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Abstract: Non-Abelian gauge theories with composite fields are examined in the background field
method. Generating functionals of Green’s functions for a Yang–Mills theory with composite and
background fields are introduced, including the generating functional of vertex Green’s functions
(effective action). The corresponding Ward identities are obtained, and the issue of gauge dependence
is investigated. A gauge variation of the effective action is found in terms of a nilpotent operator
depending on the composite and background fields. On-shell independence from the choice of
gauge fixing for the effective action is established. In the study of the Ward identities and gauge
dependence, finite field-dependent BRST transformations with a background field are introduced
and employed on a systematic basis. On the one hand, this involves the consideration of (modified)
Ward identities with a field-dependent anticommuting parameter, also depending on a non-trivial
background. On the other hand, the issue of gauge dependence is studied with reference to a finite
variation of the gauge Fermion. The concept of a joint introduction of composite and background
fields to non-Abelian gauge theories is exemplified by the Gribov–Zwanziger theory, including the
case of a local BRST-invariant horizon, and also by the Volovich–Katanaev model of two-dimensional
gravity with dynamical torsion.

Keywords: non-Abelian gauge theories; composite fields; background field method; effective action;
field-dependent BRST transformations; Ward identities; gauge (in)dependence; Gribov–Zwanziger
theory; Volovich–Katanaev model

1. Introduction

The use of background [1–3] and composite [4,5] fields has gained considerable at-
tention in quantum field theory. Composite fields are normally introduced as m-degree
polynomials σm(φ) in the quantum fields φA of a theory. The composite fields are associ-
ated with their respective sources Lm in a way the quantum fields are coupled to sources
JA. A less trivial example is the Gribov–Zwanziger model [6,7], which involves a quan-
tum theory of Yang–Mills fields Aµ with a non-local composite field entering through the
so-called Gribov horizon functional H(A) applied to cure the problem of residual gauge
invariance [8]. In a quantum theory of Yang–Mills fields with a classical action S0(A), one
can generally introduce some background fields Bµ entering through S0(A + B), as well as
through certain gauge-fixing conditions. Path integration is then carried out with respect to
Aµ so that the resulting generating functional Z of Green’s functions retains a dependence
on Bµ, namely, Z = Z(B, J). The background field method [1–3] reformulates the quantiza-
tion of Yang–Mills theories under the background gauge conditions [3,9,10] in a manner
which provides an effective action Γeff(B) invariant under the gauge transformations of
the background fields Bµ and reproduces physical results with essential simplifications in

Universe 2023, 9, 18. https://doi.org/10.3390/universe9010018 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe9010018
https://doi.org/10.3390/universe9010018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0003-2932-5573
https://doi.org/10.3390/universe9010018
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe9010018?type=check_update&version=1


Universe 2023, 9, 18 2 of 39

calculating the Feynman diagrams, which allows one to study a wide range of quantum
properties in gauge theories [11–20]; see also [21–25] for recent developments.

In this connection, the issue of a gauge-invariant effective action in the Gribov–
Zwanziger model [6–8] has so far remained unsolved, which generally calls for an in-
troduction of a background into a quantum theory involving composite fields. A suitable
framework for dealing with the Gribov–Zwanziger theory is given by the concept of soft
BRST symmetry [26–30] and the local composite operator technique [31,32] on arbitrary
backgrounds [33]. The interest in composite fields is also due to the fact that the effec-
tive action for composite fields (see [5] for a review) introduced in [4] has found diverse
applications to quantum field models, such as [34–37], including the early universe, the
inflationary universe, the standard model and SUSY theories [38–42]. It seems to be of
particular interest in this regard to apply the techniques [26–33] to the investigation of
BRST-invariant renormalizability in Yang–Mills theories, which includes the N = 1 SUSY
formulations [43–45] and the functional renormalization group [46–50].

Let us emphasize the following. Composite fields in a quantum Yang–Mils theory
without a residual gauge symmetry have not been introduced so far. A consistent quantiza-
tion using the method of path integrals on arbitrary backgrounds in the Gribov–Zwanziger
model, involving not only a non-local horizon, but also its localized description, has not
yet been proposed. This has been a direct obstacle to the construction of a gauge-invariant
effective action in non-Abelian gauge theories without a residual gauge symmetry, both
with and without composite fields on arbitrary backgrounds of classical Yang–Mills fields.
The subject of the present paper is an introduction of the background field method in a way
consistent with the formalism of composite fields.

In this paper, we address the issue of quantum non-Abelian gauge theories, including
both composite and background fields with a systematic treatment based on Yang–Mills
theories quantized using the Faddeev–Popov method [51]. A combined treatment of Yang–
Mills fields Aµ with composite and background ones calls for a joint introduction of these
ingredients on a systematic basis. We suggest to use the symmetry principle as such
a systematic guideline. Thus, suppose that a generating functional Z(J, L) of Green’s
functions with composite fields is given, depending on the sources JA for the usual fields
φA, and also on the sources Lm for the composite fields σm(φ). One may ask how some
background fields Bµ can be introduced in such a way as to produce an extended functional
Z(B, J, L) which reflects the symmetries inherent in Z(J, L). Suppose, on the other hand,
that a generating functional Z(B, J) of Green’s functions in the background field method
is given, also featuring some symmetries, and then one may ask how some composite
fields σm(φ, B) with sources Lm can be introduced for the resulting Z(B, J, L) to inherit the
original symmetries. These two approaches prove to be equivalent in the sense outlined in
the following preliminary exposition.

In the first approach, one is given a generating functional Z(J, L),

Z(J, L) =
∫

dφ exp
{

i
h̄

[
SFP(φ) + JAφA + Lmσm(φ)

]}
, (1)

corresponding to the Faddeev–Popov action SFP(φ) of a Yang–Mills theory with composite
fields σm(φ). Then a background field Bµ can be introduced by localizing the inherent
global symmetry of Z(J, L) under SU(N) transformations (“rotations” for JA and tensor
transformations for Lm) in such a way that Z(B, J, L) defined as1

Z(B, J, L) = Z(J, L)|∂µ→Dµ(B) (2)

turns out to be invariant under local SU(N) transformations of the sources JA, Lm, accompa-
nied by gauge transformations of the field Bµ with an associated covariant derivative Dµ(B).
The original action SFP(φ) becomes modified to the Faddeev–Popov action SFP(φ, B) of
the background field method, being related to SFP(φ) by so-called background and quantum
transformations of this method (see Section 2).
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In the second approach, one is given a generating functional Z(B, J) constructed using
the background field method for Yang–Mills theories,

Z(B, J) =
∫

dφ exp
{

i
h̄

[
SFP(φ, B) + JAφA

]}
, (3)

which implies that SFP(φ, B) is given by

SFP(φ, B) = SFP(φ)|∂µ→Dµ(B) .

One can then introduce some composite fields σm(φ, B) on the condition that the
resulting generating functional

Z(B, J, L) =
∫

dφ exp
{

i
h̄

[
SFP(φ, B) + JAφA + Lmσm(φ, B)

]}
(4)

inherits the symmetry of Z(B, J) under local SU(N) rotations of the sources JA accompanied
by gauge transformations of the background field Bµ with the covariant derivative Dµ(B).
This symmetry condition for Z(B, J, L) is met by a local SU(N) tensor transformation law
imposed on σm(φ, B), which is provided by Bµ entering into the composite fields σm(φ, B)
via the covariant derivatives Dµ(B) and implies

σm(φ, B) = σm(φ)|∂µ→Dµ(B) (5)

for certain σm(φ), which brings us back to the first approach.
In the main part of the present work, we choose the first approach as a starting point

of our systematic treatment assuming the composite fields to be local, and then, in the
remaining part, we show how the first and second approaches can be extended beyond
the given assumptions by considering some examples. The principal research issues to be
addressed are as follows:

1. Introduction of generating functionals of Green’s functions with composite and back-
ground fields in Yang–Mills theories; investigation of the related symmetry properties;

2. Extension of finite field-dependent BRST (FD BRST) transformations [28,52] to the
case of background field dependence;

3. Investigation of the Ward identities and gauge dependence for the above generating
functionals on a basis of finite FD BRST transformations;

4. Introduction of background and composite fields field into the Gribov–Zwanziger
theory [6–8];

5. Introduction of composite fields into a quantized Volovich–Katanaev model [53].

The paper is organized as follows. In Section 2, we introduce a generating functional of
Green’s functions with composite and background fields in Yang–Mills theories. Section 3
is devoted to the corresponding Ward identities and the properties of the generating
functional of vertex Green’s functions (effective action). Thus, the effective action Γeff(B, Σ),
depending on the background field Bµ and a set of tensor auxiliary fields Σm associated
with σm, is found to exhibit a gauge symmetry under the gauge transformations of Bµ along
with the local SU(N) transformations of Σm. The study of the Ward identities systematically
utilizes the concept of finite FD BRST transformations [28,52], first suggested2 in [61,62] and
now depending also on the background field Bµ. In Section 4, we use the finite FD BRST
transformations and the related (modified) Ward identities to analyze the dependence of
the generating functionals of Green’s functions upon a choice of gauge fixing. In doing so,
we evaluate a finite gauge variation of the effective action in terms of a nilpotent operator
depending on the composite and background fields, and also determine the conditions
of on-shell gauge independence. Loop expansion properties and a one-loop effective
action with composite and background fields are examined in Section 5. In Section 6, we
consider an example of the Gribov–Zwanziger theory [6,7], which is a quantum Yang–
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Mills theory including the Gribov horizon [8], using local and non-local BRST-invariant
representations, in terms of composite fields. The quantum theory [6,7] is then extended
by introducing a background field, which modifies our first approach (1), (2) beyond the
case of local composite fields, along with a study of the gauge-independence problem.
In Section 7, we consider an example of the two-dimensional gravity with dynamical torsion
by Volovich and Katanaev [63], quantized according to the background field method in [53]
and featuring a gauge-invariant background effective action. As a modification of our
second approach (3), (4), (5), when extended beyond the Yang–Mills case, the quantized
two-dimensional gravity [53] is generalized to the presence of composite fields, and the
corresponding effective action with composite and background fields is found to be gauge-
invariant, in a way similar to the Yang–Mills case. Section 8 presents a summary of our
results. Appendices A–C support the consideration of the respective Yang–Mills, Gribov–
Zwanziger and Volovich–Katanaev models.

We use DeWitt’s condensed notation [64]. The Grassmann parity and ghost num-
ber of a quantity F are denoted by ε(F), gh(F), respectively, and [F, G} stands for the
supercommutator of any quantities F, G with a definite Grassmann parity, [F, G} =

FG− (−1)ε(F)ε(G)GF. Unless specifically indicated by an arrow, derivatives with respect to
fields and sources are understood as left-hand ones.

2. Generating Functional of Green’s Functions

Consider a generating functional Z(J, L) corresponding to the Faddeev–Popov action
SFP(φ) of a Yang–Mills theory with local composite fields,

Z(J, L) =
∫

dφ exp
{

i
h̄

[
SFP(φ) + JAφA + Lmσm(φ)

]}
, (6)

where Lm are sources to the composite fields σm(φ),

σm(φ) = ∑
n=2

1
n!

Λm
A1 ...An

φAn . . . φA1 , (7)

and JA are sources to the fields φA =
(

Ai, bα, c̄α, cα
)

composed by gauge fields Ai, (anti)ghost
fields c̄α, cα, and Nakanishi–Lautrup fields bα, with the following distribution of Grassmann
parity and ghost number :

ε(φA, σm) = ε(JA, Lm), gh(φA, JA) = −gh(JA, Lm),

ε
(

Ai, bα, c̄α, cα
)

= (0, 0, 1, 1), gh
(

Ai, bα, c̄α, cα
)
= (0, 0,−1, 1)

The Faddeev–Popov action SFP(φ),

SFP(φ) = S0(A) + Ψ(φ)←−s ,

is given in terms of a gauge-invariant classical action S0(A), invariant, δS0(A) = 0, un-
der infinitesimal gauge transformations δAi = Ri

α(A)ξα with a closed algebra of gauge
generators Ri

α(A),

Ri
α j(A)Rj

β(A)− Ri
β j(A)Rj

α(A) = Fγ
αβRi

γ(A), Fγ
αβ = const, Ri

α, j ≡ Ri
α

←−
δ

δAj ,

and a nilpotent Slavnov variation←−s applied to a gauge Fermion Ψ(φ), ε(Ψ) = −gh(Ψ) = 1,

SFP(φ) = S0(A) + Ψ(φ)←−s , Ψ(φ) = c̄αχα(φ),
←−s 2 = 0, (8)

where
φA←−s =

(
Ri

α(A)cα, 0, bα, 1/2Fα
βγcγcβ

)
.
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For the explicit field content

i = (x, p, µ), α = (x, p), µ = 0, . . . , D− 1, p = 1, . . . , N2 − 1,

φA =
(

Ap|µ, bp, c̄p, cp
)

, (Aµ, b, c̄, c) ≡ Tp
(

Ap|µ, bp, c̄p, cp
)

, [Tp, Tq] = f pqrTr,

the field variations φA←−s have the form(
Aµ, b, c̄, c

)←−s =
([

Dµ(A), c
]
, 0, b, g/2[c, c]+

)
,(

Ap
µ, bp, c̄p, cp

)←−s =
(

Dpq
µ (A)cq, 0, bp, g/2 f pqrcqcr

)
, (9)

where
Dµ(A) ≡ ∂µ + gAµ , Dpq

µ (A) = δpq∂µ + g f prq Ar
µ .

The classical action S0(A) has the form (in the adjoint representation with Hermi-
tian Tp)

S0(A) =
1

2g2

∫
dDx Tr

(
FµνFµν

)
=

1
4

∫
dDx Fp

µνFp|µν, Tr(TpTq) =
1
2

δpq, (10)

Fµν ≡
[
Dµ(A), Dν(A)

]
, Fp

µν = ∂µ Ap
ν − ∂ν Ap

µ + g f prs Ar
µ As

ν ,

and the gauge Fermion Ψ(φ) = c̄αχα(φ) with gauge-fixing functions χα(φ) = χp(φ(x))
reads

Ψ(φ) =
∫

dDx c̄pχp(φ) = 2
∫

dDx Tr[c̄χ(φ)], χ(φ) = Tpχp(φ). (11)

The Faddeev–Popov action SFP(φ) is invariant under two kinds of global transforma-
tions: BRST transformations [65–67], δλφA = φA←−s λ, with an anticommuting parameter

λ, ε(λ) = gh(λ) = 1, and SU(N) rotations (finite φA U→ φ′A and infinitesimal δςφA) with
even parameters ςp,(

Aµ, b, c̄, c
) U→

(
Aµ, b, c̄, c

)′
= U

(
Aµ, b, c̄, c

)
U−1, U = exp(−gTpςp), ςp = const,(12)

δς

(
Ap

µ, bp, c̄p, cp
)

= g f prq
(

Ar
µ, br, c̄r, cr

)
ςq,

or, in a tensor form, via the adjoint representation with a matrix Mpq(ς),(
Ap

µ, bp, c̄p, cp
)′

= Mpq(ς)
(

Aq
µ, bq, c̄q, cq

)
, Mpq(ς) = δpq + g f pqrςr + O

(
ς2
)

.

The classical action S0(A) in SFP(φ) = S0(A) + Ψ(φ)←−s is invariant under Aµ
U→ A′µ

as a particular case (ξ p(x) = const) of invariance under the finite form Aµ
V→ A′µ of gauge

transformations

A′µ = VAµV−1 + g−1V
(
∂µV−1), Dµ(A′) = VDµ(A)V−1, V = exp(−gTpξ p) ,

ξ p = ξ p(x),
(13)

whereas the invariance of Ψ(φ)←−s under φA U→ φ′A is implied by the explicit form of←−s
and the fact that the gauge functions χp(φ) are local and constructed3 from the fields φA,
structure constants f pqr and derivatives ∂µ, for instance, in Landau and Feynman gauges,

χ
p
L(φ) = ∂µ Ap

µ , χ
p
F(φ) = bp + ∂µ Ap

µ . (14)

so that, in particular, χp(φ) transform as SU(N) vectors, with Ψ(φ) being invariant under

φA U→ φ′A,
χ
(
φ′
)
= Uχ(φ)U−1, δχp(φ) = g f prqχr(φ)ςq.
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By similar reasonings, one can see that local composite fields σm(φ), also constructed
from the fields φA, structure constants f pqr and derivatives ∂µ,

σm(φ) = σp1···pk |µ1···µl (φ(x)), m = (x, p1 · · · pk, µ1 · · · µl),

in the path integral (6) for Z(J, L) transform under φA U→ φ′A as tensors with respect to the
indices p1, . . . , pk, namely,

σ′ p1···pk |µ1···µl = Mp1q1 · · ·Mpkqk σq1···qk |µ1···µl ,

δςσp1···pk |µ1···µl = g ∑
rs∈{r1,...,rk}

f psrsqσp1···rs ···pk |µ1···µl ςq ≡ g f {p}r̂qσp1···r̂···pk |µ1···µl ςq, (15)

which generalizes the transformation of a vector in the index p. As a consequence, the

exponential in the path integral (6) for Z(J, L) is invariant under φA U→ φ′A, accompanied
by global transformations of the sources JA, Lm,

(JA, Lm)
U→ (JA, Lm)

′, JA = (Jp
(A)µ

, Jp
(b), Jp

(c̄), Jp
(c)), Lm = Lp1···pi

µ1···µj , (16)

in a tensor and infinitesimal form:

(Jp|µ
(A)

, Jp
(b), Jp

(c̄), Jp
(c))
′ = Mpq(Jq|µ

(A)
, Jq

(b), Jq
(c̄), Jq

(c)), L′ p1···pi
µ1···µj = Mp1q1 · · ·Mpiqi Lq1···qi

µ1···µj ,

δς(Jp|µ
(A)

, Jp
(b), Jp

(c̄), Jp
(c)) = g f prq(Jr|µ

(A)
, Jr

(b), Jr
(c̄), Jr

(c))ς
q, δςLp1···pi

µ1···µj = g f {p}r̂qLp1···r̂···pi
µ1···µj ςq,

(17)

which provides the invariance of the source term JAφA + Lmσm(φ).
Let us introduce an additional gauge field Bµ = Bp

µTp which transforms as in (13),

Bµ
V→ B′µ = VBµV−1 + g−1V

(
∂µV−1

)
, (18)

with the inherent property

Dµ

(
B′
)
= VDµ(B)V−1 , Dµ(B) ≡ ∂µ + gBµ , (19)

and subject the exponential in the path integral (6) to the following modification:

exp
{

i
h̄
[SFP(φ) + Jφ + Lσ(φ)]

}∣∣∣∣
∂µ→Dµ(B)

≡ exp
{

i
h̄
[SFP(φ, B) + Jφ + Lσ(φ, B)]

}
, (20)

where the replacement ∂µ → Dµ(B) is understood as

∂µ → Dµ(B) :
[
∂µ, •

]
→
[
Dµ(B), •

]
⇒
[
Dµ(A), •

]
→
[
Dµ(A + B), •

]
, (21)

in particular,
Fµν(A)→

[
Dµ(A + B), Dν(A + B)

]
= Fµν(A + B). (22)

The quantum action SFP(φ) in (20) is then replaced by the background action SFP(φ, B)
of the form (27), (28), while as regards the replacement σm(φ)→ σm(φ, B) one should notice
the following. Namely, in the case of local composite fields without higher derivatives,
σm = σm(φ, ∂φ), where ∂µ enter only via the structures

[
∂µ, φ

]
and

[
Dµ(A), φ

]
in a matrix

form, the introduction of Bµ according to (21) is unambiguous. In the case of higher
derivatives, σm = σm(φ, ∂φ, . . . , ∂ · · · ∂φ), the introduction of Bµ is not unique since, prior
to including the background field to ∂µ1 · · · ∂µn φ, these structures can be modified by
adding terms with a difference of cross derivatives. Such extra terms are zero in the absence
of a background; however, they are non-vanishing (and arbitrary) in the presence of a
background:

[∂µ, ∂ν] = 0, [Dµ(B), Dν(B)] 6= 0.
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At the same time, the general considerations below remain valid irrespective of a
particular representation of σm(φ, B) according to (21).

Due to the transformation property (19) of the derivative Dµ(B), the generating
functional Z(B, J, L) modified by the field Bµ according to (20), (21),

Z(B, J, L) =
∫

dφ exp
{

i
h̄

[
SFP(φ, B) + JAφA + Lmσm(φ, B)

]}
, (23)

is invariant under a set of local transformations,

δξ Bp
µ = Dpq

µ (B)ξq,

δξ(Jp|µ
(A)

, Jp
(b), Jp

(c̄), Jp
(c)) = g f prq(Jr|µ

(A)
, Jr

(b), Jr
(c̄), Jr

(c))ξ
q, (24)

δξ Lp1···pk
µ1···µl = g f {p}r̂qLp1···r̂···pk

µ1···µl ξq,

given by the gauge transformations (18) of the field Bµ combined with a localized form
U(ς) → V(ξ) of the transformations (16), (17) for the sources JA, Lm with infinitesimal
parameters ξ p, (

Bµ, JA, Lm
) V→

(
Bµ, JA, Lm

)′.
The invariance property Z(B′, J′, L′) = Z(B, J, L) can be established by applying to the

transformed path integral Z(B′, J′, L′) a compensating change of the integration variables:

δξ

(
Ap

µ, bp, c̄p, cp
)
= g f prq

(
Ar

µ, br, c̄r, cr
)

ξq,
(

Aµ, b, c̄, c
) V→

(
Aµ, b, c̄, c

)′,
whose Jacobian equals to unity in view of the antisymmetry of the structure constants. The
invariance of Z(B, J, L) can be recast in the form

∫
dDx

{[
Dpq

µ (B)ξq
] −→δ

δBp
µ

+ gξq f {p}r̂qLp1···r̂···pk
µ1···µl

−→
δ

δLp1···pk
µ1···µl

+ gξq f prq

Jr|µ
(A)

−→
δ

δJp|µ
(A)

+ Jr
(b)

−→
δ

δJp
(b)

+ Jr
(c̄)

−→
δ

δJp
(c̄)

+ Jr
(c)

−→
δ

δJp
(c)

Z(B, J, L) = 0. (25)

To interpret the generating functional Z(B, J, L) in (23), notice that the modified
Faddeev–Popov action SFP(φ, B) constructed by the rule (20), (21), (22) is invariant under
the finite local transformations(

Aµ, b, c̄, c
) V→ V

(
Aµ, b, c̄, c

)
V−1 , Bµ

V→ VBµV−1 + g−1V∂µV−1 (26)

and takes the form
SFP(φ, B) = S0(A + B) + Ψ(φ, B)←−s q , (27)

where

S0(A + B) = S0(A)|[∂µ ,•]→[Dµ(B),•] = S0(A)|Dµ(A)→Dµ(A+B) ,

Ψ(φ, B) = Ψ(φ)|[∂µ ,•]→[Dµ(B),•],
←−s q = ←−s

∣∣
Dµ(A)→Dµ(A+B) , (28)

namely, (
Aµ, b, c̄, c

)←−s q =
([

Dµ(A + B), c
]
, 0, b, g/2[c, c]+

)
,(

Ap
µ, bp, c̄p, cp

)←−s q =
(

Dpq
µ (A + B)cq, 0, bp, g/2 f pqrcqcr

)
. (29)
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For instance, the Landau and Feynman gauges (14) are modified to the background
gauges

χ
p
L(φ, B) = Dpq

µ (B)Aq|µ , χ
p
F(φ, B) = bp + Dpq

µ (B)Aq|µ. (30)

In the background field method, a quantum action SFP(φ, B) constructed according
to (27), (29) is known as the Faddeev–Popov action with a background field Bµ. The
quantum action SFP(φ, B) is invariant under global transformations of φA, with a nilpotent
generator←−s q and an anticommuting parameter λ:

δSFP(φ, B) = 0, δφA = φA←−s qλ, ←−s q
←−s q = 0, ε(λ) = gh(λ) = 1. (31)

At the infinitesimal level, the local transformations (26) for the fields Aµ, Bµ are known
as background transformations, and the transformations of Aµ, Bµ corresponding to the
modified Slavnov variation←−s q in (27), (29), (31) are known as quantum transformations,

background :
quantum :

δb Aµ = g
[
Aµ, Tpξ p], δbBµ =

[
Dµ(B), Tpξ p],

δq Aµ =
[
Dµ(A + B), Tpξ p], δqBµ = 0,

whereas the classical action S0(A + B) is left invariant by both of these types of transforma-
tions. In this connection, the family of background gauges χp(φ, B) = χ̃p(A, B) + (α/2)bp,
parameterized by α 6= 0 and defined according to (28),

χp(A, B) = χp(A)|[∂µ ,•]→[Dµ(B),•] ,

with the Nakanishi–Lautrup fields bp integrated out of (23) by the shift bp → bp + α−1χ̃
at the vanishing sources, J = L = 0, reduces the vacuum functional Z(B) to the form (for
future convenience, we denote A ≡ Q),

Z(B) =
∫

dQ dc dc exp
{

i
h̄

[
S0(Q + B) + Sgf(Q, B) + Sgh(Q, B; c, c)

]}
,

Sgf(Q, B) = − 1
2α

∫
dDx χ̃pχ̃p, Sgh(Q, B) =

∫
dDx c̄p δqχ̃p∣∣

ξ→c , (32)

where the gauge-fixing term Sgf = Sgf(Q, B) is invariant under the background transforma-
tions, δbSgf = 0, due to δbχ̃p = g f prqχ̃rξq, which may be employed to define the quantum
action in background gauges χ̃p(Q, B) depending on the quantum Q and background B
fields with the associated background and quantum transformations (see also [3]),

δbBp
µ = Dpq

µ (B)ξq, δbQp
µ = g f prqQr

µξq,
δqBp

µ = 0, δqQp
µ = Dpq

µ (Q + B)ξq.
(33)

By construction, the quantum action and the integrand of Z(B) in (32) are invariant
under the residual local transformations (26), namely,(

Qµ, c̄, c
) V→ V

(
Qµ, c̄, c

)
V−1 , Bµ

V→ VBµV−1 + g−1V∂µV−1, (34)

which translates infinitesimally, δ
(

Bµ, Qµ, c̄, c
)
, to the background transformations δb ac-

companied by some compensating transformations of the ghost fields:

δ
(

Bp
µ, Qp

µ, c̄p, cp
)
= (δbBp

µ, δbQp
µ, g f prq c̄rξq, g f prqcrξq).

Given this, we interpret Z(B, J, L) defined according to (6), (20), (21), (23) as a gen-
erating functional of Green’s functions for Yang–Mills theories with composite fields in
the background field method, or as a generating functional of Green’s functions with com-
posite and background fields for such theories. As we shall see below, this interpretation
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provides the existence of a corresponding gauge-invariant effective action with composite
and background fields.

3. Ward Identities, Effective Action

Let us now present the corresponding generating functionals of connected and vertex
Green’s functions with composite and background fields and examine their properties.
To this end, we first introduce an extended generating functional Z(B, J, L, φ∗),

Z(B, J, L, φ∗) =
∫

dφ exp
{

i
h̄

[
Sext(φ, φ∗, B) + JAφA + Lmσm(φ, B)

]}
≡

∫
IΨ

φ,φ∗ ,B exp
{

i
h̄

[
JAφA + Lmσm(φ, B)

]}
, (35)

with an extended quantum action Sext(φ, φ∗, B) given by

Sext(φ, φ∗, B) = SFP(φ, B) + φ∗A(φ
A←−s q),

φ∗A(φ
A←−s q) =

∫
dDx

(
A∗p

µ Dpq|µ(A + B)cq + c̄∗pbp + (g/2) f pqrc∗pcqcr
)

,

= 2
∫

dDx Tr
(

A∗µ[D
µ(A + B), c] + c̄∗b + (g/2)c∗[c, c]+

)
,

where φ∗A, ε
(
φ∗A
)
= ε

(
φA)+ 1, gh

(
φ∗A
)
= −gh

(
φA), is a set of antifields introduced as

sources to the variations φA←−s q,

φ∗A =
(

A∗p
µ , b∗p, c̄∗p, c∗p

)
,
(

A∗µ, b∗, c̄∗, c∗
)
≡ Tp

(
A∗p

µ , b∗p, c̄∗p, c∗p
)

.

Due to the invariance property (31) of SFP(φ, B), the extended quantum action
Sext(φ, φ∗, B) satisfies the identity

Sext(φ, φ∗, B)←−s q = 0,

which can be recast in the form of a master equation,

(Sext, Sext) = 0, (F, G) ≡ F
←−
δ

δφA

−→
δ

δφ∗A
G− (−1)(ε(F)+1)(ε(G)+1)G

←−
δ

δφA

−→
δ

δφ∗A
F,

or, equivalently,

(−1)ε(φA)
−→
δ

δφA

−→
δ

δφ∗A
exp[(i/h̄)Sext] = 0,

which holds due to the complete antisymmetry of the structure constants f pqr.
Let us make in the integrand (35) a finite FD BRST transformation (see Appendix A.1

for details) with a generator←−s q given by (29) and a Grassmann-odd functional parameter
λ(φ, B),

φA → φ′A = φA + φA←−s qλ(φ, B), (36)

where λ(φ, B) is related to a finite change [28,52] of the gauge fermion ∆Ψ(φ, B) depending
also on the background field. For a finite constant λ, the following invariance property
holds true:

IΨ
φ+φ←−s qλ,φ∗ ,B = IΨ

φ,φ∗ ,B , λ

←−
δ

δφ
= λ

←−
δ

δB
= 0, (37)
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whereas the FD parameter λ(φ, B) in the Jacobian Sdet‖δφ′/δφ‖ =
[
1 + λ(φ, B)←−s q

]−1

of (A1) for the change of variables (36), given the choice of λ(φ, B) = λ(φ, B|∆Ψ) in the
form

λ(φ, B|∆Ψ ) = ∆Ψ(φ, B)
{
[∆Ψ(φ, B)]←−s q

}−1
(

exp
{
− i

h̄
[∆Ψ(φ, B)]←−s q

}
− 1
)

= − i
h̄

∆Ψ(φ, B) + o(∆Ψ), (38)

implies the independence of the extended vacuum functional, ZΨ(B, φ∗) = Z(B, 0, 0, φ∗),
from a finite variation of an admissible gauge condition, Ψ(φ, B) → Ψ(φ, B) + ∆Ψ(φ, B),
namely,

ZΨ(B, φ∗) = ZΨ+∆Ψ(B, φ∗)⇐⇒ IΨ
φ+φ←−s qλ,φ∗ ,B = IΨ+∆Ψ

φ,φ∗ ,B . (39)

The latter property, once finite FD BRST transformations are applied to the integrand
of the generating functional (35), leads to a modified Ward identity, suggested for the first time
within the BV formalism in [54], now with respect to a functional Z(B, J, L, φ∗) extended
by antifields and a background field:〈[

1 +
i
h̄

JA

(
φA←−s q

)
λ(φ, B)

][
1 + λ(φ, B)←−s q

]−1
〉

Ψ,B,J,L,φ∗
= 1 . (40)

Here, the notation 〈D〉Ψ,B,J,L,φ∗ , with a certain functional D(φ, φ∗, B), implies a source-
dependent expectation value corresponding to a gauge-fixing functional Ψ(φ, B),

〈D〉Ψ,B,J,L,φ∗ = Z−1(B, J, L, φ∗)
∫

dφ D(φ, φ∗, B) exp
{

i
h̄

[
Sext(φ, φ∗, B) + JAφA + Lmσm(φ, B)

]}
, (41)

with the normalization 〈1〉··· = 1, where the dots stand for Ψ, B, J, L, φ∗ as in (40). Using
the familiar rules 〈φA〉··· = Z−1 h̄

i
−→
δ /δJAZ and 〈φA←−s q〉··· = Z−1 h̄

i δ/δφ∗AZ, one presents
the modified identity (40) in the form{

ω̂λ

(
h̄
−→
δ

iδJ
, B

)
+

[
∑
n=1

(−1)n(λ←−s q
)n
(

h̄
−→
δ

iδJ
, B

)][
1 + ω̂λ

(
h̄
−→
δ

iδJ
, B

)]}
Z = 0, (42)

with a nilpotent Grassmann-odd operator ω̂,

ω̂ =

[
JA + Lmσm

,A

(
h̄
i

−→
δ

δJ
, B

)] −→
δ

δφ∗A
, ω̂2 = 0. (43)

In deriving the λ-dependent identity (42), we have used the expansion (1 + x)−1

= 1 + ∑n>0(−1)nxn with x = λ←−s q. Notice that, instead of the monomial
(
λ←−s q

)n, we

can equivalently apply [ h̄
i λ,A
−→
δ /δφ∗A]

n with λ,A = λ
←−
δ /δφA under the sign of functional

integral, which leads to another representation of the identity (42),{
ω̂λ

(
h̄
−→
δ

iδJ
, B

)
+

(
∑
n=1

(−1)n

[
λ,A

(
h̄
−→
δ

iδJ
, B

)
h̄
−→
δ

iδφ∗A

]n)[
1 + ω̂λ

(
h̄
−→
δ

iδJ
, B

)]}
Z = 0. (44)

For an infinitesimal FD parameter λ, the identity (44) acquires the form[
ω̂λ

(
h̄
−→
δ

iδJ
, B

)
− h̄

i
λ,A

(
h̄
−→
δ

iδJ
, B

) −→
δ

δφ∗A

]
Z = 0. (45)
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For a constant λ, namely, λ←−s q = 0, the relation (42) contains the usual Ward iden-
tity [68], depending parametrically on a background field:

ω̂Z(B, J, L, φ∗) = 0. (46)

The generating functional W(B, J, L, φ∗) of connected Green’s functions, W = (h̄/i) ln Z,
satisfies a related modified Ward identity,

Ω̂〈λ(B)〉W +

[
∑

n=1
(−1)n〈

(
λ(B)←−s q〉

)n
][

1 + Ω̂〈λ(B)〉
]
W = 0, (47)

Ω̂ =

[
JA + Lmσm

,A

(
h̄
i

−→
δ

δJ
+

−→
δ W
δJ

, B

)] −→
δ

δφ∗A
, 〈λ(B)〉 ≡ λ

(
h̄
i

−→
δ

δJ
+

−→
δ W
δJ

, B

)
, (48)

deduced by a unitary transformation of the operator ω̂ in (43),

Ω̂ = Û−1ω̂Û, Û = exp(i/h̄W). (49)

Once again, an infinitesimal FD λ reduces the identity (47), or, equivalently, (44), to
the form [

Ω̂〈λ(B)〉 − h̄
i
〈λ,A(B)〉

−→
δ

δφ∗A

]
W = 0. (50)

In turn, for a constant λ, the relation (47) contains the usual Ward identity [68]

Ω̂W =

[
JA + Lmσm

,A

(
h̄
i

−→
δ

δJ
+

−→
δ W
δJ

, B

)] −→
δ

δφ∗A
W = 0. (51)

As we introduce a generating functional Γ(B, φ, Σ, φ∗) of vertex Green’s functions with
composite fields (on a background) by using a double Legendre transformation [68],

Γ(B, φ, Σ, φ∗) = W(B, J, L, φ∗)− JAφA − Lm[σ
m(φ, B) + Σm] , (52)

where

φA =

−→
δ W
δJA

, Σm =

−→
δ W
δLm

− σm

(−→
δ W
δJ

, B

)
, −JA = Γ

←−
δ

δφA + Lmσm
,A(φ, B), −Lm = Γ

←−
δ

δΣm ,

the modified Ward identity (47) acquires the form (see Appendix A.2 for details)

ω̂Γ〈〈λ(B)〉〉Γ +

{
∑
n=1

(−1)n[〈〈λ(B)←−s q〉〉
]n
}
[1 + ω̂Γ〈〈λ(B)〉〉]Γ = 0, (53)

ω̂Γ = (Γ, •) +
[
σm

,A(φ̂, B)− σm
,A(φ, B)

]−→δ Γ
δφ∗A

−→
δ

δΣm

− i
h̄

([
Γ
←−
δ

δΣm

(
σm

,C(φ̂, B)
−→
δ Γ

δφ∗C

)
, Φa

} −→
δ

δΦa
+

[
Γ
←−
δ

δΣm

(
σm

,C(φ̂, B)
−→
δ Γ

δφ∗C

)
, σn(φ, B)

} −→
δ

δΣn

)

+
i
h̄
(−1)ε(σn)+ε(φD)σn

,D(φ, B)

[
Γ
←−
δ

δΣm

(
σm

,C(φ̂, B)
−→
δ Γ

δφ∗C

)
, φD

} −→
δ

δΣn

+(−1)ε(σm)+ε(φD)ε(φA)

[
σm

,D(φ, B), Γ
←−
δ

δΣn σn
,A(φ̂, B)

}(
G′′−1

)Aa
( −→

δ

δΦa

−→
δ Γ

δφ∗D

) −→
δ

δΣm , (54)
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where 〈〈λ(B)〉〉 ≡ λ(φ̂, B), and the following notation is used:

φ̂A ≡ φA + ih̄
(

G′′−1
)Aa−→

δ /δΦa ,
(
G′′
)
ab ≡

−→
δ Fb/δΦa , (55)

Φa =
(

φA, Σm
)

, Fa =
(
Γ,A − Γ,nσn

,A(φ, B), Γ,m
)
, Γ,a ≡ Γ

←−
δ /δΦa .

For a constant infinitesimal parameter λ, the modified Ward identity (53) is reduced to
the usual one [68], however, now with a background included,

1
2
(Γ, Γ) = −Γ

←−
δ

δΣm

[
σm

,A(φ̂, B)− σm
,A(φ, B)

] −→δ
δφ∗A

Γ. (56)

The extended generating functional Z(B, J, L, φ∗) of Green’s functions (35) and the
related functional W(B, J, L, φ∗) exhibit an invariance under the local transformations (24)
accompanied by the following transformations of the antifields:

δξ

(
A∗p

µ , b∗p, c̄∗p, c∗p
)
= g f prq

(
A∗rµ , b∗r, c̄∗r, c∗r

)
ξq. (57)

Then the effective action Γeff(B, Σ) with composite and background fields defined as

Γeff(B, Σ) = Γ(B, φ, Σ, φ∗)|φ=φ∗=0 (58)

satisfies an identity (see Appendix A.3) related to (25),

∫
dDx

{[
Dpq

µ (B)ξq
] −→δ

δBp
µ

+ g f {p}r̂qΣp1···r̂···pk
µ1···µl ξq

−→
δ

δΣp1···pk
µ1···µl

}
Γeff(B, Σ) = 0, (59)

and is thereby invariant under the local transformations

δξ Bp
µ = Dpq

µ (B)ξq, δξ Σp1···pk
µ1···µl = g f {p}r̂qΣp1···r̂···pk

µ1···µl ξq, (60)

which consist of the initial gauge transformations for the background field Bp
µ and of the

local SU(N) transformations for the fields Σp1···pk
µ1···µl .

Returning once again to the modified Ward identities, we point out that, once the
composite fields σm(φ, B) are absent, the formulas (42), (47), (53) are reduced to those
involving the respective functionals Z|L=0, W|L=0, Γ|Σ=σ=0, which presents a new form
of λ-dependent Ward identities, additional to the usual Ward identities (λ = const) for
these functionals. The deduction of the modified Ward identities (42), (47), (53) for the
generating functionals Z, W, Γ of Green’s functions with composite and background
fields, implying the respective usual Ward identities (46), (51), (56) by means of finite FD
BRST transformations, comprises the results of this section that have a generic character.
Finally, it should be noted that we have assumed the existence of a “deep” gauge-invariant
regularization preserving the Ward identities (see, e.g., [43]), as we expect the corresponding
renormalized generating functionals to obey the same properties as the unrenormalized
ones.

4. Gauge-Dependence Problem

Let us study the gauge dependence of the generating functionals Z(B, J, L, φ∗),
W(B, J, L, φ∗), Γ(B, φ, Σ, φ∗) of Green’s functions with composite and background fields.
In this regard, the representations (38) and (42) also provide a relation which describes the
gauge dependence of Z(B, J, L, φ∗) = ZΨ for a finite change Ψ→ Ψ + ∆Ψ:

∆ZΨ = ZΨ+∆Ψ − ZΨ = ω̂λ

(
h̄
−→
δ

iδJ
, B|−∆Ψ

)
ZΨ =

i
h̄

ω̂∆Ψ

(
h̄
−→
δ

iδJ
, B

)
ZΨ + o(∆Ψ). (61)
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The corresponding finite change ∆WΨ = ∆W(B, J, L, φ∗) can be presented as follows,4

with account taken of (49) and of the usual Ward identity (51) for WΨ, namely,

∆WΨ =
h̄
i

Ω̂λ

(
h̄
−→
δ

iδJ
+

−→
δ W
δJ

, B|−∆Ψ

)
= Ω̂∆Ψ

(
h̄
−→
δ

iδJ
+

−→
δ W
δJ

, B

)
+ o(∆Ψ), (62)

where Ω̂, given by (48), is nilpotent, Ω̂2 = 0, as a consequence of ω̂2 = 0.
To obtain a finite change ∆Γ(B, φ, Σ, φ∗), we note that

∆Γ(B, φ, Σ, φ∗) = ∆W(B, J, L, φ∗),

as a general property of the Legendre transformation in the case of its dependence on an
external parameter η, namely, ∆Γ(η) = ∆W(η). Then ∆Γ(B, φ, Σ, φ∗) admits the represen-
tation

∆Γ =
h̄
i

ω̂Γ〈〈λ(B| − ∆Ψ)〉〉 = δΓ + o(〈〈∆Ψ〉〉), (63)

〈〈λ(B| − ∆Ψ)〉〉 ≡ λ(φ̂, B| − ∆Ψ), δΓ ≡ ω̂Γ〈〈∆Ψ〉〉,

where φ̂A is given by (55), while the operator ω̂Γ is a Legendre transform of Ω̂ in (48), and
thereby inherits the property of nilpotency: ω̂2

Γ = 0.
From (63), it follows, according to [68,69], that the generating functional Γ(B, φ, Σ, φ∗)

of vertex Green’s functions is gauge-independent, δΓ = 0, on the extremals

δΓ
δφA =

δΓ
δΣm = 0, (64)

so that the effective action Γeff = Γeff(B, Σ) with composite and background fields (58) is
gauge-independent, δΓeff = 0, on the extremals (64), which is the principal result of this
section.

5. Loop Expansion

Now we examine the procedure of a loop expansion for the effective action (EA) with
composite and background fields. The initial relation

exp
{

i
h̄

Γ(B, Σ, φ, φ∗)

}
= exp

{
i
h̄

Γ,mΣm
} ∫

dφ̃ exp
{

i
h̄
[
Sext

(
φ̃, φ∗, B

)
− FA(B, Σ, φ, φ∗)

×
(

φ̃A − φA
)
− Γ,m

(
σm(φ̃, B

)
− σm(φ, B)

)]}
, (65)

according to (35), (52), with allowance for the notation (55) and a shift of variables5 involv-
ing φ̃A,

φ̃A → φ̃A + φA, (66)

acquires the form (see (55) for the notation FA)

exp
{

i
h̄

Γ(B, Σ, φ, φ∗)

}
= exp

{
i
h̄

Γ,mΣm
} ∫

dφ̃ exp
{

i
h̄
[
Sext

(
φ̃ + φ, φ∗, B

)
−FAφ̃A − Γ,m

(
σm
(

φ̃ + φA, B
)
− σm(φ, B)

)]}
. (67)

The representation (67) examined at a vanishing background Bµ reduces to the EA
with composite fields [70], albeit in the case of arbitrary (not limited to scalars) fields φA,
with a dependence of the composite fields σm on φA being generally more than quadratic.

We further assume the representation

Γ(B, Σ, φ, φ∗) = Sext(φ, φ∗, B) + h̄Γ(1)(B, Σ, φ, φ∗) + Γ2(B, Σ, φ, φ∗), (68)
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with a one-loop effective action Γ(1) and a functional Γ2 of order h̄2, which includes all the
two-particle-irreducible vacuum graphs depending on the antifields φ∗, with the vertices
determined by a functional Sint(φ̃, φ, . . .) = Sint(φ̃, φ, φ∗, B) given by the interaction part of
the quantum action and the non-quadratic part due to the composite fields:

Sint(φ̃, φ, . . .) ≡ Sext
(
φ̃ + φ, ...

)
− Sext(φ, ...)− Sext(φ, ...)

( ←−
δ

δφA +
1
2

←−
δ

δφA

←−
δ

δφB φ̃B

)
φ̃A

−FAφ̃A − Γ,m
[
σm(φ̃ + φ, B

)
− σm(φ, B)

]
. (69)

From the representation (7), (35), we obtain the relation

∑
n≥2

1
n!

Λm
An ...A1

(
h̄
i

)n−1 n

∏
k=1

−→
δ

δJAk

Z(B, J, L, φ∗) =

−→
δ

δLm
Z(B, J, L, φ∗), (70)

which can be recast6 in terms of the generating functional W(B, J, L, φ∗), W = (h̄/i) ln Z,

∑
n≥2

1
n!

Λm
An ...A1

(
h̄
i

)n−1
[

n

∏
k=1

−→
δ

δJAk

W + θn,2n
i
h̄

(
n−1

∏
k=1

−→
δ

δJAk

)
W
−→
δ

δJAn

W

+ . . . +
(

i
h̄

)n−1 n

∏
k=1

( −→
δ

δJAk

W

)]
=

−→
δ

δLm
W, (71)

with the Heaviside symbol θn,k = {0 (n ≤ k), 1 (n > k)}, as well as in terms of the EA:

∑
n≥2

1
n!

Λm
An ...A1

(
h̄
i

)n−1
[

n−2

∏
k=1

(
G′′−1

)Akak
−→
δ

δΦak

(
G′′−1

)An−1 An

+ θn,2n
i
h̄

φA1

(
n−2

∏
k=2

(
G′′−1

)Akak
−→
δ

δΦak

(
G′′−1

)An−1 An

)

+ . . . + n
(

G′′−1
)A1 A2

(
i
h̄

)n−2
(

n−3

∏
k=3

(
G′′−1

)Akak
−→
δ

δΦak

)(
G′′−1

)An−1 An

]
= Σm. (72)

From (67), we then find a representation for the one-loop approximation,

Γ(1)(B, Σ, φ, φ∗)− Γ,mΣm =
i
2

sTr ln
[
S′′ext(φ, φ∗, B)− Γ,m(σ

m)′′
(

φA, B
)]
|φ̃=0 , (73)

being a functional Clairaut type equation (see [71] for details), with the variables φ, φ∗, B
treated as parameters. The equation (73) can be solved as follows:

2Γ(1)(B, Σ, φ, φ∗) = sTr ln
[
(ΣmΥm)

abS̄′′ext|bc

]
− isTr ln

[
(ΣmΥm)

ab
]
+ isTr ln

(
S̄′′ext|βγ

)
− iδ(0)(n+ − n−), (74)

using a division of the discrete part of indices (A; B) = (x, a, α; y, b, β), m = (x, m̃), in the
form a, b = 1, . . . , n = (n+, n−) and α, β = n + 1, . . . , N = (N+, N−), with the property
m̃ = 1, . . . , 1

2 n(n + 1) ≤ 1
2 N(N + 1) implied by the supermatrices (σm)′′cd, as we impose

on the supermatrices (Υm)ab in (74) the following condition:

(Υm)
ab(σm)′′cd(φ, B)|φ̃=0 =

1
2

(
δa

c δb
d + δb

c δa
d

)
. (75)
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The supermatrices S̄′′ext|bc and S̄′′ext|βγ
are given by

S̄′′ext|bc(x, y) = S′′ext|bc(x, y)−
∫

dz dz′ S′′ext|bγ(x, z)
(

S′′−1
ext

)γδ
(z, z′)S′′ext|δc(z

′, y),

S′′ext|BC =

−→
δ

δφC Sext

←−
δ

δφB =

(
S′′ext|bc S′′ext|bγ

S′′ext|βc S′′ext|βγ

)
(x, y), (B; C) = (b, β, x; c, γ, y). (76)

For A = (x, a), the third term in (74) is vanishing, n = N, with S′′ext|BC ≡ S′′ext|bc =

S̄′′ext|bc, as in [71], albeit for a model featuring gauge invariance.

6. Gribov–Zwanziger Theory

Let us extend the case of background fields to the concept of Gribov horizon [8],
implemented in the Gribov–Zwanziger model [6,7] by using a composite field. We propose
three descriptions for the Gribov horizon introduction. To do so, we consider a Euclidean
form7 of the Faddeev–Popov action SFP(φ) for a Yang–Mills theory (8), (10), (11) in Landau
gauge χ

p
L(φ) = ∂µ Ap

µ and examine a non-local horizon functional H(A),

H(A) = γ2
∫

dDx
[∫

dDy f prtgAr
µ(x)

(
K−1

)pq
(x; y) f qstgAs|µ(y) + D

(
N2 − 1

)]
, (77)

where K−1 is the inverse,∫
dDz

(
K−1

)pr
(x; z)(K)rq(z; y) =

∫
dDz(K)pr(x; z)

(
K−1

)rq
(z; y) = δpqδ(x− y), (78)

of the Faddeev–Popov operator K in terms of the gauge condition ∂µ Ap
µ = 0,

Kpq(x; y) =
(

δpq∂2 + g f prq Ar
µ∂µ
)

δ(x− y), Kpq(x; y) = Kqp(y; x), (79)

and γ is a Gribov thermodynamic parameter [6,7]. The latter is introduced in a self-
consistent way by solving a gap equation (horizon condition) for a Gribov–Zwanziger
action SGZ = SGZ(φ),

∂Evac

∂γ
= 0, exp

(
−h̄−1Evac

)
≡
∫

dφ exp
(
−h̄−1SGZ

)
,

where Evac is the vacuum energy, and the action SGZ is given by

SGZ(φ) = SFP(φ)− H(A) . (80)

A generating functional of Green’s functions ZH(J, L) with composite fields for the
quantum theory in question can be presented in terms of a Faddeev–Popov action shifted
by a constant value, SFP(φ)− H(0),

ZH(J, L) = ZH(J,L)|L0=1, LM = (L0, Lm),

ZH(J,L) =
∫

dφ exp
{
−h̄−1

[
SFP(φ)− H(0) + JAφA + LMσM(A)

]}
, (81)

where LM = (L0, Lm)(x), ε(L0) = gh(L0) = 0, are sources to composite fields σM(A) =
(σ0, σm)(A), and σ0(A) ≡ σ(A) is a non-local field,

σ(A)(x) = γ2
∫

dDy f trpgAr
µ(x)(K̃−1)pq(x; y) f qstgAs|µ(y), (82)
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with K̃−1 being the inverse,∫
dDz (K̃−1)pr(x; z)(K̃)rq(z; y) =

∫
dDz (K̃)pr(x; z)(K̃−1)rq(z; y) = δpqδ(x− y), (83)

of an operator K̃ defined for a quantity Fp = Fp(x),∫
dDy (K̃)pq(x; y)Fq(y) ≡

[
∂µ, [Dµ(A), F]

]p
(x), Aµ(x) = Tp Ap

µ(x), F(x) = TpFp(x), (84)

which results in
K̃pq(x; y) = ∂µDpq

µ (A)δ(x− y), (85)

and therefore reduces to the operator K of (79), as one takes into account the Landau gauge
condition, due to SFP(φ), in the path integral (81). Note in conclusion that one cannot
absorb the constant term H(0) into σ(A)(x) while preserving the basic definition (7) for
composite fields. It should be noted that the horizon and therefore also the field σ(A)(x)
in (82) are not BRST-invariant.

6.1. Background Horizon Term

Let us now extend the generating functional ZH(J,L) with a non-local composite
field (81), (82), (83), (84) to the case of a background field Bµ equipped with a covariant
derivative Dµ(B) having the gauge properties (18), (19), by using the approach (2), (21) as
adapted to Euclidean QFT, which implies a modification of derivatives ∂µ → Dµ(B) in (81),
according to

ZH(B, J,L) = ZH(J,L)|∂µ→Dµ(B) =
∫

dφ exp
{
−h̄−1

[
SFP(φ, B)− H(0) + JAφA + LMσM(A, B)

]}
, (86)

where SFP(φ, B) is the Faddeev–Popov action in the Landau background gauge χ
p
L(φ, B) = 0,

see (30), and σ0(A, B) ≡ σ(A, B) is a non-local composite field on a background:

σ(A, B)(x) = γ2
∫

dDy f trpgAr
µ(x)(K̃−1

B )pq(x; y) f qstgAs|µ(y). (87)

Here, K̃−1
B is a modified operator K̃−1 as in (78), with the corresponding inverse K̃B

determined by the replacement K̃ → K̃B,∫
dDy (K̃)pq

B (x; y)Fq(y) ≡
[
Dµ(B), [Dµ(A + B), F]

]p
(x), F(x) = Fp(x)Tp, (88)

and having the manifest form

(K̃)pq
B (x; y) = Dpr

µ (B)Drq|µ(A + B)δ(x− y). (89)

In the particular case, cf. (81),

ZH(B, J, L) = ZH(B, J,L)|L0=1 ,

we arrive at the generating functional

ZH(B, J, L) =
∫

dφ exp
{
−h̄−1

[
SGZ(φ, B) + JAφA + Lmσm(A, B)

]}
, (90)

SGZ(φ, B) ≡ SFP(φ, B)− H(A, B),

with a non-local functional H(A, B) given by

H(A, B) = γ2
∫

dDx
[∫

dDy f prtgAr
µ(x)

(
K−1

B

)pq
(x; y) f qstgAs|µ(y) + D

(
N2 − 1

)]
, (91)
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where K−1
B is the inverse of an operator KB as in (83) which is identical with the operator K̃B

in (88) being expressed, due to SFP(φ, B) in (90), by using the background gauge condition
Dpq

µ (B)Aq|µ = 0 and the properties of f pqr, including the Jacobi identity,

KB(x; y) =
[
∂2 + g

(
∂µBµ

)
+ g
(

Aµ + 2Bµ

)
∂µ + g2(Aµ + Bµ

)
Bµ
]
δ(x− y), (92)

where Aµ, Bµ are matrices with the elements
(

Apq
µ , Bpq

µ

)
= f prq

(
Ar

µ, Br
µ

)
, and KB(x; y) is

related to K̃B(x; y) in (89) by the equality (see Appendix B.1)

KB(x; y) = K̃B(x; y)− g
[
Dµ(B), Aµ

]
δ(x− y) = Dµ(A + B)Dµ(B)δ(x− y). (93)

The operator KB is an extension of the original operator K in (79) and exhibits the
properties

KB|B=0 = K, (KB)
pq(x; y) = (KB)

qp(y; x), (94)

where the latter can be verified by a straightforward calculation:∫
dDy

[
(KB)

pq(x; y)− (KB)
qp(y; x)

]
Fq(y) = g f prq

[
Drs

µ (B)As|µ
]

Fq(x) = 0.

In view of (94), we interpret SGZ(φ, B) as a Gribov–Zwanziger action on a background
Bµ, with a non-local background horizon term H(A, B) given by (91), (93).

Since the consideration involves the action functionals SFP(φ) and SFP(φ, B), which
are invariant under respective global SU(N) transformations and localized SU(N) transfor-
mations combined with gauge transformations for Bp

µ, it is natural to analyze the behavior
of the generating functionals ZH(J) and ZH(B, J) with respect to these transformations.
For such a purpose, it is convenient to recast ZH(B, J) in a local form by extending the
configuration space along the lines of [72]. Namely, we introduce a set of commuting
(ϕ̄

pq
µ , ϕ

pq
µ ) and anticommuting (ω̄

pq
µ , ω

pq
µ ) auxiliary fields, where ϕ̄

pq
µ and ϕ

pq
µ are mutually

complex-conjugate ,

ε
(

ϕ̄
pq
µ , ϕ

pq
µ , ω̄

pq
µ , ω

pq
µ

)
= (0, 0, 1, 1), gh

(
ϕ̄

pq
µ , ϕ

pq
µ , ω̄

pq
µ , ω

pq
µ

)
= (0, 0,−1, 1)

This allows one to construct the parameterization

exp
{

h̄−1[H(A, B)− H(0, B)]
}
=
∫

dϕ̄ dϕ dω̄ dω exp
[
−h̄−1Sγ(A, B; ϕ̄ ϕ, ω̄, ω)

]
, (95)

where

Sγ =
∫

dDx
[
−ϕ̄

rp
µ Kpq

B ϕrq|µ + ω̄
rp
µ Kpq

B ωrq|µ + iγg f prq Ar|µ
(

ϕ̄
pq
µ + ϕ

pq
µ

)]
, (96)

as we imply

Kpq
B ϕ

rq
µ (x) =

∫
dDy Kpq

B (x, y)ϕ
rq
µ (y), Kpq

B ω
rq
µ (x) =

∫
dDy Kpq

B (x, y)ωrq
µ (y).

The auxiliary fields are regarded as BRST doublets [72] so that the Slavnov variation,
being in our case the operator←−s q of (29), can be extended as follows:(

ϕ̄
pq
µ , ϕ

pq
µ , ω̄

pq
µ , ω

pq
µ

)←−s q =
(

0, ω
pq
µ ,−ϕ̄

pq
µ , 0

)
.

These transformations, however, do not provide invariance for the functional Sγ:

Sγ
←−s q 6= 0.
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In the extended configuration space Φ = (φ, ϕ̄, ϕ, ω̄, ω), the generating functional
ZH(B, J) given by the restriction Lm = 0 in (90) acquires the form

ZH(B, J) =
∫

dΦ exp
{
−h̄−1

[
SGZ(Φ, B) + JAφA

]}
, (97)

where the local action SGZ(Φ, B) of the Gribov–Zwanziger theory on a background reads
(notice the antisymmetry of f pqr)

SGZ(Φ, B) = SFP(φ, B)− H(0, B)− iγg
∫

dDx Tr Aµ
(

ϕ̄µ − ϕT
µ

)
+
∫

dDx dDy Tr
[
−ϕ̄µ(x)KB(x, y)ϕT

µ(y) + ω̄µ(x)KB(x, y)ωT
µ(y)

]
. (98)

The action SGZ(Φ, B) is invariant under the global SU(N) transformations(
Aµ, Bµ, b, c̄, c, ϕ̄µ, ω̄µ, ωT

µ

)
U→ U

(
Aµ, Bµ, b, c̄, c, ϕ̄µ, ω̄µ, ωT

µ

)
U−1. (99)

Indeed, due to the unitarity of U, we also have

ϕ̄µ
U→ U ϕ̄µU−1 =⇒ ϕT

µ
U→ UϕT

µU−1,

and the manifest expression (92) for KB(x, y) consistently implies

KB(x, y) U→ UKB(x; y)U−1 =
(
K′
)

B(x; y),
(
K′
)

B(x; y) =
(
K′
)T

B(y; x). (100)

The infinitesimal form of field transformations (99), given by

δςFpq = g f prsFrqςs + g f qrsFprςs, Fpq =
(

Aµ, Bµ, b, c̄, c, ϕ̄µ, ϕT
µ, ω̄µ, ωT

µ

)pq
, (101)

produces a unit Jacobian (notice the antisymmetry of f pqr) in the integration measure of (97)
and leaves invariant the functional ZH(B, J) under infinitesimal global SU(N) transfor-
mations of the background field Bµ and the sources JA, having the adjoint representation
form

δςGpq = g f prsGrqςs + g f qrsGprςs, Gpq =
(

Bµ, Jµ(A), J(b), J(c̄), J(c)
)pq

. (102)

This behavior of ZH(B, J) includes the invariance of the restricted generating func-
tional ZH(J) under the global SU(N) transformations of the sources and can also be
established directly in the non-local form by using the properties of (K−1

B )(x; y),

(K−1
B )(x, y) U→ U(K−1

B )(x; y)U−1,
(

K−1
)

B
(x; y) = (K−1)T

B(y; x),

implied by (78), (100) and providing a global SU(N) invariance of the original H(A) =
H(A, 0) and the background-modified H(A, B) horizon functionals in (77), (91),(

Aµ, Bµ

) U→
(

Aµ, Bµ

)′
= U

(
Aµ, Bµ

)
U−1, H

(
A′, B′

)
= H(A, B).

Notably, it turns out that the global SU(N) invariance of the background functional
ZH(J, B) does not translate itself into a local symmetry. To prove this point, let us subject
the integrand in (97) to an infinitesimal local change of variables with a unitary matrix
V = V(ξ), ξ = ξ(x),

Φ V→ Φ′, Bµ
V→ B′µ = VBµV−1 + g−1V

(
∂µV−1

)
, (103)
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which implies a unit Jacobian and induces a variation δξSGZ(Φ, B) = δξ SK(Φ, B) in (98),

SK(Φ, B) ≡
∫

dDx dDy Tr
[
−ϕ̄µ(x)KB(x, y)ϕT

µ(y) + ω̄µ(x)KB(x, y)ωT
µ(y)

]
,

due to the parameterization term Sγ(Φ, B) in (95), (96),

SGZ
(
Φ′, B′

)
= SFP(φ, B)− H(0, B) + Sγ

(
Φ′, B′

)
.

Using the explicit form of KB(x, y) given by (93), we find8

SK(Φ, B) =
∫

dDx Tr
[
−ϕ̄µDν(A + B)Dν(B)ϕT

µ + ω̄µDν(A + B)Dν(B)ωT
µ

]
, (104)

so that the presence of extra derivatives ∂µV−1 and ∂2V−1 in the transformed expression

SK
(
Φ′, B′

)
=

∫
dDx Tr

[
−V ϕ̄µDν(A + B)Dν(B)ϕT

µV−1 + Vω̄µDν(A + B)Dν(B)ωT
µV−1

]
6=

∫
dDx Tr

[
−V−1V ϕ̄µDν(A + B)Dν(B)ϕT

µ + V−1Vω̄µDν(A + B)Dν(B)ωT
µ

]
,

leads to
SK
(
Φ′, B′

)
6= SK(Φ, B),

which also implies a local non-invariance of the background horizon functional,

H(A, B) V→ H
(

A′, B′
)
6= H(A, B).

As a consequence, we conclude that the background functional ZH(B, J) is not left-
invariant by the gauge transformations of the background field Bµ combined with the local
SU(N) transformations of the sources JA since the latter do not compensate the variation
δξ SGZ(Φ, B) 6= 0, due to δξ

(
JAφA) = 0. In other words, the global invariance of ZH(J) is

not inherited by a related local symmetry of ZH(B, J) in the theory (90), (91), (93).

6.2. Locally Invariant Horizon Term

The local non-invariance of the functional ZH(B, J) can be traced back to the fact that
the background Bµ is incorporated directly into the non-local horizon term via (93), whereas
the emergence of the auxiliary fields (ϕ̄µ, ϕµ) and (ω̄µ, ωµ) as a means of parameterizing
the term H(A, B) does not provide them with a covariant derivative in the form (21), as
one can observe from (104). To resolve this issue, it is natural to examine an alternative
way of introducing a background, namely, by using a local parameterization of the original
term H(A) prior to the point the background has been incorporated. To do so, we consider
the expressions (95), (96), (97), (98) restricted to Bµ = 0 and present the functional ZH(J)
in (81) as follows:

ZH(J) =
∫

dΦ exp
{
−h̄−1

[
SGZ(Φ) + JAφA

]}
, SGZ(Φ) = SGZ(Φ, 0), Φ = (φ, ϕ̄, ϕ, ω̄, ω).

For a treatment of the auxiliary fields (ϕ̄, ω̄) and
(

ϕT, ωT) on equal footing, notice
that the action SGZ(Φ) in the above integrand, with the Landau gauge condition ∂µ Aµ = 0
absorbed in the factor exp[−h̄SFP(φ)], is equivalent to an action SGZ(Φ) arising from the
replacement of K(x, y) by K(x, y), defined as a symmetrization:

K(x, y) ≡ 1
2
[
K(x, y) + K̃(x, y)

]
, K̃(x, y) = K(x, y) + g

[
∂µ, Aµ

]
δ(x− y). (105)
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The action SGZ(Φ) reads (see Appendix B.2)

SGZ(Φ) = SFP(φ)− H(0) + SK(Φ)− iγg
∫

dDx Tr Aµ
(

ϕ̄µ − ϕT
µ

)
, (106)

SK(Φ) ≡ 1
2

∫
dDx Tr

{
[Dν(A), ϕ̄µ]∂ν ϕT

µ + (∂ν ϕ̄µ)
[

Dν(A), ϕT
µ

]}
− (ϕ̄, ϕ→ ω̄, ω),

and implies a natural introduction of a background, SGZ(Φ)→ SGZ(Φ, B), in the form (21),

SGZ(Φ, B) = SFP(φ, B)− H(0) + SK(Φ, B)− iγg
∫

dDx Tr Aµ
(

ϕ̄µ − ϕT
µ

)
, (107)

SK(Φ, B) =
1
2

∫
dDx Tr

{
[Dν(A + B), ϕ̄µ]

[
Dν(B), ϕT

µ

]
+ [Dν(B), ϕ̄µ]

[
Dν(A + B), ϕT

µ

]}
−(ϕ̄, ϕ→ ω̄, ω) ≡

∫
dDx (−ϕ̄

pq
µ K

pq|rs
B ϕrs|µ + ω̄

pq
µ K

pq|rs
B ωrs|µ).

Using the notation∫
dDx FpqKpq|rs

B Grs ≡
∫

dDx dDy Fpq(x)Kpq|rs
B (x; y)Grs(y), ε(F) = ε(G),

for the expression

−1
2

∫
dDx Tr

{[
Dµ(A + B), F

]
[Dµ(B), G] +

[
Dµ(B), F

]
[Dµ(A + B), G]

}
,

we find, due to the (anti)symmetry of the latter under F ↔ G, the following property:

Kpq|rs
B (x; y) = Krs|pq

B (y; x).

Thereby, we interpret SGZ(Φ, B) in (107) as an alternative local Gribov–Zwanziger
action on the background Bµ, with the corresponding background horizon functional
H(A, B) given by

exp
{

h̄−1[H(A, B)−H(0, B)]
}
=
∫

dϕ̄ dϕ dω̄ dω exp
[
−h̄−1Sγ(Φ, B)

]
, H(0, B) ≡ H(0), (108)

where

Sγ(Φ, B) = SK(Φ, B)− iγg
∫

dDx Tr Aµ
(

ϕ̄µ − ϕT
µ

)
=

∫
dDx

[
−ϕ̄

pq
µ K

pq|rs
B ϕrs|µ + ω̄

pq
µ K

pq|rs
B ωrs|µ + iγg f prq Ar|µ

(
ϕ̄

pq
µ + ϕ

pq
µ

)]
.

The action SGZ(Φ, B) in (107) is manifestly invariant with respect to the local trans-
formations (103), which produces a unit Jacobian in the infinitesimal case and implies an
invariance of the background generating functional

ZH(B, J) =
∫

dΦ exp
{
−h̄−1

[
SGZ(Φ, B) + JAΦA

]}
, ZH(0, J) = ZH(J), (109)

under the following local transformations of the sources and the background field:

δξ Bp
µ = Dpq

µ (B)ξq, δξ(Jµ(A), J(b), J(c̄), J(c))
p = g f prq(Jµ(A), J(b), J(c̄), J(c))

rξq. (110)

This also means a local invariance of the alternative horizon functional H(A, B)
in (108),

δξH(A, B) = 0, δξ Bp
µ = Dpq

µ (B)ξq, δξ Ap
µ = g f prq Ar

µξq.
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As we introduce the generating functionals of connected WH(B, J) and vertex ΓH(B, φ)
Green’s functions on a background,

ZH = exp
(
−h̄−1WH

)
, ΓH(B, φ) = WH(B, J)− JAφA, φA =

−→
δ

δJA
WH, JA = −ΓH

←−
δ

δφA , (111)

the invariance of ZH(B, J) with respect to (110) can be recast as the invariance of ΓH(B, φ)
under the following local transformations, δξ ΓH = 0 (see Appendix B.3),

δξ Bp
µ = Dpq

µ (B)ξq, δξ(Aµ, b, c̄, c)p = g f prq(Aµ, b, c̄, c)rξq, (112)

which consist of the gauge transformations for the background field Bµ and of the local
SU(N) transformations for the quantum fields φA. These symmetry properties are readily
generalized to the case of extended functionals ZH(B, J), WH(B, J), ΓH(B, Φ), where J are
sources to the fields Φ, with the invariance δξ ZH = δξWH = δξ ΓH = 0 under the gauge
transformations of Bµ combined with the local SU(N) transformations of J or Φ so that the
background effective action Γeff(B) for the Gribov–Zwanziger model defined as

Γeff(B) = ΓH(B, Φ)|Φ=0 (113)

is invariant, δξ Γeff = 0, under the gauge transformations of the background field Bµ.

6.3. Local BRST Invariant Horizon Term

By considering a gauge-invariant horizon H
(

Ah
)
= H(A)|A=Ah of [73], involving

non-local transverse fields Ah
µ=(Ah)

p
µTp, the case of the background term becomes simpli-

fied using gauge- and BRST-invariant fields Ah
µ, defined9 according to [74], Aµ = Ah

µ + AL
µ,

Ah
µ =

(
ηµν −

∂µ∂ν

∂2

)(
Aν − g

[
∂A
∂2 , Aν − 1

2
∂ν ∂A

∂2

])
+ O(A3), Ah

µ
←−s = 0, (114)

H(A) = H(Ah) + γ2
∫

dDx dDy Rp(x, y)∂µ Ap
µ(y), H(Ah)←−s = 0, (115)

with a non-local function Rp(x, y) of [73]. Due to this structure, the second term in H(A)
can be added to the gauge-fixing term bp∂µ Ap

µ of the Faddeev–Popov action S0 + Ψ←−s in
a way reduced to a change of variables in ZH,Ψ given by the shift bp → bp + γ2Rp with a
unit Jacobian, which entirely removes the dependence on the BRST symmetry breaking
term entering ZH,Ψ. Thereby, the action

S̃GZ(φ) = S0 +
∫

dDx (c̄p∂µ Ap
µ)
←−s + H(Ah), φA←−s = (Dpq

µ cq, 0, bp, g/2 f pqrcqcr), (116)

provides independence under Rξ-gauges in the YM theory and the Standard Model [58,75],
with the Faddeev–Popov operator (K)pq(x, y) being unaltered and the BRST symmetry
unaffected, in which case one may expect the theory to be unitary in the framework
of the Faddeev–Popov quantization rules [51]. The same results concerning the issues
of unitarity and gauge-independence can be presented using the above fields Ah

µ in a
description of the Gribov–Zwanziger theory when the horizon functional is localized [6,72]
using a quartet of auxiliary fields φaux=(ϕ̄

pq
µ , ϕ

pq
µ , ω̄

pq
µ , ω

pq
µ ) having opposite Grassmann

parities, ε(ϕ, ϕ̄)=ε(ω, ω̄) + 1=0. Using the previously employed parameterization [72]
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of the gauge-invariant horizon H
(

Ah
)

in terms of φaux, namely, by setting Bµ = 0 and

replacing Kpq
B (A)→ Kpq(Ah) in (95), (96), we have

SGZ(φ, φaux) = S0(A) +
∫

dDx(c̄p∂µ Ap
µ)
←−s + S̃γ(Ah, φaux), (117)

S̃γ(Ah, φaux) =
∫

dDx
[
−ϕ̄

rp
µ Kpq(Ah)ϕrq|µ + ω̄

rp
µ Kpq(Ah)ωrq|µ

+ iγg f prq(Ah)r|µ
(

ϕ̄
pq
µ + ϕ

pq
µ

)
+ γ2D(N2 − 1)

]
. (118)

The part S̃γ additional to the Faddeev–Popov action is manifestly invariant under the
BRST transformations (9) combined with a trivial form of BRST transformations for the
auxiliary fields, φaux

←−s = 0, suggested for the first time in [75].
Despite a formally localized description, the Gribov–Zwanziger (GZ) action SGZ(φ, φaux)

in (117) remains in fact non-local due to the presence of the non-local field Ah
µ. To render the

action local, we use a parameterization in terms of a Stueckelberg-like field ζ p introduced
in [76] with the help of a matrix-valued field hpq defined by

Ah
µ = g−1hDµ(A)h−1 = hAµh−1 + g−1h∂µh−1, h = exp(−gζ pTp), (119)

and subject to the transversality condition, implying (114),

∂µ Ah
µ = 0. (120)

Given this, a completely local and BRST-invariant GZ action can be determined in an
extended configuration space parameterized by the fields

ΦA =
(

Ap|µ, bp, c̄p, cp; ϕ̄pq|µ, ϕpq|µ, ω̄pq|µ, ωpq|µ; hpq(ζ), τp, η̄p, ηp
)

, (121)

where ε(η̄) = ε(η) = ε(τ) + 1 = 1, and has the form

Sloc,GZ(φ, φaux) = SFP(φ)− H(0) + S̄γ(Ah, φaux, h(ζ), τ, η̄, η), (122)

S̄γ = S̃γ +
∫

dDx
[
τp∂µ(Ah)

p
µ − η̄pKpq(Ah)ηq

]
. (123)

A generating functional for the local BRST-invariant horizon is then given by

Zloc,H(J) =
∫

dΦ dΦloc exp
{
−h̄−1

[
Sloc,GZ(Φ) + JAφA

]}
, dΦloc = (dζ, dτ, dη̄, dη) (124)

(which is readily extended, along the lines of (90), to a generating functional Zloc,H(J, L)
with local composite fields), with the integrand being invariant under the following BRST
transformations:

ΦA←−s =
(

Dpq|µ(A)cq, 0, bp, g/2 f pqrcqcr; 0, 0, 0, 0; gcs(Ts)prhrq, 0, 0, 0
)

. (125)

In a matrix form, the transformation δh = h(ζ)←−s λ can be presented in terms of the
field ζ as follows:

gδζ = −gcλ + Z|δζ=−cλ ≡ gj(ζ)cλ, δζ = ζ←−s λ, (126)

where Z is given by the Baker–Campbell–Hausdorff formula

Z =
1
2
[X ,Y ] + 1

12
{[X , [X ,Y ]] + [Y , [Y ,X ]]}+ · · · , expX expY = exp(X + Y +Z),
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corresponding to the explicit values

X = −g(ζ + δζ), Y = gζ, [X ,Y ] = g2[ζ, δζ].

The expression (126) for δζ presents ζ p←−s as an expansion in powers of g, which is
also an explicit power series in ζ p. For instance, the linear approximation has the form

ζ p←−s = jpq(ζ)cq, jpq = −δpq +
g
2

f prqζr + O(g2).

The BRST-invariant GZ theory with the action (122) can be naturally extended to a
background-dependent GZ action Sloc,GZ(Φ, B), along the lines of the representation (107),

Sloc,GZ(Φ, B) = SFP(φ, B)− H(0) + Sloc,K(Φ, B)− iγg
∫

dDx Tr Ah
µ

(
ϕ̄µ − ϕµT

)
, (127)

Sloc,K(Φ, B) =
1
2

∫
dDx Tr

{[
Dν
(

Ah + B
)

, ϕ̄µ
][

Dν(B), ϕT
µ

]
+ [Dν(B), ϕ̄µ]

[
Dν

(
Ah + B

)
, ϕT

µ

]}
−
(

ϕ̄, ϕT → ω̄, ωT
)
+ 2
(

ϕ̄, ϕT → η̄, η
)
+ 2

∫
dDx Tr τ

[
Dµ(B), Ah

µ

]
≡

∫
dDx

[
−ϕ̄

pq
µ K

pq|rs
loc,B ϕrs|µ + ω̄

pq
µ K

pq|rs
loc,Bωrs|µ − η̄pKpq

loc,Bηq + τpDpq
µ (B)(Ah)q|µ

]
.

This action is background-invariant, including the corresponding generating func-
tional of Green’s functions,

Zloc,H(B, J, L, Φ∗) =
∫

dΦ dΦloc exp
{
−h̄−1[Sloc,GZ(Φ, B) + ζ∗p jpq(ζ)cq

+JAΦA + Lmσm(Φ, B)
]}

, Zloc,H(0, J, 0, 0)|J=J = Zloc,H(J), (128)

so that an effective action Γloc,eff(B, Σ) for the GZ theory featuring a local BRST-invariant
horizon with background and composite fields,

Γloc,eff(B, Σ) = Γloc(B, Φ, Σ, Φ∗)|Φ=Φ∗=0, (129)

proves to be invariant under the local transformations (60). This is a first main result of the
present subsection.

For the generating functionals of Green’s functions Zloc,H and Wloc,H , related by Zloc,H

= e−h̄−1Wloc,H and depending on (B, J, L, Φ∗) in (128), as well as for the effective action
Γloc(B, Φ, Σ, Φ∗) in (129) obtained by a Legendre transform of Wloc,H along the lines of (52),
we can derive modified Ward identities in the respective forms (42), (47), (53), as well as
the usual Ward identities (46), (51), (56), with appropriate Grassmann-odd operators ω̂H ,
Ω̂H , ω̂Γ,H . These identities are deduced starting from the FD BRST transformations (125),
∆ΦA = ΦA←−s λ(Φ), with a Grassmann-odd FD functional λ(Φ), further background-
extended as←−s →←−s q, λ(Φ)→ λ(Φ, B). The operators ω̂H , Ω̂H , ω̂Γ,H are constructed as
their counterparts ω̂, Ω̂, ω̂Γ of (43), (48), (54), albeit with a GZ action Sloc,GZ defined in a
space of variables which is larger than that for the Faddeev–Popov action SFP. For instance,
the operator ω̂H is given by

ω̂H =

[
JA + δAALmσm

,A

(
h̄
i

−→
δ

δJ
, B

)] −→
δ

δΦ∗A
, ω̂2

H = 0. (130)

A study of the gauge-dependence problem following the receipt of Section 4 leads to
the representations (61), (62), (63) for the respective finite variations ∆Zloc

Ψ ≡ ∆Zloc,H(B, J, L, Φ∗),



Universe 2023, 9, 18 24 of 39

∆Wloc
Ψ ≡ ∆Wloc,H(B, J, L, Φ∗), ∆Γloc

Ψ ≡ ∆Γloc,H(B, Φ, L, Φ∗) generated by finite variations
of the gauge Fermion ∆Ψ, so that ∆Zloc

Ψ = Zloc
Ψ+∆Ψ − Zloc

Ψ ,

∆Zloc
Ψ = ω̂Hλ

(
h̄
−→
δ

iδJ
, B|−∆Ψ

)
Zloc

Ψ =
i
h̄

ω̂H∆Ψ

(
h̄
−→
δ

iδJ
, B

)
Zloc

Ψ + o(∆Ψ), (131)

∆Wloc
Ψ =

h̄
i

Ω̂Hλ

(
h̄
−→
δ

iδJ
+

−→
δ Wloc

δJ
, B|−∆Ψ

)
= Ω̂H∆Ψ

(
h̄
−→
δ

iδJ
+

−→
δ Wloc

δJ
, B

)
+ o(∆Ψ), (132)

∆Γloc
Ψ =

h̄
i

ω̂Γ〈〈λ(B| − ∆Ψ)〉〉 = δΓloc,H + o(〈〈∆Ψ〉〉). (133)

As a result, the EA with composite and background fields for the GZ action Sloc,GZ
determined by the local BRST-invariant horizon does not depend on a variation of the
gauge condition on the extremals δΓloc,H/δΦA = δΓloc,H/δΣm = 0. Thereby, we can state
that the Gribov horizon defined using a composite field (being added to the Faddeev–Popov
quantum action) and the horizon defined without such a field lead to different forms of the
mass shell for the respective EA. This is a second main result of the present subsection.

By choosing local BRST-invariant composite fields σm = σm
(

A, Ah, B
)

, related in the
case of D = 4 to an emergence of dimension-two condensates, with Zloc,H(B, J, L) defined
along the lines of (90) according to(

σ1, σ2
)
=

1
2

(
Tr Ah

µ Ahµ, 2Tr
[

ϕ̄µ ϕT
µ − ω̄µωT

µ

])
,
(

σ1, σ2
)
=
(

σ1, σ2
)
(x), (134)

we arrive (for L1(x) = m2 and L2(x) = −M2) at a refined GZ action SRGZ in Landau gauge.
Using FD BRST transformations relating the integrands of generating functionals of Green’s
functions in Landau gauge and arbitrary Rξ-gauges, we obtain from (127) a refined GZ
action SLCG

RGZ in covariant gauges; see [77], Equation (34). Thereby, one can extend the related
study of renormalizability [77] for the resulting quantum action and generating functional
Zloc,H(B, J, L) in all orders of perturbation theory to the case of arbitrary local composite
fields. This is a third main result of the present subsection.

7. Two-Dimensional Gravity with Dynamical Torsion

Consider a theory of two-dimensional gravity with dynamical torsion described in
terms of a zweibein ei

µ and a Lorentz connection ωµ by the action [63]

S0(e, ω) =
∫

d2x e
(

1
16α

Rµν
ijRµν

ij −
1

8β
Tµν

iTµν
i − γ

)
, (135)

where α, β, γ are constant parameters. For indices of quantities transforming by the local
Lorentz group, we use Latin characters: i, j, k . . . (i = 0, 1); εij is a constant antisymmetric
second-rank pseudo-tensor subject to the normalization condition ε01 = 1. Greek characters
stand for indices of quantities transforming as (pseudo-)tensors under the general coordi-
nate transformations: λ, µ, ν . . . (λ = 0, 1). The Latin indices are raised and lowered by the
Minkowski metric ηij (+,−) and the Greek indices, by the metric tensor gµν = ηijei

µej
ν. The

following notation is used:

e = det ei
µ,

Rµν
ij = εijRµν, Rµν = ∂µων − (µ↔ ν), (136)

Tµν
i = ∂µei

ν + εijωµeνj − (µ↔ ν).
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The action (135) is invariant under the local Lorentz transformations ei
µ → e

′i
µ, ωµ →

ω
′
µ

e
′i
µ = (Λeµ)

i,

(Ω
′
µ)

i
j = (ΛΩµΛ−1)i

j + (Λ∂µΛ−1)i
j, (Ωµ)

i
j ≡ εikηkjωµ, (137)

or, infinitesimally, with a parameter ζ,

δei
µ = εijeµjζ, δωµ = −∂µζ, (138)

as well as under the general coordinate transformations, x → x
′
= x

′
(x),

ei
µ → e

′i
µ(x

′
) =

∂xλ

∂x′µ
ei

λ(x),

ωµ → ω
′
µ(x

′
) =

∂xλ

∂x′µ
ωλ(x), (139)

implying the infinitesimal field variations, with some parameters ξµ,

δei
µ = ei

ν∂µξν + (∂νei
µ)ξ

ν, δωµ = ων∂µξν + (∂νωµ)ξ
ν. (140)

The gauge transformations (138), (140) form a closed algebra:

[δζ(1), δζ(2)] = 0,

[δξ(1), δξ(2)] = δξ(1,2), (141)

[δζ , δξ ] = δ
ζ
′ ,

where
ξµ

(1,2) = ξν
(1)∂νξµ

(2) − (∂νξµ
(1))ξ

ν
(2), ζ

′
= (∂µζ)ξµ.

so that the Faddeev–Popov method applies to the given theory, with the total configuration
space φA given by the classical fields (ei

µ, ωµ), as well as by the Faddeev–Popov ghosts (c,
c, cµ, cµ) and the Nakanishi–Lautrup fields (b, bµ), according to the respective number of
gauge parameters ζ, ξµ in (138), (140). The fields φA = (ei

µ, ωµ; b, bµ; c, cµ, c, cµ) possess the
following Grassmann parity and ghost number :

ε
(

ei
µ, ωµ; b, bµ; c, cµ; c, cµ

)
= (0, 0; 0, 0; 1, 1; 1, 1),

gh
(

ei
µ, ωµ; b, bµ; c, cµ; c, cµ

)
= (0, 0; 0, 0;−1,−1; 1, 1)

Let us present a quantum theory for (135), (138), (140), (141) in the background field
method by following the treatment [53], based on an ansatz for the vacuum functional
(see also [3]) which corresponds to Z(B) of (32) in the case of Yang–Mills theories with the
Nakanishi–Lautrup fields eliminated using some background gauges. Namely, we assign
to the initial classical fields the sets of quantum Q and background B fields, which, in view
of further convenience, we denote by Q = (qi

µ, qµ) and B = (ei
µ, ωµ), with the associated

metric tensor gµν and the notation e, (Ωµ)i
j in (136), (137) being related to the background

fields alone. Let us also associate the gauge transformations (138), (140) with two kinds
of infinitesimal transformations, namely, background δb and quantum δq, introduced by
analogy with (33) so that the action S0(Q + B) in (135) should be left invariant under both
kinds of these transformations:
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δbei
µ = εijeµjζ + ei

ν∂µξν + (∂νei
µ)ξ

ν, δbqi
µ = εijqµjζ + qi

ν∂µξν + (∂νqa
µ)ξ

ν,
δbωµ = −∂µζ + ων∂µξν + (∂νωµ)ξν, δbqµ = qν∂µξν + (∂νqµ)ξν,

(142)

δqei
µ = 0, δqqi

µ = εij(eµj + qµj)ζ + (ei
ν + qi

ν)∂µξν + (∂νei
µ + ∂νqi

µ)ξ
ν,

δqωµ = 0, δqqµ = −∂µζ + (ων + qν)∂µξν + (∂νωµ + ∂νqµ)ξν.
(143)

Following [53], we introduce an analogue [3] of the generating functional of Green’s
functions, as we denote (c̄, c̄µ, c, cµ) = (C, C),

Z(B, J) =
∫

dQ dC dC exp
{

i
h̄

[
S0(Q + B) + Sgf(Q, B) + Sgh(Q, B; C, C) + JQ

]}
, (144)

where J = (Jµ
i , Jµ) are sources to the quantum fields Q = (qi

µ, qµ), and the functional
Sgf = Sgf(Q, B) is determined by some background gauge functions χ, χµ for the respective
gauge parameters ζ, ξµ, according to the condition of invariance under the background
transformations, δbSgf = 0, with the ghost term Sgh = Sgh(Q, B; C, C) given by the rule

Sgh =
∫

d2x (cδqχ + cµδqχµ)
∣∣
(ζ,ξµ)→(c,cµ)

. (145)

The background gauge functions χ = χ(Q, B) and χµ = χµ(Q, B) will be chosen,
according to [53], as linear in the quantum fields Q = (qi

µ, qµ),

χ = egµν∇µqν , χµ = egλνeµi∇λqi
ν , (146)

where e, gµν are determined by the background fields ei
µ (gµλgλν = δ

µ
ν , gµν = ηijei

µej
ν,

e = det ei
µ), and ∇µ is a covariant derivative, whose action on an arbitrary (psedo-)tensor

field Tν1 ...νl
µ1 ...µk

j1 ...jn
i1 ...im is given in terms of (Ωµ)i

j = εikηkjωµ and the Christoffel symbols Γλ
µν

Γλ
µν =

1
2

gλσ(∂νgµσ + ∂µgνσ − ∂σgµν) (147)

by the rule

∇µTν1 ...νl
µ1 ...µk

j1 ...jn
i1 ...im = ∂µTν1 ...νl

µ1 ...µk
j1 ...jn
i1 ...im − Γλ̂

µ{µ}T
ν1 ...νl
µ1 ...λ̂...µk

j1 ...jn
i1 ...im + Γ{ν}

µλ̂
Tν1 ...λ̂...νl

µ1 ...µk
j1 ...jn
i1 ...im

+ (Ωµ)
{j}
p̂ Tν1 ...νl

µ1 ...µk
j1 ... p̂...jn
i1 ...im − (Ωµ)

p̂
{i}T

ν1 ...νl
µ1 ...µk

j1 ...jn
i1 ... p̂...im , (148)

with the notation (A23) so that the covariant derivative ∇µ has the usual properties (F, G
are arbitrary (pseudo-)tensor fields)

∇σgµν = ∇σgµν = 0, ∇µ(FG) = F∇µG + (∇µF)G. (149)

The above ingredients allow one to construct the gauge-fixing term Sgf as a functional
being quadratic in χ, χµ (with certain numeric parameters a, b)

Sgf =
1
2

∫
d2x e−1

(
aχ2 + bχµχµ

)
(150)

and invariant under the local Lorentz transformations

e
′i
µ = (Λeµ)

i, q
′i
µ = (Λqµ)

i,

(Ω
′
µ)

i
b = (ΛΩµΛ−1)i

j + (Λ∂µΛ−1)i
j, q

′
µ = qµ, (151)
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as well as under the general coordinate transformations, x → x
′
= x

′
(x),

e
′i
µ(x

′
) =

∂xλ

∂x′µ
ei

λ(x), ω
′
µ(x

′
) =

∂xλ

∂x′µ
ωλ(x),

q
′i
µ(x

′
) =

∂xλ

∂x′µ
qi

λ(x), q
′
µ(x

′
) =

∂xλ

∂x′µ
qλ(x). (152)

Indeed, the infinitesimal form of field transformations implied by (151) and (152) is identical
to the background transformations (142), which satisfies the requirement δbSgf = 0. Given
this and the fact that the non-vanishing quantum transformations (143), with allowance
for (148), can be represented as (ζ → c, ξµ → cµ)

δqqi
µ = εij(eµj + qµj)c + (ei

ν + qi
ν)∇µcν + (∇νei

µ +∇νqi
µ)c

ν − εijων(eµj + qµb)cν,

δqqµ = −∇µc + (ων + qν)∇µcν + (∇νωµ +∇νqµ)cν,

the ghost contribution Sgh in (145) acquires the form

Sgh =
∫

d2x e
{
−c∇µ∇µc + c∇µ[(∇νωµ +∇νqµ)cν + (ων + qν)∇µcν]

+εijcµeµi∇ν[(eνj + qνj)(c−ωλcλ)]

+ cµeµi∇ν[(∇λei
ν +∇λqi

ν)c
λ + (ei

λ + qi
λ)∇νcλ]

}
. (153)

The quantum action in (144), determined by (135), (146), (150), (153), proves to be
invariant (as well as the integrand in (144) at the vanishing sources J = 0, within the
usual assumption δ(x) = ∂µδ(x)

∣∣
x=0 = 0) under the background transformations (142),

combined with a set of compensating local transformations for the ghost fields [53],

δc = (∂µc)ξµ, δcµ = −cν∂νξµ + (∂νcµ)ξν,
δc = −cµ∂µζ + (∂µc)ξµ, δcµ = −cν∂νξµ + (∂νcµ)ξν.

(154)

As a consequence of (142), (154), the generating functional Z(B, J) in (144) is in-
variant [53] under the initial gauge transformations (138), (140) of the background fields
B = (ei

µ, ωµ), combined with the following local transformations of the sources J = (Jµ
i , Jµ):

δJµ
i = −εk

i Jµ
k ζ − Jν

i ∂νξµ + ∂ν(Jµ
i ξν), δJµ = −Jν∂νξµ + ∂ν(Jµξν), εi

j ≡ εikηkj . (155)

On the one hand, this ensures the property

δ(JQ) =
∫

d2x ∂µFµ , Fµ(x) ≡
(

Jν
i qi

ν + Jνqν

)
ξµ

for the source term JQ in (144), and, on the other hand, this extends a tensor transforma-
tion law for the sources Jµ

i and Jµ, at the infinitesimal level, by including the respective
contributions Jµ

i ∂νξν and Jµ∂νξν,

δJµ
i =

[
−εk

i Jµ
k ζ − Jν

i ∂νξµ + (∂ν Jµ
i )ξ

ν
]
+ Jµ

i ∂νξν, δJµ = [−Jν∂νξµ + (∂ν Jµ)ξν] + Jµ∂νξν.

Due to the invariance of Z(B, J) = exp{(i/h)W(B, J)} under (138), (140), (155), one
achieves an invariance [53] of the functional Γ = Γ(B, Q) given by

Γ(B, Q) = W(B, J)− JQ, Q =
δW
δJ

, J = − δΓ
δQ

, Q = (qi
µ, qµ) (156)
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under the background transformations (142) of the fields B and Q (see Appendix C.1)

δbΓ =
∫

d2x
[

δΓ
δB(x)

δbB(x) +
δΓ

δQ(x)
δbQ(x)

]
= 0, (157)

which implies that the effective action Γeff(B) of the background field method defined by

Γeff(B) = Γ(B, Q)|Q=0 ,

is invariant under the gauge transformations (138), (140) of the background fields
B = (ei

µ, ωµ).
Let us proceed to extend the generating functional (144), suggested in [53], with

the entire quantum action now denoted by S(Q, B; C, C), to a functional Z(B, J, L), as we
introduce some background-dependent composite fields σm(Q, B) with sources Lm,

σm(Q, B) = σ
i1···ik
µ1···µl (Q(x), B(x)), Lm = Lµ1···µl

i1···ik (x), m = (x, i1, . . . , ik, µ1, . . . , µl),

namely,

Z(B, J, L) =
∫

dQ dC dC exp
{

i
h̄
[
S(Q, B; C, C) + JQ + Lmσm(Q, B)

]}
. (158)

In doing so, we require that the extended functional Z(B, J, L) should inherit the local
symmetry of Z(B, J) under the transformations (138), (140), (155) of the background fields
B = (ei

µ, ωµ) and the sources J = (Jµ
i , Jµ). To this end, we demand that the composite fields

σi1···im
µ1···µn(x) = σi1···im

µ1···µn(Q(x), B(x)) transform as tensors with respect to the Lorentz (151) and
general coordinate (152) transformations of the quantum Q and background B fields,

σ
′i1···im
µ1···µn(x) = Λi1

j1
· · ·Λim

jm σ
j1···jm
µ1···µn(x) ,

σ
′i1···im
µ1···µn(x

′
) =

∂xν1

∂x′µ1
· · · ∂xνn

∂x′µn
σi1···im

ν1···νn(x) , x
′
= x

′
(x) . (159)

In general, a composite field σi1···im
µ1···µn(Q, B) subject to (159) is multiplicative with respect

to the quantum fields Q = (qi
µ, qµ) and the background field ingredients ei

µ, gµν, Rµν
ij,

Tµν
i, see (136); besides, it may contain a number of background covariant derivatives ∇µ

acting according to (148), (147), with the properties (149). It is obvious, however, that
the composite fields subject to the restriction σi1···im

µ1···µn(Q, 0) 6= 0 are allowed to contain the
background fields B only via covariant derivatives ∇µ, given in terms of Γλ

µν, (Ωµ)i
j and

acting on qi
µ, qµ, namely,

∇µqi
ν = ∂µqi

ν − Γλ
µνqi

λ + (Ωµ)
i
jq

j
ν , ∇µqν = ∂µqν − Γλ

µνqλ .

Infinitesimally, the transformations (159) correspond to local tensor variations δσi1···im
µ1···µn

with parameters ζ and ξµ,

δσi1···im
µ1···µn = ε

{i}
p̂ σ

i1··· p̂···im
µ1···µn ζ + σi1···im

µ1···ν̂···µn
∂{µ}ξ

ν̂ + (∂νσi1···im
µ1···µn)ξ

ν, (160)

Given this assumption and the invariance of the vacuum functional in (158) under
the background transformations (142) combined with the compensating local transforma-
tions (154) of the ghost fields, the extended generating functional Z(B, J, L) in (158) proves
to be invariant under the initial gauge transformations (138), (140) of the background fields
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B = (ei
µ, ωµ) combined with the local transformations (155) of the sources J =

(
Jµ
i , Jµ

)
and

some local transformations of the sources Lµ1···µn
i1···im , namely,

δLµ1···µn
i1···im = −ε

p̂
{i}L

µ1···µn
i1··· p̂···im ζ − Lµ1···ν̂···µn

i1···im ∂ν̂ξ{µ} + ∂ν(Lµ1···µn
i1···im ξν) , (161)

which differs from the (infinitesimal) tensor transformation law by the contribution
Lµ1···µn

i1···im ∂νξν,

δLµ1···µn
i1···im =

[
−ε

p̂
{i}L

µ1···µn
i1··· p̂···im ζ − Lµ1···ν̂···µn

i1···im ∂ν̂ξ{µ} + (∂νLµ1···µn
i1···im )ξν

]
+ Lµ1···µn

i1···im ∂νξν ,

and provides for the source term Lmσm in (158) the corresponding property

δ(Lmσm) =
∫

d2x ∂µGµ , Gµ ≡ Lν1···νn
i1···im σi1···im

ν1···νn ξµ .

The invariance of Z(B, J, L) and the subsequent invariance of W(B, J, L) = (h/i)
ln Z(B, J, L) can be recast, with the corresponding variations δB, δJ, δL given by (138), (140),
(155), (161), in the form, Y = {Z, W},

∫
d2x

[
δB(x)

δ

δB(x)
+ δJ(x)

δ

δJ(x)
+ δLµ1···µn

i1···im (x)
δ

δLµ1···µn
i1···im (x)

]
Y(B, J, L) = 0. (162)

Let us consider a functional Γ = Γ(B, Q, Σ) given by the double Legendre transformation

Γ(B, Q, Σ) = W(B, J, L)− JQ− Lm[σ
m(Q, B) + Σm] (163)

in terms of additional fields Σm = Σi1···im
µ1···µn(x),

Q =
δW
δJ

, Σm =
δW
δLm
− σm

(
δW
δJ

, B
)

, −J =
δΓ
δQ

+ Lm
δσm

δQ
, −Lm =

δΓ
δΣm .

Then, the effective action Γeff(B, Σ) with composite and background fields,

Γeff(B, Σ) = Γ(B, Q, Σ)|Q=0 , (164)

is invariant, as a consequence of (162), under a set of local transformations given by the
gauge transformations (138), (140) of the background fields B = (ei

µ, ωµ) combined with
the infinitesimal local tensor transformations (see Appendix C.2)

δΣi1···im
µ1···µn = ε

{i}
p̂ Σi1··· p̂···im

µ1···µn ζ + Σi1···im
µ1···ν̂···µn

∂{µ}ξ
ν̂ + (∂νΣi1···im

µ1···µn)ξ
ν (165)

of the additional fields Σi1···im
µ1···µn , cf. (159), (160).

8. Summary

The present work is devoted to quantum non-Abelian gauge models with composite
and background fields. According to the principal research issues listed in the Introduction,
the following tasks are completed:

1. A generating functional (23), (35) of Green’s functions was introduced for composite
and background fields in Yang–Mills theories. The corresponding symmetry properties
were investigated, as well as the properties of a generating functional (52), (58) of vertex
Green’s functions (effective action). These properties can be expressed in a differential
form as the relations (25), (46), (56), (59), where (25), (59) reflect the gauge transforma-
tions (24), (60), which consist of local SU(N) transformations accompanied by gauge trans-
formations of a background field Bµ, whereas (46), (56) are related to the BRST symmetry
transformations (29), (31) with a modified Slavnov variation←−s q depending on Bµ.
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2. On the basis of the above BRST transformations, we have proposed, for the first
time, a set of finite field-dependent BRST (FD BRST) transformations (36), including a
background field dependence, and studied their properties; see Appendix A.1.

3. Using the finite FD BRST transformations, we investigated the related (modi-
fied) Ward identities (40), (44), (47), (53), depending on an FD parameter, as well as the
gauge dependence (61), (62), (63) of the above generating functionals with composite and
background fields. It should be noticed that the modified Ward identities for a constant
anticommuting parameter are reduced to the familiar identities (46), (51), (56) of [68,69].
A gauge variation of the effective action was found in terms of a nilpotent operator (54)
depending on the composite and background fields, and the conditions (64) of on-shell
gauge-independence were established. A procedure of loop expansion for the effective
action with composite and background fields was examined to determine the representa-
tion (73) for a one-loop effective action.

4. The Gribov–Zwanziger theory [6] was examined, being a quantum Yang–Mills
theory incorporating the presence of a Gribov horizon [8] in terms of a non-local composite
field. The theory [6] was extended (109) by introducing a background field Bµ and shown
to provide an effective action (111), (113) invariant under the gauge transformations of Bµ.
The same result is shown to hold for the effective action (129) of a GZ theory having a local
BRST-invariant horizon with background and additional local composite fields. A quantum
action was suggested, having a local BRST-invariant horizon (127) with background and
composite fields. The corresponding generating functional of Green’s functions extends the
scope of the study [77], devoted to renormalizability in the presence of local BRST-invariant
quadratic composite fields (134), to the case of arbitrary local composite fields in the
background formalism. The problem of gauge independence was studied for the effective
action (EA) with composite and background fields, starting from the Gribov–Zwanziger
action (127). It was shown (133) that the EA does not depend on a variation of the gauge
condition on the extremals. This makes it possible to conclude that the Gribov horizon,
when defined with a composite field (added to the Faddeev–Popov quantum action) and
without such a field, leads to different mass-shell conditions. The only representation
using the Gribov–Zwanziger quantum action that is physically relevant is the one with an
on-shell non-vanishing Gribov mass parameter γ.

5. The model of two-dimensional gravity with dynamical torsion by Volovich and
Katanaev [63] was considered, being quantized according to the background field method
in [53] and featuring a gauge-invariant effective action, due to (157). The quantized two-
dimensional gravity [53] was generalized to the presence of composite fields (158), and
the corresponding effective action (163), (164) with composite and background fields was
found to be gauge-invariant under (138), (140), (165), in a way similar to the Yang–Mills
case, cf. (60).

Possible applications of the approach developed in the present work can be the
following. The present study of Yang–Mills theories can be employed to include the
QCD gauge theory of strong interactions with the SU(3) gauge group for the purpose of
describing hadron particles (mesons and baryons) as composite fields. The part related
to the two-dimensional gravity with dynamical torsion can be turned to the advantage of
dealing with the so-called generalized Lagrange space (for metric fields) so as to exploit its
properties of curvature, torsion and deflection in order to take into account the asymmetries
and anisotropies emerging in physical phenomena mostly at the cosmological level. The
suggested background gauge-invariant effective action for the Gribov–Zwanziger theory
appears to be promising as a next point in a renormalization analysis of the Gribov–
Zwanziger model, as one accounts for both the non-local and localized BRST-invariant
Gribov horizon in the background formalism, while extending the scope of [77]. Finally,
the general approach to Yang–Mills theories with composite and background fields can
be extended to the case of field-dependent BRST–anti-BRST symmetry along the lines
of [55–58].
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Appendix A. Yang–Mills Theory

Appendix A.1. Background FD BRST Transformations

The transformations of the fields
(

Aµ, b, c̄, c
)

induced by a Slavnov generator ←−s q,
which depends on a background field Bµ in (29), and parameterized by a finite FD
Grassmann-odd functional λ(φ, B) in (36) represent finite FD BRST transformations with
a background field in Yang–Mills theories. The Jacobian Sdet‖δφ′/δφ‖ for a change of
variables induced by the transformations (36) in the path integral (35) can be expressed
according to the recipe [28,52],

Sdet
∥∥δφ′/δφ

∥∥ = exp

[
Str ln

(
δA

B +

←−
δ (φA←−s qλ)

δφB

)]
= exp

[
−Str ∑

n=1

(−1)n

n

(
δ(φA←−s qλ)

δφB

)n]

= exp

[
−

∞

∑
n=1

(−1)n

n
Str

(
φA←−s qλ

←−
δ

δφB

)n]
=
[
1 + λ(φ, B)←−s q

]−1. (A1)

In calculating the Jacobian, we used the properties
←−
δ (φA←−s q)

δφB (φB←−s q) = 0 and
←−
δ (φA←−s q)

δφA

λ = 0, due to the antisymmetry of the structure constants f pqr. For a vanishing background
field Bµ, the Jacobian (A1) assumes the usual form [52].

https://arxiv.org/
https://arxiv.org/
https://arxiv.org/
http://portal.if.usp.br/bib/pt-br/node/450
http://portal.if.usp.br/bib/pt-br/node/450
http://publica-sbi.if.usp.br/PDFs/pd1746.pdf
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The invariance of the quantum action Sext(φ, φ∗, B) in (35) with respect to the finite FD
BRST transformations (36) implies that a change φA → φ′A = φA[1 +←−s qλ(φ, B)] induces
in (35) a transformation of the integrand IΨ

φ,φ∗ ,B , namely,

IΨ
φ+φ←−s qλ,φ∗ ,B = dφ exp

(
ln Sdet

∥∥δφ′/δφ
∥∥) exp

[
(i/h̄)Sext

(
φ + φ←−s qλ, φ∗, B

)]
= dφ exp

{
(i/h̄)

[
Sext

(
φ + φ←−s qλ, φ∗, B

)
− ih̄ ln Sdet

∥∥δφ′/δφ
∥∥]}, (A2)

and therefore

IΨ
φ+φ←−s qλ,φ∗ ,B = dφ exp

{
(i/h̄)

[
Sext(φ, φ∗, B) + ih̄ ln

(
1 + λ←−s q

)]}
. (A3)

Due to the explicit form of the initial quantum action SΨ
ext = S0(A) + Ψ(φ, B)←−s q +

φ∗A(φ
A←−s q) in (8), (35), the BRST-exact contribution ih̄ ln

(
1 + λ(φ, B)←−s q

)
to SΨ

ext can then
be interpreted as a change of the gauge-fixing Fermion made in the original integrand
IΨ

φ,φ∗ ,B :

ih̄ ln
(
1 + λ(φ, B)←−s q

)
= (∆Ψ)←−s q (A4)

=⇒ IΨ
φ+φ←−s qλ(φ,B),φ∗ ,B = dφ exp

{
(i/h̄)

[
S0 + (Ψ + ∆Ψ)←−s q + φ∗A(φ

A←−s q)
]}

= IΨ+∆Ψ
φ,φ∗ ,B , (A5)

with a certain ∆Ψ(φ, B|λ), whose correspondence to λ(φ, B) is established by the rela-
tion (A4), which is a familiar compensation equation for an unknown parameter λ(φ, B)
now including a certain background Bµ, and which implies the gauge-independence of
the vacuum functional, ZΨ(B, φ∗) = ZΨ+∆Ψ(B, φ∗), in (39). An explicit solution of (A4)
satisfying the solvability condition due to the BRST exactness of both sides (up to BRST
exact terms) is given by (38).

Appendix A.2. Legendre Transformation: Differential Consequences

The operator ω̂Γ in (54) is obtained from Ω̂ in (47) with the help of a Legendre trans-
formation and differential consequences of the usual Ward identities (46), (51) for Z, W, by
using differentiation with respect to JA, Lm, namely,

Ω̂ φA
∣∣∣

J,L
=

−→
δ Γ

δφ∗A
(−1)εA − i

h̄

[
Γ
←−
δ

δΣm

(
σm

,C(φ̂, B)
−→
δ Γ

δφ∗C

)
, φA

}
, (A6)

Ω̂ Σm|J,L =
[
σm

,A(φ̂, B)− σm
,A(φ, B)

]−→δ Γ
δφ∗A
− i

h̄

[
Γ
←−
δ

δΣm

(
σm

,C(φ̂, B)
−→
δ Γ

δφ∗C

)
, Σm

}

− i
h̄

[
Γ
←−
δ

δΣn

(
σn

,C(φ̂, B)
−→
δ Γ

δφ∗C

)
, σm(φ, B)

}

+
i
h̄
(−1)ε(σm)+ε(φD)σm

,D(φ, B)

[
Γ
←−
δ

δΣn

(
σn

,C(φ̂, B)
−→
δ Γ

δφ∗C

)
, φD

}

+(−1)ε(σm)+ε(φD)ε(φA)

[
σm

,D(φ, B), Γ
←−
δ

δΣn σn
,A(φ̂, B)

}(
G′′−1

)Aa
( −→

δ

δΦa

−→
δ Γ

δφ∗D

)
, (A7)

as we calculate the variational derivatives according to the definitions (52),

−→
δ

δφ∗A

∣∣∣∣∣
J,L

=

−→
δ

δφ∗A

∣∣∣∣∣
φ,Σ

+

−→
δ φB

δφ∗A

−→
δ

δφB

∣∣∣∣∣
φ∗ ,Σ

+

−→
δ Σm

δφ∗A

−→
δ

δΣm

∣∣∣∣∣
φ∗ ,φ

, (A8)

with allowance for (55).
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Appendix A.3. Background Effective Action: Gauge Invariance

The invariance of Z(B, J, L, φ∗) in (35) and that of the related functional W(B, J, L, φ∗)
under the set of local transformations (24), (57) translates itself into an extension of (25), as
we denote Y = {Z, W},

∫
dDx

{[
Dpq

µ (B)ξq
] −→δ

δBp
µ

+ gξq f {p}r̂qLp1···r̂···pi
µ1···µj

−→
δ

δLp1···pi
µ1···µj

(A9)

+gξq f prq

Jr|µ
(A)

−→
δ

δJp|µ
(A)

+ Jr
(b)

−→
δ

δJp
(b)

+ Jr
(c̄)

−→
δ

δJp
(c̄)

+ Jr
(c)

−→
δ

δJp
(c)


+ gξq f prq

(
A∗rµ

−→
δ

δA∗p
µ

+ b∗r
−→
δ

δb∗p + c̄∗r
−→
δ

δc̄∗p + c∗r
−→
δ

δc∗p

)}
Y(B, J, L, φ∗) = 0.

The functional Γ(B, φ, Σ, φ∗) in (52) satisfies the subsequent identity

∫
dDx

{[
Dpq

µ (B)ξq
] −→δ

δBp
µ

− gξq f {p}r̂q
[
Σp1···pk

µ1···µl + σ
p1···pk
µ1···µl (φ, B)

] −→
δ

δΣp1···r̂···pk
µ1···µl

(A10)

−gξq f prq

(
Ap|µ

−→
δ

δAr|µ + bp
−→
δ

δbr + c̄p
−→
δ

δc̄r + cp
−→
δ

δcr

)

+gξq f prq

(
A∗rµ

−→
δ

δA∗p
µ

+ b∗r
−→
δ

δb∗p + c̄∗r
−→
δ

δc̄∗p + c∗r
−→
δ

δc∗p

)

+ gξq f prq

(
Ap|µ

−→
δ

δAr|µ + bp
−→
δ

δbr + c̄p
−→
δ

δc̄r + cp
−→
δ

δcr

)
σm(φ, B)

−→
δ

δΣm

}
Γ(B, φ, Σ, φ∗) = 0,

where the terms containing the derivatives of σm = σm(φ, B) over φA =
(

Ar|µ, br, c̄r, cr
)
(x)

are understood in the form

−→
δ σm

δφA

−→
δ

δΣm =
∫

dDy
−→
δ

δφA σ
p1···pk
µ1···µl (y)

−→
δ

δΣp1···pk
µ1···µl (y)

.

Then the functional Γeff(B, Σ) defined by (58) satisfies the relation (59) as a consequence
of the equality

f {p}r̂qΣp1···pk
µ1···µl

−→
δ

δΣp1···r̂···pk
µ1···µl

= − f {p}r̂qΣp1···r̂···pk
µ1···µl

−→
δ

δΣp1···pk
µ1···µl

, (A11)

implied by the notation f {p}r̂q in (15) and by the antisymmetry of the structure constants:

f psrsqΣp1···ps ···pk
µ1···µl

−→
δ

δΣp1···rs ···pk
µ1···µl

= − f rs psqΣp1···ps ···pk
µ1···µl

−→
δ

δΣp1···rs ···pk
µ1···µl

= − f psrsqΣp1···rs ···pk
µ1···µl

−→
δ

δΣp1···ps ···pk
µ1···µl

. (A12)

Appendix B. Gribov–Zwanziger Theory

Appendix B.1. Background-Dependent Faddeev–Popov Operator

From the expression (89) for (K̃)pq
B (x; y) written in the matrix form

K̃B(x; y) = Dµ(B)Dµ(A + B)δ(x− y) (A13)

it follows that

K̃B(x; y) =
[
∂2 + g

(
∂µ Aµ

)
+ g
(
∂µBµ

)
+ g(Aµ + 2Bµ)∂µ + g2Bµ

(
Aµ + Bµ

)]
δ(x− y).
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Subtracting from this matrix the expression for KB(x; y) given by (92), we find

K̃B(x; y)− KB(x; y) = g
{(

∂µ Aµ
)
+ g
[
Bµ, Aµ

]}
δ(x− y) = g

[
Dµ(B), Aµ

]
δ(x− y). (A14)

where, in virtue of the Jacobi identity for the structure constants f pqr,[
Dµ(B), Aµ

]pq
=
(
∂µ Aµ + g

[
Bµ, Aµ

])pq
= f prqDrs

µ (B)As|µ.

which proves that the matrix K̃B(x; y) defined by (89) does indeed reduce to KB(x; y) in (92)
under the background gauge condition Dpq

µ (B)Aq|µ = 0, and also that the two matrices are
related by (93).

Appendix B.2. Gribov–Zwanziger Local Action: Alternative Representation

Consider the integral expression

〈F, G〉 ≡
∫

dDx dDy Tr F(x)K(x, y)G(y), (A15)

constructed using the matrix K(x, y) in (105),

K(x, y) =
1
2
[
K(x, y) + K̃(x, y)

]
δ(x− y),

where the matrix elements of K(x, y) and K̃(x, y) are given by (79), (85), which implies

K(x, y) =
1
2
[Dν(A)∂ν + ∂νDν(A)]δ(x− y). (A16)

The expression (A15) then transforms into

〈F, G〉 = 1
2

∫
dDx Tr F[Dν(A)∂ν + ∂νDν(A)]G, (A17)

and integration by parts results in

〈F, G〉 = 1
2

∫
dDx Tr[−(∂νF)∂νG− (∂νF)∂νG + gFAν∂νG− g(∂νF)AνG]. (A18)

As we rewrite FAν = −[Aν, F] + AνF, AνG = [Aν, G]− GAν and use a permutation
under the sign of Tr, the expression (A18) transforms into

〈F, G〉 = −1
2

∫
dDx Tr{[Dν(A), F]∂νG + (∂νF)[Dν(A), G]− gAν[F∂νG + (∂νF)G]}.

Applying this result to the settings

(F, G) =
(

ϕ̄µ, ϕT
µ

)
, (F, G) =

(
ω̄µ, ωT

µ

)
made in the path integral (97), (98) restricted to the case Bµ = 0, where K(x, y)→ K(x, y)
due to the Landau gauge condition ∂ν Aν = 0, which implies (after integrating by parts)∫

dDx Tr Aν[F∂νG + (∂νF)G] = 0,

we find that the action SGZ(Φ) in (81) is indeed equivalent to SGZ(Φ) given by (106).
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Appendix B.3. Background Gauge Invariance of W, Γ

The invariance of the functional ZH = ZH(B, J) in (109) under the local transforma-
tions (110) in terms of the related functional WH = WH(B, J) reads

∫
dDx

[Dpq
µ (B)ξq

] −→δ
δBp

µ

+ gξq f prq

Jr|µ
(A)

−→
δ

δJp|µ
(A)

+ Jr
(b)

−→
δ

δJp
(b)

+ Jr
(c̄)

−→
δ

δJp
(c̄)

+ Jr
(c)

−→
δ

δJp
(c)

WH = 0. (A19)

and translates itself for the functional ΓH = ΓH(B, φ) in (111) as follows:

∫
dDx

{[
Dpq

µ (B)ξq
] −→δ

δBp
µ

+ gξq f prq

(
Ar

µ

−→
δ

δAp
µ

+ br
−→
δ

δbp + c̄r
−→
δ

δc̄p + cr
−→
δ

δcp

)}
ΓH = 0, (A20)

which implies the invariance of ΓH(B, φ) under the local transformations (112).

Appendix C. Volovich–Katanaev Model

Appendix C.1. Background Effective Action: Gauge Invariance

The invariance of W = W(B, J) under (138), (140), (155) implies

∫
d2x

{[
εijeµjζ + ei

ν∂µξν + (∂νei
µ)ξ

ν
] δW

δei
µ

+
[
−∂µζ + ων∂µξν + (∂νωµ)ξ

ν
] δW

δωµ

−
[
εk

i Jµ
k ζ + Jν

i ∂νξµ − ∂ν(Jµ
i ξν)

] δW
δJµ

i
− [Jν∂νξµ − ∂ν(Jµξν)]

δW
δJµ

}
= 0 (A21)

and transforms into a relation for Γ = Γ(B, Q) defined by (156),

∫
d2x

{[
εijeµjζ + ei

ν(∂µξν) + (∂νei
µ)ξ

ν
] δΓ

δei
µ

+
[
−∂µζ + ων(∂µξν) + (∂νωµ)ξ

ν
] δΓ

δωµ

+ qi
µ

[
εk

i
δΓ
δqk

µ

ζ +
δΓ
δqi

ν

∂νξµ − ∂ν

(
δΓ
δqi

µ

ξν

)]
+ qµ

[
δΓ
δqν

∂νξµ − ∂ν

(
δΓ
δqµ

ξν

)]}
= 0, (A22)

which is integrated by parts to result in (157).

Appendix C.2. Background Gauge Invariance of W, Γ with Composite Fields

Let us introduce the notation, pk ∈ {p1, . . . , pm}, νk ∈ {ν1, . . . , νn},

F p̂
{i}T

µ1···µn
i1··· p̂···im = ∑

pk

Fpk
ik

Tµ1···µn
i1···pk ···im , G{µ}ν̂ Tµ1···ν̂···µn

i1···im = ∑
νk

Gµk
νk Tµ1···νk ···µn

i1···im ,

F{i}p̂ Ti1··· p̂···im
µ1···µn = ∑

pk

Fik
pk Ti1···pk ···im

µ1···µn , Gν̂
{µ}T

i1···im
µ1···ν̂···µn

= ∑
νk

Gνk
µk Ti1···im

µ1···νk ···µn . (A23)

Then the invariance of W = W(B, J, L) under (138), (140), (155), (161) implies

∫
d2x

{[
εijeµjζ + ei

ν(∂µξν) + (∂νei
µ)ξ

ν
] δW

δei
µ

+
[
−∂µζ + ων(∂µξν) + (∂νωµ)ξ

ν
] δW

δωµ

−
[
εk

i Jµ
k ζ + Jν

i (∂νξµ)− ∂ν(Jµ
i ξν)

] δW
δJµ

i
− [Jν(∂νξµ)− ∂ν(Jµξν)]

δW
δJµ

− [ε
p̂
{i}L

µ1···µn
i1··· p̂···im ζ + Lµ1···ν̂···µn

i1···im (∂ν̂ξ{µ})− ∂ν(Lµ1···µn
i1···im ξν)]

δW
δLµ1···µn

i1···im

}
= 0 (A24)
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and transforms into a relation for Γ = Γ(B, Q, Σ) defined by (163),

∫
d2x

{[
εijeµjζ + ei

ν(∂µξν) + (∂νei
µ)ξ

ν
] δΓ

δei
µ

+
[
−∂µζ + ων(∂µξν) + (∂νωµ)ξ

ν
] δΓ

δωµ

+
(

Σi1···im
µ1···µn + σi1···im

µ1···µn

)ε
p̂
{i}

δΓ

δΣi1··· p̂···im
µ1···µn

ζ +
δΓ

δΣi1···im
µ1···ν̂···µn

∂ν̂ξ{µ} − ∂ν

(
δΓ

δΣi1···im
µ1···µn

ξν

)
+ qµ

i

[
εk

i

(
δΓ
δqk

µ

− δΓ
δΣm

δσm

δqk
µ

)
ζ +

(
δΓ
δqi

ν

− δΓ
δΣm

δσm

δqi
ν

)
∂νξµ − ∂ν

(
δΓ
δqi

µ

ξν − δΓ
δΣm

δσm

δqi
µ

ξν

)]

+ qµ

[(
δΓ
δqν
− δΓ

δΣm
δσm

δqν

)
∂νξµ − ∂ν

(
δΓ
δqµ

ξν − δΓ
δΣm

δσm

δqµ
ξν

)]}
= 0, (A25)

where the terms containing the derivatives δσm

δqi
µ

, δσm

δqµ
of the composite fields σm(Q, B) are

understood in the form

δΓ
δΣm

δσm

δQ
=
∫

d2y
δΓ

δΣi1···im
µ1···µn(y)

δσi1···im
µ1···µn(y)
δQ(x)

, Q(x) = (qi
µ, qµ)(x).

The functional Γeff = Γeff(B, Σ) defined by (164) satisfies the identity

∫
d2x

{[
εijeµjζ + ei

ν(∂µξν) + (∂νei
µ)ξ

ν
] δ

δei
µ

+
[
−∂µζ + ων(∂µξν) + (∂νωµ)ξ

ν
] δ

δωµ

+

ε
p̂
{i}Σ

i1···im
µ1···µn ζ

δ

δΣi1··· p̂···im
µ1···µn

+ Σi1···im
µ1···µn(∂ν̂ξ{µ})

δ

δΣi1···im
µ1···ν̂···µn

+ (∂νΣi1···im
µ1···µn)ξ

ν δ

δΣi1···im
µ1···µn

Γeff = 0, (A26)

obtained by setting σm(0, B) = 0 and integrating by parts in (A25). Using the latter property
and the following consequences, cf. (A11), (A12), of the notation (A23),

ε
p̂
{i}Σ

i1···im
µ1···µn

δ

δΣi1··· p̂···im
µ1···µn

= ε
{i}
p̂ Σi1··· p̂···im

µ1···µn

δ

δΣi1···im
µ1···µn

,

Σi1···im
µ1···µn(∂ν̂ξ{µ})

δ

δΣi1···im
µ1···ν̂···µn

= Σi1···im
µ1···ν̂···µn

(∂{µ}ξ
ν̂)

δ

δΣi1···im
µ1···µn

,

by virtue of ε
j
k = εk

j (ε0
1 = ε1

0 = −1 and ε0
0 = ε1

1 = 0 due to ε
j
k = εjiηik), one arrives at the

invariance of Γeff(B, Σ) under (138), (140) and (165).

Notes
1 More specifically, the replacement ∂µ → Dµ(B) is described by the relations (21), (22) of Section 2. This rule is unambiguous for

local fields σm without higher derivatives, σm = σm(φ, ∂φ). For more details, see Section 2.
2 See [54] for a field-antifield BV formalism and [55–60] for extended N ≥ 2 BRST symmetries.
3 Note that Fpq = f prqFr, f pqrFqGr = [F, G}p, ∂µFp =

[
∂µ, F

]p, FpGp ∼ Tr(FG), Fpp1
1 Fp1 p2

2 · · · Fpn−2 p
n = Tr(F1 · · · Fn) for any

quantities Fp and Gp carrying the index p, with F′ = UFU−1, G′ = UGU−1. Given this, the explicit form (9) of the field variations
φA←−s implies the property

(
χ←−s

)′
= U

(
χ←−s

)
U−1.

4 From ∆Z = ÂZ, with a certain operator Â, it follows that ∆W = h̄
i
〈

ÂW
〉
= h̄

i ÂW1, with ÂW given by ÂW = e−i/h̄W Âei/h̄W .
5 The change of variables (66) is identified with the background-quantum splitting used in [70], where the background component

φA is not to be confused with Bµ.
6 The dots “. . .” in (70) stand for a number of terms containing more than two derivatives

−→
δ

δJAk
entering as multipliers. These

contributions are related to the terms in (71), (72) which are also indicated by dots.
7 We use the metric signature ηµν = (−,+, . . . ,+) and carry out a Wick rotation, x0 → ix0, Ap|0 → iAp|0, SFP → iSFP. In the

Euclidean metric, Aµ = Aµ, we maintain the summation convention AµBµ = AµBµ.
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8 One uses a repeated integration by parts and the antisymmetry of f pqr to remove the delta-function δ(x− y) absorbed in KB(x, y)
and to recast SK(Φ, B) in the form (104).

9 In (114), we maintain the notation for the interaction constant g consistent with (12). The same is implied in (119) below.
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