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Abstract
Flood modeling is influenced by uncertainties from factors like soil infiltration character-
istics, floodplain roughness, and spatio-temporal variations in rainfall volume, distribution, 
and intensities. Although multiple uncertain sources arise in flood modeling, the detailed 
evaluation of rainfall characteristics in flood mapping is not fully investigated. This paper 
addresses the role of rainfall temporal distribution on flood mapping by introducing a meth-
odology that contrasts standard synthetic design storms and compares them to the 50th per-
centile rainfall temporal distribution derived from high-resolution 15-min observed rainfall 
data. The Alternating Blocks and the Huff rainfall temporal distribution methods were cho-
sen as representative synthetic rainfall methods for flood mapping assessment. The frame-
work was applied in a 131 km2 urban catchment in Bangalore, India. Evaluation of differ-
ent rainfall temporal distributions reveals a potential 50% smaller areas with flood hazard, 
for the same return period and duration, simply by selecting a specific rainfall temporal that 
is not the critical for the catchment. This research not only underscores the importance of 
the effect of rainfall temporal distribution selection and assessment of the critical rainfall 
duration but also highlights the need for accurate data-driven methodologies in flood map-
ping, particularly in the face of urbanization and climate-induced complexities.

Keywords  Flood mapping · Huff curves · Alternated blocks method · Rainfall temporal 
distribution · Flood hazard

1  Introduction

Urban flood inundation mapping is affected by many hydrological phenomena varying 
from the rainfall dynamics to the non-linear spatio-temporal representation of infiltration 
(Cheng et al 2020). Typically, the use of so-called event-based design storms is a common 
engineering practice to delineate flood-prone areas (Mei et al 2020; Kang et al 2013), espe-
cially when high-resolution quality data of rainfall is lacking (Gomes et al 2023). Multiple 
areas across the world use the 100-yr return period as the common return period used to 
define flood-risk areas (Huang and Wang 2020; Dottori et al 2022), although the definition 
of the rainfall duration and temporal distribution are hardly ever specified (Krvavica and 
Rubinić 2020).
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The importance of flood modeling and mapping associated with rainfall return periods 
is evident for instances such as aiding in the development of flood insurance plans (Mani 
et al 2014) or even by being used to define multifaceted risk areas that would depend not 
only on hydrological but also socioeconomic information (Roldán-Valcarce et  al 2023; 
Pregnolato et  al 2024; Zare et  al 2024). Even though multiple applications use products 
derived from flood simulation results, a large uncertainty can arise from not clearly defin-
ing the rainfall’s duration and temporal distribution that would maximize the expected 
flood hazard (e.g., maximum water depth).

Two storms with the same return period can have dramatically different catchment 
responses simply by varying the temporal rainfall distribution and/or the rainfall duration. 
We hypothesize that these rainfall characteristics must be properly defined, investigating 
the critical rainfall duration that maximizes a spatial flood hazard criterion. Flood hazard 
can be defined as a function of various features, such as the floodplain area with signifi-
cant flood depth, velocity, or ultimately, areas with human instability hazards (Lazzarin 
et al 2024). The latter can be estimated via flood momentum equations and dynamic fric-
tion modeling (Jonkman and Penning-Rowsell 2008) or mixed deterministic-probabilistic 
approaches as presented in Lazzarin et al (2022).

The commonly accepted definition of critical rainfall duration is based on the duration 
leading to the maximum outflow peak (Krvavica and Rubinić 2020). However, this defini-
tion may not align with other critical flood hazard metrics, such as maximizing areas prone 
to human instability or those with substantial flood depth. Additionally, there is a lack 
of consensus on widely accepted rainfall temporal distribution and duration, with many 
engineering design studies arbitrarily selecting these rainfall characteristics (Krvavica and 
Rubinić 2020).

This paper defines a systematic heuristic method using a 2D hydrologic-hydrodynamic 
modeling approach to estimate the critical rainfall duration that maximizes flood hazard 
indicators such as floodplain extent, areas with relatively high velocities, and areas with 
human instability hazards. The methods developed in this paper are tested in a real-world 
catchment in Bangalore, India.

Challenges in sub-daily rainfall data are primarily rooted in the scarcity of prolonged, 
reliable records encompassing extreme rainfall events at shorter time scales (Westra et al 
2014). Key impediments include the lack of comprehensive global repositories for sub-
daily data, limitations in instruments measuring short yet intense rainfall, evolving techno-
logical incompatibilities, and variations in quality assessment methods. These challenges 
hinder our capacity to ascertain whether extreme sub-daily rainfall is increasing due to cli-
mate change and subsequently impact our understanding of whether flood hazard frequen-
cies align with rainfall trends.

Flood hydrologic response is influenced by the spatio-temporal variability in rainfall 
(Zhu et  al 2018; Chen et  al 2023). The study conducted by Breinl et  al (2021) found 
that regions with convective rain patterns exhibit increased variability in extreme rain-
fall, whereas orographic rain regions display greater variability in streamflow runoff. 
In essence, the research suggests that the characteristics of rainfall intensity, duration, 
frequency, and streamflow runoff are influenced by factors including spatial distribution 
of rain, geological features, and soil storage capacity. In the same direction, the research 
carried out in Cristiano et al (2017) emphasizes the intricate spatial and temporal varia-
bility characterizing hydrological processes within urban environments. This variability 
is particularly heightened by the influence of impervious surfaces and the diverse land 
use patterns present that influence the flow dynamics within urban catchments.
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The investigation conducted by Bezak et  al (2018) exposes the reliance of criti-
cal rainfall duration, particularly in maximizing peak flows within Huff curves (Huff 
1967), on the catchment time of concentration. Nevertheless, they emphasize the lack 
of a universally defined method within the engineering community to estimate this criti-
cal duration. Furthermore, Bezak et  al (2018) notes that prolonging rainfall duration 
amplifies disparities in peak discharge and time-to-peak. Scenarios featuring extended 
rainfall durations while adhering to the same Huff curve yield smaller peak discharge 
values compared to cases where rainfall duration closely matches the catchment time of 
concentration. The study indicates that more research is required to understand critical 
rainfall duration.

Many studies aimed at determining critical duration primarily concentrate on identi-
fying the duration that maximizes flood hazard, often focusing on catchment-integrated 
hydrological sub-products, particularly the maximum peak flow (Yuan et al 2021; Bezak 
et al 2018). While the maximum peak flow is connected to flood characteristics, its limita-
tion is neglecting the impact on floodplain extent, especially in smaller urbanized areas 
with diverse land use patterns contributing to nonlinear runoff. This highlights the need for 
a spatialized metric to define critical rainfall duration and temporal distribution, specifi-
cally emphasizing maximizing considerations for spatial flood hazard assessment.

With urban floods posing many challenges to city dwellers and planners, several spatial 
and temporal hydrological models were developed so that authorities could make better 
decisions in flood prevention and risk management. Models using Stormwater Management 
Model (SWMM) (Rossman 2010), machine learning techniques (Mosavi et al 2018), neu-
ral networks (do Lago et al 2023), and physically-based fully distributed models (Gomes 
et al 2023) are some of the solutions being developed by the research community all over 
the world to analyze, predict and control flood risks enabling the decision-makers and city 
authorities to formulate a plan to improve the infrastructural conditions (Teng et al 2017).

Flood or hydrodynamic modeling can be uncertain and difficult in data-scarce areas and 
scenarios. However, these areas are generally the areas with relatively higher exposure and 
vulnerability of the population (Batalini de Macedo et al 2022; Membele et al 2022). An 
example of such cases is the floods in Bellandur, a very urbanized catchment in Bangalore, 
India. Although we apply our methods in this catchment, we attempt to develop a case-
study-free analysis that uses only freely available datasets and can be adapted to poorly 
gauged catchments and catchments with more climatologic-hydrologic data.

While recent literature offers diverse tools for flood hazard modeling and mitigation, the 
absence of proper high-resolution rainfall and terrain data remains challenging for assess-
ing floods in poorly gauged watersheds. Despite data limitations, developing a method that 
provides meaningful results for flood hazards in these areas is relevant for decision-makers. 
Additionally, there is no consensus on using synthetic design storms, rainfall durations, and 
return periods critical for flood inundation mapping and modeling. Moreover, there is a gap 
in research investigating the impact of rainfall duration and temporal distribution on human 
instability hazards. We address these issues by presenting a flood hazard zoning method 
that evaluates varied rainfall durations and temporal distributions.

Our ultimate goal is not to provide a definitive solution for determining the dura-
tion times and temporal distributions of critical rainfall regarding flood hazard. These 
are closely related to catchment and climate signatures. Instead, we seek to elucidate the 
impact of neglecting these catchment-specific characteristics and their potential effects in 
flood hazard modeling. The fundamental contributions of this paper are:
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•	 We develop a flood mapping framework for relatively small, poorly-gauged catch-
ments using a 2D hydrodynamic modeling approach that requires catchment GIS 
data and a rainfall intensity-duration-frequency (IDF) curve. Spatial parameters can 
be assigned in tables according to land use and soil classifications. Therefore, this 
framework can be used to generate first-order site-specific catchment information, 
such as flood mapping and areas with human instability.

•	 We evaluate the effects of the rainfall duration and temporal distribution on the 
modeling assessment of water depths, velocities, human instability, and infiltrated 
depths, providing a comprehensive analysis of the effects of not choosing a critical 
rainfall duration and temporal distribution.

•	 We evaluate flood mapping characteristics under uncertainty scenarios of rainfall 
temporal distribution using the Alternated Blocks Method, Huff, and Observed hye-
tographs under 2, 6, 12, 24, and 48 h rainfall durations. The analysis is performed for 
flood depths, flood velocities, human instability index, and infiltration depths.

2 � Material and methods

2.1 � Mathematical model

HydroPol2D, as detailed by Gomes et al (2023), is a comprehensive hydrological-hydro-
dynamic and transport and fate model. It employs the Green-Ampt equation (Green and 
Ampt 1911) for estimating hortonian overland flow. The current version accounts for 
kinematic wave, local-inertial, and diffusive-like shallow water equation solvers to prop-
agate excess of infiltration generated in the hydrological module (Gomes Jr et al 2024).

2.1.1 � Conservation of mass and momentum

The elementwise cell-by-cell mass balance equation computes the interaction among 
atmospheric boundary conditions, infiltration losses, flood routing and can be written as 
follows:

where t is the time [ T ], d is the water depth [ L ], Δt is the time-step [ T ], I is the inflow rate 
[ L ⋅ T−1 ], O is the outflow rate [ L ⋅ T−1 ], r is the rainfall rate [ L ⋅ T−1 ], f is the infiltration 
rate [ L ⋅ T−1 ], F is the cumulative infiltration depth [ L ], e is the real evapotranspiration 
[ L ⋅ T−1 ], and N  represents the domain subset of all neighbors of cell i,  j (Gomes et  al 
2023).

The flux term (
∑
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∑
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Oi,j) is approximated at the cell edge with a momentum 
equation, solved for each cartesian direction in the watershe domain.

Let us drop the subindex i + 1∕2 to represent the cell edge at the x cartesian axis 
(Gomes  Jr et  al 2024). By assuming a local-inertial approximation in the momentum 
equation via a s-centered scheme (De Almeida and Bates 2013), we can consider that:
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where q = Q∕Δx is the flow per unit width [ L ⋅ T−1 ], Δx is the grid resolution [L], � is a 
diffusivity weighting factor [ − ], S is the water surface elevation slope [ − ], n is the Man-
ning’s roughness coefficient [ T ⋅ L−1∕3 ], and d̂ is the effective water surface depth at the cell 
edge [ L ] following De Almeida and Bates (2013). All calculations of flows are made to the 
cell edges. Index i represents the center of the i-th cell, and the previous equation is solved 
twice per cell for each cartesian axis at the cell edges ( i + 1∕2 ) and (j + 1∕2) . For simplic-
ity, only equations for the x (i.e., edge i + 1∕2 ) axis are shown.

The diffusion weight factor controls the amount of diffusivity from neighbor cells at cell 
interfaces and is given by (Sridharan et al 2020):

Using the states modeled by HydroPol2D, it is possible to determine drag forces and to 
calculate the human instability risk due to friction.

2.2 � Time‑stepping

An adaptive time-stepping scheme is implemented in HydroPol2D considering the wave 
celerity propagation, given by (Bates et al 2010):

where � is typically assumed between 0.4 and 0.7 (De Almeida and Bates 2013) and is 
assumed as 0.5 in this paper. The previous equation is solved for each active domain cell.

2.3 � Hydrologic modeling

HydroPol2D accounts for infiltration modeling via either explicit or implicit Green-Ampt 
schemes, depending on user defined parametrization. In this paper, we solve the implicit 
GA equation using the Newton–Raphson algorithm. The implicit Green-Ampt formulation 
is given by (Rossman 2010):

where Ks is the saturated hydraulic conductivity [ L ⋅ T−1 ], F is the infiltrated depth [L] , �d 
is the effective porosity [ L3

⋅ L−3 ], �f  is the wetting front suction head [L] , and fout is the 
groundwater replenishing rate, following Huber et al (2005).

The infiltration rate f is calculated by:
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and is used in Eq. (1) to solve the mass balance and later to propagate the flow.

2.3.1 � Human instability modeling

During flood events, effects of sliding and toppling can occur depending on the velocities and 
water depth magnitudes (Kvočka et  al 2016). In this paper, we estimate the occurrence of 
these effects by calculating the forces associated with the flow following the methodology 
proposed in Jonkman and Penning-Rowsell (2008). Sliding instability occurs when the avail-
able static friction (i.e., calculated using the difference between the weight of a person and its 
buoyancy) is smaller or equal to the hydrodynamic force associated with the perpendicular 
flow (Jonkman and Penning-Rowsell 2008). The governing equations to calculate the human 
instability hazard ( fr ), depends on the person’s volume (Eq.  (7a)), weight (Eq.  (7b)), drag 
force (Eq. (7c)), buoyancy (Eq. (7d)), and friction resistance (Eq. (7e)) and are accounted to 
determine fr . Considering a cell (i, j) in the domain, these functions are written, respectively, 
as follows: 

 where the subscripts p, q, b, and f represents person, flow, buyoance, and friction. The per-
son’s height, length, and width are given by Hp , Lp , and Bp [ L ]. Parameters g, Cd , � are the 
gravity acceleration [ L ⋅ T−2 ], the drag coefficient [-], the kinematic static factor [-]. The 
water density is given by � [ M ⋅ L−3 ]. The product Bd represents the person area perpen-
dicular to the flow direction. A value of fr = 1 represents that a person would be dragged in 
the water due to sliding instability.

The previous set of equations (7) are solved for each computational time-step, and after 
the end of the simulation, the time-dependent maps of fr are plotted, as well as the maximum 
values of fr per cell that would define the human instability flood hazard map. For the sake 
of parsimony, we assumed u = 0.5 , m = 75 kg , Cd = 1.1 , �p = 1000 kg ⋅m−3 , Hp = 1.75 m , 
Lp = 0.3 m , Bp = 0.3 m , and g = 9.81 m ⋅ s−2.

2.4 � Design hyetographs

The intensity-duration-frequency curve is given by a Sherman type, such that:

(7a)Vc = LpBpd

(7b)F p = mg

(7c)F q =
1

2
�CdBpdv

2

(7d)Fb = �Vcg

(7e)Ff = �
(
Fp − Fb

)

(7f)fr = min
(Fq

Ff

, 1
)
,
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where K, a, b, and c are fitted parameters using a theoretical distribution frequency curve 
(e.g., Gumbel), and RP is the return period.

2.4.1 � ABM ‑ chicago hyetograph

The method assumes that the rainfall volume obtained by the IDF curve distributes follow-
ing a peak factor � , such that if � = 0.5 , the maximum intensity value of rainfall would be 
centered. The Chicago method hence equals the ABM if � = 0.5 (Gomes Jr et al 2023). 

 where � is a peak factor assumed as 0.5 to represent the rainfall peak at 50% of the storm 
duration and Eqs. (9a) and (9b) represent equations for durations before peak and after 
peak.

2.4.2 � Huff hyetographs

The polynomial equations used in the model to represent the Huff temporal distribution are 
presented as follows (Gomes Jr et al 2023): 

(8)i =
KRPa

(b + td)
c
,

(9a)i(t) =
K × RPa

[
t1

�
(1 − c) + b

]

(
t1

�
+ b

)1+c
for t = t1 ≤ � × td

(9b)i(t) =
K × RP

a

[
t2

𝛾
(1 − c) + b

]

(
t2

1−𝛾
+ b

)1+c
for t = t2 > 𝛾 × td,

(10a)P(t)∕Pt = 0.2558

(
t

td

)4

+ 1.5586

(
t

td

)3

− 4.346

(
t

td

)2

+ 3.603

(
t

td

)
− 0.0579, For t ≤ 2h

(10b)

P(t)∕P
t
= 6.1888

(
t

td

)4

− 14.996

(
t

td

)3

+ 10.861

(
t

td

)2

− 1.0758

(
t

td

)
+ 0.0235, For 2h ≤ t ≤ 12h

(10c)

P(t)∕Pt = 71.986
(
t

td

)6

+ 206.68
(
t

td

)5

− 211.78
(
t

td

)4

− 92.488
(
t

td

)3

+ 16.973
(
t

td

)2

− 0.5697
(
t

td

)
+ 0.0041, For 12h ≤ t ≤ 24h

(10d)

P(t)∕Pt = −58.036
(
t

td

)6

+ 154.96
(
t

td

)5

− 151.59
(
t

td

)4

+ 68.269
(
t

td

)3

− 13.978
(
t

td

)2

+ 1.3842
(
t

td

)
− 0.008, For t ≥ 24h,



	 Natural Hazards

where Eqs (10a), (10b), (10c), and (10d) represent polynomial equations for Huff’s 1st, 2nd, 
3rd, and 4th quartiles, respectively. Variables t and td are the time and the rainfall duration. 
P(t) is the cumulative rainfall volume at time t [ L ] and Pt is the total rainfall volume [ L].

2.5 � Case study

Floods are one of the deadliest natural disasters, and India is a country prone to floods that 
affect ecosystems and infrastructure and lead to casualties (De et al 2013; Avinash 2013). 
India has a diverse topography and rich natural bio-diversity ranging from deserts to gla-
cial mountain regions. It is the 7th largest country by size and one of the most populous 
countries in the world with over 1.4 billion people according to United Nations Population 
Prospects(2022) estimates (Nations 2022) and is expected to surpass the 1.5 billion mark 
by 2025 and surpass China within a decade (Kc et al 2018). With this increase in popula-
tion and economic growth over the last few decades, India saw an increase in urbanization 
as the rural population began to migrate to cities for better employment opportunities and a 
better standard of living (Bhagat 2011).

Bangalore is located at 12°59’ north latitude and 77°57’ east longitude, almost equidis-
tant from the eastern and western coasts of the South Indian peninsula. It is situated at an 
altitude of 920 m above mean sea level (MSL) with an area of 741 km2 . The mean annual 
total rainfall is about 900 mm (Ramachandra and Aithal 2019). The summer temperature 
ranges from 18 to 38°C, while the winter temperature ranges from 12 to 25°C. Bangalore 
is also India’s third most populous city, with a population of more than 8.5 million and a 
metropolitan population of 11 million as of the 2011 Census (Avinash et al 2018).

The city’s topography is over a natural ridge delineating four major watersheds. Hebbal, 
Koramangala, Challaghatta, and Vrishabhavathi valleys pass from the city’s ridge in the 
north to an enclosed lake system at the perimeter of Bangalore. Waterbodies are part of 
these four major waterways, or “valley” systems, which drain most of the city’s stormwater 
to large tanks or lakes traditionally used for recreation and water supply for irrigation.

These waterways, with interconnected lakes and their primary function as flood carri-
ers, have provided the city with reasonable ecological and recreational values. The urban 
growth in recent times, not guided by strong strategic planning or development control 
measures to minimize the impacts on existing infrastructure, the surrounding environ-
ment, and the stormwater system, had severe impacts on waterways. This has led to the 
depletion of waterways and pollution and wastewater discharge to the stormwater system 
(Ramachandra and Mujumdar 2009).

Due to the size of the Bangalore stormwater system, we concentrate our study on the 
Bellandur Watershed (see Fig. 1), which is located in the Koramangala-Challagatta valley 
(K&C Valley), lies between longitude 77°39’ W - 77°40’ E and latitude 12°60’ N - 12°50’ 
S (Chandrashekar et al 2003) with an area of approximately 131 km2.

The description of the rainfall data acquisition and rainfall temporal distribution meth-
ods of the Alternated Blocks Methods (Gomes Jr et al 2023) and Huff Curves (Huff 1967) 
is presented in the Supplementary Material. The Huff curves were derived from the origi-
nal data presented in Huff (1967) by fitting a 6th-order polynomial equation.

2.5.1 � DEM and land use land cover treatment

The DEM was converted into a digital terrain model (DTM) using the DTM-Filter tool 
followed by the SAGA close gaps function, (Conrad et al 2015), such that areas with slope 
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greater than 30% are bilinear interpolated, resulting in a smoother DEM. The spatial reso-
lution of the DTM and the other rasters are 30 m for x and y directions, resulting in 145,556 
squared computational cells. In addition, flow paths were smoothed using the constrained 
regularized smoothing (CRS) (Schwanghart and Scherler 2014). This algorithm calculates 
the DEM streams with a user-defined flow accumulation threshold (e.g., herein, we assume 
streams start at 0.5 km2 ) and smooths paths, reducing DEM noises and enhancing flow 
continuity. Furthermore, we reduce DEM elevations in streams in terms of the flow accu-
mulation following an exponential relationship between DEM reduction and flow accumu-
lation (De Paiva et al 2013). These DEM treatments allow smoother rain-on-the-grid 2D 
simulation in the catchment domain, reducing model instabilities due to sharp slopes.

The Land Use and Land Cover (LULC) dataset from Dynamic World (Brown et  al 
2022), delineating nine distinct LULC types, was utilized for the temporal range period 
from January 1, 2021, to January 1, 2022, to generate the LULC for the watershed in this 
study. The DEM and the LULC maps are shown in Fig. 2.

2.5.2 � Observed rainfall temporal distribution

Using the only available 6 years of 15-min resolution rainfall data retrieved from India​ 
Meteo​rolog​ical Depar​tment​(IMD) and Karna​taka State​ Natur​al Disas​ter Monit​oring​ Centr​
e (KSNDMC), we derive empirical Huff curves from the observed data to determine the 
rainfall temporal distribution of the catchment.

Using the time series of all events within each quartile, normalized by their durations 
and volumes, a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) is applied to 

Fig. 1   Bellandur Watershed study area. The IMD Raingauge Station has daily rainfall recordings and was 
used to derive the IDF curve, whereas the KSNDMC Raingauge station records 15-minute rainfall and was 
used to derive rainfall temporal distribution patterns in the catchment

https://mausam.imd.gov.in/
https://mausam.imd.gov.in/
https://www.ksndmc.org
https://www.ksndmc.org
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the time series at various values of t∕td . Percentile values are then determined for prob-
abilities of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%, following the methodol-
ogy described by Huff (1967). Subsequently, seventh-order polynomials are fitted to these 
percentile curves, thereby defining the copula-based rainfall distribution functions for each 
probability level.

The Huff copula distributions polynomial fitting can be written as:

where n is the polynomial order of the Huff Curves, and k is the order of the exponent.
The coefficients ck of Eq.  (11) are obtained via least square fitting with the series of 

normalized time ( t∕td ) versus normalized cumulative precipitation ( P∕Pt ), for each dura-
tion tested. Rainfall events are classified into 1st, 2nd, 3rd, and 4th quartile according to the 
duration where the maximum intensity occurs.

(11)Pk∕Pt =

n+1∑

k=1

[
ck

(
tk∕td

)(n−k+1)]
,

Fig. 2   a Digital Terrain Model (DTM) and b Land Use and Land Cover classification from the Dynamic 
World (Brown et al 2022) (LULC)
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2.5.3 � Model parameters and initial inputs

HydroPol2D assigns hydrodynamic, hydrologic, and water quality parameters to all 
domain cells according to LULC and SOIL maps. The parameters used in the model are 
shown in Table 1 and were estimated based on data from the literature (Te Chow 1959; 
Rossman 2010). There is only one soil type in the catchment, and the Green-ampt param-
eters of saturated hydraulic conductivity ( ksat = 5 mm ⋅ h−1 ), moisture deficit ( Δ� = 0.427 ), 

Table 1   LULC-based 
parameters, where n is the 
Manning’s roughness coefficient 
and h

0
 is the initial abstraction or 

depression storage

LULC classification Index n [ s ⋅m−1∕3] h0 [mm]

Water 0 0.025 0
Trees 1 0.035 8
Grass 2 0.030 2
Flooded vegetation 3 0.040 4
Crops 4 0.035 5
Shrub and scrub 5 0.045 5
Built areas 6 0.025 0
Bare ground 7 0.028 0.5

Fig. 3   Sample statistics considering a rainfall volume threshold of 0.5 mm, 6-h inter-event duration, which 
defined 53 events in the course of 6 years. Variables � and x̄ represent the standard deviation and mean of 
the sample
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and suction head ( � = 40 mm ) (Brunner 2016). Another degree of freedom in the analysis 
could be explored by the initial soil moisture content (Pena et al 2023); however, the influ-
ence of this watershed condition is out of the scope of the paper. The initial soil moisture 
condition represented by the initial soil moisture depth was assumed as 10 mm for all per-
vious cells.

Fig. 4   Observed Huff Curves based on 6-years of 15-min rainfall, where dots are observed values and lines 
are fitted 7-th order polynomials interpolated with 2% increments in t∕t

d
 . In this figure, n represents the 

number of events sampled, and Δt is the rainfall temporal resolution. The 7-th order polynomials fitted from 
the observed data are shown in the Supplemental Material
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To evaluate the possible uncertainties in the parameter estimations, we perform a one-
at-a-time sensitivity analysis of the model’s hydrologic and hydrodynamic parameters to 
identify potential variations in flooded areas and areas with human instability hazards.

2.5.4 � Observed copula huff curves

Data-driven rainfall temporal distribution can be derived by separating independent rainfall 
events according to rainfall volume and inter-event duration (Restrepo-Posada and Eagle-
son 1982). Normalizations from the total precipitation and total duration are performed, 
allowing a comparison between storm events with different characteristics. These storm 
events can also be classified according to the maximum volumes per quartile. Typically, 
events can be classified into first, second, third, and fourth quartiles, indicating the portion 
of the duration where the maximum rainfall average intensity occurred. To compare with 
the original Huff curves, we classify storms with durations within 0–2 h, 2 h - 6 h, 6 h - 
12 h, and > 12 h as the first, second, third, and fourth quartile.

3 � Results

The descriptive sample analysis used to derive the rainfall temporal distributions is pre-
sented in Fig. 3. Most of the observed events have durations smaller than 5 h, with volumes 
of approximately 11 mm, on average. The empirical copula-based cumulative hyetographs 
are presented in Fig. 4. This figure is discretized into 1st, 2nd, 3rd, and 4th quartile rainfall 
distributions. Most of the events occurred in the 1st and 3rd quartile.

Rainfall maximum intensities and volumes are discretized for each distribution and 
duration, detailed in Table 2. The largest 15-minute intensities are sourced from the ABM. 
Noticeably, it is observed that the maximum rainfall intensities are consistently smaller for 
the Huff hyetographs compared to both Observed and ABM despite having the same rain-
fall volume.

The results presented in Fig. 6 show human-instability risk areas, flooded areas with 
depths larger than 0.5 m, areas with velocities larger than 2 m ⋅ s−1 and areas with infil-
tration larger than 80 mm in the Bellandur catchment for different rainfall temporal dis-
tributions and durations. The critical combination of rainfall temporal distribution and 
duration was identified as between the 6 and 12-h rainfall duration using the observed 
rainfall temporal distribution. Herein we assume the 6-h as the critical duration due to 
producing overall higher values for all rainfall distributions. For this duration, human 
instability hazard area of 6.74 km2 are expected considering the observed rainfall dis-
tribution pattern, as shown in Fig. 6a. In particular, the duration of the critical rainfall 

Table 2   Summary of events 
tested with maximum intensities 
given in 15-min intervals, where 
subscripts ABM = Alternated 
Blocks Method, H = Huff 
Method, and OBS = Observed 
50% percentile

Rainfall 
duration

i
ABM
max

i
H

max
i
OBS
max

Rainfall volume 

[h] [mm ⋅ h−1] [mm ⋅ h−1] [mm ⋅ h−1] [mm]

2 174 130 49 87
6 174 42 38 125

12 174 26 24 157
24 174 16 19 197
48 174 11 20 248
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duration was 24 h for the ABM method ( 12.33 km2 ) and 2 h for the Huff rainfall tempo-
ral distribution ( 7.06 km2 ). The normalized data-driven rainfall distribution compared to 
Huff and Alternated Blocks Method is presented in Fig. 5.

Fig. 5   Median rainfall temporal distribution for 2 (a), 6 (b), 12 (c), 24 (d), and 48 h. All charts are designed 
with 15-min rainfall resolution and normalized by the rainfall duration td . Incremental 15-min rainfall ΔP is 
normalized by the total precipitation (P

t
)

Fig. 6   Hazard areas in terms of human instability, maximum flow velocity, water depths, and infiltrated 
depths. Part a illustrates the overall areas prone to human instability, calculated by accounting for flood 
hydrodynamics and ground friction. Part b represents areas exceeding flow velocities greater than 2 m ⋅ s−1 . 
Cumulative areas surpassing flood depths of 0.5 m are shown in Part (c), while Part d displays total areas 
exceeding 89 mm of soil infiltration, representing the 10-yr, 6-h, storm volume
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Fig. 7   Normalized spatial analysis of flood depths, velocity, and infiltrated depth, where a–c are results for 
the ABM, d–f are for the Huff rainfall temporal distributions, and g–i are median observed distribution. 
Results are plotted for each rainfall duration tested. Flooded areas are normalized by the catchment area 
Ac = 131.37 km2 . I

f
 is the cumulative infiltration depth

Fig. 8   Effect of different hazard areas for the critical duration of 6-h for different hazards: a is for the maxi-
mum flow velocity b is for the flow velocity, and c is for the infiltrated depth
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The critical duration and temporal distribution for flooded areas with depths larger 
than 0.5 m is, as opposed to the aforementioned hazard metrics, is the ABM with 12-h 
of rainfall duration, as observed in Fig.  6c. The ABM method consistency produced 
hazard flood areas 2–5 larger than the other rainfall distribution methods.

Part (c) of this figure shows the areas exceeding 89  mm of infiltration. Regarding 
these areas (commonly found in regions with high flow accumulation and pervious 

Fig. 9   Comparison between the Alternated Blocks Method results (a)–(c), to Huff (c)–(e), and to the 
Observed Rainfall Temporal Distribution. Parts (a)–(c) show water depths, instability hazard f

r
 [Eq.  (7)], 

and infiltration values for the ABM method, respectively. Parts (c)–(e) show the difference between maps of 
(a)–(c) with Huff distribution modeled results. Similarly, parts f to h show the difference between ABM and 
the observed rainfall distribution modeled results. All results are shown, assuming a critical rainfall dura-
tion of 6-h
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Fig. 10   One-at-the-time sensitivity analysis on Manning’s roughness coefficient for the 12-h observed hye-
tograph with a 100-yr return period, where 1 = water, 2 = Trees, 3 = Flooded Vegetation, 4 = Crops, 5 = 
Shrub/Scrub, 7 = Built Areas, and 8 = Bare Ground

Fig. 11   One-at-the-time sensitivity analysis on Green-Ampt parameters for the infiltration model for the 
12-h observed hyetograph with a 100-yr return period, where a are the sensitivity in Flood Areas and b in 
human instability areas in terms of the saturated hydraulic conductivity [ ksat ], moisture deficit ( Δ� ), and 
suction head [ �]
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areas), the Huff rainfall temporal distribution, due to its smoother spread, led to more 
infiltration, as evidenced in Fig. 6d. A trending peak of infiltration occurs for all meth-
ods within 12–24 h.

The results of the previous analysis are limited by the definition of the thresholds for 
water depth, velocity, and infiltration. For instance, one can classify a risk area if the water 
depth exceeds 15 cm or the flow velocity exceeds 1 m ⋅ s−1 . Since this metric is subjective 
and may be defined by local regulation constraints that define risk thresholds, we assess 
the sensitivity of the extent areas where this threshold is surpassed in terms of depths, 
velocities, and infiltrated depths. Results of Fig. 7 show a hypsometric analysis of these 
variables for each rainfall duration and distribution. While the 48-hour duration is the one 
that produces that larger extent areas for the ABM in terms of depths and velocities (see 
Fig. 7a–b), it is the least critical for the Observed and Huff distributions (see Fig. 7d–e and 
g–h). This result shows the effect of rainfall temporal distribution variability in terms of 
flood characteristics.

Assuming a 6-hour duration as the critical rainfall duration, Fig. 8 illustrates the sensi-
tivity of the flood hazard threshold for water depth, flow velocity, and infiltrated depth.

To illustrate the effects of not choosing a critical rainfall temporal distribution method, 
we compare the results for a 6-h duration of the observed rainfall and Huff curves, as pre-
sented in Fig. 9. The results presented in Fig. 8 can be seen spatially from the maps pre-
sented in Fig.  9. In particular, similar flooded areas and areas with human instability are 
expected for the median observed rainfall and original Huff temporal distribution. This 
result is also supported by the similar rainfall distribution trends shown in Fig. 5.

The results presented in Figs.  7 and 8 can be influenced by the choice of the model 
parameters presented in Table 1, since no observed discharges were available to perform 
a proper model calibration. Therefore, a sensitivity analysis would allow one to assess 
the associated uncertainty effects in the calculations and quantify the impacts of retrofit-
ting the catchment with LIDs or by increasing urbanized areas. The one-at-the-time sen-
sitivity analysis of the hydrodynamic and soil parameters is presented in Figs. 10 and 11, 
respectively.

4 � Discussion

Results of Fig. 6 reveal discrepancies between the critical rainfall duration due to sev-
eral non-linear factors, such as the infiltration modeling. The figure also highlights that 
the Huff hyetograph is less critical compared to ABM in line with findings from other 
studies (Balbastre-Soldevila et al 2019; Pan et al 2017; Na and Yoo 2018). The observed 
rainfall distribution was less critical than Huff and ABM methods, consistently result-
ing in smaller hazard areas with results closer to the Huff distribution. Rainfall temporal 
distribution is one of the governing factors of flood characteristics in urban environ-
ments (Li et  al 2021) and accurate rainfall temporal resolution is essential to capture 
flood dynamics such as accurate time to peak and peak discharge (Lyu et al 2018).

However, the analysis does not account for flood exposure in human risk instability 
(Dai et al 2020). Human risk instability areas were calculated based on the maximum drag 
forces surpassing available friction without considering the duration where this exposure is 
effective. While exposure duration impacts human flood resistance, an alternative approach 
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calculating instability risk multiplied by the duration of occurrence falls beyond the scope 
of this article but could offer insights into areas with varying levels of hazard exposure.

The analysis of maximum velocities in Fig.  6b indicates consistently lower values 
for Huff across all tested durations compared to ABM. As expected, a strong correlation 
between human instability areas and maximum velocities is observed. Although the veloc-
ity estimations presented in this paper allowed the quantification of the human-instability 
hazard, the relatively coarse grid resolution is a limitation for properly estimating flood 
velocities. Recent studies the using sub-grid approach that use depth-varied hydraulic prop-
erties to propagate flood in the domain is an important alternative (Nithila Devi and Kuiry 
2024); however, they require underlying high-resolution terrain models typically derived 
by LiDAR to obtain hydraulic properties tables for each coarse grid cell based on sub-grid 
data, which is unavailable in most parts of developing countries.

The ABM appears to be overall more critical as shown in Fig. 6c. Part (c) of this fig-
ure shows the areas exceeding 89 mm of infiltration. This result indicates that larger flood 
extents do not necessarily mean larger areas with a risk of human instability or relatively 
high flood velocities. It is noted that the flooded areas are 5–10 times larger than the areas 
of instability risk by comparing Fig. 6a with Fig. 6c. This is because some areas are natural 
reservoirs, and floodplains with high resistance exist within the catchment, leading to rela-
tively low flow velocities and smaller drag forces while still getting flooded.

Regarding the infiltration analysis, areas with large infiltrated depths could be viewed as 
a positive metric for aquifer recharge (Mooers et al 2018); however, they can pose a flood 
hazard by potentially reducing the infiltration capacity for incoming storms.

For example, assuming a requirement for a 100-year return period analysis (i.e., typ-
ically required in flood hazard studies), and utilizing the Huff hyetograph for a 12-hour 
rainfall duration (wrongly identified as the critical duration in this analysis) would result 
in significantly smaller risk areas with human instability. Specifically, these areas would 
be 42% smaller compared to the ABM and 6% larger than the observed rainfall distribu-
tion. This holds notable implications, as insurance plans and the definition of risk areas for 
urban zoning often rely on delineating flood hazard areas. Opting for a noncritical rainfall 
temporal distribution could potentially indicate nearly 50% fewer areas at risk of flooding 
if ABM is a requirement for delineating flood areas. The careful choice of rainfall temporal 
distribution and duration used in the flood hazard analysis must be chosen (Bezak et  al 
2018).

The analysis of the results of Fig. 8 can be used to establish varying levels of protection 
for flood insurance plans, among other applications. Although the analysis in this paper 
shows a simple heuristic way to determine a critical rainfall duration, these results are 
catchment-dependent and vary according to the physiographic properties of the catchment, 
local rainfall pattern, and urban infrastructure.

In Fig. 8, it is evident that for relatively high velocities, the hazard areas are 5–6 times 
larger  for the ABM compared to the Huff and observed distribution. Part (c) shows that 
infiltration distribution is similar comparing Huff and ABM, with Huff favoring more areas 
with infiltration.

As anticipated, the Built Areas and Water land use/land cover (LULC) classifications 
exhibit the highest sensitivity, given the significant urbanized areas and water bodies 
within the catchment (see Fig. 10). The surface roughness coefficient demonstrates more 
pronounced elasticity to parameter reduction than to parameter increase. Even with a 20% 
uncertainty range in roughness coefficients, errors in flood areas and human instability 
areas remain below 5%, indicating a relatively low level of uncertainty associated with the 
parameters and, consequently, with the previously provided estimations of flood hazard.
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Nevertheless, for variations exceeding 20% in the parameter estimation, the sensitivity 
of human instability areas becomes more pronounced. Notably, an intriguing observation 
is that elevating the Manning’s roughness coefficient (n) results in an increase in flooded 
areas but induces a more substantial reduction in human instability areas, as depicted in 
Fig.  10a, b. Consequently, retrofitting urban areas with green infrastructure may expand 
flood-prone regions, yet it concurrently diminishes risks of human instability to a greater 
extent. This suggests that green infrastructure could effectively mitigate human instability 
and that only flooded areas might be an incomplete metric for assessing flood hazards.

This finding holds significance for flood insurance programs exclusively reliant on 
flooded areas, as an increase in flooded areas does not necessarily correlate with a reduc-
tion in human instability areas. Integrating human instability maps into formulating flood 
insurance policies could offer a more comprehensive perspective, providing a more accu-
rate estimation of the real impacts of floods on humans.

The flooded area extents, as indicated in Fig. 11, exhibited relatively low sensitivity to 
Green-Ampt soil properties, especially due to the relatively smaller pervious areas com-
pared to the impervious areas. Conversely, soil parameters are crucial in influencing varia-
tions in areas with risks of human instability. Increasing the saturated hydraulic conductiv-
ity ( ksat ) by 80%, from 5 to 9 mm ⋅ h−1 in pervious areas, has the potential to reduce areas 
of human instability by 10%.

Implementing engineering strategies such as building infiltration techniques or increas-
ing macropores in pervious areas could achieve this reduction (Gomes Jr et al 2023). While 
altering saturated hydraulic conductivity might pose challenges, it is a straightforward 
proxy parameter for assessing the impacts of increased infiltration in the catchment. This 
result, coupled with an increase in Manning’s roughness coefficient (n), underscores the 
advantages of implementing green infrastructure retrofits in the catchment, leading to a 
reduction in areas with flood hazards (McClymont et al 2020; Borah et al 2023).

5 � Conclusions

A flood inundation model, incorporating a human instability module and employing both syn-
thetic and observed rainfall temporal distribution methods, was developed and implemented in 
the Bellandur catchment in Bangalore, India. The study investigated the impact of various rain-
fall temporal distributions on flood characteristics, including inundation extents, depths, veloci-
ties, and soil infiltration. This analysis aimed to assess the uncertainty associated with assuming 
an a priori synthetic rainfall temporal distribution for flood inundation mapping and modeling 
and the potential impacts in flood hazard assessment. The discrepancies can be even larger if 
rainfall temporal distribution is not critical, as well as rainfall duration. The systematic method 
to evaluate the critical rainfall temporal distribution and duration presented in this paper can be 
applied to produce critical flood maps for a given return period, which is typically the only crite-
ria established by local flood regulations.

The preselection of a synthetic rainfall temporal distribution for flood mapping and 
modeling, without evaluating the sensitivity of various synthetic rainfall temporal distribu-
tion methods or incorporating observed fitted rainfall temporal distributions, may result in 
a considerable uncertainty, potentially leading to a misrepresentation of up to 45% smaller 
areas with flood hazards related to human instability for a 100-year flood event.

The sensitivity analysis of the hydrodynamic and hydrologic parameters of the catch-
ment indicates a relatively lower degree of sensitivity in flood areas and human instability 
areas (i.e., smaller than 20% for a variation of 80% in all parameters), allowing the use of 
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the model for preliminary assessment without formal calibration that would require inac-
cessible stream flow and spatially distributed rainfall. This indicates a scenario where the 
application of 2D hydrologic-hydrodynamic modeling can generate useful information for 
catchments with a lack of observed hydrological data but is prone to floods.

In the particular case of highly urbanized catchments as Bangalore, having soils with 
higher infiltration capacity produces little effect in mitigating flood effects for a 100-yr 
event. However, if the terrain roughness of the impervious areas is changed, it is possible to 
achieve 5–10 % variations in flooded and risk areas. Increasing terrain roughness increases 
flooded areas but reduces instability areas and can be viewed hence as a positive metric. 
Therefore, a combined metric of flooding areas with human instability areas can be a more 
complete metric to aid flood risk assessment.

The automatic one-at-a-time sensitivity algorithms, developed and implemented in the 
HydroPol2D model in this study, serve as a valuable tool for comprehending the conse-
quences of retrofitting the catchment with various low-impact development scenarios. 
Additionally, HydroPol2D allows for straightforward sensitivity analysis of different 
rainfall temporal distributions, durations, and return periods. Replicating the methods 
established in this paper with other ungauged or poorly-gauged catchments provides an 
alternative for furnishing valuable information in areas lacking data but facing potential 
unprecedented floods in the future due to urbanization and climate change. Applying this 
strategy to other highly urbanized and flood-prone catchments is justified.

The 100-yr events tested in this paper are conditioned to the exceedance probability of 
rainfall volume for a given duration, given the occurrence probability of the rainfall tempo-
ral distribution. We used the 50th percentile as the representative temporal distribution for 
the analysis; however, a monte-carlo analysis evaluating the combined probability of the 
rainfall volume and temporal distribution can be analyzed to investigate the critical tempo-
ral distribution based on the observed data. A practical ensemble analysis can be done by 
using each 10th percentile of the observed rainfall distributions to investigate the effect of 
possible different observed storms in the flood hazard assessment. Future studies can also 
incorporate the spatial behavior of rainfall and its impacts on human instability metrics, 
especially because the center of the rainfall can influence the total potential energy, which 
ultimately would convert to larger flood velocities downstream of the catchment. The effect 
of initial moisture content in the simulation and the analysis of coupled effects combining 
rainfall temporal distribution methods and increasing rainfall rates due to climate change 
can also be further investigated.

The results of this paper make clear the case that only specifying the return period is a 
poor local regulation criterion to be used for flood mapping. The non-linear dynamics of 
infiltration and flood routing coupled with the rainfall temporal distribution characteris-
tics make the preselection of rainfall duration and temporal distribution complex without 
identifying the critical combination. Several simulations must be performed with different 
durations, synthetic, and data-driven rainfall temporal distributions to identify the critical 
durations for a given flood hazard.
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