

BIVALVES FROM CAPE MELVILLE FORMATION (EARLY MIocene, KING GEORGE ISLAND, ANTARCTICA): TAPHONOMIC SIGNATURES AND PRELIMINARY INTERPRETATIONS

Casati, R.¹; Anelli, L.E.¹; Santos, P.R. dos¹

¹ Departamento de Geologia Sedimentar e Ambiental – IGc-USP
casati@igc.usp.br
anelli@usp.br

The Cape Melville Formation, cropping out at Melville Peninsula, northern King George Island (Fig.1) consists of about 200 m of shales and silty shales with subordinate intercalation of siltstone and fine-grained sandstone of glacial marine facies. Among the rich invertebrate fauna that includes corals (Roniewicz e Morycowa, 1987), brachiopods (Biernat *et al.*, 1985), echinoderms (Jesionek-Szymańska, 1987) and crustaceans (Förster *et al.*, 1987), bivalves are an important but yet poorly studied component (Anelli *et al.* no prelo).

We present herein the results of a qualitative and quantitative taphonomic analysis of the bivalves concentrations obtained from four geological sections from Cape Melville Formation (Fig.2).

1. Penguin Rookery Section: the section consists of two assemblages represented by eight taxa (n=227) shared in two beds; the first bed (n=137, 60%) is mainly composed by remains of the shallow infaunal deposit-feeder *Ennucula musculosa* (n=91, 66%) and subsidiary gastropods and indeterminate bivalves. *E. musculosa* is chaotically distributed (Perpendicular=37%, Oblique=31%, Concordant=30%), mainly with closed articulated valves (n=86, 95%) and few disarticulated (n=76, 84%) with good quality of preservation (n=72, 79%); the assemblage from the second bed (n=90, 40%) is mainly composed by the shallow infaunal deposit-feeder *Yoldia peninsularis* (n=76, 84%) and subsidiary gastropods and indeterminate bivalves. *Y. peninsularis* is preferred concordant according to the bed (n=43, 57%) and most of them with closed articulated valves (n=52, 69%), almost with no fragmentation (n=64, 84%) and good quality of preservation (n=17, 22%).

2. Hard Ground Section: the section consists of an assemblage represented by seven taxa (n=211) where stands out the shallow infaunal deposit-feeder *Ennucula frigida* (n=130, 62%) and subsidiary gastropods, corals and indeterminate bivalves. *E. frigida* is chaotically distributed (Perp.=30%, Obl.=36%; Conc=39%), preferred closed articulated (n=117, 90%), almost with no fragmentation (n=94, 72%) and with good quality of preservation (n=59, 45%).

3. Chamine Section: the section consists of an assemblage represented by seven taxa (n=69) where stands out the infaunal deposit-feeder *Neilo (Neilo) rongelii* (n=22, 32%), the deep infaunal suspension-feeder *Panopea (Panopea) cf. Panopea* sp. (n=10, 14%) and subsidiary gastropods, crustaceans and indeterminate bivalves. *N. (N.) rongelii* is preferred concordant (n=11, 50%), closed articulated (n=16, 73%), with no fragmentation and good quality of preservation; *P. (P.) cf. P. regularis* is preferred perpendicular (n=8, 80%), with closed articulated valves (n=9, 90%), no fragmentation and good quality of preservation.

4. Lava Crag Section: the section consists of an assemblage represented by four taxa (n=40) where are included infaunal deposit-feeder *Neilo (Neilo) rongelii* (n=17, 43%) and subsidiary crabs and indeterminate bivalves. *N. (N.) rongelii* is preferred concordant (n=12, 71%) and all the specimens are disarticulated, with no fragmentation and good quality of preservation.

Therefore, the objective of this study is to characterize the taphonomic signatures and elucidate if these accumulations were controlled by paleoecologic, biostratinomic and/or diagenetic patterns. The Penguin Rookery and Hard Ground Sections are very close for its faunal composition and taphonomic characteristics, as well as Chamine and Lava Crag Sections. This sort of study is essential for the comprehension of the genesis of the fossil concentrations and for modern paleobiology analysis.

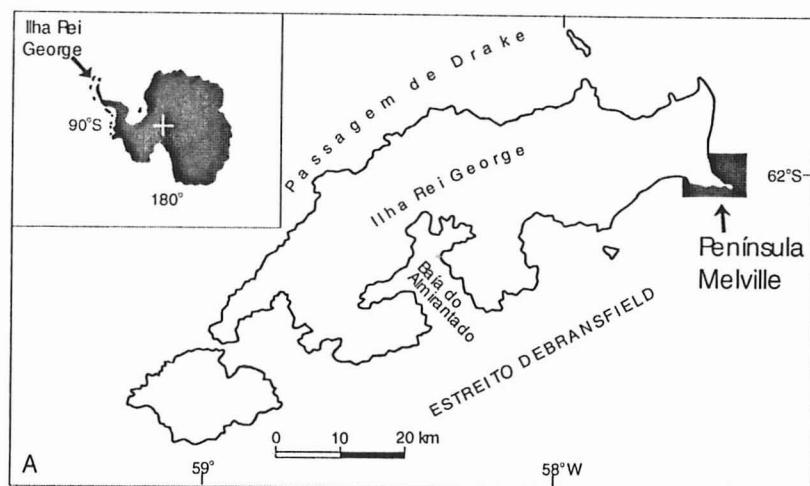


Fig.1: Locality map

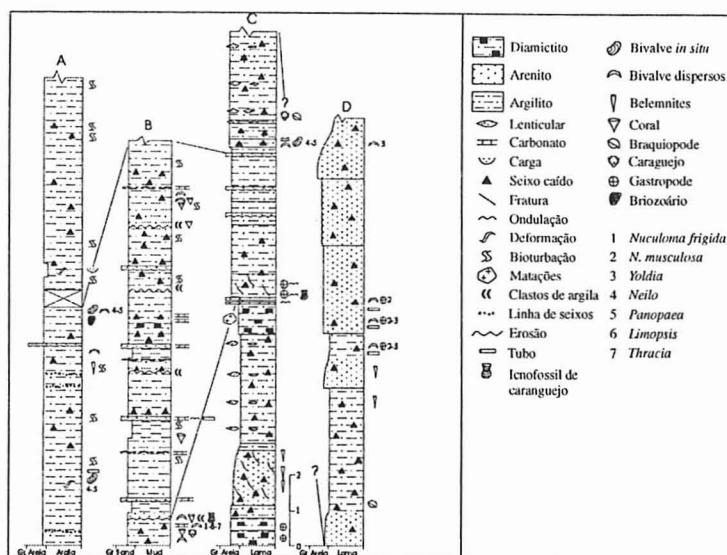


Fig.2: Geological sections from Cape Melville Formation

References

ANELLI, L.E., ROCHA-CAMPOS, A.C., SANTOS, P.R. DOS, PERINOTTO, J.A. DE J., QUAGLIO, F. submetido. Late Oligocene-Early Miocene bivalves from the Cape Melville Formation, King George Island, West Antarctica. *Alcheringa*.

BIERNAT, G., BIRKENMAIER, K., POPIEL-BARCZYK, E. 1985. Tertiary brachiopods from the Moby Dick Group of King George Island (South Shetland Islands, Antarctica). *Studia Geologica Polonica*, 81: 5. p. 109-141.

FÖRSTER, R., GAZDZICK, A., WRONA, R. 1987. Homolodromiid crabs from the Cape Melville Formation (Lower Miocene) of King George Island, West Antarctica. *Paleontologia Polonica*. 49. p. 147-162.

JESIONEK-SZYMANSKA, W. 1987. Echinoids from the Cape Melville Formation (Lower Miocene) of King George Island, West Antarctica. *Paleontologia Polonica*. 49. p. 163-168.

RONIEWICZ, E., MORYCOWA, E. 1987. Development and variability of Tertiary *Flabellum rariseptatum* (Scleractinia), King George Island, West Antarctica. *Paleontologia Polonica*, 49: 83-104.