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Abstract

Flood modeling is influenced by uncertainties from factors like soil infiltration character-
istics, floodplain roughness, and spatio-temporal variations in rainfall volume, distribution,
and intensities. Although multiple uncertain sources arise in flood modeling, the detailed
evaluation of rainfall characteristics in flood mapping is not fully investigated. This paper
addresses the role of rainfall temporal distribution on flood mapping by introducing a meth-
odology that contrasts standard synthetic design storms and compares them to the 50th per-
centile rainfall temporal distribution derived from high-resolution 15-min observed rainfall
data. The Alternating Blocks and the Huff rainfall temporal distribution methods were cho-
sen as representative synthetic rainfall methods for flood mapping assessment. The frame-
work was applied in a 131 km? urban catchment in Bangalore, India. Evaluation of differ-
ent rainfall temporal distributions reveals a potential 50% smaller areas with flood hazard,
for the same return period and duration, simply by selecting a specific rainfall temporal that
is not the critical for the catchment. This research not only underscores the importance of
the effect of rainfall temporal distribution selection and assessment of the critical rainfall
duration but also highlights the need for accurate data-driven methodologies in flood map-
ping, particularly in the face of urbanization and climate-induced complexities.

Keywords Flood mapping - Huff curves - Alternated blocks method - Rainfall temporal
distribution - Flood hazard

1 Introduction

Urban flood inundation mapping is affected by many hydrological phenomena varying
from the rainfall dynamics to the non-linear spatio-temporal representation of infiltration
(Cheng et al 2020). Typically, the use of so-called event-based design storms is a common
engineering practice to delineate flood-prone areas (Mei et al 2020; Kang et al 2013), espe-
cially when high-resolution quality data of rainfall is lacking (Gomes et al 2023). Multiple
areas across the world use the 100-yr return period as the common return period used to
define flood-risk areas (Huang and Wang 2020; Dottori et al 2022), although the definition
of the rainfall duration and temporal distribution are hardly ever specified (Krvavica and
Rubini¢ 2020).
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The importance of flood modeling and mapping associated with rainfall return periods
is evident for instances such as aiding in the development of flood insurance plans (Mani
et al 2014) or even by being used to define multifaceted risk areas that would depend not
only on hydrological but also socioeconomic information (Roldan-Valcarce et al 2023;
Pregnolato et al 2024; Zare et al 2024). Even though multiple applications use products
derived from flood simulation results, a large uncertainty can arise from not clearly defin-
ing the rainfall’s duration and temporal distribution that would maximize the expected
flood hazard (e.g., maximum water depth).

Two storms with the same return period can have dramatically different catchment
responses simply by varying the temporal rainfall distribution and/or the rainfall duration.
We hypothesize that these rainfall characteristics must be properly defined, investigating
the critical rainfall duration that maximizes a spatial flood hazard criterion. Flood hazard
can be defined as a function of various features, such as the floodplain area with signifi-
cant flood depth, velocity, or ultimately, areas with human instability hazards (Lazzarin
et al 2024). The latter can be estimated via flood momentum equations and dynamic fric-
tion modeling (Jonkman and Penning-Rowsell 2008) or mixed deterministic-probabilistic
approaches as presented in Lazzarin et al (2022).

The commonly accepted definition of critical rainfall duration is based on the duration
leading to the maximum outflow peak (Krvavica and Rubini¢ 2020). However, this defini-
tion may not align with other critical flood hazard metrics, such as maximizing areas prone
to human instability or those with substantial flood depth. Additionally, there is a lack
of consensus on widely accepted rainfall temporal distribution and duration, with many
engineering design studies arbitrarily selecting these rainfall characteristics (Krvavica and
Rubini¢ 2020).

This paper defines a systematic heuristic method using a 2D hydrologic-hydrodynamic
modeling approach to estimate the critical rainfall duration that maximizes flood hazard
indicators such as floodplain extent, areas with relatively high velocities, and areas with
human instability hazards. The methods developed in this paper are tested in a real-world
catchment in Bangalore, India.

Challenges in sub-daily rainfall data are primarily rooted in the scarcity of prolonged,
reliable records encompassing extreme rainfall events at shorter time scales (Westra et al
2014). Key impediments include the lack of comprehensive global repositories for sub-
daily data, limitations in instruments measuring short yet intense rainfall, evolving techno-
logical incompatibilities, and variations in quality assessment methods. These challenges
hinder our capacity to ascertain whether extreme sub-daily rainfall is increasing due to cli-
mate change and subsequently impact our understanding of whether flood hazard frequen-
cies align with rainfall trends.

Flood hydrologic response is influenced by the spatio-temporal variability in rainfall
(Zhu et al 2018; Chen et al 2023). The study conducted by Breinl et al (2021) found
that regions with convective rain patterns exhibit increased variability in extreme rain-
fall, whereas orographic rain regions display greater variability in streamflow runoff.
In essence, the research suggests that the characteristics of rainfall intensity, duration,
frequency, and streamflow runoff are influenced by factors including spatial distribution
of rain, geological features, and soil storage capacity. In the same direction, the research
carried out in Cristiano et al (2017) emphasizes the intricate spatial and temporal varia-
bility characterizing hydrological processes within urban environments. This variability
is particularly heightened by the influence of impervious surfaces and the diverse land
use patterns present that influence the flow dynamics within urban catchments.
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The investigation conducted by Bezak et al (2018) exposes the reliance of criti-
cal rainfall duration, particularly in maximizing peak flows within Huff curves (Huff
1967), on the catchment time of concentration. Nevertheless, they emphasize the lack
of a universally defined method within the engineering community to estimate this criti-
cal duration. Furthermore, Bezak et al (2018) notes that prolonging rainfall duration
amplifies disparities in peak discharge and time-to-peak. Scenarios featuring extended
rainfall durations while adhering to the same Huff curve yield smaller peak discharge
values compared to cases where rainfall duration closely matches the catchment time of
concentration. The study indicates that more research is required to understand critical
rainfall duration.

Many studies aimed at determining critical duration primarily concentrate on identi-
fying the duration that maximizes flood hazard, often focusing on catchment-integrated
hydrological sub-products, particularly the maximum peak flow (Yuan et al 2021; Bezak
et al 2018). While the maximum peak flow is connected to flood characteristics, its limita-
tion is neglecting the impact on floodplain extent, especially in smaller urbanized areas
with diverse land use patterns contributing to nonlinear runoft. This highlights the need for
a spatialized metric to define critical rainfall duration and temporal distribution, specifi-
cally emphasizing maximizing considerations for spatial flood hazard assessment.

With urban floods posing many challenges to city dwellers and planners, several spatial
and temporal hydrological models were developed so that authorities could make better
decisions in flood prevention and risk management. Models using Stormwater Management
Model (SWMM) (Rossman 2010), machine learning techniques (Mosavi et al 2018), neu-
ral networks (do Lago et al 2023), and physically-based fully distributed models (Gomes
et al 2023) are some of the solutions being developed by the research community all over
the world to analyze, predict and control flood risks enabling the decision-makers and city
authorities to formulate a plan to improve the infrastructural conditions (Teng et al 2017).

Flood or hydrodynamic modeling can be uncertain and difficult in data-scarce areas and
scenarios. However, these areas are generally the areas with relatively higher exposure and
vulnerability of the population (Batalini de Macedo et al 2022; Membele et al 2022). An
example of such cases is the floods in Bellandur, a very urbanized catchment in Bangalore,
India. Although we apply our methods in this catchment, we attempt to develop a case-
study-free analysis that uses only freely available datasets and can be adapted to poorly
gauged catchments and catchments with more climatologic-hydrologic data.

While recent literature offers diverse tools for flood hazard modeling and mitigation, the
absence of proper high-resolution rainfall and terrain data remains challenging for assess-
ing floods in poorly gauged watersheds. Despite data limitations, developing a method that
provides meaningful results for flood hazards in these areas is relevant for decision-makers.
Additionally, there is no consensus on using synthetic design storms, rainfall durations, and
return periods critical for flood inundation mapping and modeling. Moreover, there is a gap
in research investigating the impact of rainfall duration and temporal distribution on human
instability hazards. We address these issues by presenting a flood hazard zoning method
that evaluates varied rainfall durations and temporal distributions.

Our ultimate goal is not to provide a definitive solution for determining the dura-
tion times and temporal distributions of critical rainfall regarding flood hazard. These
are closely related to catchment and climate signatures. Instead, we seek to elucidate the
impact of neglecting these catchment-specific characteristics and their potential effects in
flood hazard modeling. The fundamental contributions of this paper are:
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e We develop a flood mapping framework for relatively small, poorly-gauged catch-
ments using a 2D hydrodynamic modeling approach that requires catchment GIS
data and a rainfall intensity-duration-frequency (IDF) curve. Spatial parameters can
be assigned in tables according to land use and soil classifications. Therefore, this
framework can be used to generate first-order site-specific catchment information,
such as flood mapping and areas with human instability.

e We evaluate the effects of the rainfall duration and temporal distribution on the
modeling assessment of water depths, velocities, human instability, and infiltrated
depths, providing a comprehensive analysis of the effects of not choosing a critical
rainfall duration and temporal distribution.

e We evaluate flood mapping characteristics under uncertainty scenarios of rainfall
temporal distribution using the Alternated Blocks Method, Huff, and Observed hye-
tographs under 2, 6, 12, 24, and 48 h rainfall durations. The analysis is performed for
flood depths, flood velocities, human instability index, and infiltration depths.

2 Material and methods
2.1 Mathematical model

HydroPol2D, as detailed by Gomes et al (2023), is a comprehensive hydrological-hydro-
dynamic and transport and fate model. It employs the Green-Ampt equation (Green and
Ampt 1911) for estimating hortonian overland flow. The current version accounts for
kinematic wave, local-inertial, and diffusive-like shallow water equation solvers to prop-
agate excess of infiltration generated in the hydrological module (Gomes Jr et al 2024).

2.1.1 Conservation of mass and momentum

The elementwise cell-by-cell mass balance equation computes the interaction among
atmospheric boundary conditions, infiltration losses, flood routing and can be written as
follows:

t+At gt o _ t to__ gt t t ) _ it
drs = di A Y1 = Y 08— f (R ) = e "
M M

where ¢ is the time [T], d is the water depth [L], At is the time-step [T], / is the inflow rate
[L-T-1, O is the outflow rate [L - T~!], r is the rainfall rate [L - T~!], fis the infiltration
rate [L - T7!], F is the cumulative infiltration depth [L], e is the real evapotranspiration
[L-T°1, and NV represents the domain subset of all neighbors of cell i, j (Gomes et al
2023).

The flux term () N, ITED) N, 0;;) is approximated at the cell edge with a momentum
equation, solved for each cartesian direction in the watershe domain.

Let us drop the subindex i+ 1/2 to represent the cell edge at the x cartesian axis
(Gomes Jr et al 2024). By assuming a local-inertial approximation in the momentum
equation via a s-centered scheme (De Almeida and Bates 2013), we can consider that:
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where g = Q/Ax is the flow per unit width [L - T~!], Ax is the grid resolution [L], 6 is a
diffusivity weighting factor [~], S is the water surface elevation slope [—], n is the Man-
ning’s roughness coefficient [T - L=1/3], and d is the effective water surface depth at the cell
edge [L] following De Almeida and Bates (2013). All calculations of flows are made to the
cell edges. Index i represents the center of the i-th cell, and the previous equation is solved
twice per cell for each cartesian axis at the cell edges (i + 1/2) and (j + 1/2). For simplic-
ity, only equations for the x (i.e., edge i + 1/2) axis are shown.

The diffusion weight factor controls the amount of diffusivity from neighbor cells at cell
interfaces and is given by (Sridharan et al 2020):

!
0[=1—%min<|(_]—|, g&f). 3)

Using the states modeled by HydroPol2D, it is possible to determine drag forces and to
calculate the human instability risk due to friction.

2.2 Time-stepping

An adaptive time-stepping scheme is implemented in HydroPol2D considering the wave
celerity propagation, given by (Bates et al 2010):

At' = min (a Ax

Vad ) “4)

where «a is typically assumed between 0.4 and 0.7 (De Almeida and Bates 2013) and is
assumed as 0.5 in this paper. The previous equation is solved for each active domain cell.

2.3 Hydrologic modeling

HydroPol2D accounts for infiltration modeling via either explicit or implicit Green-Ampt
schemes, depending on user defined parametrization. In this paper, we solve the implicit
GA equation using the Newton—Raphson algorithm. The implicit Green-Ampt formulation
is given by (Rossman 2010):

F = K At + F' + y,fed[log (F+A 4+ w;0,) —log (F' + wfad)] ~Futs 5)

where K| is the saturated hydraulic conductivity [L - T~1], F is the infiltrated depth [L], 0,
is the effective porosity [L?- L7, Wy is the wetting front suction head [L], and f,, is the
groundwater replenishing rate, following Huber et al (2005).

The infiltration rate fis calculated by:

ft+At _ Ft+At — F!

At ©
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and is used in Eq. (1) to solve the mass balance and later to propagate the flow.
2.3.1 Human instability modeling

During flood events, effects of sliding and toppling can occur depending on the velocities and
water depth magnitudes (Kvocka et al 2016). In this paper, we estimate the occurrence of
these effects by calculating the forces associated with the flow following the methodology
proposed in Jonkman and Penning-Rowsell (2008). Sliding instability occurs when the avail-
able static friction (i.e., calculated using the difference between the weight of a person and its
buoyancy) is smaller or equal to the hydrodynamic force associated with the perpendicular
flow (Jonkman and Penning-Rowsell 2008). The governing equations to calculate the human
instability hazard (f,), depends on the person’s volume (Eq. (7a)), weight (Eq. (7b)), drag
force (Eq. (7¢)), buoyancy (Eq. (7d)), and friction resistance (Eq. (7e)) and are accounted to
determine f,. Considering a cell (i, j) in the domain, these functions are written, respectively,
as follows:

Ve = LyByd (7a)
Fy =mg (7b)
Fy= %pCddevz (7¢)
Fy, =pVeg (7d)
Fi = u(F, —Fy) (7e)
ﬂ:min(i—j,l), n

where the subscripts p, ¢, b, and f represents person, flow, buyoance, and friction. The per-
son’s height, length, and width are given by Hp, Lp, and Bp [L]. Parameters g, Cg4, p are the
gravity acceleration [L - T72], the drag coefficient [-], the kinematic static factor [-]. The
water density is given by p [M - L73]. The product Bd represents the person area perpen-
dicular to the flow direction. A value of f. = 1 represents that a person would be dragged in
the water due to sliding instability.

The previous set of equations (7) are solved for each computational time-step, and after
the end of the simulation, the time-dependent maps of f, are plotted, as well as the maximum
values of f, per cell that would define the human instability flood hazard map. For the sake
of parsimony, we assumed u = 0.5, m = 75kg, Cy = 1.1, pp = 1000 kg - m=3, Hp =1.75m,
L,=03m,B,=03m,andg=9.81m- s

2.4 Design hyetographs

The intensity-duration-frequency curve is given by a Sherman type, such that:
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;_ _KRP
T (b1 ®)

where K, a, b, and ¢ are fitted parameters using a theoretical distribution frequency curve
(e.g., Gumbel), and RP is the return period.

2.4.1 ABM - chicago hyetograph

The method assumes that the rainfall volume obtained by the IDF curve distributes follow-
ing a peak factor y, such that if y = 0.5, the maximum intensity value of rainfall would be
centered. The Chicago method hence equals the ABM if y = 0.5 (Gomes Jr et al 2023).

KxRP“[’—'(l - c)+b]
i(r) = ! fort=1 <yXty (9a)

‘ I+c
(1)
14

K x RP“['—Z(I o+ b]
i(f) = _ fort=1, >y Xty (9b)

where y is a peak factor assumed as 0.5 to represent the rainfall peak at 50% of the storm
duration and Egs. (9a) and (9b) represent equations for durations before peak and after
peak.

2.4.2 Huff hyetographs

The polynomial equations used in the model to represent the Huff temporal distribution are
presented as follows (Gomes Jr et al 2023):

t\* )3 t\2 t
P(t)/P,:O.2558<t—) +1.5586<t—) —4.346(7) +3.603<l—>—0.0579, Fort<2h (10a)
d d d d

4 3 2
P(t)/P,=6.1888(ti) —14.996(%) +10.861<t£) —1.0758([1>+0.0235, For2h <1< 12h
d d d d

(10b)

r\°® £\’ r\* 3 t\?
P(z)/P,=71.986<—> +206.68(—> —211.78(—) —92.488(—) +16.973(—)
Iy Iy la Iq Iy
- 0.5697(%) +0.0041, For 12h < 1 < 24h
d

(10c)
6 5 4 3 2
P(t)/P,=—58.036<t£) +154.96(t£) —151.59(%) +68.269(ti) —13.978(%)
d d d d d

+ 1.3842(%) —0.008, Fort > 24h,
d
(10d)
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where Egs (10a), (10b), (10c), and (10d) represent polynomial equations for Huff’s 1%, ond,
3™ and 4™ quartiles, respectively. Variables ¢ and 14 are the time and the rainfall duration.
P(?) is the cumulative rainfall volume at time ¢ [L] and P, is the total rainfall volume [L].

2.5 Case study

Floods are one of the deadliest natural disasters, and India is a country prone to floods that
affect ecosystems and infrastructure and lead to casualties (De et al 2013; Avinash 2013).
India has a diverse topography and rich natural bio-diversity ranging from deserts to gla-
cial mountain regions. It is the 7th largest country by size and one of the most populous
countries in the world with over 1.4 billion people according to United Nations Population
Prospects(2022) estimates (Nations 2022) and is expected to surpass the 1.5 billion mark
by 2025 and surpass China within a decade (Kc et al 2018). With this increase in popula-
tion and economic growth over the last few decades, India saw an increase in urbanization
as the rural population began to migrate to cities for better employment opportunities and a
better standard of living (Bhagat 2011).

Bangalore is located at 12°59’ north latitude and 77°57’ east longitude, almost equidis-
tant from the eastern and western coasts of the South Indian peninsula. It is situated at an
altitude of 920 m above mean sea level (MSL) with an area of 741 km?. The mean annual
total rainfall is about 900 mm (Ramachandra and Aithal 2019). The summer temperature
ranges from 18 to 38°C, while the winter temperature ranges from 12 to 25°C. Bangalore
is also India’s third most populous city, with a population of more than 8.5 million and a
metropolitan population of 11 million as of the 2011 Census (Avinash et al 2018).

The city’s topography is over a natural ridge delineating four major watersheds. Hebbal,
Koramangala, Challaghatta, and Vrishabhavathi valleys pass from the city’s ridge in the
north to an enclosed lake system at the perimeter of Bangalore. Waterbodies are part of
these four major waterways, or “valley” systems, which drain most of the city’s stormwater
to large tanks or lakes traditionally used for recreation and water supply for irrigation.

These waterways, with interconnected lakes and their primary function as flood carri-
ers, have provided the city with reasonable ecological and recreational values. The urban
growth in recent times, not guided by strong strategic planning or development control
measures to minimize the impacts on existing infrastructure, the surrounding environ-
ment, and the stormwater system, had severe impacts on waterways. This has led to the
depletion of waterways and pollution and wastewater discharge to the stormwater system
(Ramachandra and Mujumdar 2009).

Due to the size of the Bangalore stormwater system, we concentrate our study on the
Bellandur Watershed (see Fig. 1), which is located in the Koramangala-Challagatta valley
(K&C Valley), lies between longitude 77°39” W - 77°40° E and latitude 12°60’ N - 12°50°
S (Chandrashekar et al 2003) with an area of approximately 131 km?.

The description of the rainfall data acquisition and rainfall temporal distribution meth-
ods of the Alternated Blocks Methods (Gomes Jr et al 2023) and Huff Curves (Huff 1967)
is presented in the Supplementary Material. The Huff curves were derived from the origi-
nal data presented in Huff (1967) by fitting a 6th-order polynomial equation.

2.5.1 DEM and land use land cover treatment

The DEM was converted into a digital terrain model (DTM) using the DTM-Filter tool
followed by the SAGA close gaps function, (Conrad et al 2015), such that areas with slope
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Fig. 1 Bellandur Watershed study area. The IMD Raingauge Station has daily rainfall recordings and was
used to derive the IDF curve, whereas the KSNDMC Raingauge station records 15-minute rainfall and was
used to derive rainfall temporal distribution patterns in the catchment

greater than 30% are bilinear interpolated, resulting in a smoother DEM. The spatial reso-
lution of the DTM and the other rasters are 30 m for x and y directions, resulting in 145,556
squared computational cells. In addition, flow paths were smoothed using the constrained
regularized smoothing (CRS) (Schwanghart and Scherler 2014). This algorithm calculates
the DEM streams with a user-defined flow accumulation threshold (e.g., herein, we assume
streams start at 0.5 km?) and smooths paths, reducing DEM noises and enhancing flow
continuity. Furthermore, we reduce DEM elevations in streams in terms of the flow accu-
mulation following an exponential relationship between DEM reduction and flow accumu-
lation (De Paiva et al 2013). These DEM treatments allow smoother rain-on-the-grid 2D
simulation in the catchment domain, reducing model instabilities due to sharp slopes.

The Land Use and Land Cover (LULC) dataset from Dynamic World (Brown et al
2022), delineating nine distinct LULC types, was utilized for the temporal range period
from January 1, 2021, to January 1, 2022, to generate the LULC for the watershed in this
study. The DEM and the LULC maps are shown in Fig. 2.

2.5.2 Observed rainfall temporal distribution

Using the only available 6 years of 15-min resolution rainfall data retrieved from India
Meteorological Department(IMD) and Karnataka State Natural Disaster Monitoring Centr
e (KSNDMC), we derive empirical Huff curves from the observed data to determine the
rainfall temporal distribution of the catchment.

Using the time series of all events within each quartile, normalized by their durations
and volumes, a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) is applied to
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Fig.2 a Digital Terrain Model (DTM) and b Land Use and Land Cover classification from the Dynamic
‘World (Brown et al 2022) (LULC)

the time series at various values of 7/t,. Percentile values are then determined for prob-
abilities of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%, following the methodol-
ogy described by Huff (1967). Subsequently, seventh-order polynomials are fitted to these
percentile curves, thereby defining the copula-based rainfall distribution functions for each
probability level.

The Huff copula distributions polynomial fitting can be written as:

n+1

PP, = k_Zl[ck(tk/rd)("_M], an

where 7 is the polynomial order of the Huff Curves, and £ is the order of the exponent.

The coefficients ¢, of Eq. (11) are obtained via least square fitting with the series of
normalized time (#/t,;) versus normalized cumulative precipitation (P/P,), for each dura-
tion tested. Rainfall events are classified into 1st, 2nd, 3rd, and 4th quartile according to the
duration where the maximum intensity occurs.
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Table1 LULC-based

parameters, where n is the
Manning’s roughness coefficient
and Ay, is the initial abstraction or

depression storage

LULC classification Index n[s-m/3 ho [mm]
Water 0 0.025 0

Trees 1 0.035 8

Grass 2 0.030 2
Flooded vegetation 3 0.040 4

Crops 4 0.035 5

Shrub and scrub 5 0.045 5

Built areas 6 0.025 0

Bare ground 7 0.028 0.5

2.5.3 Model parameters and initial inputs

HydroPol2D assigns hydrodynamic, hydrologic, and water quality parameters to all
domain cells according to LULC and SOIL maps. The parameters used in the model are
shown in Table 1 and were estimated based on data from the literature (Te Chow 1959;
Rossman 2010). There is only one soil type in the catchment, and the Green-ampt param-

eters of saturated hydraulic conductivity (k,

sat

15-min Hyetograph

120
o: 1.24
100
— z: 0.08
=]
E 80
£
& 60
Z
g 40
|
20
0l
2017 2018 2019 2020 2021 2022 2023
Date
150 Event Volume
| o: 24.90
100 z: 20.36
i)
Q
g
=
< 50
0 lm HHHHH HHHHHHHHHHHH HHHHHHHHHHW dl H HHH
0 10 30 40 50

Event Index

Duration [h]

Intensity [mm/h]

25

20

15

10

0

50

40

30

20

10

=5 mm - h™!), moisture deficit (A9 = 0.427),

Event Duration

0

T I Y

o: 4.46

T: 2.54

10 20 30

Event Index

40 50

Event Average Intensity

o: 10.84 n

z: 10.73 n

HHH I H HHHH il HHn lﬂnﬂ li HH HHH HHHH HHH

10 20 30 40
Event Index

50

Fig.3 Sample statistics considering a rainfall volume threshold of 0.5 mm, 6-h inter-event duration, which
defined 53 events in the course of 6 years. Variables ¢ and X represent the standard deviation and mean of

the sample
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Fig.4 Observed Huff Curves based on 6-years of 15-min rainfall, where dots are observed values and lines
are fitted 7-th order polynomials interpolated with 2% increments in #/¢,. In this figure, n represents the
number of events sampled, and At is the rainfall temporal resolution. The 7-th order polynomials fitted from
the observed data are shown in the Supplemental Material

and suction head (y = 40 mm) (Brunner 2016). Another degree of freedom in the analysis
could be explored by the initial soil moisture content (Pena et al 2023); however, the influ-
ence of this watershed condition is out of the scope of the paper. The initial soil moisture
condition represented by the initial soil moisture depth was assumed as 10 mm for all per-
vious cells.
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To evaluate the possible uncertainties in the parameter estimations, we perform a one-
at-a-time sensitivity analysis of the model’s hydrologic and hydrodynamic parameters to
identify potential variations in flooded areas and areas with human instability hazards.

2.5.4 Observed copula huff curves

Data-driven rainfall temporal distribution can be derived by separating independent rainfall
events according to rainfall volume and inter-event duration (Restrepo-Posada and Eagle-
son 1982). Normalizations from the total precipitation and total duration are performed,
allowing a comparison between storm events with different characteristics. These storm
events can also be classified according to the maximum volumes per quartile. Typically,
events can be classified into first, second, third, and fourth quartiles, indicating the portion
of the duration where the maximum rainfall average intensity occurred. To compare with
the original Huff curves, we classify storms with durations within 0-2 h,2h -6 h, 6 h -
12 h, and > 12 h as the first, second, third, and fourth quartile.

3 Results

The descriptive sample analysis used to derive the rainfall temporal distributions is pre-
sented in Fig. 3. Most of the observed events have durations smaller than 5 h, with volumes
of approximately 11 mm, on average. The empirical copula-based cumulative hyetographs
are presented in Fig. 4. This figure is discretized into 1st, 2nd, 3rd, and 4th quartile rainfall
distributions. Most of the events occurred in the 1st and 3rd quartile.

Rainfall maximum intensities and volumes are discretized for each distribution and
duration, detailed in Table 2. The largest 15-minute intensities are sourced from the ABM.
Noticeably, it is observed that the maximum rainfall intensities are consistently smaller for
the Huff hyetographs compared to both Observed and ABM despite having the same rain-
fall volume.

The results presented in Fig. 6 show human-instability risk areas, flooded areas with
depths larger than 0.5 m, areas with velocities larger than 2 m - s~! and areas with infil-
tration larger than 80 mm in the Bellandur catchment for different rainfall temporal dis-
tributions and durations. The critical combination of rainfall temporal distribution and
duration was identified as between the 6 and 12-h rainfall duration using the observed
rainfall temporal distribution. Herein we assume the 6-h as the critical duration due to
producing overall higher values for all rainfall distributions. For this duration, human
instability hazard area of 6.74 km? are expected considering the observed rainfall dis-
tribution pattern, as shown in Fig. 6a. In particular, the duration of the critical rainfall

Table 2 .Summa.ry of events Rainfall ~ jABM it jOBS Rainfall volume
tested with maximum intensities durati max max max
. . . uration

given in 15-min intervals, where

subscripts ABM = Alternated (hl [mm-h™"]  [mm-h~ [mm-h7"] [mm]

Blocks Method, H = Huff

Method, and OBS = Observed 2 174 130 49 87

50% percentile 6 174 42 38 125
12 174 26 24 157
24 174 16 19 197
43 174 11 20 248
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Fig.5 Median rainfall temporal distribution for 2 (a), 6 (b), 12 (c¢), 24 (d), and 48 h. All charts are designed
with 15-min rainfall resolution and normalized by the rainfall duration #;. Incremental 15-min rainfall AP is

normalized by the total precipitation (P,)

duration was 24 h for the ABM method (12.33 km?) and 2 h for the Huff rainfall tempo-
ral distribution (7.06 km?). The normalized data-driven rainfall distribution compared to
Huff and Alternated Blocks Method is presented in Fig. 5.
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Fig.6 Hazard areas in terms of human instability, maximum flow velocity, water depths, and infiltrated
depths. Part a illustrates the overall areas prone to human instability, calculated by accounting for flood
hydrodynamics and ground friction. Part b represents areas exceeding flow velocities greater than 2 m - s\,
Cumulative areas surpassing flood depths of 0.5 m are shown in Part (¢), while Part d displays total areas

exceeding 89 mm of soil infiltration, representing the 10-yr, 6-h, storm volume
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A, = 13137 km?, I, is the cumulative infiltration depth

—— Alternated Blocks = = +Huff 50% =-==-Observed 50%
| | | |

30 ‘

-
~———

\ \ \
0.5 1 1.5 2
Velocity [m -s7!]

40 60 80 100 120
Infiltraion [mm]

2 0 20

Fig. 8 Effect of different hazard areas for the critical duration of 6-h for different hazards: a is for the maxi-
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Fig.9 Comparison between the Alternated Blocks Method results (a)-(c), to Huff (c)-(e), and to the
Observed Rainfall Temporal Distribution. Parts (a)-(c¢) show water depths, instability hazard f, [Eq. (7)],
and infiltration values for the ABM method, respectively. Parts (¢)—(e) show the difference between maps of
(a)—(c) with Huff distribution modeled results. Similarly, parts f to h show the difference between ABM and
the observed rainfall distribution modeled results. All results are shown, assuming a critical rainfall dura-
tion of 6-h

The critical duration and temporal distribution for flooded areas with depths larger
than 0.5 m is, as opposed to the aforementioned hazard metrics, is the ABM with 12-h
of rainfall duration, as observed in Fig. 6¢c. The ABM method consistency produced
hazard flood areas 25 larger than the other rainfall distribution methods.

Part (c) of this figure shows the areas exceeding 89 mm of infiltration. Regarding
these areas (commonly found in regions with high flow accumulation and pervious
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Fig. 11 One-at-the-time sensitivity analysis on Green-Ampt parameters for the infiltration model for the
12-h observed hyetograph with a 100-yr return period, where a are the sensitivity in Flood Areas and b in
human instability areas in terms of the saturated hydraulic conductivity [k, ], moisture deficit (A#), and
suction head [y/]
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areas), the Huff rainfall temporal distribution, due to its smoother spread, led to more
infiltration, as evidenced in Fig. 6d. A trending peak of infiltration occurs for all meth-
ods within 12-24 h.

The results of the previous analysis are limited by the definition of the thresholds for
water depth, velocity, and infiltration. For instance, one can classify a risk area if the water
depth exceeds 15 cm or the flow velocity exceeds 1 m - s™!. Since this metric is subjective
and may be defined by local regulation constraints that define risk thresholds, we assess
the sensitivity of the extent areas where this threshold is surpassed in terms of depths,
velocities, and infiltrated depths. Results of Fig. 7 show a hypsometric analysis of these
variables for each rainfall duration and distribution. While the 48-hour duration is the one
that produces that larger extent areas for the ABM in terms of depths and velocities (see
Fig. 7a-b), it is the least critical for the Observed and Huff distributions (see Fig. 7d—e and
g-h). This result shows the effect of rainfall temporal distribution variability in terms of
flood characteristics.

Assuming a 6-hour duration as the critical rainfall duration, Fig. 8 illustrates the sensi-
tivity of the flood hazard threshold for water depth, flow velocity, and infiltrated depth.

To illustrate the effects of not choosing a critical rainfall temporal distribution method,
we compare the results for a 6-h duration of the observed rainfall and Huff curves, as pre-
sented in Fig. 9. The results presented in Fig. 8 can be seen spatially from the maps pre-
sented in Fig. 9. In particular, similar flooded areas and areas with human instability are
expected for the median observed rainfall and original Huff temporal distribution. This
result is also supported by the similar rainfall distribution trends shown in Fig. 5.

The results presented in Figs. 7 and 8 can be influenced by the choice of the model
parameters presented in Table 1, since no observed discharges were available to perform
a proper model calibration. Therefore, a sensitivity analysis would allow one to assess
the associated uncertainty effects in the calculations and quantify the impacts of retrofit-
ting the catchment with LIDs or by increasing urbanized areas. The one-at-the-time sen-
sitivity analysis of the hydrodynamic and soil parameters is presented in Figs. 10 and 11,
respectively.

4 Discussion

Results of Fig. 6 reveal discrepancies between the critical rainfall duration due to sev-
eral non-linear factors, such as the infiltration modeling. The figure also highlights that
the Huff hyetograph is less critical compared to ABM in line with findings from other
studies (Balbastre-Soldevila et al 2019; Pan et al 2017; Na and Yoo 2018). The observed
rainfall distribution was less critical than Huff and ABM methods, consistently result-
ing in smaller hazard areas with results closer to the Huff distribution. Rainfall temporal
distribution is one of the governing factors of flood characteristics in urban environ-
ments (Li et al 2021) and accurate rainfall temporal resolution is essential to capture
flood dynamics such as accurate time to peak and peak discharge (Lyu et al 2018).
However, the analysis does not account for flood exposure in human risk instability
(Dai et al 2020). Human risk instability areas were calculated based on the maximum drag
forces surpassing available friction without considering the duration where this exposure is
effective. While exposure duration impacts human flood resistance, an alternative approach
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calculating instability risk multiplied by the duration of occurrence falls beyond the scope
of this article but could offer insights into areas with varying levels of hazard exposure.

The analysis of maximum velocities in Fig. 6b indicates consistently lower values
for Huff across all tested durations compared to ABM. As expected, a strong correlation
between human instability areas and maximum velocities is observed. Although the veloc-
ity estimations presented in this paper allowed the quantification of the human-instability
hazard, the relatively coarse grid resolution is a limitation for properly estimating flood
velocities. Recent studies the using sub-grid approach that use depth-varied hydraulic prop-
erties to propagate flood in the domain is an important alternative (Nithila Devi and Kuiry
2024); however, they require underlying high-resolution terrain models typically derived
by LiDAR to obtain hydraulic properties tables for each coarse grid cell based on sub-grid
data, which is unavailable in most parts of developing countries.

The ABM appears to be overall more critical as shown in Fig. 6¢. Part (c) of this fig-
ure shows the areas exceeding 89 mm of infiltration. This result indicates that larger flood
extents do not necessarily mean larger areas with a risk of human instability or relatively
high flood velocities. It is noted that the flooded areas are 5-10 times larger than the areas
of instability risk by comparing Fig. 6a with Fig. 6¢. This is because some areas are natural
reservoirs, and floodplains with high resistance exist within the catchment, leading to rela-
tively low flow velocities and smaller drag forces while still getting flooded.

Regarding the infiltration analysis, areas with large infiltrated depths could be viewed as
a positive metric for aquifer recharge (Mooers et al 2018); however, they can pose a flood
hazard by potentially reducing the infiltration capacity for incoming storms.

For example, assuming a requirement for a 100-year return period analysis (i.e., typ-
ically required in flood hazard studies), and utilizing the Huff hyetograph for a 12-hour
rainfall duration (wrongly identified as the critical duration in this analysis) would result
in significantly smaller risk areas with human instability. Specifically, these areas would
be 42% smaller compared to the ABM and 6% larger than the observed rainfall distribu-
tion. This holds notable implications, as insurance plans and the definition of risk areas for
urban zoning often rely on delineating flood hazard areas. Opting for a noncritical rainfall
temporal distribution could potentially indicate nearly 50% fewer areas at risk of flooding
if ABM is a requirement for delineating flood areas. The careful choice of rainfall temporal
distribution and duration used in the flood hazard analysis must be chosen (Bezak et al
2018).

The analysis of the results of Fig. 8 can be used to establish varying levels of protection
for flood insurance plans, among other applications. Although the analysis in this paper
shows a simple heuristic way to determine a critical rainfall duration, these results are
catchment-dependent and vary according to the physiographic properties of the catchment,
local rainfall pattern, and urban infrastructure.

In Fig. 8, it is evident that for relatively high velocities, the hazard areas are 5-6 times
larger for the ABM compared to the Huff and observed distribution. Part (c) shows that
infiltration distribution is similar comparing Huff and ABM, with Huff favoring more areas
with infiltration.

As anticipated, the Built Areas and Water land use/land cover (LULC) classifications
exhibit the highest sensitivity, given the significant urbanized areas and water bodies
within the catchment (see Fig. 10). The surface roughness coefficient demonstrates more
pronounced elasticity to parameter reduction than to parameter increase. Even with a 20%
uncertainty range in roughness coefficients, errors in flood areas and human instability
areas remain below 5%, indicating a relatively low level of uncertainty associated with the
parameters and, consequently, with the previously provided estimations of flood hazard.
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Nevertheless, for variations exceeding 20% in the parameter estimation, the sensitivity
of human instability areas becomes more pronounced. Notably, an intriguing observation
is that elevating the Manning’s roughness coefficient (n) results in an increase in flooded
areas but induces a more substantial reduction in human instability areas, as depicted in
Fig. 10a, b. Consequently, retrofitting urban areas with green infrastructure may expand
flood-prone regions, yet it concurrently diminishes risks of human instability to a greater
extent. This suggests that green infrastructure could effectively mitigate human instability
and that only flooded areas might be an incomplete metric for assessing flood hazards.

This finding holds significance for flood insurance programs exclusively reliant on
flooded areas, as an increase in flooded areas does not necessarily correlate with a reduc-
tion in human instability areas. Integrating human instability maps into formulating flood
insurance policies could offer a more comprehensive perspective, providing a more accu-
rate estimation of the real impacts of floods on humans.

The flooded area extents, as indicated in Fig. 11, exhibited relatively low sensitivity to
Green-Ampt soil properties, especially due to the relatively smaller pervious areas com-
pared to the impervious areas. Conversely, soil parameters are crucial in influencing varia-
tions in areas with risks of human instability. Increasing the saturated hydraulic conductiv-
ity (k,,) by 80%, from 5 to 9 mm - h~! in pervious areas, has the potential to reduce areas
of human instability by 10%.

Implementing engineering strategies such as building infiltration techniques or increas-
ing macropores in pervious areas could achieve this reduction (Gomes Jr et al 2023). While
altering saturated hydraulic conductivity might pose challenges, it is a straightforward
proxy parameter for assessing the impacts of increased infiltration in the catchment. This
result, coupled with an increase in Manning’s roughness coefficient (n), underscores the
advantages of implementing green infrastructure retrofits in the catchment, leading to a
reduction in areas with flood hazards (McClymont et al 2020; Borah et al 2023).

5 Conclusions

A flood inundation model, incorporating a human instability module and employing both syn-
thetic and observed rainfall temporal distribution methods, was developed and implemented in
the Bellandur catchment in Bangalore, India. The study investigated the impact of various rain-
fall temporal distributions on flood characteristics, including inundation extents, depths, veloci-
ties, and soil infiltration. This analysis aimed to assess the uncertainty associated with assuming
an a priori synthetic rainfall temporal distribution for flood inundation mapping and modeling
and the potential impacts in flood hazard assessment. The discrepancies can be even larger if
rainfall temporal distribution is not critical, as well as rainfall duration. The systematic method
to evaluate the critical rainfall temporal distribution and duration presented in this paper can be
applied to produce critical flood maps for a given return period, which is typically the only crite-
ria established by local flood regulations.

The preselection of a synthetic rainfall temporal distribution for flood mapping and
modeling, without evaluating the sensitivity of various synthetic rainfall temporal distribu-
tion methods or incorporating observed fitted rainfall temporal distributions, may result in
a considerable uncertainty, potentially leading to a misrepresentation of up to 45% smaller
areas with flood hazards related to human instability for a 100-year flood event.

The sensitivity analysis of the hydrodynamic and hydrologic parameters of the catch-
ment indicates a relatively lower degree of sensitivity in flood areas and human instability
areas (i.e., smaller than 20% for a variation of 80% in all parameters), allowing the use of
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the model for preliminary assessment without formal calibration that would require inac-
cessible stream flow and spatially distributed rainfall. This indicates a scenario where the
application of 2D hydrologic-hydrodynamic modeling can generate useful information for
catchments with a lack of observed hydrological data but is prone to floods.

In the particular case of highly urbanized catchments as Bangalore, having soils with
higher infiltration capacity produces little effect in mitigating flood effects for a 100-yr
event. However, if the terrain roughness of the impervious areas is changed, it is possible to
achieve 5-10 % variations in flooded and risk areas. Increasing terrain roughness increases
flooded areas but reduces instability areas and can be viewed hence as a positive metric.
Therefore, a combined metric of flooding areas with human instability areas can be a more
complete metric to aid flood risk assessment.

The automatic one-at-a-time sensitivity algorithms, developed and implemented in the
HydroPol2D model in this study, serve as a valuable tool for comprehending the conse-
quences of retrofitting the catchment with various low-impact development scenarios.
Additionally, HydroPol2D allows for straightforward sensitivity analysis of different
rainfall temporal distributions, durations, and return periods. Replicating the methods
established in this paper with other ungauged or poorly-gauged catchments provides an
alternative for furnishing valuable information in areas lacking data but facing potential
unprecedented floods in the future due to urbanization and climate change. Applying this
strategy to other highly urbanized and flood-prone catchments is justified.

The 100-yr events tested in this paper are conditioned to the exceedance probability of
rainfall volume for a given duration, given the occurrence probability of the rainfall tempo-
ral distribution. We used the 50th percentile as the representative temporal distribution for
the analysis; however, a monte-carlo analysis evaluating the combined probability of the
rainfall volume and temporal distribution can be analyzed to investigate the critical tempo-
ral distribution based on the observed data. A practical ensemble analysis can be done by
using each 10th percentile of the observed rainfall distributions to investigate the effect of
possible different observed storms in the flood hazard assessment. Future studies can also
incorporate the spatial behavior of rainfall and its impacts on human instability metrics,
especially because the center of the rainfall can influence the total potential energy, which
ultimately would convert to larger flood velocities downstream of the catchment. The effect
of initial moisture content in the simulation and the analysis of coupled effects combining
rainfall temporal distribution methods and increasing rainfall rates due to climate change
can also be further investigated.

The results of this paper make clear the case that only specifying the return period is a
poor local regulation criterion to be used for flood mapping. The non-linear dynamics of
infiltration and flood routing coupled with the rainfall temporal distribution characteris-
tics make the preselection of rainfall duration and temporal distribution complex without
identifying the critical combination. Several simulations must be performed with different
durations, synthetic, and data-driven rainfall temporal distributions to identify the critical
durations for a given flood hazard.
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