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Contextuality and nonlocality are nonclassical properties exhibited by quantum statistics whose implications
profoundly impact both the foundations and applications of quantum theory. In this paper we provide some
insights into logical contextuality and inequality-free proofs. The former can be understood as the possibility
version of contextuality, while the latter refers to proofs of quantum contextuality and nonlocality that are not
based on violations of some noncontextuality (or Bell) inequality. By “possibilistic” we mean a description in
terms of possibilities for the outcomes, which are Boolean variables assuming value one when the corresponding
probability is strictly larger than zero and zero otherwise. The present work aims to build a bridge between these
two concepts from what we call possibilistic paradoxes, which are sets of possibilistic conditions whose occur-
rence implies contextuality and nonlocality. As the main result, we demonstrate the existence of possibilistic
paradoxes whose occurrence is a necessary and sufficient condition for logical contextuality in a very important
class of scenarios. Finally, we discuss some interesting consequences arising from the completeness of these

possibilistic paradoxes.
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I. INTRODUCTION

Contextuality is a property of nonclassical statistics that
refers to the impossibility of their reproduction by models in
which measurement outcomes revel preexisting system prop-
erties whose values are independent of which (or whether)
other compatible measurements are jointly performed. When
these statistics are obtained from scenarios with spacelike sep-
arations, contextuality is called nonlocality. Since the seminal
works by Bell [1,2] and Kochen and Specker [3], it has been
known that quantum statistical predictions can be contextual
and nonlocal. In fact, it is currently known that contextuality
and nonlocality are fundamental features of quantum theory
with important implications in foundations [4,5], computation
[6-9], and communication [10,11].

The assumption of noncontextuality (NC) imposes strong
constraints on the possible empirically observed probabilities.
A powerful way to express such restrictions is through linear
inequalities that are obeyed whenever a description in terms of
NC models is possible. Such inequalities generalize the notion
of Bell inequalities for nonlocality and they are usually called
noncontextuality inequalities (NCIs) [12]. Currently, the best
known instances of NCIs are the Clauser-Horne-Shimony-
Holt (CHSH) [13] and Klyachko-Can-Binicioglu-Shumovsky
(KCBS) [14] NCls, since both play an almost paradigmatic
role in quantum foundations and quantum information theory
[12,15-17]. Furthermore, any set of NCIs that defines an H
representation for the NC polytope provides also necessary
and sufficient conditions for contextuality [12].

A different and more intuitive approach to obtain contra-
dictions between quantum predictions and NC models is by
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using the possibilistic information of quantum probabilistic
data. In other words, only the information from which results
are possible or impossible can be sufficient to demonstrate its
contextual character. Such an approach gave rise to so-called
inequality-free proofs, pioneered by Heywood and Redhead
[18], Greenberger et al. [19,20], and Hardy [21,22]. We high-
light the latter work, which stands out for its simplicity and
generality, being considered the simplest or the best proof
of quantum nonlocality [23]. Hardy’s main ideas were to
demonstrate how a small set of possibilistic conditions implies
nonlocality and then explicit show how such conditions can be
realized within a quantum mechanical system.

Several generalizations and developments of Hardy’s ideas
have been proposed in the past few decades [24-28]. In partic-
ular, we highlight the contribution due to Cabello et al. [29].
In that paper the authors proposed a Hardy-like proof to quan-
tum contextuality in a scenario without spacelike separation,
namely, the KCBS scenario [14,29]. In addition to theoretical
developments, inequality-free proofs for quantum contextual-
ity and nonlocality have been subject to several experimental
verifications [30-34].

A formalism to deal with contextuality and nonlocality in
a unified framework was proposed by Abramsky and Bran-
denburger in Ref. [35]. The formalism is mainly based on
a generalization of Fine’s theorem [36] in such a way that
contextuality means the impossibility of consistent global de-
scriptions of probabilistic data. More precisely, using some
insights provided by sheaf theory, the authors state contextu-
ality as a phenomenon that arises whenever local consistence
does not imply global consistence in a set of distributions (that
is, normalized functions from a nonempty set to a commu-
tative semiring). The usual notion is recovered when sets of
probability distributions are considered. When sets of possi-
bility distributions are considered (i.e., when the semiring is
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the Boolean), we deal with the concept of logical contextuality
(LC). In the present paper this concept will have a central
role, since it provides a very systematic and general way of
defining (non)contextuality from the possibilistic structure of
probabilistic data.

Both inequality-free proofs and LC are related to violations
of logical constraints imposed by the assumption of NC. The
connection between these two concepts, on the other hand,
is not yet so clear. In an inequality-free proof we have a
set of possibilistic conditions that implies contextuality. In
the present paper we call any of these sets of conditions a
possibilistic paradox (PP). It is clear that the occurrence of
some PP implies LC, suggesting that these are the possibilistic
analog of NCI. To make this analogy more accurate and for
a better understanding of LC, however, some questions still
need to be addressed. The main question is the following:
What are the set or sets (if any) of PPs whose occurrence is
a necessary and sufficient condition for LC? A partial answer
to this question was proposed by Mansfield and Fritz [37] for
some bipartite Bell scenarios from a generalization of the PP
proposed in Hardy’s proof [21,22].

In the present paper we generalize the results of Ref. [37].
That is, we demonstrate that the occurrence of a specific set
of PPs is a necessary and sufficient condition for LC in an
important class of scenarios, namely, the scenarios whose
contexts have at most two dichotomic measurements. Fur-
thermore, we discuss some interesting consequences arising
from the completeness of the proposed sets of PPs. The PPs
we propose have a very clear and friendly form and they
are defined as n-cycle generalizations of those present in the
Hardy [21,22] and Cabello et al. [29] inequality-free proofs.
As a consequence of this result, we conclude that the only
strongly contextual behaviors for the n-cycle scenarios are
analogous to the Popescu-Rohrlich boxes. Moreover, with a
minor modification of the proposed PPs, its completeness still
holds for the n-cycle scenarios with nondichotomic measure-
ments. Finally, we show that for all n > 4 it is possible to
construct a Hardy-like proof to quantum contextuality in the
n-cycle scenarios.

We have organized the paper as follows. In Sec. II we
review the definitions of compatibility scenarios, behaviors,
and contextuality following the compatibility hypergraph
approach. In Sec. III we present the notion of logical contex-
tuality. In Sec. IV we present our results. We finish the work
with a discussion in Sec. V.

II. CONTEXTUALITY: COMPATIBILITY
HYPERGRAPH APPROACH

Suppose we have a hypothetical physical system on which
a finite set of measurements can be performed. Every available
measurement can be labeled by an element in a finite set X
and when it is performed a macroscopic effect is observed.
Consider that there is only a finite number of macroscopically
distinguishable outcomes such that we can label them by
elements in a finite set O. Moreover, some sets of measure-
ments can be jointly performed (called compatible sets), while
others cannot (called incompatible sets). The information of
which measurements are available, its possible outcomes,
and which compatible sets we choose to jointly perform de-
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FIG. 1. Compatibility graph for n-cycle scenarios (Example 1).

fines a compatibility scenario and its associated compatibility
hypergraph [12].

Definition 1. A compatibility scenario (or just a scenario)
is defined by triple (X, €, O), where X and O are finite sets
and ¥ is a family of subsets of X such that U% = X, and
C C C’ implies C = C’ whenever C, C' € €. The compatibil-
ity hypergraph of a scenario is the hypergraph whose set of
vertices is X and the set of hyperedges is €.

Given a compatibility scenario (X, €, O), each element of
% defines a maximal set of compatible measurements, called
a context. The family % is usually called the compatibility
cover of the scenario. Joint outcomes for the measurements in
a context C can be represented by functions from C to O and
the set of these functions is denoted by O€. Since O¢ ~ 0/°!,
joint outcomes can also be represented by strings with |C]|
elements, one for each element of C, that is, (s(m) : m € C).
In what follows, it will be useful to keep both representations
in mind.

Given a joint outcome s € OF€, if we want to refer to
specific information concerning a subset of measurements
U C C, then we just need to restrict the function s to the subset
U. Following the notation adopted in Ref. [35], we denote
this restriction by s|y. Intuitively, this operation transforms
the string (s(m) : m € C) into (s(m) : m € U).

Remark 1. In what follows, if (X, €, O) is a compatibility
scenario and 2 C X is nonempty, 0% will always denote the
set of functions from 2 to O.

Example 1 (n-cycle scenarios). The n-cycle scenar-
ios are defined by n >3 dichotomic measurements
X:={M,,....M,} and O :=1{0,1}, with contexts
Ci :={M;, My}, where the sum in the index is taken
modulo n. For n =4 and n =5 we have the well-known
CHSH and KCBS scenarios, respectively [13,14].

Example 2 (Bell scenarios). A Bell scenario is defined by
three natural numbers (n, k, £), where n > 2 is the number
of spatially separated parts, k > 2 is the number of available
measurements of each part, and £ > 2 is the number of out-
comes for each measurement. The contexts are constructed
taking exactly one measurement of each part.

A compatibility scenario is said to be simple if its contexts
have at most two measurements, e.g., bipartite Bell scenarios
(2,k,2) and the n-cycle. In this case, the associated com-
patibility hypergraph is just a graph (see Figs. 1 and 2). If
the compatibility hypergraph of a scenario has no cycles as
induced subgraphs we then say that the scenario is acyclic.

A single measurement event in general does not provide
sufficient information to compare experimental results with
theoretical predictions. In fact, a measurement event provides
one (and only one) joint outcome, while (in general) we have
only probability distributions. The experimenter needs to re-
peat the same experimental procedure (preparation followed
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(2,2, 0) (2,3,7)

FIG. 2. Compatibility graph for bipartite Bell-type scenarios
(2, k, £) (Example 2).

by measurements) a number of times in order to estimate
probabilities by relative frequencies.

Given a compatibility scenario (X, €, O), we say that p
is a probability distribution for the context C € ¥ if it is a
normalized function from the set of joint outcomes O to the
non-negative real numbers, that is, p : O€ — R such that

> ) =1. (1)

s€0€

We denote by Prob(O€) the set of probability distributions
for the context C € €. If U C C is a subset of measurements
of the context C, we then define the marginal probability
distribution for U given p € Prob(0°) as

plu@ =" p(s) )

s€O0C : s|y=u

for all u € OY. That is, the summation in Eq. (2) is over the
joint outcomes s € O for the context C compatible with a
given information provided in the subset U € C by u € 0Y,
that is, s|y = u.

The probabilistic information obtained from a physical
system prepared in some way given a compatibility scenario
defines what we call a behavior.

Definition 2. A behavior for a scenario (X, ¢, O) is defined
by a set of probability distributions over O, one for each C €
%, ie.,B ={pc € Prob(O%) : C € ¥).

The behaviors we will consider obey a generalized
nonsignaling condition, which we call the nondisturbance
condition.

Definition 3. A behavior B = {p¢ € Prob(0€) : C € €}
for a scenario (X, &, O) obeys the nondisturbance condition
if marginal distributions agree on overlapping contexts, i.e.,

Yo b= > pe) 3)

$€0C€ : $|cner=u S €0C 1§ | cner=u

forall C,C" € € and u € 0",

Another important behavior set is the noncontextual (NC)
one.

Definition 4. A behavior B = {p¢ € Prob(0°) : C € ¢}
for a scenario (X, %, O) is noncontextual if there exists
a probability distribution p over OX reproducing B by
marginals, that is,

ple() =Y pt)=pc(s) )

teOX i t|c=s

forall C € € and s € OF.

Itis easy to verify that NC behaviors are also ND. However,
the converse in general does not hold: There are ND behaviors
that are not NC. When it happens we say that the behavior is
contextual.

Definition 5. A ND behavior B for a scenario (X, €, O) is
contextual if there is no probability distribution over O* such
that the condition (2) holds for all C € % and s € OF.

Remark 2. When dealing with Bell scenarios (or their pos-
sible generalizations) contextuality is called nonlocality.

Definition 5 states contextuality as a phenomenon that
arises when local consistence (ND) does not imply global con-
sistence (NC) in a set of probability distributions. Although it
seems quite abstract, Definition 5 is equivalent to the usual
Bell-Kochen-Specker notion, which refers to the impossibil-
ity of reproducing the statistics of a given behavior by NC
hidden-variable models. This equivalence is the content of
the Fine-Abramsky-Brandenburger theorem [35,36]. As an
immediate consequence of this result, it can be concluded that
a given behavior is NC if and only if it can be classically
realized, i.e., it is compatible with the classical notion of
probabilities given by the Kolmogorov theory with a unique
probability space [12].

Among all possible behaviors realized within nonclassical
theories, we are particularly interested in the quantum ones.

Definition 6. A quantum model for a behavior B = {pc €
Prob(O€) : C € %'} for a scenario (X, €, O) is defined by (i)
a pair (p, ), where S is a (complex and separable) Hilbert
space and p is a density operator on 57, and (ii) for each
m € X, a partition of the identity I of .7# into |O| orthogonal
projectors, i.e., a collection of orthogonal projectors {P,,., :

0 € O} such that
> Puo=1
0€0

We require that [P,,.,, P;.5] = 0 for all o, 6 € O whenever m
and 71 belong to the same context. The probability of obtaining
a joint outcome s € O will be

pels) = Tr( I1 Pm;s<m>p>. (5)

meC

If the probabilities of a behavior B can be obtained by a
quantum model, we then say that B is a quantum behavior.

It is a well-known fact that quantum behaviors can display
contextuality [17]. A very useful way of witnessing contextu-
ality in a given behavior is through the violation of some NC
inequality of the scenario. Such inequalities arise naturally
from the geometry of the set of NC behaviors, in particular
from the fact that such a set is a convex polytope [12]. In
the literature there are many demonstrations of contextuality
in quantum behaviors (or quantum contextuality for short)
based on the violation of some NC inequality [17]. In this
paper we highlight the n-cycle inequalities [38], which are NC
inequalities for the n-cycle scenarios defined by

Y vilMiMi) <n -2, ©6)
i=1

where (M;M; 1) = 2[p;(0,0) + p;(1, 1)] — 1, with p; denot-
ing the probability distribution associated with the context
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{M;, M1}, y; € {—1, +1}, and the number of y; equal to —1
is odd. The inequalities in Eq. (6) also define the facets of
the full-dimensional NC polytope of the n-cycle scenario and
then their violation is a necessary and sufficient condition
for a behavior to be contextual. Furthermore, it is possible to
demonstrate that quantum behaviors can violate such inequal-
ities with the maximum value given by [38]

3ncos(w/n) —n
1 + cos(m /n)

ncos(r /n)

if n is odd,

if n is even. 7

We have been highlighting the n-cycle scenarios through-
out our discussion for two main reasons. First, such scenarios
are the simplest ones for which contextual behaviors can be
defined. In fact, Vorob’ev’s theorem [39,40] states that it is
possible to define contextual behaviors in a given scenario if
and only if its compatibility hypergraph is not acyclic [41].
The second reason is that such scenarios will be the basis of
our main results.

III. LOGICAL CONTEXTUALITY

Herein we aim to investigate global inconsistencies that
can arise from the possibilistic structure of probabilistic data.
In other words, we are interested in the possibilistic version of
contextuality, called logical contextuality. This type of non-
classicality was precisely formulated in Ref. [35]. Since then,
much effort has been put forth to understand it [42—47]. In
the present section we put forward the mathematical theory
of LC in a presentation that emphasizes its similarities to and
differences from its probabilistic analog.

First of all, let us discuss how to consistently describe
the possibilistic structure of probabilistic data. In particular,
we aim to precisely define how properties of (probabilistic)
behaviors, such as nondisturbance and (non)contextuality, can
be translated to a possibilistic language.

Given a compatibility scenario (X, ¢, O), we call p a pos-
sibility distribution for the context C € ¥ if p is a normalized
function from the set of joint outcomes O° to the Booleans
B = ({0, 1}, v, A, =), that is, p : O° — B such that

V po)=1. ®)

s€0€

As in the probabilistic case, if U C C is a subset of measure-
ments of the context C, we then define the marginal possibility
distribution for U given p as

plu = \/ p@s) ©)

s€0C€ :sly=u

for all u € OY. With this definition, we define the possibilistic
structure of a behavior, or its possibilistic collapse [35], as
follows.

Definition 7. The possibilistic collapse of a behavior B =
{pc € Prob(0°) : C € €} for a scenario (X, €, O) is defined
by the set of possibility distributions pc : O° — B defined by
the rule

1 if pe(s) >0

pc(s) = pels) = {0 otherwise. (10)

Remark 3. In what follows we always denote by p the
possibility distribution generated by p by using the rule (10).

The normalization condition for the probability distribu-
tions pc implies that each pc is a well-defined possibility
distribution over O€. The possibilistic collapse turns a set of
probability distributions into a set of possibility distributions.
In other words, it provides the possibilistic structure of the
behavior. An important feature of this operation is that it
preserves the properties discussed in the preceding section,
namely, NC and ND. In fact, this is the content of the follow-
ing propositions (whose proofs will be omitted because they
are trivial).

Proposition 1. If a behavior B = {p¢ € Prob(0°) : C € €}
for a scenario (X, &, O) is ND, then

Vo o=\

$€0C : 5| cner =t 5'€0C 1§ |cner =t

pc(s') (1)

for all € O°"“ and C,C’ € €, which is the possibilistic
version of the ND condition (1).

Proposition 2. If a behavior B = {p¢ € Prob(0°) : C € €}
for the scenario (X, %, O) is noncontextual, then there exists
a possibility distribution p over O such that

ples) = \/

teOX :t|c=s

p(t) = pc(s) (12)

forall C € ¢ and s € OF.

Once we have a well-defined notion of ND and global
possibility distributions, the definition of (non)contextuality
in the possibilistic sense follows immediately.

Definition 8. A behavior B = {p¢ € Prob(0°) : C € €}
for a scenario (X, %, O) is logically noncontextual if there
exists a possibility distribution p over OX reproducing the
possibilistic collapse of B by marginals, that is,

ple) = \/

teOX i t|c=s

p(t) = pc(s) 13)

forall C € ¢ and s € O€. Otherwise, B is said to be logically
contextual.

Proposition 2 states that if a given behavior is NC in the
probabilistic sense, then it is NC in the possibilistic sense.
However, it should be stressed that the converse in general
does not hold.

An alternative and useful characterization of LC is given
by the following theorem.

Theorem 1. A behavior B = {p¢c € Prob(0°) : C € €} for
the scenario (X, ¢, O) is LC if and only if there exists s € O¢
for some C € ¥ such that (a) pc(s) > 0 and (b) if r € {g €
OX : g|lc = s} then p¢i(t|c) = O for some C' € €\ {C}.

Proof. Let B = {p¢c € Prob(0°) : C € €’} be abehavior for
the scenario (X, &, O). First, suppose the existence of s € o°,
for some C € ¥, such that conditions (a) and (b) of Theorem
1 hold. If j is a possibility distribution over OX reproducing B
by marginals, then condition (b) implies that p(t) = 0 for all
t € {g € OX : g|c = s}. However, this implies that pc(s) = 0,
which contradicts condition (a). Therefore, B is LC.

In order to prove the converse, consider the contraposi-
tive of the statement, i.e., let us prove that the nonexistence
of such s implies logical noncontextuality. Assuming that
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there is no s € OF such that the conditions of the theo-
rem hold, then Supp(B) :={t € OX : pc(tc) > OV C € €}
is nonempty. Let j be the possibility distribution over OX such
that p(t) = 1 if ¢+ € Supp(B) and p(t) = 0 otherwise. From
our assumption, for all s € O such that pc(s) > 0 there exists
t € Supp(B) such that #|c = s. Thus,

pey:=\/ o= \/

te0X i t|c=s teSupp(B) : t|c=s

pr)y=1, (14)

and hence p|c(s) = pc(s) if pc(s) > 0. To the case in which
pc(s) = 0, there is no ¢ € Supp(B) such that ¢|c = 5. Thus,

Ple) = \/ p1)= \/

teOX :t|c=s teOX\Supp(B) : t|c=s

pt) =0, (15)

and hence p|c(s) = pc(s). Therefore, we conclude that p is a
possibility distribution over O* such that p|c(s) = pc(s) for
allC € ¥ ands € OF,ie., Bis logically noncontextual. Wl

Theorem 1 states that logical contextuality prohibits certain
premeasurement assignments to the values of all measurable
properties at once. In fact, from condition (b) of Theorem
1, any noncontextual assignment to all measurement results
would imply that pc(s) = 0. Hence, it is not possible to give a
noncontextual assignment to all measurement results in such a
way that the joint outcome s is assigned to the measurements
in context C, even though it has a nonzero probability of being
observed. With this picture in mind, the following definitions
will be useful.

Definition 9. Let B = {pc € Prob(O€) : C € €} be a be-
havior for a scenario (X, €, O). The support of B is a subset of
O defined by Supp(B) := {t € OX : pc(tl¢) > 0V C € F).
The elements in Supp(B) will be called global assignments.

By using the terms of the definition above, logical con-
textuality means the existence of some joint outcome with
larger-than-zero probability that cannot be obtained by the
restriction of any global assignment. The extreme case occurs
when no global assignment is allowed, i.e., when for all con-
text C € € there exists s € O° such that conditions (a) and (b)
of Theorem 1 hold. A behavior with this property is said to be
strongly contextual (SC).

Definition 10. A behavior B = {p¢ € Prob(0€) : C € €}
for a scenario (X, %, O) is said to be strongly contextual if
Supp(B) = 0.

In a sense, SC is the most extreme form of nonclassicality
exhibited by a behavior. In fact, as demonstrated by Abramsky
and Brandenburger [35], all ND behavior can be written as a
convex sum of NC and SC behaviors. This decomposition give
rise to the so-called contextual fraction, which is a measure
of how contextual a behavior is [35,48]. It is possible to
demonstrate that the contextual fraction is equal to one only
for behaviors that exhibit SC [35,48]. Furthermore, such a
contextuality measure plays a very important role in resource
theories for contextuality, due to the fact that it is monotonic
under all linear operations that preserve the NC set [49].

In order to illustrate these concepts and results, consider
the canonical examples [35,44]: Bell’s model [1], Hardy’s
model [22], and the Popescu-Rohrlich (PR) box [50]. These
are behaviors for the CHSH (4-cycle) scenario [or equiv-
alently for the Bell-type scenario (2,2,2)]. Each of these
behaviors exhibits different levels of contextuality, namely,

TABLE 1. Possibilistic collapse of Bell’s model (Example 3).

Context (0,0) (1,0 0,1) (1,D
{AL, B)) 1 0 0 1
{B1, Ay} 1 1 1 1
{As, By) 1 1 1 1
(B>, Ay} 1 1 1 1

Bell’s model is contextual but not LC, Hardy’s model is LC
but not SC, and the PR box is SC. That is, we have the
following qualitative hierarchy: Bell model < Hardy model
< PR box.

Example 7 (Bell’s model). Proposed by Bell [1] to demon-
strate that quantum mechanics predicts nonlocal correlations,
Bell’s model has the possibilistic structure illustrated in
Table L.

Example 8 (Hardy’s model). Proposed by Hardy [22] in
an inequality-free proof of Bell’s theorem, the possibilistic
structure of Hardy’s model is illustrated in Table II.

Example 9 (PR box). Proposed by Popescu and Rohrlich
[50] to illustrate the existence of stronger than quantum
nonsignalizing correlations, the possibilistic collapse of the
PR box is illustrated in Table III.

The possibilistic structure of a behavior can be visual-
ized in its bundle diagram [51]. This consists of a base
space formed by the compatibility hypergraph of the sce-
nario [see Fig. 3(a)] and on top of each vertex we add a
fiber with the possible outcomes for the corresponding mea-
surement [see Fig. 3(b)]. We connect two outcomes by an
edge if the corresponding joint outcome is possible (i.e.,
has nonzero probability). In this diagrammatic representation,
global assignments are associated with loops, i.e., closed paths
traversing all the fibers exactly once; LC means the exis-
tence of some edge that does not belong to any loop and SC
means that no loop is allowed (see Fig. 4). In Bell’s model
[Fig. 4(a)] all edges belong to at least one loop, in Hardy’s
model [Fig. 4(b)] one can see that the red edge does not belong
to any loop, and in the PR box [Fig. 4(c)] there is no loop.

IV. POSSIBILISTIC PARADOXES AND LOGICAL
CONTEXTUALITY

As already mentioned, the violation of some NCI is a sim-
ple criterion to decide whether a given behavior is contextual.
Despite being the most usual and also quite general, this is
not the only possible strategy to demonstrate the occurrence
of nonclassicalities. In particular, in some specific cases it is
possible to demonstrate quantum contextuality without the use
of any inequality, that is, an inequality-free proof.

TABLE II. Possibilistic collapse of Hardy’s model (Example 4).

Context (0.,0) (1,0) 0.1) (11
{A1, B} 1 1 1 1
{B1, Ay} 1 0 1 1
{A2, By} 1 1 1 0
(B>, Ay} 1 1 0 1
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TABLE III. Possibilistic collapse of the PR box (Example 5).

Context (0,0) (1,0 0,1) (1,D
(A, B} 1 0 0 1
{B1, Ay} 1 0 0 1
{A2, B>} 1 0 0 1
{B2, A1} 0 1 1 0

Formally, an inequality-free proof is based on the violation
of logical constraints imposed by the assumption of NC by the
possibilistic structure of the behavior. Similar to what occurs
in proofs based on the violation of NCIs, in general only a
subset of the possibilities is sufficient to obtain contradictions
with NC instead of the whole behavior. Such subsets of possi-
bilities define what we call possibilistic paradoxes.

Definition 11. A possibilistic paradox is a set of possibilis-
tic conditions whose occurrence implies contextuality.

In a sense, the concept of PP is the possibilistic analog of
NCI. This is because the occurrence of a PP implies not only
contextuality but also LC, since it provides a purely possi-
bilistic contradiction with NC. In addition, any inequality-free
proof is associated with at least one PP.

Example 6 (Hardy’s PP). Hardy’s inequality-free proof
[21,22] is based on the occurrence of the PP

pii(1,1) >0,
p21(0,1) =0,

p12(1,0) =0,

16
pn(1,1)=0, (10

where p,, denotes the joint probability for the context
{A,., B,} in the Bell scenario (2,2,2), with Alice’s and Bob’s
measurements {A;, A,} and {B;, B,}, respectively. To demon-
strate that these conditions actually define a PP, just notice
that the second, fourth, and third conditions read A| =1 =
B,=1, B=1=A,=0, and A, =0 = B; =0, respec-
tively. Hence, for any global assignment compatible with
these constraints we have A; = 1 = B; = 0, meaning that
p11(1, 1) = 0, which contradicts the first condition. There-
fore, the occurrence of (16) implies LC.

(@) (b)

FIG. 3. Bundle diagram for the CHSH scenario.

@ (b) ©

FIG. 4. Bundle diagram for (a) Bell’s model, (b) Hardy’s model,
and (c) the PR box.

Example 7 (PP of Cabello et al.). The inequality-free proof
of Cabello et al. [29] is based on the occurrence of the PP

p1(0,1) >0, po(1,1)=0, p3(0,0)=0,
pa(1,1) =0, ps(0,0)=0,

where p, denotes the joint probability for the context
{M,,M,} in the KCBS scenario. To demonstrate that (17)
is actually a PP, just notice that the second, third, fourth, and
fifth conditions read M, =1 = M; =0, M3 =0= M, =
I,My =1= M5 =0, and Ms =0 = M; = 1, respectively.
Hence, for any global assignment compatible with these con-
straints we have M, = 1 = M| = 1, meaning that p,(0, 1) =
0, which contradicts the first condition. Therefore, the occur-
rence of (17) implies LC.

7)

A. Necessary and sufficient conditions for LC

Herein we aim at understanding, as generally as possi-
ble, the connection between PP and LC. The building blocks
of our discussion will be the n-cycle scenarios. As already
mentioned, an n-cycle scenario consists of n dichotomic mea-
surements {M, ..., M,} and O = {0, 1} whose contexts are
C; := {M;, M}, where the sums in indices are taken modulo
n. The following theorem states the necessary and sufficient
conditions for LC in such scenarios.

Remark 4. In what follows, whenever we refer to the n-
cycle scenarios, the sums in the indices will be taken modulo
n, where n + 1 = 1. A joint probability distribution for the
context C; will be denoted by p;.

Theorem 2. A behavior for the n-cycle scenario is LC if
and only if there exist (a, b) € 0% and (a1, ..., @,_2) € O"2

such that
pi(a, b) > 0,
pi+1(b,ar) =0,
piy2(—ay, az) =0, (18)

Pi+n—1 (—ay2,a) =0

forsome 1 <i < n.

Proof. First of all, let us demonstrate that the con-
ditions (18) define a PP. The second, third, etc., condi-
tionsread M1 = b= Miyp = a1, Mi1p = —op = M3 =
-y, Miyz =—a2 = Mipg =03, ..., My 1 =~y 2 =
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M; = —a, respectively. Therefore, for any global assignment
compatible with these constraints we have M, = b = M, =
—a, meaning that p;(a, b) = 0, which contradicts the first
condition. Therefore, the occurrence of (18) implies LC.

To prove the converse, consider the contrapositive of the
statement, i.e., let us prove that nonoccurrence of the PP
(18) implies logical noncontextuality. Nonoccurrence of (18)
means that

n—2
Pir1(b, ay) vV (\/ ﬁiﬂ("ajl,aj))
j=2

\% ﬁi-ﬂ—n—l(_'Oln—Z» Cl) =1 (19)

forall (ay, ..., o,—p) € O""2 whenever p;(a, b) = 1. For sim-
plicity (but without loss of generality), consider i = 1. Since
pi1(a, b) = 1,ND [Eq. (11)] implies that

pa(b, o) Vv pa(b, —ay) =1,
Pn(@n_2,a)V pp(—0y2,a) =1 (20)

for all @y, a,—» € O. From the normalization condition to p3

and ND, it is always possible to find (81, ..., Bs—2) € o2
such that
P3(B1, B2) = pa(B2, B3) = -+ = Pu1(Bu—3, Bu2) = 1.
2n

Since p3(Bi, B2) = pn—1(Bn—3, Bn—2) = 1, from ND it follows
that

pa(b, B1) V pa(b, =) =1,

p2(b, B1) vV pa(=b, B1) = 1, (22a)
ﬁn(lgn—Za a) \% p-n(_'ﬂn—Za Ll) =1,
Pn(Bu-2, @) V Pu(Bu—2, —a) = 1. (22b)

In Egs. (22) we have a set of Boolean equations that need
to be simultaneously satisfied. A trivial solution of Egs. (22)
is

p2(b, B1) = pu(Bp—2,a) = 1. (23)

From (21) and (23) and the fact that p;(a, b) = 1 it follows
that, in this considered case, (a, b, B1, ..., B,—2) is a global
assignment. Hence, from Theorem 1, the associated behavior
is logically NC. Suppose that the most nontrivial case occurs
(the other possible cases may be proved in a similar way to
what we will consider), that is,

P2(b, =B1) = pa(=b, B1)
= pp(=Bn—2,a) = pp(By—z, ma) =1  (24)

and

p2(b, B1) = pn(Bp—2,a) = 0. (25)

Taking o = B; and ,—» = —B,—2 in (19), the nonoccurrence
of (18) reads

n—2
p3(=B1, ) Vv (\/ pi(—aj, ajy )>
j=4

V pp—1(=p_3, =f,—2) = 1. (26)

Since from (24) p,(b, —B;) = 1, the ND condition implies
that

p3(=B1. By) = = Pu-1(By3. Brn) = 1 27)

for some (B, ...,B, ,)€ 0" If B ,=—B, 2, then
(a,b,—p1, B5, ..., Bi_3, "Pn—z) is a global assignment and
then from Theorem 1 the associated behavior is logically NC.
Consider the other possible case, i.e.,

Pn—1(By_3, —~Bu—2) = 0. (28)
Since p,(—Bn—2,a) = 1, from (11) and (20) we must have that
Pn1(=B_3, =Pu—2) = 1. (29)

If B, 5 =—Pu—3, Eq. (29), the fact that pi(a,b) =1, and
Eq. (27) imply that (a, b, =f1, ..., Bi—3, =Bu—2) is a global
assignment. Suppose 85 = 3. Thus, the application of the ND
condition (11) to (29) yields

ﬁn—Z(an—4a _':811—3) % ﬁn—Z(_'ﬂn—4a _'ﬂn—3) =1 (30)

A solution for this equation is p,,—>(By—4, =Bn—3) = 1. In this
case (a, b, =By, B2, .., Pn—a, =Bn—3, —Py—2) is a global as-
signment, and from Theorem 1 we have logical NC. Consider
the other possible case, i.e.,

Pn—2(Bn—a, ~Bu-3) = 0. €29

If we keep repeating this process, always choosing solutions
that do not allow the construction of a global assignment, we
will have

pnfl(,anﬁh _'/3n72) = pn72(,8n747 _',31173)

= =p3(f1,=f2) =0. (32)

However, the application of De Morgan’s law to Eq. (32)
directly shows that it contradicts Eq. (26) and then the initial
hypothesis of nonoccurrence of (18). Therefore, the nonoc-
currence of the conditions (18) in the n-cycle scenario implies
logical NC. |

An immediate consequence of Theorem 2 is that in the
bipartite Bell scenario (2,2,2), the occurrence of the gener-
alization of Hardy’s PP (16) is necessary and sufficient for
logical nonlocality.

Remark 5. In what follows, whenever we refer to a bipartite
Bell scenario (2, k, 2), we will consider that one part (Alice)
has the measurements {Aj, ..., A}, while the other (Bob)
has {By, ..., Bx}. We will denote by p,,, the joint probability
distribution for the context {A,,, B, }.

Corollary 1. For the Bell scenario (2,2,2), a behavior is
LC if and only if there exists a joint outcome (a, b) € O and
(a1, a2) € O? such that

pij(a, b) > 0,
piela, o) =0,

where i # k and j # £.

Proof. Just notice that the Bell scenario (2,2,2) is the
4-cycle scenario if one defines M| = A, M, = B}, M3 =
A,, and My = B,. Hence, Theorem 2 can be immediately
applied. ]

A less trivial consequence of Theorem 2 is that the PP (18)
is universal in simple scenarios. At this point, it is important to
recall the Vorob’yev theorem [39,40], which states that acyclic

i(ay, b) =0,
Prjld] (33)
Dre(—ay, —ap) =0,
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Ck—n+n2

Cr-n+n
2+1
C

G

FIG. 5. Compatibility graph of two coupled cycles with n; and
n, vertices sharing n of those.

scenarios are contextuality-free [41]. The following theorem
states that, in nonacyclic simple scenarios, we just need to
look for their cycle-induced subgraphs in order to detect LC.

Theorem 3. In a simple scenario which is not free of cycles,
the occurrence of the PP (18) in one of its cycles is necessary
and sufficient for LC.

Proof. From the same argument presented in the proof of
Theorem 2, the occurrence of (18) implies LC. To prove the
converse, consider the contrapositive of the statement, i.e., let
us assume that no such PP occurs and then show that it implies
logical NC.

Consider the simplest situation, where the scenario has
only one cycle. In this considered case, the nonoccurrence of
(18) implies that it is always possible to find (ai, ..., a,) €
0" such that pi(a;,az) =--- = pu(a,,a;) =1, where p;
denotes the joint possibility distribution for the context
{My., M1} in the cycle. We can always extend any of these
assignments to the other measurements in the scenario by us-
ing the ND condition [Eq. (11)]. Therefore, the nonoccurrence
of (18) in the cycle implies logical NC. The same can be
concluded for a scenario with an arbitrary number of disjoint
cycles.

Finally, consider the case where there are coupled cycles.
For simplicity, consider two cycles with n; and n, vertices
sharing n of those. In this scenario it is easy to see that
there are three possible cycles: two cycles with n; and n;
vertices and an external cycle with N :=n; +ny + 2(1 — n)
vertices (see Fig. 5). From Theorem 2, the absence of the
PP (18) in the external cycle implies that it is possible
to give an assignment (ay,...,ay) such that p;(a;,ay) =
pa(az,a3) = --- = py(ay,a;) = 1, where p; denotes the
joint possibility distribution for the context {M;, M;,} in the
external cycle. Applying the nondisturbance condition, we can
extend this assignment as p)(ax, a2) = ph(on, a3) =+ =
Py (g2, an_1) = P, (an—1, oty) = 1, where p’ denotes the
joint probability distributions for the context C; (see Fig. 5).
If oy = @kgny—nt1,then (ay, ..., ay, a2, ..., a,—_1)is a global
assignment and the theorem is proved. Let us assume that
the nontrivial case occurs, that is, p/,_;(tty—1, Grsny—nt+1) =
0. Since Pryny—n+1(Ak4ny—ns Qkny—n+1) = 1, from the ND
condition p/,_,(—0t—1, dk4ny4nt1) = 1. Applying the ND

(@) (b)

FIG. 6. Compatibility graph of bipartite Bell scenarios:

(a) (2,2,¢) and (b) (2,4, 0).

condition to p/,_,(—0ty—1, Ak4n,—n+1) = 1, we have
Pro(@u2, =0 1)V P, (02, ma, 1) = 1. (34)

If pl,_s(otn—2, —~ap_1) =1, (a1, ..., an, 02, ..., Qy_2, =0t,_1)
is a global assignment and then the theorem is proved. Con-
sider again the nontrivial case p,_,(an—2.—at,—1) = 0. To this
point we have

ﬁ;_l (Oln—l ) ak+n2—n+1) = ﬁ;_z(an—% —ay) = 0. (35)

Hence, it is easy to see that if we continue this process, always
taking the solution by which the theorem is not proved, at
the end we will construct a condition (18) in at least one of
the cycles. Therefore, the absence of a PP (18) in all cycles
implies logical NC.

This result can be extended to any simple scenario with
an arbitrary number of cycles (coupled or not). For that, it is
enough that we apply the same arguments above for each pair
of coupled cycles of the scenario. |

Corollary 2. For the bipartite Bell scenario (2, k, 2), a
behavior is LC if and only if the conditions

Pmjar, b) =0,

DPme(—ay, —a) =0

pij(a, b) > 0,
piea, az) =0,

hold, where i = m and j # £.

Proof. The Bell scenario (2, k, 2) consists of [k(k — 1)/2]>
coupled cycles with four vertices (see Fig. 6). Note that for any
pair of coupled 4-cycles, the external cycle is also a 4-cycle
(see the proof of Theorem 3 and Fig. 6). Each choice of index
in (36) defines a possible PP (18) in one of the possible 4-cycle
subgraphs. Therefore, the assumption follows as a directly
consequence of Theorem 3 and Corollary 1. ]

A useful way to draw the compatibility graph of bipartite
Bell scenarios emphasizing their cycles is to represent the
measurements by vertices on two different diagonal lines.
Since this graph is bipartite, we connect two vertices if and
only if they belong to different lines (see Fig. 6). From that
construction, it is very clear that a Bell-type scenario (2, k, 2)
has cycles of up to 2k vertices as induced subgraphs. In each
of these cycles, it is possible to construct a PP (18). There
is an inequality-free proof for quantum nonlocality based on
this construction, called the Hardy ladder proof, from the
Boschi et al. contribution [30]. It should be stressed that the
occurrence of these PPs implies the occurrence of (36). This

(36)
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fact is a consequence of the completeness given by Corollary
2 or can be proved directly (cf. Ref. [37]).

B. Several outcomes for possibilistic paradoxes

So far we have demonstrated that the occurrence of a
specific kind of PP is a necessary and sufficient condition
for LC. Such a result applies for every simple scenario with
dichotomic measurements. Our goal in this paper is to state re-
sults as generally as possible. So a natural question is whether
it is possible to extend these results for scenarios where the
measurements are not dichotomic. As argued by Mansfield
and Fritz [37], for extension to the Bell scenarios (2, k, £) the
answer is no. However, we can shed some light on this issue,
at least in a restricted class of scenarios. Such scenarios are
the generalized n-cycle ones, where we have measurements
with more than two possible outcomes.

Theorem 4. In a generalized n-cycle scenario, where each
measurement has £ possible outcomes, a behavior is LC if and
only if there exists (a, b) € O such that

pula,b)=1, (37)
together with (¢}, ..., af) € O such that
m ¢ m
Vi) v\ pussledad)
i=1 i=my+1 j=1

My

4
Vv OV B ely,)

i=m,+1 j=1

4
Ve ) P (€ a) =0, (38)

i=mu_+1

withof # o if x £y, m; < €,andi <n—2.

Proof. From arguments similar to those presented so far,
it is straightforward to verify that the simultaneous occur-
rence of conditions in Eqgs. (37) and (38) implies LC. More
precisely, for any global assignment compatible with the con-
dition of Eq. (38) we must have that p,(a, b) = 0, which
contradicts (37). Now suppose that a given behavior is LC.
From Theorem 2 it implies that some PP (18) must occur;
otherwise it would be possible to build a global assignment by
using a pair of outcomes. However, the PP (18) is equivalent
to the conditions of Eq. (37) together with Eq. (38), taking
m=---=m,_,=1. |

If we restrict our attention to the bipartite Bell scenar-
ios, we recover Mansfield and Fritz’s results [37]. In that
paper the authors demonstrated that the nonoccurrence of
a coarse-grained Hardy paradox is equivalent to LC in the
Bell scenarios (2, 2, £). This is exactly the same content of
Theorem 4 if one takes n = 4.

Theorem 4 states that the occurrence of a PP defined by
(37) together with (38) is necessary and sufficient for LC in
the generalized n-cycle scenarios. However, a much simpler
way of constructing an inequality-free proof for contextuality,
which is particularly interesting when dealing with quantum
implementations, was proposed by Chen et al. [26].

Example 8 (PP of Chen et al.). The inequality-free proof
of Chen et al. [26] is constructed in a generalized 4-cycle
scenario with £ possible outcomes O = {0, 1, ..., £ — 1} and

it is based on the PP

pila;i < aip1) > 0, pip1(aiv > aip2) =0,

(39)
pir2(@iyr > aiy3) =0,  piys(aiz > a;) =0,
where
Pulay < auin) =Y pu(x.y), (40a)
x<y
Pulay > aui) =Y pu(x.y). (40b)
x>y

In order to demonstrate that Eq. (39) actually defines a
PP, consider, without loss of generality, i = 1. Note that if
such conditions occur, the last n — 1 conditions imply that
for any global assignment (a;, as, as, a4) we must have that
ay < ay < ag < a;. Therefore, we are forced to conclude that
pi(a; < ap) = 0, which contradicts the first condition. There-
fore, the occurrence of the conditions of Eq. (39) implies LC.

C. Strong contextuality and PR boxes

In Ref. [42] Mansfield discussed some consequences and
applications of the completeness of the Hardy-type PP (see
Example 6) for logical nonlocality. One of those is that the
Popescu-Rohrlich boxes (Example 5) are the only strongly
nonlocal behaviors for the CHSH scenario. The following
theorem generalizes this result for the n-cycle scenarios.

Theorem 5. For an n-cycle scenario, every strongly contex-
tual behavior is such that, for some 1 < k < n,

Prlag, —~arr1) = pr(—ag, agr1) =1, (41a)
Prlay, ary1) = pr(—ag, —~axr1) =0, (41b)
and for i # k,
pilai, aiy1) = pi(—a;, —ai1) =1, (42a)
pi(ai, maiy1) = pi(—a;, aiy1) = 0. (42b)

Proof. Recall that SC means that no global assignment
can be defined (Definition 10). If a behavior for the n-cycle
scenario is strongly contextual, then from Theorem 2 every
joint outcome with nonzero probability must be associated
with a PP (18). Hence, for an arbitrary joint outcome (a, b),
pi(a, b) = 1 implies that

pa(b, o) = p3(—ay, ) = -+ = pp(—ay—2,a) =0  (43)

for some (o, ..., a,—) € O" 2. Since p,(a, b) = 1, the ap-
plication of the ND condition [Eq. (11)] in Eq. (43) yields

Da(b, —ay) = p3(—oay, —on)
R — pnfl(_'an72s —ua) =1 (44)

and
P2(=b, ay) = p3(ar, a2)
== pp1(p—2,a)=1. (45)
Since we suppose SC, we are forced to impose that
pi1(—a, b) = pi(a, =b) = 0; (46)

otherwise (a, —b, ay,...,a,_») or (—a, b, —ay, ..., "0,_2)
would be global assignments. Therefore, from (44)—(46) and
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FIG. 7. Bundle diagram of a strong contextual behavior for an
n-cycle.

the ND condition, we must have that
p1(—a, —b) = 1. 47)

Since the joint outcome (—a, —b) must also be associated with
a PP (18), from (44)—(47) we must have that

p2(=b, —ay) = p3(ay, —o2)
== I_’n(aanv _'a) =0. (48)

Defining a; = a, a = b, a3 = —ay, as = —ay, and so on, the
conditions (43)—(48) are exactly the same as Eqgs. (41a) and
(42a) with k = n. |

It is a well-known fact that the Popescu-Rohrlich box is
not compatible with quantum predictions [15]. In fact, this
behavior maximally violates the noncontextuality inequality
for the CHSH scenario, thus violating its Tsirelson’s bound
[52]. The same can be concluded for the n-cycle scenarios,
where Tsirelson’s bound is given by Eq. (7). From Theorem
5, in any SC behavior the conditions (41a) and (42a) occur.
In addition, it is easy to verify that their occurrence implies
maximal violations of the n-cycle noncontextuality inequali-
ties [Eq. (6)] and consequently Tsirelson’s bound. Therefore,
we have demonstrated the following corollary.

Corollary 3. There is no strongly contextual quantum be-
havior for the n-cycle scenarios.

In addition to the fact that they are postquantum, the SC
behaviors of the n-cycle scenarios also resemble the PR boxes
(Example 5) in that their bundle diagrammatic representations
are Mobius strips (see Fig. 7), exactly as happens in the CHSH
scenario [see Fig. 4(c)].

D. Inequality-free proofs in n-cycle scenarios

In Theorem 2 we demonstrated that the occurrence of the
PP (18) is a necessary and sufficient condition for a given ND
behavior in the n-cycle scenarios to exhibit LC. Herein, we
want to demonstrate how such PPs can be realized by quantum
mechanical systems.

Theorem 6. For the n-cycle scenarios, n > 3, it is always
possible to construct quantum behaviors where a PP (18)
occurs. For n odd the simplest proof uses a qutrit system
(C?) and works with any pure state. For n even, in turn, the
simplest proof uses a two-qubit system (C? ® C?) and works
with any pure state which is neither a product nor a maximally
entangled state.

Proof. Let n > 3 be odd. Consider a qutrit system prepared
in an arbitrary pure state |5). Define {|v}), ..., |v,)} C C?
such that |vs) is arbitrary since (v3|n) # 0 and

I — Jvs3)(usl

lvg) = Wln), (492)
lv) = RO, [vi—1))|ve—2), (49b)
[Vks1) = % ), (49¢)
lvi) = %M), (49d)
|vp) = % (49¢)

for k > 5 odd, with 6, ¢ {¢x : £ € Z}. Here R(0, |x)) denotes
the rotation matrix by an angle 8 around |x) and x denotes the
usual three-dimensional cross product. From the above con-
struction, one can verify that (vi|vis1) = (vi|v,) = 0. Hence,
the compatibility relations for the odd-cycle scenario are well
defined if one consider measurements defined by projectors
on vectors |v;), thatis, M; := |v;) (v;]. From Eq. (49) it follows
that

p1(0, 1) =0,
p2(1,1) =0,
p3(0,0) =0,
50
pau(1,1) =0, G0
p2k+1(03 O) == Oa
pn(0,0) =0.

The conditions above define a PP whenever p;(0, 1) # 0.
With a suitable choice of angles, it is always possible to satisfy
such a condition.

Now let n > 4 be even. In this considered case, a four-
dimensional Hilbert space is needed [53]. For simplicity,
consider a two-qubit system in an arbitrary pure state |n). The
Schmidt decomposition of |n) can be written as

In) = cosaler) ® |fi) + sinalez) ® | f2), 61V

where {|e;), |e2)} and {| f1), | f2)} are orthonormal bases of C2,
and o € [0, w/4]. For 1 < k < n/2, define

o) = (—D*(cosa)=172|er) + i(sina)*~1/2|e,)
V/(cos )21+ (sin o)1

_ (=D cos )21 f1) +iGsine) 2 )

B V/(cos @)2k=1 + (sin o)1

. (52a)

lgx) (52b)
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FIG. 8. Largest value of the nonzero probability, denoted by y,,,
in (50) and (54).

and the projective measurements

M2k = |pra2)(Pra2l @ L2, (53a)
Myjp—iv1 = 1o @ |grr1) (Gr1]s (53b)
My = |p1)(p1l ® I, (53¢)
My =1 ® lgi){qil, (53d)
M2 = |Prr1) (P ] @ o, (53e)
Mz =1 @ |grs2) (Grsal, (53f)

where | < k < (n—4)/2andn + 1 := 1. From the construc-
tion above, it straightforward to note that the compatibility
relations of the n-cycle scenario are well defined. In addition,
one may verify that

pi(1,1) =20,

p2(1,0) =0,

DPny2(1,0) =0,
Pnpay1(1,1) =0, (54)

DPnj242(0,1) =0,

Pn-1(0,1) =0,
pa(0, 1) =0.

The conditions above define a PP (18) whenever p;(1, 1) # 0.
From (51)-(53a),

cosa(sina)™! — sina(cosa)\> 55)
(cosa )1 4 (sinor)"~!

pi(1,1) = (

So pi(1,1) # 0 if and only if « ¢ {0, 7 /4}, that is, |n) is
neither a product or a maximally entangled state. The largest
values of p;(1, 1) in (55) are plotted in Fig. 8. |

In Theorem 6 the contradiction with NC occurs due to the
fact that the probabilities p;(0, 1) and p;(1, 1), in Egs. (50)
and (54), respectively, can be strictly greater than zero. For n
odd, it is quite difficult to compute the largest possible value of
p1(0, 1) (which we will denote by y,,). In fact, only for simple

cases is it possible to compute it analytically. For instance, for
n = 5 we have [29]

(sin 2« sin 28)? 1
max - - = . (56)
a,Bel0,7) (cosa sin2B)? + (2sina)> 9

Vs =

For n = 7 the calculations are much more laborious, and one
may verify that y; = % For higher values of n we numeri-
cally estimate y, using Mathematica (see Fig. 8). We verify
that yo ~ 0.257 371, which is greater than (1 + 16/+/27)",
which was claimed by Cabello et al. [29] to be the value
of yy. For the even-cycle scenarios, on the other hand, the
choice of projectors is much less general. In fact, for n odd
we have (n — 1)/2 free parameters [(n — 3)/2 angles 6, and
the angle between |n) and |vs)], while for n even we have only
one (the angle «). The corresponding y,, value is obtained by
maximizing p;(1, 1) in (55) (see Fig. 8).

V. DISCUSSION AND FURTHER STEPS

In this paper we have investigated logical contextuality and
inequality-free proofs. We demonstrated that the occurrence
of specific sets of possibilistic conditions is a necessary and
sufficient condition for logical contextuality in the n-cycle
scenarios (Theorem 2), for simple scenarios with dichotomic
measurements (Theorem 3), and for general n-cycle scenarios
(Theorem 4). As a consequence of this result we concluded
that the only strongly contextual behaviors for the n-cycle
scenarios are generalizations of the PR boxes (Theorem 5).
Also for the n-cycle scenarios, we demonstrated that it is
always possible to construct a Hardy-like proof for quantum
contextuality with a qutrit system (for n odd) and a two-qubit
system (for n even).

The results that we have established in the present paper
help us to better understand the connection between logical
contextuality and inequality-free proofs. In particular, we de-
fined the concept of possibilistic paradoxes (Definition 11),
which are the possibilistic analog of noncontextuality inequal-
ities. In this way, we found sets of possibilistic paradoxes
whose occurrence is a necessary and sufficient condition for
logical contextuality in the mentioned scenarios, which can be
understood as the possible analog of H representations of the
noncontextual polytope.

Since logical contextuality is the most general form of
possibilistic nonclassicality, our results can be used to explain
any inequality-free proof for quantum contextuality or nonlo-
cality. For instance, Hardy’s nonlocality paradox [21,22] can
be recovered by Theorem 6 by taking n = 4. In the same way,
the proof of Cabello ef al. can be recovered by taking n = 5,
) = (1,1, )" //3, Jvs) = (1,0,0)", and 65 = /4 in (49),
where T means transposition. The Hardy ladder proof [30] in
turn can be constructed by using the measurement operators
we have defined in the proof of Theorem 6 for n even. It
is not yet clear, however, how possibilistic paradoxes can be
realized by quantum theory in more general scenarios with
nondichotomic measurements.

The results presented in this work do not apply to scenarios
whose contexts have more than two measurements. We be-
lieve that results similar to Theorems 2 and 3 cannot be stated
in general. The reason for this is that the number of possible
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types of possibilistic paradoxes like (18) rapidly increases as
the complexity of the scenario increases. For instance, in a tri-
partite Bell scenario, a brute-force calculation shows that there
exist, in addition to those considered in Eq. (36), all possible
variations of the PP defined in Ref. [54]. Therefore, unlike the
simple scenarios, where there is a friendly and closed form of
the possibilistic paradoxes whose occurrence is necessary and
sufficient for logical contextuality, for more general scenar-
ios there may be quite a number of different types. Another
possible explanation can be founded in Ref. [55].

The fact that noncontextual assignments of observable
properties lead to contradictions with quantum predictions has
been a well-known fact since the seminal paper by Kochen
and Specker [3]. In particular, they demonstrated the existence
of a finite set of projectors in R? that are not compatible
with noncontextual assignment of values (true or false). The
first step in the proof consists of identifying a set of eight
vectors whose orthogonality relations are represented by the
Kochen-Specker (KS) “bug” graph. This construction has a
peculiar property known as true implies false (TIF): There ex-
ist vertices A and B such that whenever A is true, then B must
be false. In addition to being at the basis of several KS-type
contradictions [17], the KS bug is the simplest example of a
TIF structure [56]. There is a strong connection between these

structures and inequality-free proofs, since the vectors used in
Hardy’s inequality-free proof [22] appear also in the famous
18-vector proof proposed in Ref. [57], and the aforementioned
vectors appearing in the inequality proof of Cabello ef al.
[29], together with the state vector and two additional vectors,
define a KS bug.

Finally, another interesting problem that can be explored
is the Hardy-Tsirelson problem. This problem consists in
finding the maximum value allowed by quantum theory for
the nonzero probability in possibilistic paradoxes. We know,
for instance, that y4 = (5«/5 — 11)/2 is the Hardy-Tsirelson
bound for the CHSH scenario [58]. The behavior of the y, in
Fig. 8, however, suggests that it does not correspond to the
Tsirelson bound value for all 7.
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