
Journal of Statistical Mechanics:
Theory and Experiment

     

PAPER • OPEN ACCESS

Machine learning-based prediction of Q-voter
model in complex networks
To cite this article: Aruane M Pineda et al J. Stat. Mech. (2023) 123402

 

View the article online for updates and enhancements.

You may also like
Ordering dynamics of the multi-state voter
model
Michele Starnini, Andrea Baronchelli and
Romualdo Pastor-Satorras

-

Threshold q-voter model with signed
relationships
Zhen Lou and Long Guo

-

Noisy voter model for the anomalous
diffusion of parliamentary presence
A Kononovicius

-

This content was downloaded from IP address 143.107.14.12 on 23/01/2024 at 14:19

https://doi.org/10.1088/1742-5468/ad06a6
/article/10.1088/1742-5468/2012/10/P10027
/article/10.1088/1742-5468/2012/10/P10027
/article/10.1088/1742-5468/ac1f13
/article/10.1088/1742-5468/ac1f13
/article/10.1088/1742-5468/ac1f13
/article/10.1088/1742-5468/ac1f13
/article/10.1088/1742-5468/ab8c39
/article/10.1088/1742-5468/ab8c39


J.S
tat.

M
ech.(2023)

123402

PAPER: Interdisciplinary statistical mechanics

Machine learning-based prediction of
Q-voter model in complex networks

Aruane M Pineda1,2,∗, Paul Kent2, Colm Connaughton2,3

and Francisco A Rodrigues1

1 Institute of Mathematical and Computer Sciences, University of São Paulo,
São Carlos, São Paulo, Brazil

2 Mathematics Institute, University of Warwick, Coventry, United Kingdom
3 London Mathematical Laboratory, London, United Kingdom
E-mail: aruane.pineda@usp.br

Received 9 June 2023
Accepted for publication 10 October 2023
Published 4 December 2023

Online at stacks.iop.org/JSTAT/2023/123402
https://doi.org/10.1088/1742-5468/ad06a6

Abstract. In this article, we consider machine learning algorithms to accur-
ately predict two variables associated with the Q-voter model in complex net-
works, i.e. (i) the consensus time and (ii) the frequency of opinion changes.
Leveraging nine topological measures of the underlying networks, we verify
that the clustering coefficient (C) and information centrality emerge as the
most important predictors for these outcomes. Notably, the machine learning
algorithms demonstrate accuracy across three distinct initialization methods of
the Q-voter model, including random selection and the involvement of high- and
low-degree agents with positive opinions. By unraveling the intricate interplay
between network structure and dynamics, this research sheds light on the under-
lying mechanisms responsible for polarization effects and other dynamic patterns
in social systems. Adopting a holistic approach that comprehends the complexity
of network systems, this study offers insights into the intricate dynamics associ-
ated with polarization effects and paves the way for investigating the structure
and dynamics of complex systems through modern methods of machine learning.
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1. Introduction

Interactions among the components of a complex system have given rise to properties not
present in its isolated parts [1]. For instance, the collective behavior of ants in a colony
provides a compelling illustration of emergence. While individually following simple
rules, ants exhibit complex behaviors such as efficient food foraging, elaborate nest
construction, and coordinated defense [2]. Such an emergence phenomenon significantly
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extends beyond the natural world, since it also manifests within our society through
intricate interactions among agents, groups, and institutions.

A substantial consequence of emergence is social polarization, according to which
agents develop increasingly extreme opinions and display diminished tolerance for
opposing viewpoints, ultimately leading to societal divisions. Numerous studies have
associated the phenomenon with negative outcomes in political contexts, as seen in
the recent elections in both Brazil and the United States [3–6]. In Brazil, heightened
polarization culminated in a significant event on 8 January 2023, when key institutions
in Brası́lia, the capital of Brazil, were invaded. This event was the result of escalat-
ing tensions stemming from polarized political discourse. The Supreme Federal Court,
the National Congress building, and the Presidential Palace were among the targeted
institutions. Similarly, the United States also faced its own challenges associated with
polarization. A notable incident occurred on 6 January 2021, when a crowd stormed the
United States Capitol in an attempt to overturn the results of the presidential election.
Therefore, the causes and effects of polarization in social networks must be comprehen-
ded so that effective communication strategies and social interventions that mitigate its
detrimental impact can be designed [7, 8].

Towards a deeper understanding of social polarization, various mathematical mod-
els have been developed [9] and the most sophisticated ones have recently considered
the dynamics of interactions between agents and their underlying structure. Indeed,
consensus models must be simulated in complex networks to be more realistic, since
the network topology heavily influences both their dynamics and the final result of
consensus generation [10].

Several models, including the Ising model, the Sznajd model, the voter model, the
naming game, the bounded confidence model, and the Q-voter model, address com-
plex phenomena stemming from interactions among individuals in social and physical
contexts and are adapted for complex networks. Researchers employ these models to
identify conditions fostering consensus emergence and network features facilitating the
process. Simulations within complex networks are crucial to achieving a more accurate
portrayal of consensus formation. The intricate network topology significantly influ-
ences model dynamics and consequently impacts consensus generation outcomes [11].
The Ising model, originating from physics, focuses on material magnetization by repres-
enting the magnetic orientation of spins in a three-dimensional lattice. The interaction
between neighboring spins aims to minimize the system’s energy, leading to phenomena
like the Ising phase transition [12–15]. In contrast, the Sznajd model explores how sim-
ilar opinions can influence others. The premise is that people with coinciding opinions
are more likely to persuade others, leading to the formation of opinion clusters [16–18].
Meanwhile, the voter model simplifies decision-making in a population, where individu-
als adopt the majority opinion of their neighbors, illustrating how social influences can
drive convergence towards dominant opinions or polarization [9, 19]. The naming game
addresses language evolution, where individuals attempt to communicate and reach
a consensus on names for concepts, balancing communicative efficiency and linguistic
diversity [9, 20–22]. Bounded confidence explores how opinions change through social
interactions, assuming people update their opinions only when the difference from oth-
ers’ opinions falls within a specific limit [23, 24]. Finally, the Q-voter model offers an
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approach to simulate collective decisions within groups of individuals. In this model,
each agent adopts the opinion of one of its randomly selected Q-neighbors. These Q-
neighbors represent a subset of neighboring agents, and the extent of this subset, denoted
by Q, significantly influences the dynamics of opinion diffusion. This model investig-
ates how connectivity and information exchange between individuals impact consensus
formation. By studying how opinions spread through the Q-voter framework, research-
ers gain insights into the emergence of consensus, polarization, or the coexistence of
diverse viewpoints within a population [9, 25, 26]. In [27], researchers investigate the
impact of polarization in the three-state Q-voter model, considering limited confidence
and noise. By incorporating these factors, the study reveals how agent interactions lead
to the formation of groups with divergent opinions, complicating the convergence to
a single opinion. Similarly, [28] examines the role of anticonformity and limited con-
fidence in the Q-voter model. This study demonstrates that anticonformity amplifies
polarization and emphasizes the coexistence of groups with similar yet distinct opinions,
especially when limited confidence is present. Furthermore, [29] introduces a mathem-
atical model that examines the effects of conformity and anticonformity on opinion
polarization. This study investigates a similar opinion dynamics model based on the
Q-voter, analyzing how the interplay between these behaviors influences the formation
of groups with divergent opinions. These collective studies substantially contribute to
a deeper understanding of the underlying dynamics of opinion polarization in social
contexts.

Empirical investigations have consistently provided compelling evidence that differ-
ent network topologies exhibit varying degrees of polarization and consensus formation
[30–34]. For example, recent studies have shown the adoption of the Q-voter model
within modular networks can result in highly polarized public opinions [30]. On the other
hand, in scale-free networks, highly connected agents can expedite the process of con-
sensus formation while potentially amplifying extreme polarization [31]. Furthermore,
studies have delved into the influence of network clustering, degree distribution, and
other network properties on the dynamics of consensus formation [9], highlighting the
crucial role of network topology in the development of realistic models for comprehend-
ing consensus formation within complex networks. By considering the intricate interplay
between network structure and opinion dynamics, researchers can attain a more com-
prehensive understanding of the factors that shape the emergence of consensus and
polarization.

Given the significant influence of network topology on the emergence of consensus,
an essential question is whether it is feasible to develop a machine learning model
that can forecast dynamic variables based on network properties. Such an inquiry has
been widely explored in various fields, including the prediction of both epidemics in
human contact networks [35, 36] and synchronization in coupled oscillators [36, 37].
The investigations have not only demonstrated the possibility of forecasting the beha-
vior of dynamic systems from the network topology but also underscored the importance
of comprehending the relationship between network structure and dynamics in those
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systems as in the recent article by Brooks and Porter [38]. Both our study and the one
by Brooks and Porter share a common focus on complex phenomena within social net-
works. We employ interdisciplinary approaches that integrate complex network theory,
system dynamics, and machine learning. Both studies acknowledge the pivotal role of
network structure in shaping social dynamics and investigate opinion dynamics within
social networks, although with different emphases. While both studies delve into opin-
ion dynamics, our research primarily centers on utilizing machine learning to predict
variables based on the Q-voter model. In contrast, Brooks and Porter’s research delves
into how media exposure influences ideological content within social networks. This dis-
tinction underscores the significance of media in their study, while our research places
a strong emphasis on network structure and agent interactions.

The application of machine learning algorithms in the study for the prediction of
consensus time and frequency of opinion changes in the Q-voter model offers several
advantages. Machine learning promotes the capture of complex patterns, learning from
historical data, and adaptation to evolving dynamics; it is a powerful tool for uncover-
ing intricate relationships and enhancing predictive accuracy. Moreover, its use in the
context of Q-voter represents a novel approach, pushing the boundaries of traditional
analysis and providing new insights into the mechanisms driving opinion dynamics in
complex social systems. The consensus is a significant metric that indicates the level
of agreement among agents in a network. Conversely, the frequency of opinion changes
reflects a network’s ability to maintain its beliefs and showcases the level of volatility
in the system. Understanding and mitigating the effects of polarization in complex net-
work systems is of utmost importance, as it can significantly impact both the consensus
formation process and the stability of opinions within a network. Both metrics play a
crucial role in the comprehension of the behavior of social systems and offer insights
into the factors contributing to stability or instability within such systems [39].

This study provides valuable insights into the intricate relationship between network
structure and social dynamics, highlighting the potential of complex network meas-
ures for analyzing dynamic systems. Additionally, it demonstrates the effectiveness of
complex network structures in accurately predicting the consensus time and frequency
of opinion changes within the Q-voter model using machine learning algorithms. The
significance of each network feature in these predictions was evaluated, revealing the
clustering coefficient (C) and information centrality (IC) as the most influential meas-
ures for predicting these outcomes. Furthermore, the robustness of these predictions
was tested using three distinct initialization methods in the Q-voter model, specifically
assessing the model’s behavior when initialized with high degree, low degree, and a
random selection of agents with positive opinions.

The article is organized as follows: section 2 is divided into four parts. The first part
introduces the simulated Q-voter model, section 2.2 describes the investigated networks,
section 2.3 explains the network measurements, and section 2.4 presents the machine
learning algorithms used for prediction. Section 3 provides the results, and section 4 is
dedicated to relevant observations and conclusions.
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2. Methods

2.1. Stochastic simulation of Q-voter model

In the context of the Q-voter model, a group of Q agents (Q-voters) influences the opin-
ion of a single agent. This interaction determines the number of neighbors considered
by an agent for decision-making, as dictated by the parameter Q. This model is partic-
ularly interesting for studies of social dynamics since it captures the impact of group
influence, conformity, and social reinforcement on opinion dynamics. Furthermore, it
exhibits a rich phase-transition behavior, depending on the value of Q and network
topology, leading to various outcomes such as consensus, fragmentation, and coexist-
ence of opinions [40–44]. Introduced in [45], its applicability extends to all integer-values
of Q >0, meaning that Q can encompass a range of values greater than 0. Furthermore,
by setting Q = 1, we directly return to the standard voter model. Within this frame-
work, the possibility of repetition is considered, implying that a specific neighbor can
be selected multiple times. Thus, when Q is greater than the number of neighbors (the
degree of a node), the opinion of the same neighbor will be taken into account more
than once.

Consider a network of N voters (also known as agents, nodes, spins, or individuals).
Each is defined by a single dynamical binary variable s(x,t) = j, where j =+1 or j =
−1, x= 1, . . . ,N , and t represents time. From a social standpoint, s(x,t) represents a
two-point psychometric scale (yes/no, agree/disagree) opinion of an agent placed at
node x at time t on a particular subject.

The initial fraction of agents with positive opinions (p+) is fixed at the beginning
of the simulation and randomly distributed to the network nodes. Parameter ϵ repres-
ents the probability of an agent x acting independently of their neighbors, indicating
their unwillingness to yield to group pressure. Consequently, (1− ϵ) represents conform-
ity, influencing the likelihood of an agent adopting the majority opinion of her/his Q
neighbors. Note that the individual opinion of the selected agent x is not taken into
account in the probability of opinion change or retention in the dynamics. Table 1 shows
the fixed parameters of Q-voter, including the number of nodes in complex networks
(N =1000), probability of an agent acting independently (ϵ=0.01), an initial fraction
of agents with positive opinions (p+= 0.20), and the number of neighbors (Q =2). The
value of β represents the probability of an agent changing their opinion to the opposite
when there is no consensus among their neighbors.

The parameters were fixed toward establishing a consistent baseline for our
machine learning-based prediction of consensus time and frequency of opinion changes.
Consensus time is the relaxation time of a finite-size system needed to approach a sta-
tionary state. By keeping them constant, our exploration can focus on the impact of
other variables and a more thorough analysis of our machine learning model’s predictive
performance regarding the desired outcomes can be conducted. The initial percentage of
agents selected was modified to have a positive opinion in three ways: through random
agent selection, and by selecting high- and low-degree agents.
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Table 1. Q-voter model parameters with default values.

Parameter Default Value Description

N 1000 Number of nodes
ϵ 0.01 Probability of an agent acting independently (non-conformity)
Q 2 Neighbor consideration for decision-making
p+ 0.20 Initial fraction of agents with positive opinions
β 0.20 Probability to alter opinion with no consensus among neighbors

Algorithm 1 exemplifies the stochastic simulation, followed by an illustration in
figure 1 of the model. In other words, all agents have a binary opinion, represented
here by the colors red and blue. Suppose an agent has a red opinion; then, their opinion
can be altered based on the following social response: the probability of non-conformity,
i.e. reluctance to yield to group pressure, with a probability ϵ, of changing their opinion.
Alternatively, conformity (1-ϵ) represents the probability of behaving like their neigh-
bors. If the neighbors share a consensus, meaning they all have the same opinion, the
agent will switch to the blue color or remain in the red color. However, if there is no
consensus among the neighbors, with a probability β, the agent will switch to the blue
color, and with a probability of 1-β, they will maintain their opinion.

Algorithm 1. Q-voter model algorithm.

1. Initialize a complex network of size N representing the agents
2. Assign each agent a binary variable, s(x,t) with x ∈ [1,N ] at time t, whose values +1 or −1 representing

two opposing opinions (j =+1 or j =−1)
3. for each time step t do
4. Randomly select an agent x
5. Randomly choose Q neighbors of agent x (allowing for repetition)
6. if all Q neighbors have the same state then
7. agent x takes the value of the Q neighbors
8. else
9. agent x flips with probability ϵ

10. end if
11. Update the time
12. end for

2.2. Networks

Nine complex network measures were examined, as discussed in section 2.3. The
analysis involved eight distinct topological structures, including Erd ős–Rényi [47],
Barabási–Albert linear [48], Barabási–Albert nonlinear with α=0.5 and α=1.5 [49],
Lancichinetti–Fortunato–Radicchi (LFR) graphs [50], Watts–Strogatz [51], Waxman
[52], and path graph [53]. The Erd ős–Rényi network model is generated by randomly
adding connections between nodes with a uniform probability. In contrast, the non-linear
Barabási–Albert model is constructed iteratively, incorporating preferential attachment
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Figure 1. Illustration of the Q-voter model: All agents have a binary opinion, rep-
resented here by the colors red and blue. Suppose an agent has a red opinion; then,
their opinion can be altered based on the following social response: the probability
of non-conformity, i.e. reluctance to yield to group pressure, with a probability ϵ
of changing their opinion. Alternatively, there is conformity (1-ϵ), which represents
the probability of acting like their neighbors. If the neighbors have a consensus,
meaning they all share the same opinion, the agent will switch to the blue color
or remain in the red color. However, if there is no consensus among the neighbors,
with a probability β, the agent will switch to the blue color, and with a probability
of 1-β, they will maintain their opinion. The figure was created by the authors and
is based on [46]. Reproduced with permission from [46].

of new nodes to existing ones through a non-linear function that considers the node’s
connections. The LFR model is widely employed for creating networks with realistic
community structures, assigning nodes to communities based on degree and community
size distributions, and establishing connections that consider both intra- and inter-
community links. The Watts–Strogatz model introduces the concept of small-world
networks by randomly rewiring a portion of links in a regular lattice. A path graph is
a specific type of graph in graph theory that consists of a linear sequence of connected
nodes, where each node is linked to the next node in the sequence by a single edge. This
creates a structure resembling a straight line of nodes, and it is often used as a simple
representation of an ordered sequence of elements or events. A path graph is created by
defining the nodes in the desired order and connecting them sequentially with edges.
Lastly, the Waxman model takes into account geographic proximity and node attract-
iveness to determine the formation of connections, considering both physical distances
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and random appeal. For each of the mentioned networks, appendix A provides details of
the Python functions used, and 100 unique instances were generated, with each network
consisting of N =1000 nodes and an average degree ranging from 9 to 10, that is, the
available dataset comprises 800 instances of complex networks (denoted as i).

2.3. Network measurements

To effectively capture and explain the dataset’s predominant variability, a visual rep-
resentation of the principal component analysis (PCA) plot is provided in appendix C.
This PCA plot serves as a powerful tool for gaining insights into the underlying pat-
terns and structures within the dataset. Subsequently, the Q-voter model was simulated
in each of these structures to measure the time taken to reach consensus (Yi) and the
total number of opinion changes that occurred in the model (Ci). It is hypothesized that
both Yi and Ci can be predicted using a feature vector derived from the network struc-
ture, denoted as Xi =Xi1,Xi2, . . . ,Xik, where X ik represents the k -th measure extracted
from network i. The subsequent explanation primarily focuses on the prediction of Yi,
although the same process is applied to the prediction of Ci. Therefore, the learning
model is defined by

Yi = f (Xi)+ δ. (1)

The goal is to infer the function f() that relates Yi to the network measures.
Estimating Yi is treated as a regression problem, where δ represents a random error term
independent of Xi , following a normal distribution with a mean of zero and a standard
deviation of σ. While feature selection and model comparison algorithms can be used
to identify components of Xi that contribute to predicting Yi, this study employed
conventional network measures which are presented in table 2.

The first measure utilized in this study was the clustering coefficient (C), a local
measure, which quantifies the extent to which nodes in a network tend to form tightly
connected clusters. It assesses the likelihood of two neighbors of a node being connec-
ted, reflecting the local clustering patterns within the network [51]. Closeness centrality
(CLC), another local measure, was employed to calculate the proximity of a node to
all other nodes in the network. It reflects the average distance between a node and all
other nodes, indicating the efficiency of information or resource flow within the local
neighborhood of a node [54]. Betweenness centrality (BC) is a measure that identifies
nodes acting as critical intermediaries in the network. BC quantifies the extent to which
a node lies on the shortest paths between other pairs of nodes, thus indicating its influ-
ence over the flow of information or resources within its vicinity [55]. The shortest path
length (SPL) measures the minimum number of edges required to traverse between two
nodes in the network, providing insights into network connectivity and the efficiency of
information or resource transfer within local regions of the network [56]. Degree Pearson
correlation coefficient (PC) examines the correlation between the degrees of connected
nodes, capturing the tendency of nodes with similar degrees to connect and indicating
the presence of assortativity or disassortativity within the network [57]. IC assesses
the importance of a node based on its ability to control the flow of information in the
network, considering the number of shortest paths that pass through the node [58].
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Table 2. Measures of complex networks used here.

Network Measures Acronym

X 1 Clustering coefficient C
X 2 Closeness centrality CLC
X 3 Betweenness centrality BC
X 4 Shortest path length SPL
X 5 Degree Pearson correlation coefficient PC
X 6 Information centrality IC
X 7 Subgraph centrality SC
X 8 Approx. Current flow betweenness centrality AC
X 9 Eigenvector centrality EC

Subgraph centrality (SC) measures the importance of a node within its local subgraph
by considering the closed walks that pass through the node, capturing its influence
within specific network neighborhoods [59]. Approximate Current Flow Betweenness
Centrality (AC) quantifies the extent to which a node controls the flow of electric cur-
rent in the network, considering the current paths between all pairs of [60]. Finally,
Eigenvector centrality (EC) determines a node’s importance based on its neighboring
nodes’ centrality, assigning higher importance to nodes connected to other important
nodes and capturing the concept of influence [61]. Such measures, collectively used here,
provide valuable insights into complex network structures, connectivity, efficiency, influ-
ence, and community organization [62]. Details and equations for each of the mentioned
measures, along with the Python functions used, are provided in appendix B.

2.4. Machine learning algorithms

The machine learning algorithms utilized are the least absolute shrinkage and selection
operator (LASSO), multi-layer perceptron regressor (MLP), random forest (RF), and
extreme gradient boosting (XGBoost). Among the several techniques used to improve
the proposed machine learning algorithms, nested cross-validation, shuffle, and grid
search are highlighted. The former is a multi-round cross-validation procedure adopted
in machine learning for model selection and performance assessment [63]. It is a more
rigorous model selection and performance evaluation than traditional cross-validation
since it reduces the risk of overfitting and provides a more accurate estimate of the
model’s performance on unseen data [64]. Its main idea is the existence of an outer
loop, which divides the data into training and test sets, and an inner one, which uses
cross-validation to determine optimal values for the model’s hyperparameters. Shuffle
was employed during nested cross-validation to avoid possible biases in the selection of
training and testing data, ensuring the model learned in a balanced way throughout
the range of data. Finally, grid search searched for the best model hyperparameters
by systematically exploring different combinations of possible values for them. The
set of techniques used significantly contributed to the development of a more robust
and accurate model. A 5-fold outer shuffle cross-validation and a 5-fold inner cross-
validation were also adopted, following similar approaches described in previous studies
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[65]. During the inner folds, a grid search hyperparameter optimization was performed—
specific details can be found in table D1 in the appendix D.

The coefficient of determination, R2, is a metric used to measure how well a regres-
sion model fits the data [66]. However, when we add more predictors to the model, R2
can increase even if these new predictors do not really help explain the variation in the
dependent variable. To address this, we use the R2 adjusted, which considers the num-
ber of predictors and penalizes the inclusion of irrelevant ones. This adjustment gives
us a more accurate evaluation of how well our model predicts the outcome. In simpler
terms, we prefer R2 adjusted over R2 because it prevents values from being artificially
inflated by including unnecessary predictors. This ensures a more reliable assessment of
our model’s performance.

The schematic in figure 2 provides an overview of the comprehensive process outlined
in this article, which encompasses several steps: (a) generation of complex networks:
We generate the eight types of networks under study. (b1) Calculation of topological
measures: In this step, we compute the nine topological measures for all the previously
generated complex networks. (b2) Implementation of the Q-voter model: in this stage,
we implement the Q-voter model on each of the complex networks using three distinct
initialization methods represented by colored circles: high-degree (purple), low-degree
(green), and random selection (orange). This analysis is performed for both Yi (con-
sensus time) and Ci (frequency of opinion changes). (c) Creation of the dataset: A
dataset is constructed containing information from all generated networks. Each row
represents a specific network, and the columns contain topological measure calculations.
The dataset also includes values for initialization methods (high-degree, low-degree, and
random selection) for both Yi (consensus time) and Ci (frequency of opinion changes).
(d) Application of machine learning algorithms: Based on the collected information,
machine learning algorithms are used to conduct further analyses and extract signific-
ant insights and summary statistics from the generated data.

3. Results

Figure 3 presents boxplots illustrating four machine learning algorithms: LASSO (light
brown box), RF (pink box), XGBoost (blue box), and MLP (yellow box) for predicting
Yi. It is worth noting that RF (box 2, pink) and XGBoost (box 3, blue) exhibit the tallest
boxes, indicating their tendency to yield higher average adjusted R2 values compared
to the other algorithms. Furthermore, LASSO, RF, and XGBoost consistently produce
the best results across all initialization methods, including high degree, low degree, and
random selection. These three algorithms were selected for further analysis to predict
C i , and the results are presented in figure 4. Remarkably, LASSO (box 1, light brown)
and RF (box 2, pink) emerge as the tallest boxes, suggesting their inclination to yield
higher average adjusted R2 values compared to XGBoost. For this reason, we chose the
RF algorithm, which stood out as the best in both figures, to illustrate the following
figures (figures 5 and 6).

In figures 5(A) and (B), we refer to the variables Yi and Ci, respectively, and illus-
trate the relationship between predicted values (ŷ) on the y-axis and their correspond-
ing original values (y) on the x -axis. Each point in the plot represents a specific data
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Figure 2. Schematic Overview of the process outlined in this article. The process
involves several key steps: (a) Generation of complex networks: In this initial step,
we create complex networks for analysis. In this illustrative example, we generate
four networks labeled as i =1, i =2, i =3, and i =4, each consisting of a total of
10 nodes. It’s worth noting that in our article, we generate a set of 800 complex
networks. b1) Calculation of topological measures: In this step, we compute various
topological measures for all the previously generated complex networks. However,
for the sake of simplification in this illustration, we focus on a single measure:
Betweenness Centrality (BC). We apply this calculation to one of the four net-
works, specifically network i =4. b2) Implementation of the Q-voter model: In this
stage, we implement the Q-voter model on each of the complex networks using three
distinct initialization methods represented by colored circles: high-degree (purple),
low-degree (green), and random selection (orange). This analysis is performed for
both Yi (consensus time) and Ci (frequency of opinion changes). For the sake of
simplification, we select only network i =4 to illustrate this process. c) Creation
of the dataset: In this step, we construct a dataset that contains information from
all the generated networks. Each row of the table represents a specific network,
and the columns contain the calculations of topological measures for these com-
plex networks. Additionally, we include the corresponding values for initialization
methods (high-degree, low-degree, and random selection) regarding Yi and Ci. For
illustration purposes, we present information only for network i =4, including BC
and Yi. However, in the full article, our table encompass 800 rows and 15 columns,
comprising nine topological measures, along with three variations of initialization
methods for Yi and Ci. d) Application of machine learning algorithms: Finally,
based on the gathered information, we apply machine learning algorithms to con-
duct further analyses and obtain significant insights and summary statistics from
the data generated in the previous steps.
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Figure 3. Each boxplot represents the distribution of adjusted R2 values for the
corresponding machine learning algorithms (LASSO, RF, XGBoost, and MLP),
considering different initialization methods (high degree, low degree, and random
selection) to predict Yi. Among the algorithms, box 2 and box 3 correspond to the
RF and XGBoost algorithms, respectively, and show the highest adjusted R2 values.
This indicates that, on average, the RF and XGBoost algorithms outperform the
other algorithms (LASSO and MLP) in terms of predictive accuracy.

instance, where the x-coordinate indicates the actual value, and the y-coordinate repres-
ents the predicted value. The red dotted line represents a linear regression model, which
provides an approximation of the overall trend in the data, aiding in the visualization
of our model’s predictive performance. For Yi (figure 5(A)), we calculated Pearson’s
correlation coefficients, resulting in values of 0.998 for high-degree initialization (purple
dots), 0.991 for low-degree initialization (green dots), and 0.990 for random selection
(orange dots). Additionally, we computed the adjusted R2 values, which were 0.996,
0.982, and 0.968, respectively, for the same initialization methods. For Ci (figure 5(B)),
we also calculated Pearson’s correlation coefficients, yielding values of 0.999 for high-
degree initialization, 0.991 for low-degree initialization, and 0.991 for random selection.
The adjusted R2 values were 0.997, 0.983, and 0.945, respectively. These results under-
score the correlations observed between the original and predicted values for both Yi

and Ci, regardless of the initialization method used.
The RF algorithm assessed the input variables (network features) in our model. It

evaluates the significance of variables by observing the improvement they provide to
the model when incorporated into decision trees. The prioritization of network features
based on their average importance across different initialization methods, as depicted in
figure 6, provides valuable insights into their predictive capabilities. In this analysis, the
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Figure 4. Each boxplot represents the distribution of adjusted R2 values for the
corresponding machine learning algorithm (LASSO, RF, and XGBoost), consider-
ing different initialization methods (high degree, low degree, and random selection)
to predict C i . Box 1, which corresponds to the LASSO algorithm, is the highest.
This indicates that, on average, the adjusted R2 values for the LASSO algorithm
are higher compared to the other algorithms (RF and XGBoost) considered.

features were ranked according to their average importance, considering three initializ-
ation methods: high degree (purple bar), low degree (green bar), and random selection
(orange bar). Upon analyzing the bar chart (figure 6), it becomes apparent that net-
work features with higher average importance occupy the top positions. Notably, when
attempting to predict Yi, the clustering coefficient (C) emerges as the most signific-
ant measure (figure 6(A)). This indicates that the network’s structure, particularly the
formation of cohesive groups, plays a crucial role in the speed of consensus attainment
within the Q-voter model. In terms of C i , IC stands out as the most relevant network
measure (figure 6(B)). This suggests that the dissemination and influence of information
within the network play a fundamental role in the dynamics of opinion changes. These
network measures play vital roles in predicting different aspects of the Q-voter model.
These inferences underscore the significance of different network aspects concerning
the various phenomena under study. While the C focuses on consensus formation, IC
pertains to opinion changes. These findings offer valuable insights for comprehending
and forecasting the behavior of voter models in broader contexts. In contrast, measures
such as EC, Degree PC coefficient (PC), and SC do not exhibit significant predictive
capabilities in these scenarios.

Also, note that, individually, the CLC (represented by the purple bar in figure 6(A))
becomes more relevant in networks initialized with a high degree of connectivity, while
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Figure 5. Illustration showing the relationship between their corresponding original
values (y) and predicted values (ŷ) for (A) Time and (B) Frequency regarding the
selection of agents with high degree (purple dots), low degree (green dots), and
random selection (orange dots) for the initiation of dynamics. This analysis was
conducted using the RF algorithm. This analysis was conducted using the RF
algorithm.

the AC (indicated by the orange bar in figure 6(A)) is more significant in the randomly
initialized networks. CLC gains importance when the dynamics of the Q-voter model
are initiated by selecting nodes with a higher degree, as it measures how easily a node
can communicate or influence other nodes in the network. When starting the dynamics
with high-degree nodes, these high-degree nodes can have a substantial influence on
the spread of opinions, and CLC can capture this capacity for influence. Similarly, the
significance of the AC centrality measure when initiating the dynamics of the Q-voter
model by selecting nodes randomly may be related to the definition of this centrality
measure and the dynamics of opinion propagation in the Q-voter model on a network.
AC is a measure that reflects the efficiency with which a node can transmit informa-
tion or influence others in the network. When the dynamics of the Q-voter model are
initiated randomly, there is no initial preference for high-degree or low-degree nodes.
Therefore, it is crucial to identify nodes that can effectively facilitate the spread of
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Figure 6. The examination of the most crucial features, which are determined
based on the average importance of complex network measures, was conducted to
predict both (A) Yi and (B) Ci using various initialization methods. These methods
encompassed the selection of agents with the highest degree (purple bars), lowest
degree (green bars), and random selection (orange bars) to initiate the dynamics.
Notably, the clustering coefficient (C) and information centrality (IC) consistently
emerged as the two most significant measures in both scenarios. This analysis was
carried out employing the RF algorithm.

opinions throughout the network, and AC can highlight nodes playing an important
role in this regard.

Finally, the learning curve was calculated specifically for the two best results achieved
using the high-degree initialization method for Yi (adjusted R2 = 0.996) and Ci (adjus-
ted R2 = 0.997). By manipulating the size of the training set, the learning curve offers
valuable insights into the model’s predictive capabilities [67]. This approach provides
the advantage of understanding how the model’s performance improves as more training
instances are used, focusing on the most promising initialization methods. The findings
depicted in figure D1 indicate that the complete database is not indispensable for achiev-
ing the highest level of validation accuracy. Surprisingly, even with a mere 200 training
instances, the model demonstrated exceptional performance. These results emphasize
that a relatively smaller training set can still yield satisfactory results.

https://doi.org/10.1088/1742-5468/ad06a6 16

https://doi.org/10.1088/1742-5468/ad06a6


Machine learning-based prediction of Q-voter model in complex networks

J.S
tat.

M
ech.(2023)

123402

4. Conclusions

In this article, we predicted dynamic variables associated with Q-voter models based
on network properties. We verified that the prediction is very accurate and determined
which features most contribute to the emergence of polarization. Mainly, we show that
the clustering coefficient and IC are the most important measures to quantify these
patterns of connections. Moreover, variations in the initialization method, to start the
dynamic of the Q-voter model with a positive opinion, were performed to predict con-
sensus of the time (Yi) and frequency of opinion changes (C i). Initially, agents were
randomly selected, following the original method of the Q-voter model. Subsequently,
agents with the highest degree were identified and selected to investigate their potential
for strongly influencing the overall opinion dynamics due to their extensive connections.
Lastly, agents with the lowest degree of connectivity were considered initiators of the
dynamics to explore the potential impact of less influential agents on opinion evolu-
tion. Although modifications in the initialization methods of positive opinions affect
the results, their impact is relatively small. Indeed, subsequent interactions and inform-
ation exchange among agents tend to overshadow the influence of the initially selected
agents, leading to a consensus of opinions and a limited long-term impact of the initial
agent selection. Nonetheless, the exploration of the role of both highly connected and
less connected agents provided valuable insights into the complex dynamics of opinion
formation and consensus emergence within the Q-voter model.

We found that, regardless of the initialization method used to start the Q-voter
model, the initial influence of the selected agents tends to decrease over time. This occurs
because, as agents interact and exchange information, their opinions are influenced by
others. Over time, opinions begin to converge towards a consensus, and the initial
influence of randomly selected, high- or low-connectivity agents becomes equivalent
since there is not a significantly superior initialization method over the others; all of
them yield equally good results. When we say that the absence of influential agents
contributes to a more efficient consensus, we mean that the absence of agents with
disproportionate influence in the network means that each agent plays a similar role in
shaping the collective opinion. This is important because polarization often occurs when
a few extremely influential agents have a disproportionate impact on others’ opinions.
In the article [68], the authors investigate the influence of highly connected individuals
in opinion dynamics. Their research illustrates that a small number of highly connected
individuals can significantly influence the polarization of opinions within a network.
Furthermore, Sunstein’s book ‘Republic: Divided Democracy in the Age of Social Media’
[69] provides insights into the role of online platforms and highly influential users in
shaping public discourse, potentially leading to polarization.

If all agents have similar influence, it is less likely that a few highly influential
agents dominate the conversation and pull the collective opinion to opposite extremes.
Therefore, the absence of highly influential agents can contribute to a more balanced
and less polarized decision-making process.

Expanding our methodology to explore the variance prediction within the Q-voter
model can provide further insights into the factors that contribute to diverse outcomes
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in social dynamics. Future work in this direction will contribute to a more comprehens-
ive understanding of the complex nature of polarization and its potential implications.
By leveraging machine learning algorithms and complex network features, this study
can advance research in the field of complex systems and pave the way for future invest-
igations on the dynamics of polarization in various social contexts. Overall, the combin-
ation of machine learning algorithms and complex network analysis has the potential to
revolutionize our comprehension of social systems, leading to a deeper understanding
of human behavior and the development of strategies that promote positive societal
outcomes.
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Appendix A. Construction of complex networks

In this appendix, parameters involved in network generation are presented in tabular
format. The network values were adjusted to ensure that the average degree of all
networks fell within the range of 9–10.

• Erd ős-Rényi:We used the nx.erdos renyi graph function from NetworkX to create
an Erd ős-Rényi network [70]. The following table provides information concerning the
creation of this network (table A1).
Parameter Descriptions:

– n: The number of nodes in the network.

– p: The probability for edge creation. The model chooses each of the possible
edges with probability p.

– seed: Indicator of random number generation state. In our case, it is set to
None, which means the default random number generation state is used.

– directed: If True, this function returns a directed network. In our case, it is
set to False, indicating that the network is undirected.

• Barabási Linear, Barabási Non-Linear (0.5), Barabási Non-Linear (1.5): We
employed the graph.Barabasi function to create networks following the Barabási-
Albert model [71]. The subsequent table furnishes specific details regarding the gen-
eration of this network (table A2).
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Table A1. Parameters for the Erdős-Rényi network model.

Parameter Value

n 1000
p 0.01
seed None
directed False

Table A2. Parameters for the Barabási-Albert Model.

Parameter Value

n 1000
m 5
outpref True
directed False
power 1.0
zero appeal 1
implementation psumtree
start from None

Parameter Descriptions:

– n: The number of nodes in the generated network. In the example, 1000 nodes
were created.

– m: The number of outgoing edges generated for each node or a list containing
the number of outgoing edges for each node explicitly. In the example, each
node has 5 outgoing edges.

– outpref : A boolean value that determines whether the out-degree of a node
affects its citation probability. In the example, it is set to True.

– directed: A boolean value that determines whether the generated network
is directed. In the example, it is set to False, indicating that the network is
undirected.

– power: The power constant of the nonlinear model. In the example, the value
is 1.0, representing the linear model.

– zero appeal: The attractiveness of nodes with degree zero. In the example, it
is set to 1.

– implementation: The algorithm used to generate the network. In the example,
it is set to psumtree, which uses a partial prefix-sum tree.

– start from: If provided and not None, this parameter uses another network
as a starting point for the preferential attachment model. In the example, no
starting network is specified (None).

Note that to generate the Barabási networks in a non-linear manner, we modified the
power parameter to 0.5 and later to 1.5.
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Table A3. Parameters for the LFR Benchmark network model.

Parameter Value

n 1000
τ 1 3
τ 2 1.5
µ 0.1
average degree 10
min degree None
max degree None
min community 100
max community None
tol 1× 10−7

max iters 500
seed 10

• LFR (LFR Benchmark): We generated LFR networks using the
LFR benchmark graph function [72]. A table following this one provides informa-
tion on how this network was generated (table A3).
Parameter Descriptions:
– n: Number of nodes in the created network.

– τ 1: Power law exponent for the degree distribution of the created network. This
value must be strictly greater than one.

– τ 2: Power law exponent for the community size distribution in the created net-
work. This value must be strictly greater than one.

– µ: Fraction of inter-community edges incident to each node. This value must be
in the interval [0,1].

– average degree: Desired average degree of nodes in the created network. This
value must be in the interval [0,n].

– min degree: Minimum degree of nodes in the created graph. This value must
be in the interval [0, n].

– max degree: Maximum degree of nodes in the created network. If not specified,
this is set to n, the total number of nodes in the network.

– min community: Minimum size of communities in the network. If not specified,
this is set to min degree.

– max community: Maximum size of communities in the network. If not specified,
this is set to n, the total number of nodes in the network.

– tol: Tolerance when comparing floats, specifically when comparing average degree
values.

– max iters (int): The maximum number of iterations to attempt in order to
create community sizes, degree distribution, and community affiliations.
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Table A4. Parameters for the Watts-Strogatz network model.

Parameter Value

n 1000
k 10
p 0.01

Table A5. Parameters for the Waxman network model.

Parameter Value

n 1000
beta 0.12
alpha 0.1
L None
domain (0, 0, 1, 1)
metric function
seed None (default)

– seed(integer, random state, or None—default): An indicator of the random
number generation state.

• Watts-Strogatz: We used the nx.watts strogatz graph from the NetworkX lib-
rary to generate a Watts–Strogatz network [73]. The following table contains inform-
ation about the values of each parameter of this network (table A4).
Parameter Descriptions:
– n: The number of nodes.

– k: Each node is joined with its k nearest neighbors in a ring topology.

– p: The probability of rewiring each edge.

• Waxman: We used the nx.waxman graph function from the NetworkX library to
generate a Waxman network [74]. The following table contains information to gen-
erate this type of network (table A5).
Parameter Descriptions:
– n: Number of nodes.

– beta : Model parameter.

– alpha : Model parameter.

– L: The maximum distance between nodes is set to be the maximum distance
between any pair of nodes.

– domain: Domain size, given as a tuple of the form (x min, y min, x max,
y max).

– metric: Euclidean distance metric is used.

– seed (integer, random state, or None): Indicator of random number gener-
ation state (default is None).
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Table A6. Parameters for the Path network model.

Parameter Value

n 1000

• Path: We used the nx.path graph function from the NetworkX library to generate
this network [75]. The only parameter for this network is presented in table A6. Note
that in our code available on GitHub here for generating networks, we have added
specific lines of code for the path graph to ensure that the average degree falls within
the range of 9–10, aligning with the characteristics of the other networks generated.
Parameter Descriptions:

– n: Number of nodes.

Appendix B. Network measurement details

B.1. Clustering coefficient (C)

The local clustering coefficient (C) is an important metric in network and graph analysis
that quantifies the tendency of neighbors of a node in a network to cluster together.
In other words, it measures the degree of connectivity among the direct neighbors of
a specific node, which is useful for understanding community structure and cohesion
within a network. The mathematical formula for calculating C of a node v in a graph
is as follows:

C (v) =
2 ∗E (v)

kv ∗ (kv − 1)
(B1)

where:

• C (v) is the local clustering coefficient of node v.

• E (v) is the number of edges between the direct neighbors of v (i.e. the triangles that
include node v).

• k v is the degree of node v, which is the number of direct neighbors it has.

The transitivity local undirected(mode = ‘zero’) is a Python function commonly
employed in network analysis using the Igraph library. This function calculates the C for
individual nodes within a graph. It operates in “zero” mode, which specifically considers
triangles in the network that share exactly one node with the node being analyzed.
The output of this function is a data structure, typically a list or a similar container,
containing the C corresponding to each node in the graph. Finally, we calculate the
mean to get a final value.
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B.2. CLC

Local CLC is a network analysis metric that measures how close a node is to all the other
nodes in its local neighborhood within a graph. It quantifies how quickly information
can spread from a specific node to its neighboring nodes. Nodes with higher CLC are
considered to be more central within their local environment, as they can reach other
nodes more efficiently. The mathematical formula for the CLC of a node v is as follows:

CLC(v) =
1∑
u ̸=v

d(v,u)

where:

• CLC (v) is the local CLC of node v.

• d(v,u) represents the shortest path distance between nodes v and u in the graph. The∑
in the denominator calculates the sum of the shortest path distances from node v

to all other nodes u in its local neighborhood.

The closeness centrality(normalized = True) function is a commonly used Python
function in network analysis using the Igraph library. This function calculates CLC
measures for each node in a graph. When we use normalized = True, it indicates that
we want the CLC values to be normalized. In other words, the values are adjusted
to be within the range of 0 to 1, making these measures comparable across different
graphs, regardless of the network’s size or scale. Finally, by calculating the average of
these normalized measures, we obtain a representative value of the average CLC in the
network, which is useful for assessing the communication efficiency of nodes within their
respective local environments.

B.3. BC

BC is a fundamental metric in network analysis that assesses the importance of nodes as
crucial intermediaries in communications within a network. Mathematically, the formula
for calculating the BC of a node is as follows:

BC(v) =
∑
s̸=v ̸=t

ϕst (v)

ϕst

where:

• BC (v) is the BC of node v.

• ϕst is the total number of shortest paths (geodesics) between nodes s and t.

• ϕst(v) is the number of shortest paths between s and t that pass through node v.

The betweenness centrality() function is a specific feature of the NetworkX library,
widely used for network analysis in Python. This function is responsible for calculating
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BC in a graph. Essentially, it assesses the importance of each node within the graph
by measuring how often a node acts as a crucial bridge in the shortest paths between
other nodes in the network. The result of this function is a dictionary where the keys
represent the nodes in the graph, and the corresponding values are the BC measures
associated with these nodes. This analysis is valuable for identifying nodes that play
a critical role as intermediaries in communication or the transportation of information
within a network.

B.4. SPL

The SPL, also known as the length of the shortest path, is a metric that describes the
distance between two nodes in a graph, representing the minimum number of edges
or weighted edges required to travel from node A to node B within the network. The
formula to calculate the SPL between two nodes can be described as:

• SPL(A, B) = the smallest number of edges between nodes A and B.

In Python, we can calculate the SPL libraries such as Igraph. For example, the aver-
age path length() function in calculates the average SPL between nodes in the net-
work, providing a valuable measure for evaluating the efficiency of transportation, com-
munication, and connectivity in a network.

B.5. Degree PC coefficient (PC)

The PC Coefficient for Degrees (PC) is a metric that assesses the linear relationship
between the degrees of nodes in a graph. It measures the tendency of nodes with similar
degrees to connect or whether they prefer to link to nodes with different degrees. This
measure is important for understanding how the network is organized in terms of node
degrees, indicating whether there is a tendency for assortativity (positive correlation)
or disassortativity (negative correlation) in the network’s connectivity. The formula for
calculating the PC is given by:

PC =

∑
(xi−x̂)∗(yi−ŷ)∑

(xi − x̂)2 ∗
∑

(yi − ŷ)2

where:

• PC (v) is the PC Coefficient.

• xi and yi are the degrees of the nodes.

• x̂ and ŷ are the means of the node degrees.

In Python, we can calculate the PC Coefficient for Degrees using libraries such as
NetworkX. The functions degree pearson correlation coefficient() in NetworkX can
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be used to calculate this measure on a graph represented by the respective libraries.
The result will inform us about the nature of the network’s connectivity about node
degrees, which is useful for network analysis and characterization.

B.6. IC

IC is a network metric used to assess the importance of nodes in a graph in terms of
how they facilitate the flow of information or communication within the network. This
metric is based on the idea that some nodes may act as critical points for the efficient
dissemination of information in a network. IC measures the amount of information
a node is capable of controlling or transmitting to other nodes in the network. The
mathematical formula for IC is defined as:

IC(v) =
∑
u ̸=v

1

d(v,u)

where:

• IC (v) is the IC of node v.

•
∑

represents the sum over all nodes u different from v.

• d(v,u) is the geodesic distance between nodes u and v, i.e. the length of the shortest
path between them.

This formula calculates the IC of a node by summing the inverses of the geodesic
distances between the node in question v and all other nodes u in the graph. The
shorter the path between v and u, the greater the contribution of node u to the IC of
v. Therefore, nodes that are closer to v will have a higher contribution to its IC.

In Python, we can use the information centrality() function from NetworkX to
calculate the IC for the nodes in a graph. The function returns a dictionary where the
keys are the nodes in the graph, and the values are the corresponding IC scores. This
allows us to identify the most critical nodes in the network in terms of their ability to
influence the flow of information.

B.7. SC

SC is a network centrality (SC) metric that assesses the importance of a node based
on how many subgraphs containing that node are connected in the network. In other
words, it measures how central a node is in terms of its participation in interconnected
subgraphs. The mathematical formula for SC is defined as follows:

SC(v) =
∑

S⊆N\{v}

(
1

1+ |E (S) |

)
(B2)
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where:

• SC (v) is the SC of node v.

• S is a subset of the neighbors of v.

• N is the set of neighbors of v.

• E (S ) is the number of edges in the subgraph induced by S.

This formula calculates the SC of a node v by summing the contributions of all subsets
of its neighbors. The more subsets contain v, and the more these subsets are intercon-
nected (have fewer edges), the higher the SC of v. In Python, we can use the sub-
graph centrality() function from NetworkX to calculate the SC for the nodes in a
graph. The function returns a dictionary where the keys are the nodes in the graph,
and the values are the corresponding SC scores. This allows us to identify nodes that
play a crucial role in connecting interconnected subgraphs in the network. Keep in mind
that the calculation can be computationally expensive in large networks due to the need
to evaluate many subsets of neighbors for each node.

B.8. Approx. current flow betweenness centrality (AC)

Approximate current flow betweenness centrality is a metric that assesses the import-
ance of nodes based on their ability to influence the flow of electrical current within a
network. Unlike the traditional approach to BC, which precisely calculates exact paths,
this methodology employs numerical methods, such as Monte Carlo algorithms, to estim-
ate the flow of current between all pairs of nodes in the network. This approach makes
it suitable for large-scale and complex networks. To calculate this centrality metric
in Python, we use the approximate current flow betweenness centrality function
from the NetworkX library. The result is a dictionary that associates each node in the
network with its approximate centrality value. This metric plays a vital role in network
analysis across various domains, aiding in the identification of key points of control and
influence.

B.9. EC

EC is a measure of centrality in a network or graph that assesses the relative importance
of a node based on its connections to other nodes in the network. The underlying idea
is that nodes connected to other important nodes are themselves important. Therefore,
EC takes into account not only the number of connections a node has but also the
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importance of the nodes to which it is connected. The mathematical formula to calculate
the EC of a node in a graph is defined by the following equation:

EC(v) =
1

λ

∑
u∈N(v)

w (u,v) ·C (u)

where:

• EC (v) is the EC of node v.

• λ is the eigenvalue associated with the largest eigenvalue of the adjacency matrix of
the graph.

•
∑

represents the sum over all nodes u connected to node v.

• w(u,v) is the weight of the edge between nodes u and v.

• C (u) is the EC of node u.

The eigenvector centrality() function is part of the Igraph library in Python, used
to calculate EC in a graph. EC is a measure that assesses the importance of nodes in a
graph based on their connections, taking into account the importance of the nodes to
which they are connected. The EC values are not scaled, meaning they reflect the raw
measure of importance for each node in the graph. To obtain a single centrality measure
for the entire graph, it is common to calculate the average of the centrality values for
all nodes.

The Python code used to generate the Q-voter model, as well as the complex net-
works and measures of complex networks, is available for access at [76].

Appendix C. PCA

The analysis of cumulative explained variance provides valuable insights into the dimen-
sionality reduction achieved by the PCA algorithm. The plot of cumulative explained
variance illustrates the amount of information retained as the number of principal com-
ponents increases (figure C1). This information helps determine the minimum number
of principal components required to capture a significant portion of the original data’s
variability, considering the dataset with 800 rows and 9 columns. This analysis is crucial
for making decisions regarding the dimensionality reduction process, in the context of
changing network topologies every 100 rows.

On the other hand, the plot of the reduced data using the principal components
visually represents the transformed dataset in a lower-dimensional space (figure C1).
By visualizing the data in this reduced space, which is particularly important in the
case of high-dimensional data with 9 complex network measures, a better understanding
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Figure C1. The top figure illustrates the Cumulative Explained Variance in PCA
(Principal Component Analysis) Analysis. This plot showcases the cumulative
amount of variance in the data explained by each principal component, while the
subsequent figure displays the Reduced Data Plot using Principal Components. The
reduced data is represented in a lower-dimensional space defined by the principal
components, allowing for a simplified representation of the original data while pre-
serving its underlying structure. These figures provide insights into the data used
to feed our machine-learning prediction models and demonstrate the effectiveness
of PCA in reducing the dimensionality of the input data.

of its structure and potential patterns or clusters that may exist is gained. These plots
play a vital role in validating the effectiveness of the PCA algorithm in capturing the
most relevant features of the data while reducing its dimensionality, considering the
complexity and diversity of the network measures across different network topologies.

Additionally, the proximity of data points in the reduced space reflects the similarity
between the models, allowing for the identification of clusters or groupings within each
network topology and across different topologies. This further aids in understanding
the relationships and similarities among different instances in the dataset, facilitating
comparative analysis and identification of common characteristics or trends. Overall,
these plots provide valuable insights into the data, aiding in analysis, interpretation,
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and model comparison, particularly in the context of complex networks with multiple
measures and changing topologies.

Appendix D. Grid search hyperparameter tuning

Table D1 shows the hyperparameters optimized by grid search.

Table D1. Hyperparameters for each machine learning algorithm optimized by grid
search optimizer.

Predictor Hyperparameters and description Values

RF

- max depth: Maximum depth of the tree. [10, 20, 30, 40, 50]
- max features: Number of features to be
considered toward a best split.

[2, 3, 4]

- min samples leaf : Minimum number of
samples required to be at a leaf node.

[1, 2, 4]

- min samples split: Minimum number of
samples for the split of an internal node.

[2, 5, 10]

- n estimators: Number of trees in the
forest.

[100, 200, 300]

LASSO - regularization parameter. range 0.0001 to 0.0005

MLP

- activation: Activation function for the
hidden layer.

[identity, logistic, tanh, relu]

- solver: Solver for weight optimization. [lbfgs, sgd, adam]
- alpha: L2 penalty (regularization term)
parameter.

[0.0001, 1× 10−5, 0.01, 0.001]

- batch size: Size of minibatches for
stochastic optimizers.

[1000, 5000]

- learning rate: Learning rate schedule for
weight updates.

[constant, invscaling, adaptive]

- learning rate init: Initial learning rate
used.

[0.001, 0.01, 0.1, 0.2, 0.3]

XGBoost
- subsample: fraction of observations to be
randomly sampled in each tree.

[0.6, 0.8, 1.0]

-max depth: maximum depth of each tree. [3, 4, 5]
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Figure D1. The learning curve displays the training accuracy (represented by the
blue curve) and the test accuracy (represented by the red curve) for the high
initialization method. The top figure illustrates the learning curve for predicting
Yi, while the subsequent figure shows the learning curve for predicting C i . These
learning curves offer valuable insights into the performance of the model and the
effectiveness of the high initialization method. By examining the training and test
accuracies, one can evaluate the model’s ability to generalize to unseen data and
detect potential concerns such as overfitting or underfitting.
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