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Protecting operations on qudits from noise by continuous dynamical decoupling
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We develop a procedure of generalized continuous dynamical decoupling (GCDD) for an ensemble of d-level
systems (qudits), allowing one to protect the action of an arbitrary multiqudit gate from general noise. We first
present our GCDD procedure for the case of an arbitrary qudit and apply it to the case of a Hadamard gate
acting on a qutrit. This is done using a model that, in principle, could be implemented using the three magnetic
hyperfine states of the ground energy level of 87Rb and laser beams whose intensities and phases are modulated
according to our prescription. We show that this model allows one to generate continuously all the possible
SU(3) group operations which are, in general, needed to apply the GCDD procedure. We finally show that our
method can be extended to the case of an ensemble of qudits, identical or not.
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I. INTRODUCTION

The development and implementation of effective quantum
computers is of great interest to the scientific community as
well as to the world economy as a whole [1]. Indeed, quantum
computers promise to revolutionize many important tasks,
even with a reduced number of algorithms known to be more
efficient than their classical analogs [2]. In this sense, reducing
errors while keeping quantum algorithms simple is an im-
portant aspect to be addressed. Several strategies have been
proposed to contrast decoherence effects, such as reservoir
engineering methods [3–8], optimal quantum control proto-
cols [9,10], measurement-based control [11–13], and pulsed
dynamical decoupling of qubits [14–17]. Some of us worked
at continuous dynamical decoupling strategies, applied to
single- and two-qubit systems [18–21].

Continuous dynamical decoupling techniques have been
theoretically investigated and experimentally implemented in
several contexts. For example, these kinds of techniques have
been applied in the case of nitrogen-vacancy centres to sepa-
rate a single nuclear spin signal from the bath noise [22], to
extend the coherence time for the electron spin [23,24] while
protecting quantum gates [24], to provide single-molecule
magnetic resonance spectroscopy [25], and in the context
of sensing high frequency fields [26]. Furthermore, they
can be used to create a dephasing-insensitive quantum com-
putation scheme in an all-to-all connected superconducting
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circuit [27], and for engineering an optical clock transition in
trapped ions, robust against external field fluctuations [28].

Although qubits are virtually ubiquitous in the develop-
ment of quantum algorithms [2], d-level systems (qudits)
seem to be potentially more powerful for information process-
ing [29–41]. Indeed, the use of higher-dimensional quantum
systems brings significant advantages, allowing for informa-
tion coding with increased density and thus reducing the
number of multiparticle interactions. Specifically, the use of
qudits brings improvements in the building of quantum logic
gates and the simplification of the design of circuits [29–32],
in the security of quantum key distribution protocols [33–37],
in performing quantum computation [38–42], as well as in the
realization of fundamental tests of quantum mechanics [43].
In particular, powerful error correction procedures have been
proposed for qudits [44–47]. We remark that some of the
above advantages have been pointed out already for the case
of qutrits (see, e.g., [30,31,33,34]). Several setups have been
considered to experimentally implement qudits, including op-
tical systems [48–50], superconductors [32,51], and atomic
spins [52,53].

In this paper we present a complete theoretical prescription
for a generalized continuous dynamical decoupling (GCDD)
of an ensemble of arbitrary qudits from environmental noise in
the presence of an arbitrary quantum operation. Our prescrip-
tion consists of a continuously varying control Hamiltonian
and a modification of the intended quantum operation. We
first develop our procedure for the case of an arbitrary qudit
and apply it to the case of a qutrit implemented with a specific
model where we explicitly show how to realize all the possible
SU(3) group operations which are, in general, needed for our
scheme. We finally show that our scheme can be extended to
the case of an ensemble of qudits, identical or not. Since our
procedure works for an arbitrary number of levels and can be
generalized to the case of many qudits, it extends the range of
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applicability of continuous dynamical decoupling strategies to
more complex systems with respect to previous studies.

The paper is organized as follows. In Sec. II we present the
GCDD procedure for the specific case of a qudit. In Sec. III
we give our prescription to build up the control fields neces-
sary for the GCDD procedure. In Sec. IV we show how to
apply our GCDD procedure in the case of an atomic qutrit
realized with some states of 87Rb. In Sec. V we present our
numerical simulations showing the protection realized by our
GCDD procedure in the case of the atomic qutrit previously
presented, in the presence of a noise taking into account both
damping and dephasing effects. In Sec. VI we comment on
the possibility to extend our GCDD to the case of an ensemble
of many qudits, identical or not, by referring to Appendix D
where the case of two qudits is explicitly treated. Some parts
of our analysis are reported in various Appendixes.

II. THE GCDD PROCEDURE

Here we present our GCDD procedure for the specific case
of an arbitrary qudit of dimension d .

Let HG be the Hamiltonian generating the intended evolu-
tion of an arbitrary qudit state, in the ideal, noise-free case.
Notice that the free Hamiltonian of the qudit can be included
in HG or assumed to be eliminated before the GCDD pro-
cedure. The procedure is then directly applied to a system
which, in the absence of HG, is degenerate since all qudit
levels have the same energy. After a gate operation time τ ,
the desired evolution operator acting on an initial qudit state
is then given by UG = exp(−iHGτ/h̄). Instead of HG, we
aim to use external fields whose interaction with the qudit
is described by a nonautonomous Hamiltonian Hlab(t ), acting
continuously during the time interval τ and only on the qudit
Hilbert space, and generating, despite the presence of noise,
an effective evolution of the qudit that, at least up to a high
enough fidelity, is at time τ the same as the one provided
by UG.

To describe Hlab(t ), we first split this control field Hamilto-
nian into two terms, Hlab(t ) ≡ Hc(t ) + Hgate(t ), where Hc(t )
is the control Hamiltonian that will continuously decouple
the qudit evolution from the interference of the environment,
while Hgate(t ) will provide the modified gate Hamiltonian
that in the end will effectively reproduce the action gener-
ated by HG. Associated with Hc(t ) there is a unitary operator
Uc(t ) that we require to be periodic with a period t0 and that
should satisfy (but not necessarily) the dynamical-decoupling
condition [54]

∫ t0

0
dt [U †

c (t ) ⊗ IE ]Hint[Uc(t ) ⊗ IE ] = 0, (1)

where IE is the identity operator of the environmental Hilbert
space and Hint is the Hamiltonian interaction term coupling
the qudit with its environment. It is important to emphasize
that a weaker, but sufficient, condition would also work to
obtain dynamical decoupling. This weaker condition can be
written as∫ t0

0
dt[U †

c (t ) ⊗ IE ]Hint[Uc(t ) ⊗ IE ] = c t0 Id ⊗ B, (2)

where Id is the identity operator of the qudit Hilbert space
of finite dimension d , c is a constant, and B is some operator
that acts on the environment. Indeed, if the integral of Eq. (1)
results to be proportional to a tensor product between the qudit
identity and an environment operator, the system will also be
protected. To explicitly illustrate this aspect, we consider in
detail this situation in Appendix A, where we show that also
in this case the qudit dynamics is protected from the effects of
the coupling with the environment. In the following we show
that our protection scheme satisfies this weaker condition. We
finally observe that we choose t0 such that τ results to be an
integer multiple of t0 itself, for reasons that we explain below.

The total Hamiltonian of the system and the environment
is then written as

Htot(t ) = [Hc(t ) + Hgate(t )] ⊗ IE + Id ⊗ HE + Hint, (3)

where HE is the free Hamiltonian of the environment. In the
picture obtained by unitarily transforming Eq. (3) using Uc(t ),
we obtain the Hamiltonian in what we henceforth call the
control picture:

H (t ) ≡ [U †
c (t ) ⊗ IE ]Htot(t )[Uc(t ) ⊗ IE ]

+ ih̄
dU †

c (t )

dt
Uc(t ) ⊗ IE = HG ⊗ IE + Id ⊗ HE

+ [U †
c (t ) ⊗ IE ]Hint[Uc(t ) ⊗ IE ], (4)

where, as we explain shortly, we have chosen Hgate(t ) as

Hgate(t ) ≡ Uc(t )HGU †
c (t ). (5)

Note that at time τ , the qudit state in the control picture
coincides with the one in the original picture at the same time,
explaining why we have chosen Eq. (5) and t0 such that τ is an
integer multiple of it. Since Hgate(t ) is used in the presence of
continuous dynamical decoupling, the evolution proceeds as
if only UG governed the qudit evolution in the control picture
(see Appendix A for details). At time τ , even in the original
picture the qudit state is then the one that the ideal noise-free
evolution would produce, up to a high-enough fidelity.

The dissipative dynamics is assumed to be resulting from a
perturbing interaction between the qudit and its environment
described by the very general Hamiltonian:

Hint =
d−1∑
r=0

d−1∑
s=0

|r〉〈s| ⊗ Br,s, (6)

where Br,s, for r, s = 0, 1, 2, . . . , d − 1 are operators that act
on the environmental states and |k〉, for k = 0, 1, 2, . . . , d −
1, are d normalized state vectors forming a basis set for a
Hilbert space of dimension d , henceforth called the qudit
space. This is also to be considered the logical basis. Notice
that if the free Hamiltonian has not been eliminated before
the application of the GCDD procedure, it can be thought as
included in the above interaction Hamiltonian in such a way
that the protection procedure in the end eliminates also the
action of this free Hamiltonian.

III. OUR PRESCRIPTION

Now we prescribe how to construct the required Uc(t )
and we address an arbitrary quantum gate operating on the
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qudit state, showing how to protect its action against general
noise. Also, we illustrate how to generate the fields in the
laboratory whose action allows one to implement the control
Hamiltonian Hc(t ) and the time-dependent gate Hamiltonian
Hgate(t ), the sum of which generates the evolution of the qudit
state driven by such external fields.

A. Constructing Uc(t )

We begin defining HL as the Hermitian operator whose
action on the logical basis states gives

HL|k〉 ≡ kh̄ωd |k〉, (7)

for k = 0, 1, . . . , d − 1, where

ωd ≡ d ω0, ω0 = 2π

t0
, (8)

with ω0 being the control frequency corresponding to the
dynamical-decoupling period t0. The quantum-Fourier trans-
form of the logical basis is given by [2]

|ψn〉 ≡ 1√
d

d−1∑
j=0

exp

(
2π i

d
jn

)
| j〉, (9)

for n = 0, 1, . . . , d − 1. We define the Hermitian operator
HF by its action on the quantum-Fourier transformed basis,
which is

HF |ψn〉 ≡ nh̄ω0|ψn〉, (10)

for n = 0, 1, . . . , d − 1. The required control unitary transfor-
mation is then given by

Uc(t ) ≡ exp(−iωrt ) exp

(
−i

HL

h̄
t

)
exp

(
−i

HF

h̄
t

)
, (11)

where we have defined a real constant ωr as

ωr ≡ −Tr{HL} + Tr{HF }
h̄d

. (12)

Using Eqs. (7)–(11), it is now straightforward to obtain∫ t0

0
dt U †

c (t )|p〉〈q|Uc(t )

= 1

d

d−1∑
m=0

d−1∑
n=0

exp

(
−2π i

d
pn

)
exp

(
2π i

d
qm

)
|ψn〉〈ψm|

×
∫ t0

0
dt exp{i[(n− m)+ (p − q)d]ω0t} = t0

d
δp,qId ,

(13)

where the time integration is not zero if and only if (n − m) +
(p − q)d = 0. Given the constraints on the various parame-
ters, this happens only if m = n and p = q. It follows from
Eqs. (6) and (13) that a weaker condition than Eq. (1) is ob-
tained since the integral there appearing results to be equal to
t0
d Id ⊗ ∑d−1

p=0 Bp,p. This weaker condition has the same form
of Eq. (2). As said above, this condition is enough to obtain
dynamical decoupling.

B. The laboratory Hamiltonian

To implement the GCDD, we need a prescription for Hc(t )
and Hgate(t ). Using Eq. (11), we can calculate the control
Hamiltonian Hc(t ) = ih̄ dUc (t )

dt U †
c (t ) as

Hc(t ) = h̄ωrId + HL + UL(t )HFU †
L (t ), (14)

where, for simplicity, we have defined UL(t ) ≡
exp(−iHLt/h̄). Equation (5) gives Hgate(t ) in terms of
Uc(t ) and HG. Hence, in the laboratory we need to generate
external fields such that they interact with the qudit according
to the following Hamiltonian:

Hlab(t ) ≡ Hc(t ) + Hgate(t )

= h̄ωrId + HL + UL(t )HFU †
L (t ) + Uc(t )HGU †

c (t ).

(15)

The term proportional to the unit matrix is immaterial to the
dynamics, since it only gives rise to a global phase factor
multiplying the evolved state vector.

The action of the gate Hamiltonian HG is what we want to
effectively perform, after the time interval τ , through Hlab(t ).
The Hamiltonian HG can be expanded in the computational
basis by

HG = h̄
d−1∑
r=0

d−1∑
s=0

gr,s|r〉〈s|, (16)

where g∗
s,r = gr,s because HG is Hermitian. If some of the

eigenvalues of HG are positive, let us choose, of these, the one
with the highest absolute value, say h̄g0, with g0 � 0, where
the equal sign is chosen if there are no positive eigenvalues of
HG. Then, let us define the Hermitian operator G such that

HG = h̄g0Id − h̄G. (17)

Therefore, −G does not have positive eigenvalues and, thus,
it is a nonpositive operator. Notice that G, however, is a
non-negative operator [we have introduced the minus sign
appearing in Eq. (17) just for convenience].

Now, let us take a look at Hc(t ) of Eq. (14). It is easy to see,
from Eqs. (7) and (10), that if we define Hermitian operators
H ′

L and H ′
F by

H ′
L ≡ h̄(d − 1)ωdId − HL (18)

and

H ′
F ≡ h̄(d − 1)ω0Id − HF , (19)

respectively, then H ′
L and H ′

F are both non-negative operators.
Now, using Eqs. (17)–(19) we obtain from Eq. (15) that

Hlab(t ) = h̄[g0 + ωr + (d2 − 1)ω0]Id

−
[

H ′
L + exp

(
−i

HL

h̄
t

)
H ′

F exp

(
i
HL

h̄
t

)

+ h̄Uc(t )GU †
c (t )

]
, (20)

where we have also used Eq. (8). Since a unitary transforma-
tion of a non-negative operator is still a non-negative operator
and H ′

L, H ′
F , and G, as we have defined them, are all non-

negative, it follows that the last term within square brackets

013235-3



REGINALDO DE JESUS NAPOLITANO et al. PHYSICAL REVIEW RESEARCH 3, 013235 (2021)

on the right-hand side of Eq. (20) is a non-negative operator.
Then we can define

ϒ(t ) ≡
√

V

h̄
, (21)

where

V = H ′
L + exp

(
−i

HL

h̄
t

)
H ′

F exp

(
i
HL

h̄
t

)
+ h̄Uc(t )GU †

c (t ),

(22)

and rewrite Eq. (20) as

Hlab(t ) = h̄ωlId − h̄ϒ(t )ϒ(t ), (23)

where

ωl ≡ g0 + ωr + (d2 − 1)ω0. (24)

Equation (23) gives the explicit laboratory Hamiltonian that
can be used to implement the protective scheme. Also, it is
important to emphasize that once the target state of the gate is
achieved, thanks to our GCDD procedure, we can preserve the
final state in the absence of the gate but under the noise. This is
done by simply turning the protection on, without the control
fields that generated the gate operation (this is obtained by
using HG = 0). In this way the memory of the final state is
protected.

In the next section we apply the GCDD method to the case
of a qutrit based on the three magnetic hyperfine states of the
ground energy level of 87Rb. However, in principle, we could
use the same kind of two-photon atomic transitions, employed
to implement this qutrit, and involve any number of Zeeman
hyperfine states. Thus, although the model implementation we
use is limited to the simple case of the ground state hyperfine
states of the 87Rb atom, other atomic systems could be used
to obtain control over systems of qudits of dimension d = 2
or d > 3. Let us, then, proceed with the illustration of the
application of the GCDD method.

IV. APPLICATION OF THE GCDD

To illustrate the application of the GCDD method, we
describe a possible implementation of a qutrit, exploiting the
three magnetic hyperfine states of the ground energy level of
87Rb. In the following we use atomic data from Ref. [55]. Fig-
ure 1 shows the relevant D2-line hyperfine states of 87Rb. In
the following we show that this model allows one to generate
continuously all the possible SU(3) group operations which
are, in general, needed to apply the GCDD procedure.

The 87Rb atom, in the absence of external magnetic fields,
has a ground-state manifold of three degenerate magnetic
states. This is so because 87Rb has a nuclear spin equal to
3/2 and a fundamental electronic manifold of states with
symmetry 5 2S1/2. This amounts to a hyperfine ground state
with total angular momentum F = 1, so that there are three
magnetic states whose projections along the quantization axis
have quantum numbers mF = −1, 0, 1. These three ground
states are degenerate in the absence of magnetic fields and
we denote them by |m〉, for m = −1, 0, 1 (the notations 1
and +1 are both used in the following). The 5 2S1/2 ground
manifold of states (including also the five magnetic states of
the F = 2 ground level, besides the already-mentioned three

FIG. 1. The hyperfine degenerate states of the D2 transition of
87Rb (not to scale). We are using two-photon transitions for three dif-
ferent detunings �s, for s = 1, 2, 3, and, for each of these detunings,
we use σ±- and π -polarized laser light. The wavelength 780.241 nm
corresponds to a frequency of the order of 384.230 THz. The qutrit
space comprises the subspace spanned by the three magnetic states
of the F = 1 ground level of 87Rb, with magnetic quantum numbers
mF = −1, 0, 1. We represent these degenerate states by the kets |m〉,
for m = −1, 0, 1, respectively.

F = 1 states) can be excited to states of the 5 2P3/2 excited
manifold by absorbing photons with wavelengths of about
780 nm (called the D2 spectral line of 87Rb). The lowest-
energy magnetic hyperfine state of the 5 2P3/2 manifold is
not degenerate and has a total-angular-momentum quantum
number F ′ = 0, whose projection is m′

F = 0. We denote this
state by |e〉 and we name h̄ωg the energy of the ground states
|m〉, for m = −1, 0, 1, and h̄ωe the energy of the excited
state |e〉.

If we use only frequencies corresponding to virtual transi-
tions with wavelengths greater than the optical 780 nm, that
is, if we use only photons with frequencies ωs that are red
detuned from the F = 1 ↔ F ′ = 0 transition (this means that
the detunings �s ≡ ωs − ωe + ωg are negative), then we can
approximate the relevant set of atomic states to be the one
involving only the ground states |m〉, for m = −1, 0, 1, and
the excited state |e〉. For the restricted Hilbert space of these
four atomic hyperfine states, denoted by H4, we have the
identity operator

I4 =
1∑

m=−1

|m〉〈m| + |e〉〈e|. (25)

If the photons are detuned far enough to the red of the tran-
sitions |m〉 ↔ |e〉, for m = −1, 0, 1, then the excited state
is not going to be effectively populated, avoiding spurious
transitions to the F = 2 ground states through spontaneous
emission from |e〉. The effective qutrit, therefore, consists of
the states |m〉, with m = −1, 0, 1, whose Hilbert space we
denote by H3.
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As explained in Appendix B, the control over the states in
H3 using the GCDD method is accomplished through two-
photon transitions. These transitions are used to couple these
states among themselves in a controlled way. In particular,
in order to be able to generate continuously all the possible
SU(3) group operations we need three independent detunings
�s, with s = 1, 2, 3, one for each transition |m〉 ↔ |e〉, for
m = −1, 0, 1. In particular, each laser beam is red detuned
from |e〉, i.e., �s < 0 for s = 1, 2, 3. For each of the three
different laser colors we can use the linear polarization and
both circular polarizations, thus obtaining a total of nine
independent Rabi frequencies. These independent control pa-
rameters are enough to effectively emulate the action of any
3 × 3 Hermitian matrix used to represent a generic modified
single-qutrit quantum gate Hgate(t ) [cf. Eq. (5)], together with
the control fields described by Hc(t ) that are required for
the GCDD, as explained in detail in Appendix B. There we
present all the details and values of the parameters that we can
use, in principle, to implement the above atomic qutrit and
the needed effective control Hamiltonian. Here it suffices to
say that using the rotating-wave approximation and adiabatic
elimination of |e〉 [56], we get an effective Hamiltonian based
on two-photon interactions given by [cf. Eq. (B76)]

Heff(t ) = h̄ωgI3 − h̄
1∑

m=−1

1∑
n=−1

3∑
s=1


∗
s,−n(t )
s,−m(t )

�s
|m〉〈n|,

(26)

where 
s,−m(t ), for s = 1, 2, 3 and m = −1, 0, 1, are adiabat-
ically time-varying Rabi frequencies allowing one to emulate
the time dependent control Hamiltonian of Eq. (15) up to an
immaterial term proportional to I3 [cf. Eq. (23)] (this term,
which is immaterial for the dynamics, is not even needed if
the atomic energies are shifted in such a way that ωg = ωl ).

As a quantum gate to implement for the above qutrit we
choose the Hadamard one. Starting from the ideal definition of
the Hadamard unitary quantum gate [57] in the ground-state
subspace basis {| − 1〉, |0〉, |1〉}, namely,

UG = 1

i
√

3

⎡
⎣1 1 1

1 exp(2π i/3) exp(4π i/3)
1 exp(4π i/3) exp(2π i/3)

⎤
⎦, (27)

we can invert the equation

UG = exp

(
−i

HG

h̄
τ

)
, (28)

to obtain the gate Hamiltonian

HG = π h̄

4
√

3τ

⎡
⎢⎣4

√
3 − 2 −2 −2
−2 2

√
3 + 1 2

√
3 + 1

−2 2
√

3 + 1 2
√

3 + 1

⎤
⎥⎦, (29)

where τ is the characteristic gate time. For example, starting
from the state |0〉, after the action of the Hadamard operation,
the output state after a time τ becomes

|ψ〉 = − i√
3

[| − 1〉 + exp(iϕ)|0〉 + exp(−iϕ)|1〉], (30)

where ϕ = 2π/3.

In the next section, in our numerical simulations, we con-
sider two paradigmatic noises due to bosonic thermal baths,
chosen to disturb our intended gate operation. We consider
the amplitude damping noise which simulates dissipation
involving, respectively, |−1〉 and |0〉, and |1〉 and |0〉, and
the dephasing noise which destroys the relative coherences
among these states.

V. NUMERICAL SIMULATIONS

In this section we present our numerical simulations in the
case of the qutrit depicted in Fig. 1 when both damping and
dephasing are simultaneously present. In particular, we per-
form our simulations by following the prescription of Sec. III
and we assume the presence of two identical baths with Ohmic
spectral density, characterized by an exponential cutoff func-
tion with an angular cutoff frequency ωc = 2π/τc, where τc is
the bath correlation time. The effectiveness of our protective
scheme is studied by means of the fidelity measuring how
close are the states obtained, respectively, by the dissipative
dynamics induced by Eq. (3) (treated by means of a Redfield
master equation as explained below) and by the noise-free
dynamics governed by the Hamiltonian Hlab(t ) of Eq. (15).
We recall that this latter dynamics gives after a time τ the
same output state of the ideal noise-free dynamics governed
by the Hadamard gate Hamiltonian HG of Eq. (29) (i.e., the
case without protective scheme). The dissipative dynamics in
the absence of the protective scheme is obtained by turning
off the control Hamiltonian Hc(t ). The fidelity is defined
for two arbitrary states ρ and σ as [Tr{√√

ρσ
√

ρt}]2. Here
the open quantum system dynamics is obtained by means of
the Redfield master equation which describes the dissipative
dynamics in the general case. In Appendix C we show in
detail how to calculate the dynamics governed by this master
equation.

Figure 2 shows that if we do not use the GCDD method
during the time τ in which the Hadamard gate operates and
let the noise affect the dynamics, starting from the state |0〉,
the fidelity rapidly decreases. When the GCDD protection is
turned on, we obtain better results by increasing the control
frequency ω0, with the final gate fidelity moving towards one.
In the insets we show the gate fidelity, i.e., the fidelity at time
τ , as a function of n = ω0τc/(2π ) [this implies t0 = τc/n,
according to Eq. (8)] and we report its numerical values.
In particular, the smaller is t0 with respect to τc, the more
effective is the decoupling procedure. We stress out that, by
construction, the time at which to look for a state close to
the original target is exactly the time τ at which the orig-
inal gate would have produced that state in the absence of
the environment and of the control fields. The actual value
of the gate time τ is not specified in these simulations, the
other quantities being given in units of it. Its value must just
be such that the derivation of the effective Hamiltonian of
Eq. (26) can be coherently performed. We state this condition
for a question of coherence in our analysis, even if in our
simulations we do not make use of Eq. (26), but we directly
follow the prescriptions given in Sec. III. We also observe
that the results shown in Fig. 2 have been obtained when
the various coupling constants involved in the interaction
Hamiltonian with the environment are all equal leading to
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FIG. 2. Numerical solutions for the GCDD to overcome ampli-
tude damping and dephasing during the action of the Hadamard
gate (the time t is in units of the gate time τ ), with |0〉 as initial
state. Here the bath correlation time is τc = τ/4, h̄ωc/(kBT ) = 1, and
the involved coupling constants are all equal leading to an effective
coupling parameter λ̄ = 0.1 (see Appendix C for details). The solid
line represents the fidelity with no protection, while the dotted, dot-
dashed, and dashed ones refer to the protective scheme with ω0/(2π )
equal to 2/τc, 4/τc, and 16/τc, respectively. In the insets we represent
the gate fidelity (fidelity at time τ ) as a function of n = ω0τc/(2π )
(the interpolated curve just guides the reading) and we report its
numerical values.

an effective coupling parameter λ̄ = 0.1 (see Appendix C
for details). We have also tested some configurations with
the various coupling constants not all equal, finding similar
results.

The illustration of the GCDD method shown in Fig. 2 for
our qutrit model using 87Rb and a modulated set of laser
beams, can, in principle, be realistically implemented in the
laboratory. Even if only the qutrit case has been considered,
our results show that quantum computation could be im-
plemented using laser light and atomic systems, which are
available in setups with trapped ions, for example. This kind
of implementation is attractive because it already presents
long coherence times, implying high efficiency of our proce-
dure [56,58,59]. We remark that the implementation of our
procedure can, in principle, be extended to the case of a qudit
with more levels.

VI. EXTENSION TO THE CASE OF A MULTIQUDIT
SCENARIO

The domain of applicability of our GCDD procedure can
be extended to the case one wants to protect the action of
a multiqudit gate on an ensemble of qudits, identical or not,
subject to general noise, which can act locally or nonlocally
on them. This can be obtained by extending the procedure
presented in detail in Appendix D for the case of two qudits.
There it is explicitly shown how to build up the control fields
necessary to protect the qudits from the action of a general
noise. The extension to the case of more than two qudits, iden-
tical or not, is straightforward, as indicated in Appendix D.

A simple but important direct application of this procedure
is the possibility to preserve the memory of a multiqudit
entangled state against noise.

VII. CONCLUSIONS

In conclusion, here we have presented a generalized
continuous dynamical decoupling procedure to decouple an
ensemble of qudits from any possible noise and still apply
an arbitrary many-qudit quantum gate on them. Our study
extends the domain of applicability of dynamical decoupling
strategies. Indeed, we provide a general procedure of this kind
to protect the action of a general quantum gate on one or many
qudits, identical or not, against general noise.

Importantly, we have explicitly provided a detailed analysis
of a specific example, employing a rubidium atom, which, in
principle, could be experimentally implemented, where it is
explicitly shown how to realize the operations which could be
in general needed to apply our GCDD procedure.

We think then that our approach represents an important
step towards the protection of quantum information, espe-
cially when many-level quantum systems are employed. We
stress that our procedure appears to be directly implementable
in experiments with atomic systems, nitrogen-vacancy cen-
ters, or other setups where current technology permits to
generate the control fields required for the protection scheme.
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APPENDIX A: DYNAMICAL DECOUPLING CONDITION

Here we show that dynamical decoupling is still obtained
if a weaker condition than the one of Eq. (1) is satisfied.

Let us start observing that Eq. (1) is stronger than necessary
to achieve dynamical decoupling. A weaker, but sufficient,
condition would be that, instead of being equal to zero, the
integral in Eq. (1) results in a tensor product between the qudit
identity and an environment operator. To see this, we recall
that the idea of dynamical decoupling comes from the usual
Magnus expansion [54] of the total propagator for the whole
system, the qudit and the environment, that is,

U (τ ) ≈ exp

(
− i

h̄
〈H〉τ

)
, (A1)

where we have defined the time average of H (t ) as

〈H〉 ≡ 1

t0

∫ t0

0
ds1H (s1), (A2)
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and H (t ) is the total Hamiltonian given in Eq. (4). Hence, we
obtain

〈H〉 = HG ⊗ IE + Id ⊗ HE

+ 1

t0

∫ t0

0
dt[U †

c (t ) ⊗ IE ]Hint[Uc(t ) ⊗ IE ]. (A3)

Equation (A1) is not exact because, as usual [54], we have
neglected terms of order equal and superior to t0 in the Hamil-
tonian part appearing in the argument of the exponential.
However, it becomes exact if the number of periods within
the time interval τ tends to infinity. We now assume that a
weaker condition than the one of Eq. (1) is satisfied, namely
[the same condition given in Eq. (2)],∫ t0

0
dt[U †

c (t ) ⊗ IE ]Hint[Uc(t ) ⊗ IE ] = c t0 Id ⊗ B, (A4)

where c is a constant and B is some operator that acts on the
environment. It follows that Eq. (A3) becomes

〈H〉 = HG ⊗ IE + Id ⊗ (HE + c B). (A5)

Therefore, with this average Hamiltonian, Eq. (A1) gives

U (τ ) ≈ exp

[
− i

h̄
[HG ⊗ IE + Id ⊗ (HE + c B)]τ

]

= exp

[
− i

h̄
[Id ⊗ (HE + c B)]τ

]
exp

[
− i

h̄
(HG ⊗ IE )τ

]
,

(A6)

which shows that the qudit is decoupled from the environ-
ment, since the interactions get effectively eliminated, even
in the case in which c �= 0 in Eq. (A4).

APPENDIX B: GCDD FOR AN ATOMIC QUTRIT

In this Appendix we show how to effectively implement an
atomic qutrit with the system described in Sec. IV and how
to realize within this system an effective control Hamiltonian
like the one of Eq. (15) (in general up to an immaterial term
proportional to I3), needed to apply our GCDD procedure.

1. The interaction Hamiltonian between the atom
and the laser beams

We introduce nine laser beams, whose electric-field vec-
tors, each being the resultant with a different polarization, can
be written as

E±1(t ) =
3∑

s=1

[Es,±1(t )ε̂±1 exp(−iωst )

+E ∗
s,±1(t )ε̂∗

±1 exp(iωst )] (B1)

and

E0(t ) = ε̂0

3∑
s=1

[Es,0(t ) exp(−iωst ) + E ∗
s,0(t ) exp(iωst )],

(B2)

where the polarization versors are chosen, in terms of a space-
fixed system of Cartesian coordinates, as

ε̂±1 ≡ ∓
(

x̂ ± iŷ√
2

)
(B3)

representing, respectively, the σ± polarizations, and

ε̂0 ≡ ẑ (B4)

representing the π polarization. Here the z axis of this system
is chosen to represent the quantization axis. It is noteworthy
that in Eqs. (B1) and (B2), for each polarization, there are
three different superposed amplitudes, Es,±(t ) and Es,0(t ),
each corresponding to a different polarization-independent
frequency ωs for s = 1, 2, 3. Figure 1 shows the scheme we
are describing. The amplitudes Es,±(t ) and Es,0(t ), as we
discuss below, must follow a prescribed relatively slow time-
dependent modulation. It is worth mentioning that we treat
the driving electric fields of Eqs. (B1) and (B2) as classical,
intense laser fields. We are justified to use such a semiclas-
sical approach because of the relatively high intensities and
detuning magnitudes used, so that quantum fluctuations of the
number of photons is completely negligible in the regime we
consider here.

The laser beams of Eqs. (B1) and (B2) interact with the
atom according to the Hamiltonian

Hint(t ) = −d · [E−1(t )+ E0(t )+ E+1(t )]

= −d ·
+1∑

q=−1

Eq(t ), (B5)

since we have the three resultant laser fields continuous and
simultaneously present, each one with a different polarization,
where d is the atomic electric-dipole operator, which is Her-
mitian. In Cartesian coordinates we write

d = dxx̂ + dyŷ + dzẑ (B6)

and, using Eq. (25) in d = I4dI4, we obtain

d =
1∑

m=−1

|e〉〈e|d|m〉〈m| +
1∑

m=−1

|m〉〈m|d|e〉〈e|

=
1∑

m=−1

|e〉(〈m|d|e〉)∗〈m| +
1∑

m=−1

|m〉〈m|d|e〉〈e|, (B7)

where we have used the fact that the electronic excited state
has a parity that is opposite to the parity of the ground states,
that is,

〈m|d|m′〉 = 0 and 〈e|d|e〉 = 0, (B8)

for m, m′ = −1, 0, 1. Now we can write the operator d in
terms of its spherical-tensor components:

d = dxx̂ + dyŷ + dzẑ

= dx − idy√
2

ε̂∗
−1 + d0ε̂0 − dx + idy√

2
ε̂∗
+1

= d−1ε̂
∗
−1 + d0ε̂0 + d+1ε̂

∗
+1, (B9)
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that is,

d =
+1∑

q=−1

dqε̂
∗
q, (B10)

where we have used Eqs. (B3) and (B4) and defined its spher-
ical components as usual:

d±1 ≡ ∓dx ± idy√
2

(B11)

and

d0 ≡ dz. (B12)

Because |e〉 has zero angular momentum, from Eq. (B10)
it follows that

〈m|d|e〉 =
+1∑

q=−1

〈m|dq|e〉ε̂∗
q = 〈m|dm|e〉ε̂∗

m, (B13)

since total angular momentum is conserved. From the Wigner-
Eckart theorem [60], we have

〈m|dq|e〉 = δq,mD, (B14)

where D is a reduced matrix element of the dipole opera-
tor and is, thus, independent of m or q. Hence, we rewrite
Eq. (B13), using Eq. (B14), as

〈m|d|e〉 = Dε̂∗
m. (B15)

Substituting Eq. (B15) into Eq. (B7), we obtain

d =
+1∑

m=−1

D∗ε̂m|e〉〈m| +
+1∑

m=−1

Dε̂∗
m|m〉〈e|. (B16)

Substituting Eqs. (B1), (B2), and (B16) into Eq. (B5) gives

Hint(t ) = −
+1∑

q=−1

3∑
s=1

(−1)qD∗Es,q(t ) exp (−iωst )|e〉〈−q|

−
+1∑

q=−1

3∑
s=1

(−1)qDE ∗
s,q(t ) exp (iωst )|−q〉〈e|,

(B17)

where we have used the rotating-wave approximation [61],
which is justified since we will choose detunings �s =
ωs − ωe + ωg, for s = 1, 2, 3, and Rabi frequencies 
s,q(t ),
defined as


s,q(t ) ≡ 1

h̄
(−1)qD∗Es,q(t ), (B18)

for s = 1, 2, 3 and q = −1, 0,+1, much smaller in modulus
than the transition frequency ωe − ωg and the laser frequen-
cies ωs. We have also used Eqs. (B3) and (B4) to calculate
the scalar products between polarization vectors. Values of
|
s,q(t )|/2π of the order of a few MHz, let us say, roughly

|
s,q(t )|
2π

∼ 1 MHz, (B19)

are routinely obtained in the context of optical manipulation of
rubidium [58,59]. These independent control parameters are

enough to emulate the action of any 3 × 3 Hermitian matrix
used to represent a generic modified single-qutrit quantum
gate [cf. Eq. (5)] together with the control fields required for
the continuous dynamical decoupling, as we explain below.
Given Eq. (B18), we can rewrite Eq. (B17) as

Hint(t ) = −h̄
+1∑

q=−1

3∑
s=1


s,q(t ) exp (−iωst )|e〉〈−q|

− h̄
+1∑

q=−1

3∑
s=1


∗
s,q(t ) exp (iωst )|−q〉〈e|. (B20)

This is the interaction Hamiltonian whose effective version,
for large detunings to the red of the D2 line, allows us to
realize in the laboratory the GCDD Hamiltonian of Eq. (23),
in general up to an immaterial term proportional to the identity
operator in the qutrit Hilbert space. In the following we show
how to do this through adiabatic elimination of the excited
state |e〉.

2. Effective implementation of the GCDD Hamiltonian
for the atomic qutrit

The unperturbed atomic Hamiltonian is written as

Hatom = h̄ωg

1∑
m=−1

|m〉〈m| + h̄ωe|e〉〈e|, (B21)

where the energy h̄ωg of the ground states |m〉, for m =
−1, 0, 1, and the energy h̄ωe of the excited state |e〉 are such
that h̄(ωe − ωg) is equal to the energy corresponding to the
D2 line, with wavelength given by 780.241 nm, which corre-
sponds to a frequency of the order of 384.230 THz:

ωe − ωg

2π
≈ 384.230 THz. (B22)

Using Eq. (B21) as the unperturbed Hamiltonian in the
usual interaction picture with the interaction Hamiltonian of
Eq. (B20), we have

HI (t ) = exp

(
i
Hatom

h̄
t

)
Hint(t ) exp

(
−i

Hatom

h̄
t

)

= −h̄
+1∑

q=−1

3∑
s=1


s,q(t ) exp(−i�st )|e〉〈−q|

− h̄
+1∑

q=−1

3∑
s=1


∗
s,q(t ) exp (i�st )|−q〉〈e|, (B23)

where we recall that the detunings are defined by

�s ≡ ωs − ωe + ωg. (B24)

The coherence times involved in superpositions of atomic
quantum states are typically of the order of a second or
longer [56,58,59]. Thus, because the quantum-gate operation
τ is an integer multiple of t0 and should be shorter than these
typical coherence times, we can take, roughly,

t0 ∼ 0.1 s. (B25)
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Hence, because we take Eq. (B25) as valid, we see that

ω0

2π
= 1

t0
∼ 10 Hz (B26)

is the corresponding rough estimate we can take for ω0 [cf.
Eq. (8)]. As we show below, about 10 Hz for ω0/(2π ) are
enough for the GCDD method to work. In other words, about
10 Hz corresponds to the order of magnitude of the Hamil-
tonians we need to emulate the H ′

L/(2π h̄) and H ′
F /(2π h̄)

operators of Eqs. (18) and (19) [see also Eqs. (7), (8),
and (10)].

To implement the GCDD method in the context of laser
control of an atomic qutrit, here we show how to use two-
photon transitions. We need detunings that are much greater in
magnitude than the typical few MHz of the Rabi frequencies
in modulus [cf. Eq. (B19)], so that we can make the adiabatic
elimination of the state |e〉 [56]. One can easily implement
this, given the relatively large difference in energies in the
transitions indicated in Fig. 1. As we can see in this figure, the
detunings can be as large as a few GHz, and still the states of
the ground F = 2 level do not get involved in the transitions
(they are at the energy corresponding to 6.8 GHz above the
F = 1 states we use). Since the detunings we use are negative,
meaning that the photons excite a virtual level well below the
|e〉 excited state, the higher excited states are not going to
interfere with our transition scheme. Moreover, the D2-line
natural linewidth for 87Rb is of the order of 6 MHz [55], so
that laser photons detuned to the red of the D2 transition fre-
quency by a few GHz will not practically populate the excited
state |e〉. As we show in detail below, the magnitudes involved
in the effective two-photon Hamiltonian are proportional to
the square of Rabi frequencies divided by the detuning, which
can be substantially higher than the few tens of MHz (at least)
required for an efficient GCDD implementation. Typically, if
we use, roughly,

|�s|
2π

∼ 1 GHz, (B27)

using Eq. (B19) we find that

|
s,m(t )|2
2π |�s| ∼ 1 kHz. (B28)

Hence, using large detunings as in Eq. (B27), we end up
with an effective Hamiltonian (explained below) that can have
its magnitude as in Eq. (B28), flexibly above the minimal
requirement of Eq. (B26) for the GCDD method to work,
as we have discussed above. We notice that the values for
|�s| associated with Eq. (B27) are consistent with the rotating
wave approximation used to obtain Eq. (B17) since they are
much smaller than the transition frequency ωe − ωg and the
laser frequencies ωs.

Now, let us write the interaction-picture state as

|ψI (t )〉 =
1∑

m=−1

Cm(t )|m〉 + Ce(t )|e〉, (B29)

since |ψI (t )〉 ∈ H4. We can introduce the following projection
operators:

Pg ≡
1∑

m=−1

|m〉〈m| (B30)

and

Pe ≡ |e〉〈e|. (B31)

We immediately see that

|ψI (t )〉 = (Pg + Pe)|ψI (t )〉 = Pg|ψI (t )〉 + Pe|ψI (t )〉. (B32)

From the interaction-picture Schrödinger equation and
Eq. (B32), we obtain

ih̄
d

dt
|ψI (t )〉 = HI (t )|ψI (t )〉

= HI (t )Pg|ψI (t )〉 + HI (t )Pe|ψI (t )〉. (B33)

Therefore, by applying the projectors of, respectively,
Eqs. (B30) and (B31), to both sides of Eq. (B33), we obtain
the coupled Schrödinger equations:

ih̄
d

dt
Pg|ψI (t )〉 = PgHI (t )Pg|ψI (t )〉 + PgHI (t )Pe|ψI (t )〉

(B34)

and

ih̄
d

dt
Pe|ψI (t )〉 = PeHI (t )Pg|ψI (t )〉 + PeHI (t )Pe|ψI (t )〉.

(B35)

From Eq. (B23) it is evident that

PgHI (t )Pg = 0 and PeHI (t )Pe = 0. (B36)

Thus, Eqs. (B34) and (B35) become

ih̄
d

dt
Pg|ψI (t )〉 = PgHI (t )Pe|ψI (t )〉 (B37)

and

ih̄
d

dt
Pe|ψI (t )〉 = PeHI (t )Pg|ψI (t )〉. (B38)

By formally integrating Eq. (B38) we obtain

Pe|ψI (t )〉 = Pe|ψI (0)〉 − i

h̄

∫ t

0
dt ′PeHI (t ′)Pg|ψI (t ′)〉.

(B39)
Our intention is to start with the atom in the ground-state

subspace, that is, the population of the excited state is initially
zero. Thus, using this fact, that is,

Pe|ψI (0)〉 = 0, (B40)

in Eq. (B39), we obtain

Pe|ψI (t )〉 = − i

h̄

∫ t

0
dt ′PeHI (t ′)Pg|ψI (t ′)〉. (B41)
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Substitution of Eq. (B41) into Eq. (B37) gives

ih̄
d

dt
Pg|ψI (t )〉 = − i

h̄
PgHI (t )Pe

∫ t

0
dt ′PeHI (t ′)Pg|ψI (t ′)〉,

(B42)

where we have used the fact that Pe is a projector operator and,
therefore, P2

e = Pe. From Eqs. (B23), (B29), (B30), and (B31)
we see that

PgHI (t )Pe = −h̄
+1∑

q=−1

3∑
s=1


∗
s,q(t ) exp (i�st )|−q〉〈e| (B43)

and∫ t

0
dt ′PeHI (t ′)Pg|ψI (t ′)〉

= −|e〉h̄
+1∑

q=−1

3∑
s=1

∫ t

0
dt ′
s,q(t ′) exp (−i�st

′)C−q(t ′).

(B44)

From Eqs. (B29), (B30), (B42), (B43), and (B44) we obtain

d

dt
Cm(t ) = −

+1∑
q′=−1

∫ t

0
dt ′Km,−q′ (t, t ′)C−q′ (t ′), (B45)

for m = −1, 0, 1, where we have defined the kernel function:

Km,−q′ (t, t ′) ≡
3∑

s=1

3∑
s′=1

exp (i�st − i�s′t ′)

×
∗
s,−m(t )
s′,q′ (t ′). (B46)

We can also arrange Eqs. (B45) and (B46) in matrix format:

d

dt
C(t ) = −

∫ t

0
dt ′K (t, t ′)C(t ′), (B47)

where we have defined

C(t ) ≡
⎡
⎣C−1(t )

C0(t )
C1(t )

⎤
⎦ (B48)

and

K (t, t ′) ≡
3∑

s=1

3∑
s′=1

exp (i�st − i�s′t ′)

⎡
⎣ 
∗

s,1(t )
s′,1(t ′) 
∗
s,1(t )
s′,0(t ′) 
∗

s,1(t )
s′,−1(t ′)

∗

s,0(t )
s′,1(t ′) 
∗
s,0(t )
s′,0(t ′) 
∗

s,0(t )
s′,−1(t ′)

∗

s,−1(t )
s′,1(t ′) 
∗
s,−1(t )
s′,0(t ′) 
∗

s,−1(t )
s′,−1(t ′)

⎤
⎦. (B49)

Iteration of Eq. (B47) yields

C(t ′) = C(t ) −
∫ t ′

t
dt1

∫ t1

0
dt2K (t1, t2)C(t ) + (−1)2

∫ t ′

t
dt1

∫ t1

0
dt2K (t1, t2)

∫ t2

t
dt3

∫ t3

0
dt4K (t3, t4)C(t ) + · · · . (B50)

Let us calculate a generic element of the first kernel integral in Eq. (B50):∫ t ′

t
dt1

∫ t1

0
dt2Km,−q′ (t1, t2) =

3∑
s=1

3∑
s′=1

∫ t ′

t
dt1

∫ t1

0
dt2 exp (i�st1 − i�s′t2)
∗

s,−m(t1)
s′,q′ (t2)

=
3∑

s=1

3∑
s′=1

∫ t ′

t
dt1 exp (i�st1)
∗

s,−m(t1)
∫ t1

0
dt2 exp (−i�s′t2)
s′,q′ (t2), (B51)

where we have used Eq. (B46). If we initially focus on the
integral over t2 in Eq. (B51), we must make an assumption
about the time dependence of 
s′,q′ (t2). Our aim here is to use
Eq. (B23) to effectively emulate the GCDD Hamiltonian of
Eq. (23). As we show in the following, although we are going
to assume our Rabi frequencies 
s′,q′ (t2)/2π with magnitudes
of a few MHz [see Eq. (B19)], its time dependence is to
be modulated in such a way that the corresponding spectral
density results to be centered at about ω0/2π , whose value is
here assumed to be of the order of 10 Hz [see Eq. (B26)], with
a width much smaller than |�s|. Let Gs′,q′ (ω) be the Fourier
transform of 
s′,q′ (t ′), namely,

Gs′,q′ (ω) ≡ 1

2π

∫ +∞

−∞
dτ exp (iωτ )
s′,q′ (τ ), (B52)

whose inverse is given by


s′,q′ (t2) ≡
∫ +∞

−∞
dω exp (−iωt2)Gs′,q′ (ω). (B53)

Using Eq. (B53) we obtain∫ t1

0
dt2 exp (−i�s′t2)
s′,q′ (t2)

=
∫ t1

0
dt2 exp (−i�s′t2)

∫ +∞

−∞
dω exp (−iωt2)Gs′,q′ (ω)

=
∫ +∞

−∞
dωGs′,q′ (ω)

∫ t1

0
dt2 exp [−i(�s′ + ω)t2],

(B54)

where we have changed the order of the integrals. Whatever
form Gs′,q′ (ω) might have, it is assumed to be characterized
by a central value ω0 > 0 and a width both much smaller than
|�s|, so that we can write∫ t1

0
dt2 exp [−i(�s′ + ω)t2] = exp [−i(�s′ + ω)t1] − 1

−i(�s′ + ω)

≈ exp [−i(�s′ + ω)t1] − 1

−i�s′
.

(B55)
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Substituting Eq. (B55) into Eq. (B54) we obtain∫ t1

0
dt2 exp (−i�s′t2)
s′,q′ (t2) ≈ i

∫ +∞

−∞
dωGs′,q′ (ω)

exp [−i(�s′ + ω)t1] − 1

�s′
= i
s′,q′ (t1)

�s′
exp (−i�s′t1) − i
s′,q′ (0)

�s′
, (B56)

where we have used Eq. (B53). With the result of Eq. (B56) we can now tackle Eq. (B51):∫ t ′

t
dt1

∫ t1

0
dt2Km,−q′ (t1, t2) =

3∑
s=1

3∑
s′=1

i

�s′

∫ t ′

t
dt1 exp [i(�s− �s′ )t1]
∗

s,−m(t1)
s′,q′ (t1)

−
3∑

s=1

3∑
s′=1


s′,q′ (0)

�s′�s
[
∗

s,−m(t ′) exp (i�st
′) − 
∗

s,−m(t ) exp (i�st )]. (B57)

We already see that all the terms in the second double sum on the right-hand side of Eq. (B57) are of second order in the quotient
between the order of magnitude of the Rabi frequencies [see Eq. (B19)] and the order of magnitude of the detunings. Let us
define this order of magnitude more rigorously by assuming that, for all t ∈ [0, t0], s = 1, 2, 3, and q = −1, 0, 1, we define η as
the maximum absolute value of 
s,q(t )/�s, that is,

η ≡ max

{∣∣∣∣
s,q(t )

�s

∣∣∣∣
}

t∈[0,t0], s∈{1,2,3}, q∈{−1,0,1}
. (B58)

Using the rough estimates of Eqs. (B19) and (B27) we see that η can be even less than 10−3. Using Eq. (B53), we can now
calculate the following integral:∫ t ′

t
dt1 exp [i(�s − �s′ )t1]
∗

s,−m(t1)
s′,q′ (t1)

=
∫ +∞

−∞
dω2

∫ +∞

−∞
dω1G∗

s,−m(ω2)Gs′,q′ (ω1)
∫ t ′

t
dt1 exp [i(�s − �s′ + ω2 − ω1)t1]. (B59)

Here we have two situations: s �= s′ and s = s′. Hence, taking these two cases into account, we obtain∫ t ′

t
dt1 exp [i(�s − �s′ + ω2 − ω1)t1] = δs,s′

∫ t ′

t
dt1 exp [i(ω2 − ω1)t1] + (1 − δs,s′ )

exp [i(�s − �s′ + ω2 − ω1)t ′]
i(�s − �s′ + ω2 − ω1)

− (1 − δs,s′ )
exp [i(�s − �s′ + ω2 − ω1)t]

i(�s − �s′ + ω2 − ω1)
. (B60)

We now substitute Eq. (B60) back into Eq. (B59). We have assumed that the functions G∗
s,−m(ω2) and Gs′,q′ (ω1) only contribute

in a frequency region around ω0 much smaller than |�s|. Thus, if we choose the detunings such that, for s �= s′, the absolute
difference |�s − �s′ | is of the same order of magnitude of the max{|�s|}s∈{1,2,3}, that is,

|�s − �s′ | ∼ max {|�s|}s∈{1,2,3}, (B61)

which we estimate as about a few GHz [see Eq. (B27)], then we can assume �s − �s′ + ω2 − ω1 ≈ �s − �s′ in the denomina-
tors of Eq. (B60) when this equation is substituted back into Eq. (B59), obtaining∫ t ′

t
dt1 exp [i(�s − �s′ )t1]
∗

s,−m(t1)
s′,q′ (t1) = δs,s′

∫ t ′

t
dt1


∗
s,−m(t1)
s′,q′ (t1)+ (1− δs,s′ )


∗
s,−m(t ′)
s′,q′ (t ′) exp [i(�s − �s′ )t ′]

i(�s − �s′ )

− (1 − δs,s′ )

∗

s,−m(t )
s′,q′ (t ) exp [i(�s − �s′ )t]

i(�s − �s′ )
. (B62)

After substituting Eq. (B62) into Eq. (B57) we end up with∫ t ′

t
dt1

∫ t1

0
dt2Km,−q′ (t1, t2)

=
3∑

s=1

i

�s

∫ t ′

t
dt1


∗
s,−m(t1)
s,q′ (t1) +

3∑
s=1

3∑
s′=1

(1 − δs,s′ )
∗
s,−m(t ′)
s′,q′ (t ′)

exp [i(�s − �s′ )t ′]
�s′ (�s − �s′ )

−
3∑

s=1

3∑
s′=1

(1 − δs,s′ )

× 
∗
s,−m(t )
s′,q′ (t ) exp [i(�s − �s′ )t]

�s′ (�s − �s′ )
−

3∑
s=1

3∑
s′=1


s′,q′ (0)[
∗
s,−m(t ′) exp (i�st ′) − 
∗

s,−m(t ) exp (i�st )]

�s′�s
. (B63)

We conclude, therefore, that defining the kernel matrix includ-
ing terms with s �= s′, as in Eq. (B49), amounts to producing

contributions of second order in η that are negligible when
compared with the terms with s = s′, which are of first order
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in η, as we can directly verify in Eq. (B63) [cf. Eqs. (B58)
and (B61)]. Therefore, in the present problem we keep only
the s = s′ terms in Eq. (B63) and neglect any other terms of
second order in η:

∫ t ′

t
dt1

∫ t1

0
dt2Km,−q′ (t1, t2)

≈
3∑

s=1

i

�s

∫ t ′

t
dt1


∗
s,−m(t1)
s,q′ (t1). (B64)

Now we can differentiate Eq. (B64) with respect to t and get

∫ t

0
dt2Km,−q′ (t, t2) ≈

3∑
s=1

i

�s

∗

s,−m(t )
s,q′ (t ). (B65)

We see from the above discussion and Eqs. (B47) and (B50)
that a time-local approximation of Eq. (B45) is of first order
in η [see Eq. (B58)], and, using Eq. (B65), we can write it as

d

dt
Cm(t ) = −

+1∑
q′=−1

∫ t

0
dt ′Km,−q′ (t, t ′)C−q′ (t ) + O(η2)

= −
3∑

s=1

+1∑
q′=−1

i

�s

∗

s,−m(t )
s,q′ (t )C−q′ (t ) + O(η2).

(B66)

Equation (B66) can be arranged in a matrix representation:

ih̄
d

dt
C(t ) ≈

3∑
s=1

HI,s(t )C(t ), (B67)

where, for s = 1, 2, 3, we define

HI,s(t ) ≡ h̄

�s

⎡
⎣ 
∗

s,1(t )
s,1(t ) 
∗
s,1(t )
s,0(t ) 
∗

s,1(t )
s,−1(t )

∗

s,0(t )
s,1(t ) 
∗
s,0(t )
s,0(t ) 
∗

s,0(t )
s,−1(t )

∗

s,−1(t )
s,1(t ) 
∗
s,−1(t )
s,0(t ) 
∗

s,−1(t )
s,−1(t )

⎤
⎦. (B68)

We see, in Eq. (B67), that, effectively, we have found a
Hamiltonian in the interaction picture given by

∑3
s=1 HI,s(t ).

Now,

C(t ) =
1∑

m=−1

Cm(t )|m〉

= Pg|ψI (t )〉

= Pg exp

(
i
Hatom

h̄
t

)
|ψS (t )〉, (B69)

where |ψS (t )〉 is in the Schrödinger picture [see Eq. (B23) for
the definition of the interaction picture in our problem]. Using
Eqs. (B21) and (B30), we see that

C(t ) = exp (iωgt )Pg|ψS (t )〉, (B70)

since in this case Pg = I3, the identity operator acting on H3

[cf. Eq. (B30)]. The above equation simply means that once
computed the evolution of the state C(t ), the corresponding
state in Schrödinger picture state is obtained by multiplying it
for the immaterial global phase factor exp(−iωgt ). It follows
that the dynamics in the qutrit subspace H3 is governed by the
effective Hamiltonian

Heff(t ) = h̄ωgI3 +
3∑

s=1

HI,s(t ). (B71)

To make this scheme work, we know that �s ∈ R and
�s < 0. Therefore, we adopt the convention that√

�s = i
√

−�s, (B72)

so that

(
√

�s)∗ = −i
√

−�s = −
√

�s, (B73)

where
√−�s ∈ R and

√−�s > 0. Thus, Eq. (B68) becomes

HI,s(t ) = −h̄

⎡
⎢⎢⎢⎣


∗
s,1(t )

(
√

�s)∗


∗
s,0(t )

(
√

�s )∗


∗
s,−1(t )

(
√

�s )∗

⎤
⎥⎥⎥⎦[
s,1(t )√

�s


s,0(t )√
�s


s,−1(t )√
�s

]
, (B74)

since, from Eq. (B73), it follows that

(
√

�s)∗
√

�s = −
√

�s

√
�s = −�s. (B75)

Based on Eqs. (B71) and (B74) we can now express Heff(t ) in
a way that is analogous to Eq. (23), allowing us to connect the
Rabi frequencies of this Appendix with the elements of the
operator ϒ of Sec. III B:

Heff(t ) = h̄ωgI3 − h̄
3∑

s=1

⎡
⎢⎢⎢⎣


∗
s,1(t )

(
√

�s )∗


∗
s,0(t )

(
√

�s )∗


∗
s,−1(t )

(
√

�s )∗

⎤
⎥⎥⎥⎦[
s,1(t )√

�s


s,0(t )√
�s


s,−1(t )√
�s

]

= h̄ωgI3 − h̄�†(t )�(t ), (B76)

where we have defined

�(t ) ≡

⎡
⎢⎢⎣


1,1(t )√
�1


1,0(t )√
�1


1,−1(t )√
�1


2,1(t )√
�2


2,0(t )√
�2


2,−1(t )√
�2


3,1(t )√
�3


3,0(t )√
�3


3,−1(t )√
�3

⎤
⎥⎥⎦. (B77)

Then, if we choose the Rabi frequencies and detunings ap-
pearing in Eq. (B77) so that �(t ) is Hermitian, we can identify
it with ϒ(t ) of Eq. (23) and this is how we can implement, up
to an immaterial term proportional to I3, the GCDD method
for an atomic qutrit manipulated using two-photon transitions.
We notice that the immaterial terms proportional to I3 in
Eqs. (23) and (B76) can be made equal if the atomic energy
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scale can be modified in such a way that ωg = ωl in the new
scale [see Eq. (24) for the definition of ωl ]. Accordingly, thus,
we choose, along the diagonal of Eq. (B77):


1,1(t )√
�1

= 
∗
1,1(t )

(
√

�1)∗
,


2,0(t )√
�2

= 
∗
2,0(t )

(
√

�2)∗
,


3,−1(t )√
�3

= 
∗
3,−1(t )

(
√

�3)∗
. (B78)

Using Eqs. (B72) and (B73) we then obtain


∗
1,1(t ) = −
1,1(t ), 
∗

2,0(t ) = −
2,0(t ),


∗
3,−1(t ) = −
3,−1(t ). (B79)

For the off-diagonal elements of Eq. (B77) we choose


2,1(t )√
�2

= 
∗
1,0(t )

(
√

�1)∗
,


3,1(t )√
�3

= 
∗
1,−1(t )

(
√

�1)∗
,


3,0(t )√
�3

= 
∗
2,−1(t )

(
√

�2)∗
. (B80)

Now we are able to identify the remaining independent ele-
ments of �(t ) with those of ϒ(t ). By imposing Eqs. (B79)
and (B80), and that �(t ) = ϒ(t ), we obtain


1,1(t ) =
√

�1ϒ0,0(t ), 
1,0(t ) =
√

�1ϒ0,1(t ),


1,−1(t ) =
√

�1ϒ0,2(t ), 
2,0(t ) =
√

�2ϒ1,1(t ),


2,−1(t ) =
√

�2ϒ1,2(t ), 
3,−1(t ) =
√

�3ϒ2,2(t ). (B81)

We observe that the above derivation leading to the effec-
tive Hamiltonian of Eq. (B76) could be coherently obtained
also for values of t0 different from the one chosen in Eq. (B25)
but satisfying the conditions required for performing the
various approximations involved in the derivation. In this
sense we do not fix a specific value for t0 in the numerical
simulations based on Appendix C and depicted in Fig. 2.
Consequently, the value of the gate time τ is not specified in
these simulations and the other quantities are given in units
of it.

APPENDIX C: ENVIRONMENTAL NOISE DUE TO
BOSONIC THERMAL BATHS

Here we explain how we use two baths of thermal bosons
to simulate the perturbations caused by the noisy environ-
ment considered in Sec. V (see also some previous works
of some of us on continuous dynamical decoupling of qubit
systems [18–21]).

In the picture obtained by unitarily transforming the total
Hamiltonian of the system and the environment of Eq. (3)
using Uc(t ), we obtain the total Hamiltonian in the control
picture given in Eq. (4):

H (t ) = HG ⊗ IE + Id ⊗ HE + [U †
c (t ) ⊗ IE ]Hint

× [Uc(t ) ⊗ IE ]. (C1)

As explained in Sec. V, in our example we consider a qutrit
subject to independent amplitude damping and dephasing
noises. We divide the interaction Hamiltonian and the environ-
ment free Hamiltonian in two parts, i.e., Hint = H (1)

int + H (2)
int

and HE = H (1)
E + H (2)

E , where the superscripts 1 and 2 refer,

respectively, to the amplitude damping bosonic bath and to
the dephasing one. Here we suppose that the two baths are
identical, besides being independent. The above Hamiltonian
terms are given in terms of the usual lowering and raising
operators a(i)

k and a(i)†
k for each mode k of the ith bath, with

i = 1, 2. In particular, the first interaction-Hamiltonian term
(which introduces the damping noise) is given by

H (1)
int = λ

(1)
0,−1(|0〉〈−1| ⊗ B(1) + |−1〉〈0| ⊗ B(1)†)

+ λ
(1)
0,1(|0〉〈1| ⊗ B(1) + |1〉〈0| ⊗ B(1)†)

= �(1) ⊗ B(1) + �(1)† ⊗ B(1)†, (C2)

where B(1) = ∑
k h̄gka(1)

k and �(1) = λ
(1)
0,−1(|0〉〈−1|) +

λ
(1)
0,1(|0〉〈1|), while the bath Hamiltonian associated with

this class of error is given by H (1)
E = ∑

k h̄ωka(1)†
k a(1)

k . In a
similar way, the second interaction-Hamiltonian term (which
introduces the dephasing noise) is given by

H (2)
int = λ

(2)
0,−1(|−1〉〈−1| − |0〉〈0|) ⊗ (B(2) + B(2)†)

+ λ
(2)
0,1(|1〉〈1| − |0〉〈0|) ⊗ (B(2) + B(2)†)

≡ �(2) ⊗ B(2) + �(2)† ⊗ B(2)†, (C3)

where B(2) = ∑
k h̄gka(2)

k and �(2) = λ
(2)
0,−1(| − 1〉〈−1| −

|0〉〈0|) + λ
(2)
0,1(|1〉〈1| − |0〉〈0|), while the bath Hamiltonian

associated with this class of error is given by H (2)
E =∑

k h̄ωka(2)†
k a(2)

k .
To obtain a master equation governing the three-level sys-

tem dynamics, we transform the total Hamiltonian to the
interaction picture. It is written as

H̃I (t ) = H̃ (1)
I (t ) + H̃ (2)

I (t ), (C4)

where

H̃ (s)
I (t ) = �̃(s)(t ) ⊗ B̃(s)(t ) + �̃(s)†(t ) ⊗ B̃(s)†(t ), (C5)

for s = 1, 2, with B̃(s)(t ) = U (s)†
E (t )B(s)U (s)

E (t ) and �̃(s)(t ) =
U †

G(t )U †
c (t )�(s)Uc(t )UG(t ), where UG(t ) = exp(−iHGt/h̄)

and U (s)
E (t ) = exp(−iH (s)

E t/h̄). With this transformation, the
Redfield master equation is written as [62]

dρ̃S (t )

dt
=− 1

h̄2

2∑
s=1

∫ t

0
TrE

× {[
H̃ (s)

I (t ),
[
H̃ (s)

I (t ′), ρE ⊗ ρ̃S (t )
]]}

dt ′, (C6)

where ρ̃S (t ) = U †
G(t )U †

c (t )ρS (t )Uc(t )UG(t ) and ρE is the envi-
ronment density matrix, here given by a thermal state, that is
ρE = 1

Z exp(−β
∑2

s=1 H (s)
E ), where Z is the partition function

Z = TrE {exp(−β
∑2

s=1 H (s)
E )}, β = 1/(kBT ), kB is the Boltz-

mann constant, and T is the temperature of the baths. We
remark that the above Redfield master equation is derived
under the Born approximation, linked to the assumption of
weak coupling between the system and the environment, and
to a part of the global Markovian approximation, so that the
master equation is not Markovian [62].
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Now, substituting H̃I (t ) into the master equation, we finally
obtain

dρ̃S (t )

dt
= −

2∑
s=1

∫ t

0
{[ρ̃S (t )�(s)†(t ′),�(s)(t )]G1(t, t ′)

− [�(s)(t ′)ρ̃S (t ),�(s)†(t )]G∗
1 (t, t ′)

+ [ρ̃S (t )�(s)(t ′),�(s)†(t )]G2(t, t ′)

− [�(s)†(t ′)ρ̃S (t ),�(s)(t )]G∗
2 (t, t ′)dt ′}, (C7)

where the correlation functions G1(t, t ′) and G2(t, t ′) are
given by

G1(t, t ′) = 1

h̄2 TrE {B̃(s)(t )ρE B̃(s)†(t ′)},

G2(t, t ′) = 1

h̄2 TrE {B̃(s)†(t )ρE B̃(s)(t ′)}. (C8)

It is important to emphasize that, since we suppose iden-
tical baths, the correlation functions are equivalent for B̃(1)

and B̃(2). Thus, the expressions for G1(t, t ′) and G2(t, t ′) are
given by

G1(t, t ′) =
∑

k

|gk|2nk exp[−iωk (t − t ′)],

(C9)
G2(t, t ′) =

∑
k

|gk|2(1 + nk ) exp[iωk (t − t ′)],

where nk = 1/[exp(β h̄ωk ) − 1] is the average number of pho-
tons in a mode with frequency ωk . Finally, in the continuum
limit, the sums become integrals and we obtain, using s =
t − t ′,

G1(t, t ′) =
∫ ∞

0
dωJ (ω)n(ω) exp [−iω(t − t ′)],

(C10)
G2(t, t ′) =

∫ ∞

0
dωJ (ω)[1 + n(ω)] exp [iω(t − t ′)],

where we have exploited the fact that the correlation functions
are homogeneous in time, n(ω) is the continuous frequency
version of nk , namely, n(ω) = 1/[exp(β h̄ω) − 1], and J (ω) is
the spectral density.

In the numerical simulations of Fig. 2, we apply the GCDD
to the qutrit considered in Sec. IV and we choose for the
spectral density J (ω) = α2 ω exp(−ω/ωc), where α is a di-
mensionless constant prefactor and ωc is the angular cut-off
frequency. We have also set equal all the λ coupling constants,
introducing as an effective coupling parameter λ̄ = αλ

(s)
0,−1 =

αλ
(s)
0,1 = 0.1 for s = 1, 2, and choosing ωc = 4 ωgate, being

ωgate = 2π/τ where τ is the gate time, and h̄ωc/(kBT ) = 1.
As explained in Sec. V, we do not consider a specific value
for the gate time τ . The other quantities are then given in units
of it.

APPENDIX D: EXTENSION TO SEVERAL QUDITS

Here we explicitly show that the GCDD procedure pre-
sented in Secs. II and III for the case of a single qudit can be
extended to the case of an arbitrary number of qudits, identical
or not. In particular, we consider the case where an arbitrary
multiqudit gate can act on the system which is also perturbed
by the interaction with an environment which can contain

both local and nonlocal terms. We do that by considering, for
simplicity of notation, the case of two qudits. The extension
to an ensemble of more than two qudits is straightforward.

We consider two arbitrary qudits whose finite-dimensional
Hilbert spaces may be not isomorphic, that is, they have di-
mensions d1 and d2, both integers, which may be different.
Without loss of generality, we assume d2 � d1 > 1. As for
the one-qudit case, the free Hamiltonians of the qudits can be
included in HG or assumed to be eliminated before the GCDD
procedure.

The starting point is then a generalization of Eq. (3), which
reads

Htot(t ) = [Hc(t ) + Hgate(t )] ⊗ IE + Id1d2 ⊗ HE + Hint,

(D1)
where, now, Hgate(t ) corresponds to the action of a two-
qudit gate HG, Id1d2 ≡ Id1 ⊗ Id2 , and the control Hamiltonian
comprises only local one-qudit operations, that is, Hc(t ) =
H (1)

c (t ) ⊗ Id2 + Id1 ⊗ H (2)
c (t ), where H (1)

c (t ) and H (2)
c (t ) in

general are different, as described below. As for the noise, we
consider a generalized interaction Hamiltonian as

Hint =
d1−1∑
p=0

d1−1∑
q=0

d2−1∑
r=0

d2−1∑
s=0

|p〉〈q| ⊗ |r〉〈s| ⊗ Bp,q,r,s, (D2)

where Bp,q,r,s are operators that act on the environmental
states. Let us notice that this Hamiltonian may contain, in
general, both one-qudit perturbations (local noise) as well
as two-qudit perturbations (nonlocal noise). Then we have
Bp,q,r,s = Cp,qδr,s + Dr,sδp,q + Ep,q,r,s, so that

Hint =
d1−1∑
p=0

d1−1∑
q=0

|p〉〈q| ⊗ Id2 ⊗ Cp,q

+
d2−1∑
r=0

d2−1∑
s=0

Id1 ⊗ |r〉〈s| ⊗ Dr,s

+
d1−1∑
p=0

d1−1∑
q=0

d2−1∑
r=0

d2−1∑
s=0

|p〉〈q| ⊗ |r〉〈s| ⊗ Ep,q,r,s, (D3)

where the terms involving the operators Cp,q and Dr,s describe
local noises, while the terms involving the operators Ep,q,r,s

describe nonlocal noise. As for the case of one qudit treated in
Sec. II, the condition there expressed in Eq. (1) is not going to
be satisfied in our procedure, since the integral there appearing
is going to be proportional to the identity of the two qudits,
tensorially multiplied by an operator that only acts on the envi-
ronment. Analogously to what has been done in Appendix A,
it is possible to show that this result is sufficient to dynami-
cally decouple the qudits from the noisy perturbations. In the
end, the final state is the same that, up to first order of pertur-
bation, one would obtain in the absence of interaction with the
environment. In other words, Eq. (1), applied to the two-qudit
case treated here, is sufficient, but not necessary, since if the
integral is proportional to the qudits-system identity, instead
of zero, this is sufficient for guaranteeing dynamical decou-
pling. This is due to the fact that the integral appearing in
Eq. (1) is present in the exponential in the Magnus expansion
of the total propagator at first order, so that, if it is proportional
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to the system’s identity, dynamical decoupling is still obtained
(see Appendix A).

It is then enough to obtain for the integral of Eq. (1)
something proportional to the two-qudit identity. To this aim,
we use control Hamiltonians H (1)

c (t ) and H (2)
c (t ) which are

different with each other and whose respective propagators
U (1)

c (t ) and U (2)
c (t ) are defined analogously to the single-qudit

propagator given by Eq. (11) as

U ( j)
c (t ) ≡ exp

(−iω( j)
r t

)
exp

(
−i

H ( j)
L

h̄
t

)
exp

(
−i

H ( j)
F

h̄
t

)
,

(D4)
where j = 1, 2 runs over the two qudits,

H ( j)
L |k j〉 ≡ k j h̄ω

( j)
d j

|k j〉, (D5)

for k j = 0, 1, . . . , d j − 1,

ω
( j)
d j

≡ d j ω
( j)
0 , ω

(1)
0 ≡ ω0, ω

(2)
0 = d2

2 ω
(1)
0 , (D6)

H ( j)
F

∣∣ψn j

〉 ≡ n j h̄ω
( j)
0

∣∣ψn j

〉
, (D7)

for n j = 0, 1, . . . , d j − 1 and

ω( j)
r ≡ −Tr

{
H ( j)

L

} + Tr
{
H ( j)

F

}
h̄d j

. (D8)

The main point is that, differently from the one-qudit case
where we have used ω0, here we make use of two different
frequencies ω

(1)
0 and ω

(2)
0 . Then we define the control propa-

gator for the two qudits as

Uc(t ) = U (1)
c (t ) ⊗ U (2)

c (t ). (D9)

In order to show that the integral of Eq. (1) in the case
considered here of two qudits is proportional to the two-qudit
identity, we consider the integral for a generic term in the de-
composition of Hint in Eq. (D2) and we exploit the fact that the
frequencies we have chosen amount to different time scales.
Proceeding analogously to what has been done in Sec. III A,
we obtain in the two-qudit version of Eq. (13)

∫ t0

0
dt U †

c (t )(|p〉〈q| ⊗ |r〉〈s|)Uc(t )

=
∫ t0

0
dt

[
U (1) †

c (t )|p〉〈q|U (1)
c (t )

] ⊗ [
U (2) †

c (t )|r〉〈s|U (2)
c (t )

]

= 1

d1d2

d1−1∑
m=0

d1−1∑
n=0

d2−1∑
m′=0

d2−1∑
n′=0

exp

(
−2π i

d1
pn

)
exp

(
2π i

d1
qm

)
exp

(
−2π i

d2
rn′

)
exp

(
2π i

d2
sm′

)
|ψn〉〈ψm| ⊗ |ψn′ 〉〈ψm′ |

×
∫ t0

0
dt exp

{
i
[
(n − m) + (p − q)d1 + (n′ − m′)d2

2 + (r − s)d3
2

]
ω0t

} = t0
d1d2

δp,qδr,sId1 ⊗ Id2 , (D10)

where we have used

1√
d

d−1∑
n=0

exp

(
−2π i

d
kn

)
|ψn〉 = 1

d

d−1∑
j=0

d−1∑
n=0

exp

[
2π i

d
( j − k)n

]
| j〉 = 1

d

d−1∑
j=0

d−1∑
n=0

{
exp

[
2π i

d
( j − k)

]}n

| j〉 = |k〉, (D11)

and applied the following reasoning. The time integration appearing in Eq. (D10) before the final result is not zero if and only if

(n − m) + (p − q)d1 + (n′ − m′)d2
2 + (r − s)d3

2 = 0, (D12)

where d1, d2 ∈ Z with d2 � d1 > 1. Given the constraints on the various parameters, the left-hand side of the above equation
can be zero only if m = n, q = p, m′ = n′, and s = r. It follows from Eqs. (D2) and (D10) that the integral in Eq. (1) is here
proportional to the two-qudit identity:∫ t0

0
dt [U †

c (t ) ⊗ IE ]Hint[Uc(t ) ⊗ IE ] = t0
d1d2

Id1 ⊗ Id2 ⊗
d1−1∑
p=0

d2−1∑
r=0

Bp,p,r,r . (D13)

We emphasize again that this result is enough to eliminate
any noise involved in Eq. (D2), even when the environment
involves nonlocal terms acting on the qudits, and that this
result is only possible, in general, if we can really separate
all the timescales of each control propagator, so that the fi-
nal results of Eq. (D10) can be given in terms of factored
Kronecker deltas. The choice made in Eq. (D6) is motivated
by this aim. In the case of a single qudit, treated in Secs. II
and III, we need only two sets of timescales, determined,
respectively, by {kω0, k = 0, 1, . . . , d − 1} and {kdω0, k =
0, 1, . . . , d − 1}. Now, having two qudits, we need four

different sets of timescales in order to have in Eq. (D10) the
time integral giving rise to several factored Kronecker deltas.
According to our choice, we have {kω0, k = 0, 1, . . . , d1 −
1} and {kd1ω0, k = 0, 1, . . . , d1 − 1} for one of the qudits,
while we use {kd2

2 ω0, k = 0, 1, . . . , d2 − 1} and {kd3
2 ω0, k =

0, 1, . . . , d2 − 1} for the other one. We finally stress that when
d1 = d2 all that has been said above is still valid and we
can, therefore, protect two identical qudits using the same
procedure.

The problem simplifies in the case of only local noises,
that is, when in Eq. (D3) the terms with Ep,q,r,s are missing
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and then Hint reduces to

Hint =
d1−1∑
p=0

d1−1∑
q=0

|p〉〈q| ⊗ Id2 ⊗ Cp,q

+
d2−1∑
r=0

d2−1∑
s=0

Id1 ⊗ |r〉〈s| ⊗ Dr,s. (D14)

In this case we can define each U ( j)
c (t ) operator as in Eq. (D4),

but using in Eq. (D6) ω
(2)
0 = ω

(1)
0 = ω0 instead of ω

(2)
0 =

d2
2 ω

(1)
0 = d2

2 ω0. Indeed, under this assumption and using
Eq. (13), the terms needed to compute Eq. (1) give∫ t0

0
dt U †

c (t )
(|p〉〈q| ⊗ Id2

)
Uc(t )

=
∫ t0

0
dt

[
U (1) †

c (t )|p〉〈q|U (1)
c (t )

] ⊗ [
U (2) †

c (t )Id2U
(2)
c (t )

]
= t0

d1
δp,qId1 ⊗ Id2 (D15)

and∫ t0

0
dt U †

c (t )(Id1 ⊗ |r〉〈s|)Uc(t )

=
∫ t0

0
dt

[
U (1) †

c (t )Id1U
(1)
c (t )

] ⊗ [
U (2) †

c (t )|r〉〈s|U (2)
c (t )

]
= t0

d2
δr,sId1 ⊗ Id2 . (D16)

It follows that the integral in Eq. (1) is still proportional to the
two-qudit identity:∫ t0

0
dt [U †

c (t ) ⊗ IE ]Hint [Uc(t ) ⊗ IE ]

= t0Id1 ⊗ Id2 ⊗
(

1

d1

d−1∑
p=0

Cp,p + 1

d2

d−1∑
r=0

Dr,r

)
. (D17)

We notice that in the above simplified case with only local
noises, U (1)

c (t ) = U (2)
c (t ) in the case of identical qudits, since

in this case d1 = d2.
Now we address the problem of the two-qudit gate, irre-

spective whether the qudits are identical or not. Let us start
noticing that since the control Hamiltonians are local oper-
ators acting on each qudit, they do not change any possible
entanglement between the two qudits. We proceed in an anal-
ogous way as we did for the case of one qudit, that is, we use

Hgate(t ) = Uc(t )HGU †
c (t ), (D18)

where now, of course, HG is the desired two-qudit gate and
Uc(t ) is the two-qudit control propagator defined in Eq. (D9).
It might be very difficult to be able to implement such an
orchestrated two-qudit Hamiltonian, but, once it is done, we
have a two-qudit gate protected against a very general kind of
perturbing environment by using Hlab(t ) = Hc(t ) + Hgate(t ),
where Hc(t ) is given by

Hc(t ) = ih̄
dUc(t )

dt
U †

c (t )

=
2∑

j=1

[
h̄ω( j)

r Id1 ⊗ Id2 + H ( j)
L + U ( j)

L (t )H ( j)
F U ( j) †

L (t )
]
,

(D19)

where

U ( j)
L (t ) ≡ exp

(
−i

H ( j)
L

h̄
t

)
. (D20)

A simple and direct application of the procedure explained
in this Appendix is represented by the case when one does
not want to protect the action of a gate on the qudits but only
preserve their state since, for instance, it is an entangled state.
In this case, the state of the two qudits can be preserved from
the action of the noise, as a protected memory state, by simply
considering the case HG = 0, that is by using Hlab(t ) = Hc(t ),
where Hc(t ) is given in Eq. (D19).
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