FOR THE HARDY-WEINBERG EQUILIBRIUM

by

Julio M. Singer, Clovis A. Peres
and
Carlos E. Marle

Palavras Chaves: Wald statistics, Hardy-Weinberg law,
ABO blood group.

Classificação AMS: 62P10
(AMS Classification): 62F03

- Outubro de 1985 -

WALD TESTS FOR THE HARDY-WEINBERG EQUILIBRIUM

JULIO M. SINGER, CLOVIS A. PERES and CARLOS E. HARLE

Instituto de Matemática e Estatística, Universidade de São Paulo
Caixa Postal 20570, Ag. Iguatemi, São Paulo, SP, Brazil

SUMMARY

Wald statistics are proposed as alternatives to test for the Hardy-Weinberg equilibrium in some genetic systems. Such statistics are asymptotically equivalent to Pearson's χ^2 statistics and in many cases are computationally simpler, since they do not require the calculation of the restricted maximum likelihood estimates of the gene frequencies. The proposed technique is illustrated through examples involving the MN and ABO blood classification systems. Although the required calculations may be easily performed on a pocket calculator, indication for the use of a categorical data computer subroutine (GENCAT) is provided.

Key words and phrases: Wald statistics, Hardy-Weinberg law, ABO blood group.

1. INTRODUCTION

Consider a genetic system with r codominant alleles, A_1, \dots, A_r in a single locus; let q_i , $i=1, \dots, r$, $\sum_{i=1}^r q_i = 1$ denote the corresponding probabilities of occurrence in a given population. The system is said to be in Hardy-Weinberg equilibrium if the $\binom{r+1}{2}$ genotypes $A_i A_j$, $i, j=1, \dots, r$, $j \geq i$ occur with probabilities

$$p_{ij} = \begin{cases} q_i^2 & \text{if } i=j \\ 2q_i q_j & \text{if } j > i \end{cases} \quad (1)$$

A problem of general concern to geneticists is to test whether a given population satisfies the Hardy-Weinberg equilibrium conditions based on the evidence provided by a sample of n observational units for which the observed genotype frequencies are n_{ij} , $i, j=1, \dots, r$, $j \geq i$. Among the available test statistics, the most frequently used are Pearson's χ^2 criterion for large samples (see Li(1976) for example) and a few variations of Fisher's exact test for small samples (see, Chapco(1976) or Elston and Forthofer (1977), for example). More recently, a Bayesian test was suggested by Pereira and Rogatko (1984) for some special cases.

In situations where dominance relations are present the Hardy-Weinberg equilibrium hypothesis no longer corresponds to (1) and depends on the specific dominance patterns. For example, in the ABO blood group classification system, where the O allele is recessive and the A and B alleles are codominant the relations are:

$$\begin{aligned} p_0 &= q_0^2 \\ p_A &= q_A^2 + 2q_0q_A \\ p_B &= q_B^2 + 2q_0q_B \\ p_{AB} &= 2q_Aq_B \end{aligned} \tag{2}$$

where q_A, q_B and q_0 are the probabilities of occurrence of the A, B and 0 alleles, respectively and p_0, p_A, p_B and p_{AB} correspond to the probabilities of the 00, (AA, AO), (BB, BO) and AB phenotypes respectively. Tests of the hypothesis (2) may be conducted via the same statistics mentioned above, although the corresponding computational aspects are fairly more complicated. In particular, it involves iterative procedures to obtain the maximum likelihood estimates of q_0, q_A and q_B required for Pearson's χ^2 statistic (see Rao (1973, p.370), for example).

In this paper we propose an alternative test statistic for Hardy-Weinberg equilibrium hypothesis which is asymptotically equivalent to Pearson's χ^2 statistic and avoids the computation of the restricted maximum likelihood estimates of the gene frequencies. In Section 2 we outline the rationale for the proposed test and comment on its asymptotic properties. In Section 3 we illustrate the application of the technique with numerical examples from the literature, indicating how to use a computer package for the analysis of categorical data to perform the calculations.

2. THE PROPOSED TEST PROCEDURE AND ITS ASYMPTOTIC PROPERTIES

Consider initially a genetic system with r codominant alle

les in a single locus. Let $\underline{p} = (p_{11}, p_{12}, \dots, p_{1r}, p_{22}, \dots, p_{2r}, \dots, p_{rr})'$ denote the $r(r+1)/2$ vector of genotype probabilities and $\underline{n} = (n_{11}, n_{12}, \dots, n_{1r}, n_{22}, \dots, n_{2r}, \dots, n_{rr})'$ the $r(r+1)/2$ vector of observed genotype frequencies which follows the multinomial distribution:

$$P(\underline{n}) = n! \prod_{j \geq i} \frac{p_{ij}^{n_{ij}}}{n_{ij}!}$$

It can be easily shown that the $r(r+1)/2$ relations in (1) are equivalent to the following $r(r-1)/2$ ones:

$$p_{ij}^2 = 4p_{ii}p_{jj}, \quad i, j = 1, \dots, r, j > i \quad (3)$$

Then, letting $\underline{F}(\underline{p})$ be a $r(r-1)/2$ vector valued function for which the $(ij)^{th}$ element, $j > i$ is $p_{ij}^2 - 4p_{ii}p_{jj}$ it follows that the Hardy-Weinberg equilibrium hypothesis (1) may be written as:

$$\underline{F}(\underline{p}) = \underline{0} \quad (4)$$

If the p_{ij} 's are sufficiently large it follows by Central Limit Theory that $\hat{\underline{p}} = \underline{n}/n$ has an asymptotic multinormal distribution with mean vector \underline{p} and covariance matrix $\underline{V}(\underline{p}) = n^{-1}(\underline{D}_{\underline{p}} - \underline{p}\underline{p}')$ where $\underline{D}_{\underline{p}}$ is a diagonal matrix with the elements of \underline{p} along the main diagonal. As indicated in Bhapkar (1966), a Wald statistic to test (4) is given by:

$$Q = \underline{F}(\hat{\underline{p}})' [\underline{V}_{\underline{F}}(\hat{\underline{p}})]^{-1} \underline{F}(\hat{\underline{p}}) \quad (5)$$

where $\underline{V}_{\underline{F}}(\hat{\underline{p}})$ is a consistent estimate of the asymptotic covariance ma

trix of $F(\hat{p})$, say $V_F(\hat{p})$. Using Taylor series methods, it can be shown that $V_F(\hat{p}) = H(\hat{p})V(\hat{p})H'(\hat{p})$, where $H(\hat{p}) = \left[\frac{\partial F(z)}{\partial z} \right]_{z=\hat{p}}$. Under the hypothesis (4) the statistic Q follows an asymptotic χ^2 distribution with $r(r-1)/2$ degrees of freedom. Bhapkar (1966) demonstrated that Q is algebraically identical to Neyman's minimum χ^2 statistic and thus shares the same asymptotic optimality properties of Pearson's χ^2 statistic or Wilks' likelihood ratio criterion.

Consider, for example, the MN blood group classification system. The Hardy-Weinberg equilibrium hypothesis in this case, corresponds to $p_{MN}^2 = 4p_M p_N$, where p_M , p_{MN} and p_N denote the probabilities of the M, MN and N genotypes, respectively. Taking $F(p) = p_{MN}^2 - 4p_M p_N$ where $p = (p_M, p_{MN}, p_N)'$ we obtain

$H(p) = 2(-2p_N, p_{MN}, -2p_M)$ and the Wald statistic (5) reduces to:

$$Q = \frac{n(\hat{p}_{MN}^2 - 4\hat{p}_M \hat{p}_N)^2}{16\hat{p}_M \hat{p}_N [(\hat{p}_M + \hat{p}_N) - 4\hat{p}_M \hat{p}_N + 2\hat{p}_{MN}^2] + 4\hat{p}_{MN}^3(1 - \hat{p}_{MN})} \quad (6)$$

where \hat{p}_M , \hat{p}_{MN} and \hat{p}_N correspond to the observed proportions of genotypes M, MN and N respectively. Under the null hypothesis, Q follows an asymptotic χ^2 distribution with 1 degree of freedom.

From (5) it is clear that the proposed procedure does not require the computation of restricted maximum likelihood estimates; therefore it is of special interest in cases where such computations involve elaborate procedures. This is generally the situation when dominance relations are present, as in the ABO blood group classifi-

cation system, which we consider next. First note that (2) is equivalent to:

$$(p_A + p_0)(p_B + p_0) = (p_{AB}/2 + \sqrt{p_0})^2 \quad (7)$$

(an outline of the proof is indicated in the appendix). Now, following Bhapkar (1966), a test of (7) can be undertaken via a Wald statistic of the form (5) where $\hat{p} = (\hat{p}_A, \hat{p}_B, \hat{p}_0, \hat{p}_{AB})'$ is the vector of observed phenotype proportions and $F(\hat{p}) = (p_A + p_0)(p_B + p_0) - (p_{AB}/2 + \sqrt{p_0})^2$. Since here $H(\hat{p}) = (A, B, C, D)$ with $A = \hat{p}_B + \hat{p}_0$, $B = \hat{p}_A + \hat{p}_0$, $C = \hat{p}_0 - \hat{p}_{AB} - \hat{p}_{AB}/2\sqrt{p_0}$ and $D = -(\hat{p}_{AB}/2 + \sqrt{p_0})$ it follows that (5) reduces to:

$$Q = \frac{n\{AB - D^2\}^2}{A^2\hat{p}_A + B^2\hat{p}_B + C^2\hat{p}_0 + D^2\hat{p}_{AB} - E^2} \quad (8)$$

where $E = A\hat{p}_A + B\hat{p}_B + C\hat{p}_0 + D\hat{p}_{AB}$. Under the null hypothesis Q follows an asymptotic χ^2 distribution with 1 degree of freedom.

3. NUMERICAL ILLUSTRATION

Here we compare the observed values of the Wald statistics (6) and (8) with the corresponding Pearson χ^2 statistics for sets of MN and ABO blood group classification data obtained from the literature. Results are indicated in Table 1; in all cases there was close agreement between the two statistics.

Table 1

Observed values of Wald and Pearson χ^2 statistics for Hardy-Weinberg equilibrium tests in MN and ABO blood group classification datasets.

Source	Observed phenotype frequencies	Wald statistic	Pearson χ^2 statistic
Crow(1950,p.154)	$n_M=137$; $n_{MN}=196$; $n_N=87$	1.19(P=0.275)	1.22(P=0.269)
Crow and Kimura (1970,p.36)	$n_M=362$; $n_{MN}=634$; $n_N=282$	0.027(P=0.869)	0.029(P=0.865)
Rao(1973,p.402)	$n_A=120$; $n_B=79$; $n_O=121$; $n_{AB}=33$	0.412(P=0.521)	0.44(P=0.507)
Rao(1973,p.402)	$n_A=95$; $n_B=121$; $n_O=118$; $n_{AB}=30$	0.367(P=0.544)	0.35(P=0.554)
Elandt-Johnson (1971,p.401)	$n_A=725$; $n_B=258$; $n_O=1073$; $n_{AB}=72$	0.0001293(P=1.000)	0.0001293(P=1.000)

Although the observed values of the above Wald statistics may be easily obtained by hand, it is possible to carry out the calculations via appropriate computer software. This is particularly attractive in cases where either $\underline{V}_F(p)$ is a matrix or the corresponding expression involves cumbersome algebraic manipulation. In this direction, a convenient computer program is GENCAT (Landis et al.(1976)). Among other capabilities related to the analysis of categorical data, it provides estimates of asymptotic covariance matrices of functions of the parameters of multinomial distributions. Essentially, the partial derivatives $\underline{H}(p)$ are computed as a product of standard terms via the "chain rule" for functions which may be expressed as compositions

of linear, logarithmic and exponential operations.

In the case of the MN system, we have $F(p) = A_2 \exp\{A_1 \log p + c\}$ where $\log(\cdot)$ and $\exp(\cdot)$ are the elementwise vector logarithmic and exponential operators, respectively (i.e. the i^{th} element of $\log p$ is $\log p_i$ and of $\exp p$ is $\exp p_i$), $A_1 = \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, $c = \log 4$ and $A_2 = [1 \ -1]$. Thus $H(p) = A_2 D_{a_1} A_1 D_{-p}^{-1}$ where D_x denotes a diagonal matrix with the elements of x along the main diagonal and $a_1 = \exp A_1 \log p$. In the case of the ABO system, we have $F(p) = A_4 \exp A_3 \log A_2 \exp A_1 \log p$ where

$$A_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \text{ and } A_4 = [1 \ -1].$$

Here, $H(p) = A_4 D_{a_3} D_{a_2}^{-1} A_2 D_{a_1} A_1 D_{-p}^{-1}$ where $a_1 = \exp A_1 \log p$, $a_2 = A_2 \exp A_1 \log p$ and $a_3 = A_3 \log A_2 \exp A_1 \log p$.

REFERENCES

1. BHAPKAR, V.P. (1966). A note on the equivalence of two test criteria for hypotheses in categorical data. Journal of the American Statistical Association 61, 228-235.
2. CHAPCO, W. (1976). An exact test of the Hardy-Weinberg law. Biometrics, 32, 183-189
3. CROW, J.F. (1966). Genetic Notes. Burgess Publishing Company, Minneapolis.
4. CROW, J.F. and KIMURA, M. (1970). An introduction to population genetics. Harper and Row, New York.
5. ELANDT -JOHNSON, R.C. (1971). Probability models and statistical methods in Genetics. Wiley, New York.
6. ELSTON, R.C. and FORTHOFER, R. (1977). Testing for Hardy-Weinberg equilibrium in small samples. Biometrics, 33, 536-542.
7. LANDIS, J.R., STANISH, W.M., FREEMAN, J.L. and KOCH, G.G. (1976). A computer program for the generalized chi-square analysis of categorical data using weighted least squares (GENCAT). Computer Programs in Biomedicine, 6, 196-231
8. LI, C.C. (1976). First course in population genetics. Boxwood, California.
9. PEREIRA, C.A.B. and ROGATKO, A. (1984). The Hardy-Weinberg equilibrium under a Bayesian perspective. Revista Brasileira de Genética, VII, 689-707.
10. RAO, C.R. (1973). Linear statistical inference and its applications. Wiley, New York.

APPENDIX

We present here a short proof of the following fact:

If p_A, p_B, p_0 and p_{AB} are nonnegative real numbers satisfying (7) and

$$p_A + p_B + p_0 + p_{AB} = 1 \quad (9)$$

then the real numbers $q_0 = \sqrt{p_0}$, $q_A = \sqrt{p_A + p_0} - \sqrt{p_0}$ and $q_B = \sqrt{p_B + p_0} - \sqrt{p_0}$ are nonnegative and satisfy both (2) and

$$q_A + q_B + q_0 = 1 \quad (10)$$

Proof: A simple calculation shows that the first three relations in (2) are verified. Expressing $x = q_0 + q_A + q_B$ in terms of p_A, p_B, p_0 and p_{AB} we obtain $\sqrt{p_A + p_0} + \sqrt{p_B + p_0} = x + \sqrt{p_0}$. Squaring both members we get:

$$2\sqrt{(p_A + p_0)(p_B + p_0)} = x^2 + 2x\sqrt{p_0} - p_0 - p_A - p_B \quad (11)$$

Also, from (7) and (9) we get:

$$2\sqrt{(p_A + p_0)(p_B + p_0)} = 1 - p_A - p_B - p_0 + 2\sqrt{p_0} \quad (12)$$

From (11) and (12) it follows that x must be a solution of the quadratic equation:

$$x^2 + 2x\sqrt{p_0} - (1 + 2\sqrt{p_0}) = 0 \quad (13)$$

Since such equation has 1 as its unique positive solution (10) follows. The last relation in (2) is a consequence of (7), (9) and (10).

RELATÓRIO TÉCNICO

DO

DEPARTAMENTO DE ESTATÍSTICA

TÍTULOS PUBLICADOS

7901 - BORGES, W. de S. On the limiting distributions of the failure time of composite material. São Paulo, IME-USP, 1979, 22p.

7902 - GALVES, A.; LEITE, J.G.; ROUSSIGNOL, M. The invariance principle for the one-dimensional symmetric simple exclusion process. São Paulo, IME-USP, 1979, 9p.

8001 - MENTZ, R.P. et al. Exploratory fitting of autoregressive and moving average models to well-behaved time series data. São Paulo, IME-USP, 1980, 16p.

8002 - MORETTIN, P.A. Walsh spectral analysis. São Paulo, IME-USP, 1980, 27p.

8003 - RODRIGUES, J. Robust estimation and finite population. São Paulo, IME-USP, 1980, 13p.

8004 - BORGES, W. de S. & RODRIGUES, F.W. On the axiomatic theory of multistate coherent structures. São Paulo, IME-USP, 1980, 10p.

8005 - MORETTIN, P.A. A central limit theorem for stationary processes. São Paulo, IME-USP, 1980, 5p.

8101 - DANTAS, C.A.B. & COLUCCI, E. A Simulation program for emergency services-II. São Paulo, IME-USP, 1981, 14p.

8102 - ANDJEL, E.D. Invariant measures for the zero range process. São Paulo, IME-USP, 1981, 55p.

8103 - ANDJEL, E.D. The asymmetric simple exclusion process on \mathbb{Z}^d . São Paulo, IME-USP, 1981, 13p.

8104 - MORETTIN, P.A. & TOLOI, C.M.C., Accuracy of forecasting with special reference to the Box-Jenkins and Bayesian Methodologies. São Paulo, IME-USP, 1981, 41p.

8105 - PINO, F.A. & MORETTIN, P.A., Intervention analysis applied to Brazilian coffee and milk time series. São Paulo .IME-USP. 1981, 36p.

8106 - BORGES, W.S. & RODRIGUES, J., Testing for new better than used in expectation. São Paulo, IME-USP, 1981, 7p.

8107 - FAHMY, S.; PEREIRA, C.A.B.; PROSCHAN, F., The influence of the sample on the posterior distribution. São Paulo, IME-

8108 - PERES, C.A., Asymptotic efficiency of the likelihood ratio conditional test for multinomial distributions. São Paulo IME-USP, 1981, 29p.

8109 - PERES, C.A., Testing the effect of blocking in a randomized complete block design (RCBD). São Paulo, IME-USP, 1981, 14p.

8110 - BASU, D. & PEREIRA, C.A.B., On the Bayesian analysis fo categorical data: the problem of nonresponse. São Paulo, IME-USP, 1981, 13p.

8201 - BASU, D. & PEREIRA, C.A.B., Conditional independence in statistics, São Paulo, IME-USP, 1982, 37p.

8202 - BASU, D. & PEREIRA, C.A.B., A note on Blackwell sufficiency and a Skibinsky characterization of distributions. São Paulo, IME-USP, 1982, 12p.

8203 - PERES, C.A., On the interpretation of the parameters of the quadratic model for cell survival after irradiation. São Paulo, IME-USP, 1982, 22p.

8204 - GALVES, A., et al. Rescaling the stirring process. São Paulo IME-USP, 1982, 23p.

8205 - RODRIGUES, J., On the asymptotic theory for the fixed size confidence ellipsoids. São Paulo, IME-USP, 1982, 14p.

8206 - PEREIRA, C.A.B. & RODRIGUES, J., Robust linear prediction in finite populations. São Paulo, IME-USP, 1982, 14p.

8207 - MORETTIN, P.A., Walsh-Fourier transforms. São Paulo, IME-USP 1982, 15p.

8208 - PERES, C.A. & MORETTIN, P.A., Building bridges between the academic and real worlds-some observations from South America. São Paulo, IME-USP, 1982 16p.

8209 - PEREIRA, C.A.B. & ROGATKO, A., The Hardy-Weinberg equilibrium under a Bayesian perspective. São Paulo, IME-USP, 1982, 16p.

8210 - MORETTIN, P.A., The Levinson algorithm and its applications in time series analysis. São Paulo, IME-USP, 1982, 16p.

8211 - RODRIGUES, J., A Note on Maximized and Conditional Likelihood Functions. São Paulo, IME-USP, 1982, 9p.

8301 - PEREIRA, C.A.B., Stopping rules and conditional inference in 2x2 contigence tables. São Paulo, IME-USP, 1983, 7p.

8302 - BOLFARINE, H., PEREIRA, C.A.B. & RODRIGUES, J., Robust Linear Prediction in Finite Populations: A Bayesian Perspective. São Paulo, IME-USP, 1983, 21p.

8303 - MORETTIN, P.A. et al., Rainfall at Fortaleza, Ceará, Brazil Revisited. São Paulo, IME-USP, 1983, 33p.

8304 - MORETTIN, P.A. & TOLOI, C.M.C., Evaluation of Forecasting Procedures: A Case Study. São Paulo, IME-USP, 1983, 30p.

8305 - PERES, C.A., et al., Educating and training undergraduate applied statisticians. São Paulo, IME-USP, 1983, 13p.

8306 - PEREIRA, C.A.B., & LINDLEY, D.V., Examples Questioning the Use of Partial Likelihood. São Paulo, IME-USP, 1983, 10p.

8307 - MORETTIN, P.A. et al., Statistics in South America. São Paulo, IME-USP, 1983, 10p.

8308 - LINDLEY, D.V., Royal Statistical Society 150th Anniversary. São Paulo, IME-USP, 1983, 19p.

8309 - ANDJEL, E.D., Invariant Measures and Long Time Behaviour of the Smoothing Process. São Paulo, IME-USP, 1983, 25p.

8310 - BOLFARINE, H. et al., A General Theory of Prediction in Finite Populations. São Paulo, IME-USP, 1983, 42p.

8401 - BOLFARINE, H. & RODRIGUES, J., Characterization of Alternative Models for Robust Linear Prediction in Finite Populations. São Paulo, IME-USP, 1984, 12p.

8402 - PEREIRA, C.A.B. et al., Inversão de Condicionamento. São Paulo, IME-USP, 1984, 30p.

8403 - BOLFARINE, H. & RODRIGUES, J., On Bayesian Prediction of the Population Variance in Finite Populations. São Paulo, IME-USP, 1984, 21p.

8404 - ZACKS, S., Bayes Sequential Estimation of the Size of a Finite Population. São Paulo, IME-USP, 1984, 23p.

8405 - ROGATKO, A. et al., Bayesian Method for the Estimation of Penetrance: Application to Mandibulofacial and Fronto-Nasal Dysostoses. São Paulo, IME-USP, 1984, 67p.

8406 - SHIBATA, R., Identification and Selection of ARMA models. São Paulo, IME-USP, 1984, 17p.

8407 - MORETTIN, P.A. & MESQUITA, A.R., A Phase Angle Test for Periodic Components in Time Series. São Paulo, IME-USP, 1984, 27p.

8408 - SHIBATA, R., Selection of Regression Variables. São Paulo, IME-USP, 1984, 11p.

8409 - ESTON, V.R. et al., Chthamalus Bissinuatus (Cirripedia) and Brachidontes Solisianus (Bivalvia) Spatial Interactions: A Stochastic Model. São Paulo, IME-USP, 1984, 32p.

8410 - PINO, F.A. & MORETTIN, P.A., Forecasting Linear Combinations of Time Series. São Paulo, IME-USP, 1984, 30p.

8411 - SCHONMANN, R.H., Metastability for the Contact Process, São Paulo, IME-USP, 1984, 29p.

8412 - SCHONMANN, R.H., Central Limit Theorem for the Contact Process. São Paulo, IME-USP, 1984, 10p.

8413 - ANDRADE, D.F. & BOLFARINE, H., Estimation in Covariance Components Models with Unequal Intraclass Variances. São Paulo, IME-USP, 1984, 10p.

8501 - RODRIGUES, J. et al., The EM-Algorithm for Finding the ML-Predictor for Finite Populations in Two-Stage Sampling. São Paulo, IME-USP, 1985, 15p.

8502 - BOLFARINE, H. & RODRIGUES, J., A Missing Value Approach to the Prediction Problem in Finite Populations. São Paulo, IME-USP, 1985, 16p.

8503 - SCHONMANN, R., A New Proof of the Complete Convergence Theorem for Contact Processes in Several Dimensions with Large Infection Parameter. São Paulo, IME-USP, 1985, 11p.

8504 - ZACKS, S. & RODRIGUES, J., A Note on the EM-Algorithm for Maximum Likelihood Estimation in Sampling from a Finite Population with a Multinormal Superpopulation Model. São Paulo, IME-USP, 1985, 5p.

8505 - ANDJEL, E.D., Convergence to a non Extremal Equilibrium Measure in the Exclusion Process. São Paulo, IME-USP, 1985, 15p.

8506 - IRONY, T.Z. & PEREIRA, C.A.B., Exact Tests for Equality of Two Proportions: Fisher x Bayes. São Paulo, IME-USP, 1985, 30p.

8507 - SCHONMANN, R.H. & VARES, M.E., The Survival of the Large Dimensional Basic Contact Process. São Paulo, IME-USP, 1985, 14p.

8508 - ACHCAR, J.A., Modelos de Regressão com Dados Censurados. São Paulo, IME-USP, 1985, 18p.

8509 - ACHCAR, J.A. & BOLFARINE, H., Use of Accurate Approximations for Posterior Densities in Regression Models with Censored data. São Paulo, IME-USP, 1985, 21p.

8510 - SINGER, J.M. & SEN, P.K., M - Methods in Growth Curve Analysis. São Paulo, IME-USP, 1985, 17p.

8511 - BOLFARINE, H. & SANDOVAL, M.C., The Linear Least Squares Prediction Approach to Populations with Trend. São Paulo, IME-USP, 1985, 13p.

8512 - PERES, C.A. & NARULA, S.C., The Quadratic Model for Cell Survival After Irradiation: A New Interpretation of the Parameters. São Paulo, IME-USP, 1985, 15p.

8513 - PERES, C.A. & NARULA, S.C., A New Derivation of the Quadratic Dose-Response Model for Cell Survival in Radio-biological Studies. São Paulo, IME-USP, 1985, 25p.

8514 - PERES, C.A. & NARULA, S.C., A Simple Procedure to Determine the Parameters of a Quadratic Dose-Response Model. São Paulo, IME-USP, 1985, 15p.

8515 - FERRARI, P.A. & GOLDSTEIN, S., Microscopic Stationary States for Stochastic Systems with Particle Flux. São Paulo, IME-USP, 1985, 32p.

8516 - RODRIGUES, J., Some Shrunken Predictors in Finite Populations with a Multinormal Superpopulation Model. São Paulo, IME-USP, 1985, 12p.

8517 - ACHCAR, J.A. & BOLFARINE, H., A Bayesian Analysis of The Log-linear Model with one Covariate and a Generalized / Gamma Distribution for the Error. São Paulo, IME-USP, 1985, 27p.