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Abstract: Brain electrical activity recorded as electroencephalogram data provides relevant informa-
tion that can contribute to a better understanding of pathologies and human behaviour. This study
explores extant electroencephalogram (EEG) signals in search of patterns that could differentiate
subjects undertaking mental tasks and reveals insights on said data. We estimated the power spectral
density of the signals and found that the subjects showed stronger gamma brain waves during activity
while presenting alpha waves at rest. We also found that subjects who performed better in those tasks
seemed to present less power density in high-frequency ranges, which could imply decreased brain
activity during tasks. In a time-domain analysis, we used Hall-Wood and Robust-Genton estimators
along with the Hurst exponent by means of a detrented fluctuation analysis and found that the
first two fractal measures are capable of better differentiating signals between the rest and activity
datasets. The statistical results indicated that the brain region corresponding to Fp channels might be
more suitable for analysing EEG data from patients conducting arithmetic tasks. In summary, both
frequency- and time-based methods employed in the study provided useful insights and should be
preferably used together in EEG analysis.

Keywords: EEG signals; fractal dimension; power spectral density; detrended fluctuation analysis;
hurst

1. Introduction

There is a myriad of physiological processes in biological systems [1] that enable an
organism to perform multiple activities. The modelling of these phenomena is a challenging
task wherein different mathematical techniques capable of adequately describing such
models have been employed [2-6]. The brain is composed of a complex network of actions
and reactions working in a coordinated effort to control several processes in the whole
body. These networks incorporate a mixture of integration, differentiation, feedback loops,
and other regulatory mechanisms that enable an organism to perform multiple activities,
a quality typical of complex systems with time-adaptable features. Considering their
non-stationary behaviour, modelling these phenomena is a very challenging task. Electrical
activity can provide significant information about the dynamics pertaining to the behaviour
of brain systems [7].

A record of the brain electrical activity can be obtained by means of an electroen-
cephalogram (EEG). EEG signals are the essence of the synchronous electrical activity
of neuronal cells, which change their membrane potentials according to mental, motor,
and sensory activities. These signals contain relevant information that can contribute to
a better understanding of brain activity and to the diagnosis and treatment of several
different pathologies, especially those with psychiatric and neurophysiological origins. In
this context, EEG signals comprise valuable information for better understanding brain
activity since they are influenced by both physiological and exogenous factors and have
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random characteristics. Indeed, there is an increasing demand for novel medical therapies
with lower costs and higher efficiencies, motivating several researchers from different fields
of knowledge, including physicians, physicists, and engineers, towards the same goal.

EEG signals can be obtained through the use of invasive and noninvasive electrodes.
Noninvasive electrodes are widely used for their convenience and allow for capturing
information with less risk to the patient. Invasive electrodes are mainly used when one
needs to capture information from an internal region of the brain where noninvasive
electrodes are insufficient. In general, typical EEG equipment uses noninvasive electrodes
normally placed in caps or attached to the scalp [8]. Usually, EEG data collection follows
standards such as the International 10/20 scheme, which is detailed in Section 3.

EEG analyses can be employed in cases of epilepsy [9,10] or clinical suspicion of
this disease [11]; in patients with altered consciousness; and for diagnostic evaluations of
patients with other neurological (i.e., infectious [12], degenerative [13]), and psychiatric
diseases [14]. Furthermore, EEG can also be employed to investigate behavioural aspects
(disease-related or not). It has been used to assess sleep quality, to characterise sleep
stages [15], and even to identify underlying disorders [16,17]. Recent fields of study
concerning EEG conduct predictions and analyses of the performance pertaining to mobile
cognition including sports competition [18], stress and emotional regulation [19], the
identification of drowsiness/alertness patterns [20], and even the exploration of the effect
of music on the brain [21].

Still concerning performance and cognition, EEG has also been used as a source for
exploring and classifying signals during complex mental activities [22], including arith-
metic tasks, which usually demand several simultaneous cognitive processes and strategies.
Different approaches have been employed for EEG analysis on that note, mostly related
to machine learning, such as neural networks based on particle swarm optimisation [23]
and other approaches trying to avail real-time performance recognition [24]. In general,
several studies have focused on identifying EEG patterns using different methods that can
detect and quantify both linear and nonlinear mechanisms and, therefore, somehow reflect
patients’ specific characteristics (pertaining to diseases or cognitive aspects) [25-33].

Recently, the implementation of computational intelligence towards the analysis of
EEG signals in light of brain-computer interfaces has become an increasingly expanding
and promising field concerning health and behavioural applications [34]. While this
vast field broadens several different tools that have been used to classify and recognise
EEG patterns, such as autoregressive models [35], mode decomposition [36], and pattern
recognition [37], there seems to be a significant advantage of classifications employing a
particular machine learning subfield: deep learning models [38].

Based on multilayer neural networks, deep learning models are a family of supervised-
learning algorithms usually tailored very carefully for a specific application or use case.
Such design specificity along with an efficient use of computational power enables this cat-
egory of models to achieve remarkable accuracy rates [39]. Deep learning has been studied
to improve the diagnosis of brain diseases, such as Parkinson’s [40]. Some models also
proved reliable for classifying epilepsy cases beyond simple binary diagnoses [41] while
still fast-responsive and not excessively memory-consuming, thus making them capable of
being implemented for real-time clinical settings. Based on EEG time series, deep learning
models have also been used to successfully detect fatigue status of pilots [42], to classify
driver mental states [43], to identify alcoholic patients, and to recognise emotions [44,45].

In this context, the main advantage of deep learning models seems to be their ability to
exploit hidden or unknown particularities in the structure of data, extracting from low-level
to high-level features that can be objectively compared and explored [46]. Those features
are highly dependent on the application and can be related to several different aspects of
the original time series, ranging from power, auto-regressive model coefficients, statistical
parameters, fractal coefficients, variance, energy, entropy, and others. Particularly for the
automated classification of mental arithmetic tasks, nonlinear entropy features from each
multi-channel EEG signal have been used [47]. Overall, the model features can be explored
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either in time or frequency domains depending on the approach chosen, and it may be
complicated to compare them with so-called engineered or hand-designed features from
other model approaches, since deep learning models often employ features that cannot be
immediately identified or extracted from data using other techniques.

Nonetheless, while machine learning methods have showed high success rates, ex-
tracting relevant information from EEG signals is quite a complex challenge and other
methods are also important—particularly when there are not a lot of original data to train
algorithms. Accordingly, in order to analyse EEG data, it is common to transform the signal
to the frequency domain. The power spectral density is a powerful tool that applies Fourier
transforms to analyse the amount of power of a signal for determined frequencies, and it
can be estimated through different techniques [48-50]. In the context of EEG and biomed-
ical systems, it has been applied in several different situations including to analyse the
effects of age and gender [51], disruptions caused by Alzheimer’s [52], cognitive alterations
when patients are under mental stress [53], and sleep classification [54].

On the other hand, time series analysis [55-57] is an important technique that can be
applied to a range of physiological measures including respiratory signals [58-60], cardiac
evaluation [61,62], anaesthesia dosage monitoring [63,64], and electrophysiological signals
from the brain [65,66]. Dynamic time series analysis of EEG signals may reveal complex
phenomena associated with long-range correlation and distinct classes of nonlinear inter-
actions [65], improving the understanding about brain activity. In this context and based
on the inherent complex nature of the brain electrical, EEG signals can also be explored
under nonlinear features, such as ARIMA (autoregressive integrated moving average)
and ARFIMA (autoregressive fractionally integrated moving average) models [67], the
Hurst exponent [68], and fractal dimensions, that might be able to extract hidden complex
information within the signals.

In this context, this paper explore an EEG dataset from patients undertaking arithmetic
subtractions aiming to obtain insights regarding possible trends and the relation between
changes in the randomness pattern of the signal. In this sense, we compare the EEG signal
for the subjects at rest and during activity. We also try to identify if the data reveal any
hints on the performances of the subjects. In order to approach the analysis from both the
frequency and time domains, different tools are employed. First, we apply Welch’s power
spectral density [69] to analyse the spectrum of EEG data and how the signal behaves
according to each frequency band. Next, we compare the Hurst exponent (H) [70] obtained
via the detrented fluctuation analysis (DFA) method [71], and fractional dimensions ob-
tained by means of the Hall-Wood (HW) and Robust-Genton (RG) estimators [72]. By
applying the aforementioned methods, we therefore resort to a two-fold approach consid-
ering both time (H, DFA, HW, and RG parameters) and frequency (PSD)-domain analyses.
We then interpret the results obtained in order to investigate if one or more approaches
seems to be more suitable (i) for showing significant differences between the electrical
activities for subjects at rest and during activity, (ii) for categorising subjects’ performance
groups (good, average, and poor) based solely on EEG data, and (iii) for checking for
differences in the activity of different brain areas.

Therefore, this paper is organised as follows: Section 2 describes the EEG data assessed
in the study, and Section 3 briefly presents the applied methodology; Section 4 explores and
discusses the main results obtained via power spectral density and time-domain analysis;
finally, Section 5 provides the authors” main thoughts and highlights the major trends
identified.

2. Data Characteristics

The data herein assessed consists of EEG time series (TS) from 36 healthy patients
while they were conducting mental subtractions and originates from an extant study [73],
obtained through the PhysioNet database [74]. All patients are equivalently aged and
come from the same educational background. They were eligible to enroll in the study
if they had normal or corrected-to-normal visual acuity; normal color vision; and no
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clinical manifestations of mental or cognitive impairment, or verbal or non-verbal learning
disabilities. Exclusion criteria were the use of psychoactive medication, drug or alcohol
addiction, and psychiatric or neurological complaints.

According to the authors, the EEG collection was conducted following the Interna-
tional 10/20 scheme, with all electrodes referenced to the interconnected ear reference
electrodes. The sample rate was 500 Hz per channel. Regarding filters and artifact removal,
a high-pass filter with a 0.5 Hz cut-off frequency and low-pass filter with 45 Hz were used.
All recordings employed are artifact-free EEG segments of 60 s duration. At the stage of
data pre-processing, the Independent Component Analysis (ICA) was used to eliminate
artifacts (eyes, muscle, and cardiac overlapping of the cardiac pulsation).

The arithmetic task the continuous subtraction of two numbers (different each time).
Each trial started with the verbal communication of four-digit (minuend) and two-digit
(subtrahend) numbers (e.g., 2040 and 20). The performance of each subject was calculated
based on the number of subtractions and the accuracy of the results during the whole
duration of the test (4 min). The EEG signals for each subject were collected during the
first 60 s of the activity, with a second same-sized dataset collected while the subjects were
resting before the task. It is important to register that the original rest dataset was much
larger than the corresponding dataset for activity, since they were collected for a longer
duration of time. Regardless, we sliced the data so both datasets were equivalent (60 s,
corresponding to 30,000 samples). The two datasets were called “Activity dataset” and
“Rest dataset”, respectively, and were compared. Based on their performance during the
mental task, the participants were categorised into three groups: good, average, or poor
performers. Each group consisted of an equal number of participants (N = 12). Please refer
to Table A1l for more information on this classification.

As data collection in the aforementioned study followed the International 10/20 scheme,
19 time series were obtained for every subject, each pertaining a different channel and thus
capturing electrical activity in a distinct brain part. Auditory channels were disregarded as they
were used for referencing purposes. Instead of using all available signals, in this paper, we use
only six TSs for one patient, each one representing the average electric tension for each brain
region: central C (C3, Cz, and C4), frontal F (F7, F3, Fz, F4, and F8), pre-frontal Fp (Fp1 and Fp2),
occipital O (O1 and O2), parietal P (P3, P4, and Pz), and temporal T (T3, T4, T5, and T6). Please
refer to Figure 1 for a graphical representation of this organisation.

NASION

P000®
Y®-0-©-0-@P
poves

INION INION

(a) Channels in the 10-20 system (b) Corresponding brain regions
Figure 1. Representation of the International 10-20 EEG scheme with a colour distinction for each
average TS considered in this paper: C (C3, Cz, and C4), F (F7, F3, Fz, F4, and F8), Fp (Fp1 and Fp2),
O (O1 and O2), P (P3, P4, and Pz), and T (T3, T4, T5, and T6). The reader can notice that each of the
six averages corresponds to a specific brain region.

In summary, each of the 36 subjects is represented by 6 time series (each pertaining to
an average of the multichannel signals, as illustrated in Figure 1) for each dataset (rest and
activity), totalling 432 time series analysed in the paper.The TS dynamics of the aforesaid
averages of each channel are presented for a representative subject in Figure 2. More
details regarding the EEG records can be found in the original study in which they were
collected [73].
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Figure 2. Representation of the EEG TS of a random patient (Subject 00) during the mental task (activity dataset). For
visualisation purposes, only the interval between 0 and 5 s is shown. Each subplot concerns one of the six brain areas

presented in Figure 1. The black lines represent the average signal for each area, and the colored ones represent the original

channel signals.

3. Proposed Methods

This section briefly presents the methods that were used in the EEG analysis conducted

in this paper, both in the frequency domain (the PSD approach, in Section 3.1) and in the
time domain (the ARFIMA, DFA, and fractal dimensions, from Section 3.2 to Section 3.4).

3.1. Welch’s Power Spectral Density

Power spectral densities (PSDs) are widely used in signal processing and describe

the energy density or power spectral of a signal according to a determined frequency
range [48]. In the case of EEG signals, this tool can transform complex time series into
directly interpretable information that can be categorised according to frequency bands
and brain waves [75]. In summary, Welch’s method [69] partitions the data into smaller
segments and computes a widowed discrete Fourier transform (DFT) at a determined
frequency for each segment. A complete description of the method can be found in [49].
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3.2. ARIMA and ARFIMA Models

In the investigation concerning the time-domain aspect of the EEG time series, we
employ the ARFIMA(p,d,9) model, where p € N is the order (number of time lags) of the
autoregressive model, d € R is the amount of times that past values are subtracted from the
data (i.e., the degree of differencing), and g € N is the order of the moving-average model.
In summary, the ARFIMA(p,d,q) [67] is a generalisation of the classical ARIMA(p,d,q) model,
where the difference parameter d admits both integer and noninteger values.

Consider the integration of the series Y; along with a process that combines an auto-
regressive (AR), an integrated (I), and a moving average (MA). One can express the
ARIMA(p,d,q) with discrepancy operator (B) as

¢(B)(1—B)"Y; = ©(B)ey, (1)

where ¢(B) =1 — ¢1B —... — ¢pB” and @(B)=1+ 6B + ... + 6, B1 are, respectively, the
autoregressive and moving average operators, while ¢; is white noise. In order to expand
the model to ARFIMA, the parameter d is modified to also assume noninteger values [76].

The ARFIMA(p,d,q) model is capable of capturing the dynamics processes with long-
range dependency [76], with a general expression [67,77] defined by

®(B)y: = O(B)(1 - B) ‘e, @

where once again ®(B) =1 — ¢;B—... — ¢,B” and ©(B) =1+ 61B + ... 4 6,B7 are the
autoregressive and moving average operators and ¢; describes white noise. It is important
to highlight that functions ®(B) and ©(B) have no common roots, that B is the backward
shift operator, and that (1 — B)~? is the fractional differencing operator given by the
following binomial expression [77]:

(1_3)4:%%3]’:%@31, 3)

where I' is the Gamma function.
One can describe an asymptotic approximation of n; with

I'(j+d)
- A 4
"= T+ dr @) @
In this paper, the ARFIMA model we employ is a means to conduct the DFA of the
EEG time series.

3.3. Detrented Fluctuation Analysis (DFA)

As previously discussed, TS concerning human or biosystems potentially have features
that reach beyond local dependence [55] and the H index is often used as a means to
quantify such dependence [78,79]. The Hurst exponent was introduced by H. E. Hurst [70]
and is related to the concept of Brownian motion (Bm) and fractional Brownian motion
(fBm).

In summary, the main properties concerning the H index [70,80] are the following:
(a) 0<H<I,

(b)  H=1/2, for arandom walk (Bm). The TS does not present a long memory process;

() H > 1/2, for a persistent (long memory or correlated) process. This leads to the
concept of the fBm; and

(d)  H < 1/2, for an anti-persistent (short-term memory, anti-correlated) process.

In a nutshell, if H is closer to 1, the probability of the next change being positive
if the last change was also positive (i.e., persistent) is higher. One can use many ap-
proaches to find H, such as the classical rescaled range analysis originally developed
in [81,82], the Fourier Analysis using the FFT algorithm [83,84], and the Detrented Fluc-
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tuation Analysis [85,86]. The DFA method avoids the spurious detection of correlation
or apparent self-similarity and is capable of evaluating nonstationary series. The DFA
involves successive steps to calculate H. The first step [85,87] consists in the following

estimation
N

P(i) = ) (P —P), ©)

i=1

where N is the number of observations in the TS, P; represents the value (in this case,
electrical tension) observed in time instant ¢, and P denotes the arithmetic average of
this value.

Next, one [85,87] calculates the quantity F(n) by means of the least squares method:

N

F(n) = J S L[PG~ P, ©

i=1

in which the trend is removed through the subtraction of the ordinary value P, (i) from P(i).
The process is then repeated, and the slope curve relating logF (n) with log(n) deter-
mines the scaling H exponent. If the kth order auto-covariance is defined as

(k) = Covariance[P;, Py + k], (7)
then the kth order autocorrelation can be found by using the following equation:

_ (k) )
o V/Var(Py)\/Var(P; +k)  7(0)’ 8

An important relation [88] between H and the autocorrelation function p is drawn by
p=2""1_1. ©)

Concerning this relation, the decay speed of the autocorrelation function is also related
to the H exponent [88] by
H=1/2+d, (10)

where d is the fractional differencing parameter of the corresponding ARFIMA(p,d,q) model.
In Section 4.2, we apply H as a tool to investigate the possible trends in the EEG
behaviour of patients.

3.4. Fractal Dimension

The fractal dimension D functions as a measure of local memory of the TS, where
1 < D < 2 for univariate series. In addition, the fractal dimension is connected to the
long-term memory of a TS so that D + H = 2, translating a perfect reflection from local
(fractal dimension) to global behaviour (long-term memory) [89].

We can also summarise the properties of D [89,90] in TS pertaining to the following
conditions: (i) 1 < D < 2; (ii) D = 1.5, which characterises TS as a random walk (Bm)
phenomenon; (iii) D < 1.5 indicates a persistent (long memory or correlated) process,
leading to the definition of the fBm; and (iv) D > 1.5 signalises anti-persistent processes
(short-term memory, anti correlated).

In this paper, we adopt the Hall-Wood (HW) and Robust-Genton estimators [72,91]
to obtain D.

3.4.1. Hall-Wood Estimator

The HW method [92] originates from a box-counting estimator considering small
scales. In this approach, the boxes take into account not only their summations but also the
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areas under the curves. Formally, if one considers a scale ; = I/n, wherel =1,2,3,.

the area becomes
[n/1]

A(l/n) = (1/n) Y (Xit/n = X 1)1/n), (11)

i=1

where [n/1] is the integer part of n/1.
Hence, the HW estimator is defined as

R L L -1
DHW:2—<Z(si—s)log (I/n)) )(Z i —3 )

i=1

(12)

~

where L > 2,5; = log(l/n),and 5 = (1/L) Y%, s;. In order to avoid bias, Hall and Wood
suggested using L = 2 [92], which entails

Dy =2 284 (2/”1)3;(21;’%(“‘(””)). (13)

3.4.2. Robust-Genton Estimator

The RG method consists of a moments estimator of scales, as originally described
in [91]. However, said approach is often considered a nonrobust method. In order to circum-
vent this problem, we herein consider the robust estimator implemented by Genton [91,93].
The calculations are given by

™=

Va(l/n) = 37—y X = Xty /) (14)
1

Similar to the HW method, one can obtain the RG estimator with the following
equation:
L

-1
Drg =2-— % (Z(si —53) 1og(f/;(1/n)> (Z(si — s)2> , (15)

i=1
where L > 2,5; = log(I/n) and § = (1/L) Yk s;. Analogously, we can use L = 2 to

overcome bias drawbacks, thus obtaining

log(V2(2/n)) —log(Va(l/n))
2log(2)

Dgrc =2— (16)

4. Results and Discussion

This section presents the main results of the analyses conducted in this paper. We
first present the PSD estimations in Section 4.1, comparing the activity and rest datasets
and the performance groups in light of the brain wave categories. Next, in Section 4.2, we
explore a statistical analysis of the results from the fractal approaches for the same datasets
and comparisons.

4.1. Power Spectral Density Analysis

All PSD estimations and any graphical tools involving spectral density presented
in this subsection were implemented by means of the Scipy and Matplotlib Libraries in
Python with generally standard configurations. The sampling frequency was adopted at
500 Hz, chosen in accordance with the original signal. The frequencies herein considered
were between 0.5 and 45 Hz since this was the range established by the cut-off filters in the
original EEG data.
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4.1.1. Comparison between Activity and Rest

The first batch of results compares the average of the PSD estimations for all 36 subjects
categorised according to brain region, as presented in each subplot graph of Figure 3. The
two curves in each graph describe the brain activity for the subjects while they were
undertaking mental tasks and while at rest. As the axes for each graph are all scaled
equally, one can see that regions O and P seem to show greater electrical activity in low-
frequency ranges, with noticeable peaks for the 10 Hz mark in all brain regions. As for
differences between the two curves, although they seem very close, it is worth highlighting
that these are semi-log graphs, indicating that the y-axis is on the log scale. Hence, although
visually subtle, the differences might be significant.

102 C F Fp
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‘\'\-\“/\ ‘ AL A \
\ \.\/\ \'j\
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Figure 3. Comparison of the power spectral density between the activity and rest datasets (considering the average for all

36 subjects).

In this context, Figure 4 presents the same data content as Figure 3 but scaled
individually and categorised according to frequency bands pertaining the basic brain
waves described in [75], namely the theta (for frequencies between 4 and 8 Hz), alpha
(8-12 Hz range), beta (12-35 Hz range), and gamma (35-45 Hz range) bands. Considering
the space restrictions, we omitted the delta band (0.5-4 Hz range) in this figure since it
is the less relevant frequency range for this study (since it mainly describes sleep and
dreaming states).
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Figure 4. Comparison of the power spectral density between the activity and rest datasets (con-

sidering the average for all 36 subjects). Visualisation improved through individual scaling and

frequency-band classification.

Through the improved visualisation in Figure 4, one can see that, in general, there is
a distinct shift in the prevalence of rest and activity curves as frequencies increase. It is
possible to notice that, while the subjects are at rest, they have a higher prevalence of alpha
brain waves. This could be expected as these waves are related to brain states in which the
subjects are very relaxed with a passive attention (a plausible state for the rest dataset). On
the other hand, this trend changes with higher frequencies, as it seems that the subjects
present a higher number of beta and gamma waves while in activity. Indeed, those waves
concern brain states involving an active mind and problem solving, which agrees with the
arithmetic tasks undertaken by the subjects.
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As a complementary visual device on the same data, Figure 5 presents the spectrogram
of frequencies against time for subjects while performing arithmetic tasks (left) and at rest
(right side). In general, we can infer the same conclusions as from Figure 3 with a few new
perceptions. For all brain regions, the activity set shows a power peak around the 45 s
mark even though the study design exposed in [73] does not specify if anything remarkable
occurred at this time-point. The plots describing the T (temporal) region are the ones
with most easily noticeable vertical lines, indicating frequent synchronous increases in the
power of the signal, particularly in the activity data.

Activity

PSD (uV2/Hz)

PSD (uV2/Hz)

PSD (uV2/Hz)

Frequency (Hz)

PSD (V2/Hz)

PSD (V2 /Hz)

10°

PSD (uV2/Hz)

107

Time (s)

Figure 5. Comparison of the spectrograms between activity (left) and rest (right) datasets (consider-
ing the average for all 36 subjects).

4.1.2. Comparison between Performance Groups

The next test aimed to identify differences in the EEG signal of subjects that obtained
good, average, or bad performances in the arithmetic tasks. The 36 subjects were then
ranked according to the number of correct subtractions they achieved during the tests
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and divided into subgroups with 12 participants each, with the name of the subgroups
reflecting the patients’ performances. For more information regarding this division, please
refer to Table Al. Following the same design choices regarding scales and organisation as
in Section 4.1.1, Figures 6 and 7 present the average PSD for these three groups organised
according to brain region and frequency band (in the latter figure).

F Fp
1 2 ] 1 2 ] 1 2 ]
0 —e— Good 0 —e— Good 0 —e— Good
—=— Average —#— Average \ —&— Average
—4— Poor —4— Poor —4— Poor
10? 4 107 4 10! 4
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- 1071 4
=
(%]
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£ p -
£ 102 107 4 107 4
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[ 1] 10! 4
= 10! 4 10
o
o
o | 100 4
10° 10
_1 1071 4
10-1 4 10
0 10 30 40 0 10 20 30 40 0 10 20 30 40

Frequency (Hz)

Figure 6. Comparison of the power spectral density between good, average, and poor performers (considering the average

for each group of 12 subjects).

While the interpretation of Figures 6 and 7 are less straight-forward than the rest/activity
comparisons, one can identify some trends. In this analysis, we mainly consider the subplots
pertaining to beta and gamma bands since we are concerned with the subjects” performance
and those frequencies pertaining to the brain areas related to concentration and problem solving.
In addition, there seems to be some clear differences between curves when considering the
gamma waves. In general, the curve regarding good performers is usually below the others,
especially considering this higher-frequency range. The poor performers’ curves are mostly the
highest in the beta band (with peaks around the 29 Hz mark) while the average ones are higher
in the gamma range. In summary, these trends could indicate that poor and average performers
might need more concentration (and brain effort) to deal with subtraction tasks when compared
with good performers, thus generating more EEG activity in higher frequencies. In the work
published with this original EEG data [73], the authors also imply that this seems to be the case.
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Figure 7. Comparison of the power spectral density between good, average, and poor performers (considering the average
for each group of 12 subjects). Visualisation improved for each frequency band
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4.2. Time-Domain Analysis and Fractal Indexes

In this subsection, we examine the time-domain analysis of the EGG signals, aiming
to extract information oblivious to the PSD results. The indexes calculated, namely the
differentiation order, the Hurst index, and the Hall-Wood and the Robust-Genton fractal
dimensions, are graphically presented in Figures 8 and 9 for all six brain regions studied
in the paper. While the first figure presents the indexes for brain regions C, F, and Fp,
the second shows regions O, P, and T. One might notice that the indexes are presented
by means of pairs of plots, where data from the activity dataset are on the left and data
pertaining to subjects at rest are on the right side.

One can observe that the results are visually very similar amid regions and even
between rest and activity for most subjects, especially for indexes Drg and Dypy. On the
other hand, 4 and H seem to be more volatile among subjects. These trends are confirmed
with the mean and deviation values for the indexes, which are summarised in Table 1.
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Figure 8. Fractal measures comparing the activity (left) and rest (right) datasets for all 36 patients according to brain region:

(a,b) region C, (c,d) region F, and (e,f) region Fp.
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Figure 9. Fractal measures comparing the activity (left) and rest (right) datasets for all 36 patients according to brain region:

(a,b) region O, (c,d) region P, and (e,f) region T.

Table 1. Information on the differentiation order, Hurst index, and Hall-Wood and Robust-Genton fractal dimensions for

the EEG signals of the 35 subjects during activity.

Region dyinv  dmax d o4 Hyin  Hmax A oH Duw THW Drc ORG
Indexes for subjects at rest
O 0.0052 0.5000 0.0557 0.0835 0.2712 0.3574 0.3144 0.0171 1.0131 0.0051 1.0134 0.0051
P 0.0052  0.1910 0.0360 0.0325 0.2926  0.3592 03234 0.0160 1.0132 0.0038 1.0134  0.0040
F 0.0006 0.1288 0.0424 0.0294 0.2818 0.3682 0.3249 0.0225 1.0162 0.0039 1.0162 0.0040
Fp 0.0013 0.1379 0.0465 0.0304 0.2539 0.4743 0.3288 0.0432 1.0195 0.0051 1.0194 0.0050
C 0.0001  0.4845 0.0612 0.0994 0.2886 0.3701 03272 0.0170 1.0152 0.0037 1.0152  0.0037
T 0.0123 03110 0.0516 0.0563 0.2930 0.3737 03275 0.0179 1.0183 0.0056 1.0182  0.0056
Indexes for subjects during activity
O 0.0058 0.3808 0.0734 0.0924 0.2536 04310 03130 0.0283 1.0175 0.0111 1.0176  0.0112
P 0.0001 0.4982 0.0764 0.1191 0.2885 0.3771 0.3207 0.0197 1.0182 0.0122 1.0181 0.0118
F 0.0082 0.3911 0.0671  0.0860 0.2819  0.4202 03320 0.0328 1.0207 0.0117 1.0206 0.0114
Fp 0.0111 0.3536 0.0651 0.0636 0.2233 0.4806 0.3398 0.0614 1.0236 0.0094 1.0235 0.0090
C 0.0000 0.4668 0.0498 0.0790 0.2954 0.3857 0.3267 0.0214 1.0193 0.0110 1.0191 0.0108
T 0.0073  0.4704 0.0888 0.1208 0.2418 0.3857 0.3183 0.0298 1.0239 0.0147 1.0234 0.0143

4.2.1. Statistical Comparison between Activity and Rest

In order to test if the indexes are statistically different for the activity and rest datasets,
we conducted a Shapiro-Wilk normality test [94] with a significance level of 95% for the
signals pertaining to each brain region. According to the results seen in Table 2, in general,
the time series failed the normality test, with two exceptions regarding the Hurst index for
regions P and Fp.

Next, we conducted a variance analysis applying ANOVA-Tukey’s HSD and a
Kruskal-Wallis—-Dunn’s tests based on the normality tests for each time series. The results
of this statistical analysis are presented in Table 3. Overall, the results cannot provide
assertive statistical information differentiating the activity and rest datasets based on d and
H indexes. On the other hand, Dy and Drg were capable of setting apart both datasets
for most brain regions. A visual analysis of this statistical test is conducted in Section 4.2.4.
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Table 2. Normality test for time series averages of every brain region considering the sets at activity and rest. A significance
level of 95% (p-value < 0.05) rejects the null hypothesis of normality.

Shapiro-Wilk Normality Test: Activity vs. Rest Sets

D H Daw Drg
Region W p-Value A\ p-Value W p-Value w p-Value
e] 5.84 x 1071 5.65 x 1010 8.76 x 107! 3.74 x 1073 720 x 1071 2.07 x 1077 1.75 x 1071 1.81 x 1077
P 499 x 107! 2.82 x 10714 9.71 x 1071 9.89 x 1072 561 x 107! 2.38 x 1010 5.78 x 1071 459 x 10710
F 5.64 x 1071 2.64 x 1010 9.60 x 1071 2.08 x 1072 592 x 107! 7.77 x 10710 5.99 x 1071 1.01 x 107°
Fp 6.84 x 1071 3.71 x 1078 9.76 x 107! 1.88 x 107! 8.05 x 107! 2.30 x 1078 8.09 x 107! 3.04 x 1075
C 485x10°! 1.76 x 1011 9.58 x 107! 1.66 x 1072 571 x 107! 344 x 10710 5.67 x 1071 3.02 x 1010
T 5.86 x 1071 6.01 x 1010 9.45 x 1071 353 x 1072 6.31 x 1071 3.70 x 1012 6.20 x 1071 2.32x107°

Table 3. Variance analysis between the activity and rest sets for every brain region. A significance level of 95% (p < 0.05)
rejects the null hypothesis that the pairs are statistically equal.

ANOVA-Tukey’s HSD/Kruskal-Wallis-Dunn'’s Tests: Activity vs. Rest Sets
D H Dpw Drg

Mean
Difference

Region V4 p-Value p-Value V4 p-Value 4 p-Value

—8.62x10"1 389 x107! 428x1071  669x1071 —1.82x100 684x102 —176x100 7.83x10°2
—952 %1071 3.41x1071 —269x107%  531x1071 —247x107%  1.36x1072 —245x1079  1.45x1072
—1.07x1079 284 x1071 —552x1071  581x107! —230x100 215x10°2 —229x10°° 219 x 102
—1.19%x107°% 232x10°1! 111x1072  3.86x 107! —213x107% 334x102 —215x10° 3.15x10°2

755x 1071 450 x 107! 659x1071  510x10°!  —214x1070 321x102 —212x10°0 336 x10°2
—1.03x107%  3.03x10°! 1.66 X107  9.78 x 102 —-195x107%  510x 102 —-181x1079 7.01x1072

HNg M~ O

4.2.2. Statistical Comparison between Performance Groups

In this subsection, we investigate if a statistical difference between performance
groups can be identified from the fractal measures calculated from the EEG activity dataset.
Analogous to the procedure followed in Section 4.2.1, we conducted a Shapiro-Wilk
normality test [94] with a significance level of 95% considering only the signals of said
dataset. According to the results seen in Table 4, in general, the time series failed the
normality test, with exceptions once again regarding the Hurst index, in which the series
are normal for all brain regions but C.

The variance analysis applying ANOVA-Tukey’s HSD and a Kruskal-Wallis-Dunn’s
tests based on the normality tests for each time series are presented in Table 5, organised by
performance comparisons. The results obtained suggest that the measures of differencing
order, the Hurst exponent, and fractional dimensions are similar for good, average, and
bad performers in the datasets considered. Therefore, the results cannot provide assertive
statistical information to whether one group was more successful than other based on
solely the time-domain data herein considered.

Table 4. Normality test for time series averages of every brain region considering the sets during activity. A significance
level of 95% (p-value < 0.05) rejects the null hypothesis of normality.

Shapiro-Wilk Normality Test: Activity Sets
H Duaw Dre

o]

Region w p-Value w p-Value w p-Value w p-Value

6.45 x 1071 428 x 107 8.29 x 107! 6.55 x 1072 7.06 x 1071 352 x107* 7.03 x 1071 3.16 x 1074
577 x 107! 5.31 x 10~ 9.54 x 107! 1.39 x 1071 5.66 x 1071 3.83 x 10°° 5.74 x 107! 4.80 x 107
5.66 x 1071 3.88 x 107? 9.49 x 1071 1.00 x 1071 6.06 x 1071 1.28 x 107 5.95 x 107! 9.14 x 10
6.60 x 1071 7.00 x 10> 9.73 x 107! 498 x 107! 7.83 x 1071 7.63 x 1073 7.91 x 1071 1.08 x 102
478 x 1071 3.59 x 107 9.18 x 107! 1.09 x 102 574 x 1071 489 x 10 5.58 x 1071 3.09 x 10°¢
6.26 x 1071 2.35 x 107> 9.53 x 107! 1.29 x 101 6.16 x 1071 1.72 x 1075 5.97 x 107! 9.65 x 1076

HNg w0
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Table 5. Variance analysis between good, average, and poor performers for every brain region. A significance level of 95%

(p < 0.05) rejects the null hypothesis that the pairs are statistically equal.

ANOVA-Tukey’s HSD/Kruskal-Wallis-Dunn’s Tests: Performance Comparisons

D H Duw Drg
Region z p-Value Mean-Difference p-Value z p-Value z p-Value
Good performers vs. Average performers
¢ 426 x 1071 6.70 x 1071 —1.05x 1073 9.95 x 107! 680 x 1072 9.46 x 107! 233x1071  816x 1071
P 426 x1071 670 x 107! 1.08 x 1073 990x 107!  —6.81x1072 946x107! —146x10"!  8.84x 107!
F 154%x1070 123 x10°! —5.90 x 1073 906 x10°1  —631x1071 528x107! —389x10! 697 x107!
Fp 145x 1070 1.46 x 107! —2.42 x 1072 6.22x 1071 —621x107" 534x107! —-659x10"! 510x 107!
C —145x1071 884 x1071! —7.46 x 107! 456 x 107! —214 %1071  830x10°1 —487x1072 961 x1071
T 1.07x10°1 915 x 1071 1.18 x 1072 6.09x10"1  —233x10"! 8.16x 10! —-194 %1072  9.85x 1071
Good performers vs. Poor performers
e} 1.14%x107°%  253x10°! 1.75 x 1072 296 x 107! 7.19 x 1071 472 x 1071 8.16 x 107! 415%x 107!
P 155x 10" 877 x 107! 1.49 x 1072 1.55 x 1071 7.68 x 1071 442 x 1071 7.59 x 1071 448 x 107!
F 110x107° 2,69 x 1071 3.03 x 1073 9.74 x 107! 5.44 x 107! 5.87 x 1071 7.68 x 1071 442 x 1071
Fp 134x 1070 1.81x 107! —1.31 x 102 8.68 x 1071 3.59 x 1071 719 x 107! 339 x 107! 7.35x 107!
C —756x10"1 449 x 107! —158x107° 1.14 x 1071 9.16 x 107! 3.60 x 1071 9.25 x 107! 3.55 x 107!
T —572x1071 568 x 1071 1.62 x 1072 402 %107t 9.32 x 107! 351 x 107! 1.10 x 1070 2.73 x 107!
Average performers vs. Poor performers
o 717 x 1071 473 x 107! —1.85x 1072 256 x 1071 6.51 x 1071 5.15 x 1071 5.83 x 1071 5.60 x 107!
P —271x10"1  7.86x 1071 —1.38x 1072 1.99 x 1071 8.36 x 1071 403 x 1071 9.05 x 107! 3.66 x 107!
F —436x 1071 6.63x 1071 —8.93 x 1073 7.98 x 1071 1.17 x 1070 240 x 1071 1.16 x 1070 247 x 107!
Fp —116x 107! 9.07 x 1071 —1.10 x 1072 9.05 x 107! 9.81 x 107! 3.27 x 1071 9.98 x 1071 3.18 x 107!
C —611x10"1 541 %1071 —833x 107! 4.05x 1071 1.13 x 1070 258 x 1071 9.73 x 1071 3.30 x 107!
T —678x10°1 498 x 107! —433x1073 9.35 x 107! 1.16 x 1070 244 x 1071 1.12 x 1070 2.64 x 1071

4.2.3. Statistical Comparison between Brain Regions during Activity

Finally, we apply the same procedure conducted in the previous instances to analyse
whether there are significant statistical changes between the behaviour of electrical activity
in the different brain regions analysed. The results of the variance analysis with a signifi-
cance level of 95% are presented in Table 6, where each region was compared bilaterally.
The index D could only identify a statistical difference between regions Fp and C, while H
found differences between P and C, between T and C, and between Fp and F. The analysis
concerning Dy and Dy found equivalent results for the two indexes, where they were
capable of finding differences between the following pairs of brain regions: Fp—C, O-C,
Fp-F, T-F, P-Fp, T-O, and T-P.

Table 6. Variance analysis between brain regions for the activity set. A significance level of 95% (p < 0.05) rejects the null

hypothesis that the pairs are statistically equal.

ANOVA-Tukey’s HSD/Kruskal-Wallis-Dunn’s Tests: Comparison between Regions of Task Sets

D H DHW DRG

Regions V4 p-Value Mean-Difference p-Value V4 p-Value zZ p-Value
F-C —1.92x107° 550 x 1072 —2.24 x 107! 822x10°1  —817x1071  414x10"! —857x10°! 391x107!
Fp-C  —264x1070 822x1073 —2.95 x 1071 768 x 1071 —284x1070  456x107% -297x107°  3.02x 1073
O-C —724x1071 469 x 107! —7.07 x 1072 9.44 x 107! —2.02x107° 434x102 —211x109 350x 102
P-C —1.69x 1079  9.20 x 1072 221 x107° 2.74 x 1072 1.04 107  3.00 x 107! 890x 1071 373 x 107!
T-C 234%x1071  815x 107! 243 %1070 1.51 x 1072 1.85%x 1070  6.38 x 1072 1.75x 1070 8.06 x 1072
Fp-F 958x 10" 338 x 107! 2.50 x 1079 1.24 x 1072 3.87x107%  1.07x107* 386x1070 1.15x 1074
O-F —929x 1071  353x107! 1.01 x 1070 3.11x 107! 793 x 1071 428 x 107! 681 x1071 496 x 107!
P-F 990x 1071 322 x107! 1.24 x 1070 216 x 107! 161x107°% 1.07x 107! 154x1079 124 x 1071
T-F 1.71 %107  8.65x 102 1.31x107° 1.91 x 1071 363x1070 283x10°* 365x1079  265x10°*
O-Fp 756 x 1071 4.50 x 1071 ~1.19 x 1070 233x1071  -244x107!  808x 107!  —209x10"! 835x 107!
P-Fp  —1.88x1070  6.06 x 1072 1.19 x 107° 233x1077  —204x1070 413x1072 -212x1070 344 x 1072
T-Fp 424x1072  9.66 x 1071 1.42 x 107° 157 x107!  —122x1070 221x107' -126x107" 2,08 x 107!
P-O 7671071 443 x 107! 1.49 x 1070 1.37 x 1071 796 x 1071 426x 107! 850x 1071 3.95x 107!
T-O —191x10"1 848 x 107! -1.01x107° 310x 107 —308x1070 209x103 —3.01x10° 265x1073
T-P —9.48 x 1071 343 x 107! 1.78 x 1071 8.59 x 107! —283x107%  460x107° —280x107° 516x1073
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4.2.4. Graphical Analysis of Results

In this subsection, we propose a graphical summary of the main results pertaining the
statistical analyses conducted in Section 4.2 as a straightforward approach to visualising
the main results presented in Tables 3, 5 and 6. Figure 10a presents the number of times
that each fractal measure could differentiate datasets according to activity (vs. rest),
performance, and between brain regions. As previously discussed, no index could identify
differences between good, average, and bad performers while only Dy and Dgrg were
capable of setting apart rest and activity data. All indexes found differences between
regions at least one time. Considering the data illustrated in Figure 10a, Dyw and Dgg
should be the measures chosen to evaluate data in comparison with the other indexes.

Figure 10b illustrates the number of times each region was differentiated in comparison
with the others. The colours indicate the fractal measures, and the numbers inside each
column show the amount of times a determined index was able to set that specific brain
region apart from another. Overall, Fp seems to be the most distinct region from the others,
meaning that, in comparison with others, it could be a good choice to investigate the EEG
data of patients undertaking mental tasks. On the other hand, O was the least differentiated
brain region, potentially indicating that the electrical activity in its correspondent channels
might not be suitable for the analysis conducted in this paper.

—Performance  —Activity and Rest ~——Between Regions

(a) Comparison considering the amount of successful distinc-
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differentiated from another

Figure 10. Graphical representation of the findings concerning the statistical analysis conducted in
Section 4.2.
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5. Conclusions

This study employed frequency- and time-based methods to explore extant EEG data
in search of patterns that could differentiate signals of subjects undertaking a mental task
(i) while at rest and during activity, (ii) in respect of how well the subjects performed
during the arithmetic tests, and (iii) with spatial differences in the electrical activity in
the brain. We chose to organise the EEG data for every patient into six time series, each
corresponding to a brain region, which are averages according to the EEG channels in that
area of the brain.

Considering the frequency domain, we estimated the power spectral density of the
signals and found that, while the rest and activity datasets seem very close on a first
analysis, the full picture changes when the amount of power pertaining each type of brain
waves (theta, alpha, beta, and gamma) is considered. The results obtained through the
estimations indicate that the subjects seem to have greater alpha-wave activity while at rest
and increased gamma-wave activity while performing mental tasks. The spectrogram also
reveals that the T region presents a larger number of synchronous frequency peaks when
compared with other regions. The PSD curves for each region also indicated a few trends
for performance curves, with average and poor performers apparently showing increased
brain effort when compared with good performers (particularly when considering high-
frequency ranges).

Moreover, fractional dimensions using the HW and RG estimators in addition to the H
exponent by means of the DFA method were also explored. We adopted the Shapiro-Wilk
normality test and variance analysis to assess if these indexes could offer any assertive
statistical information regarding the three analyses in question. The aforementioned
methods showed that the results achieved were very similar when comparing performance
groups, with no statistical difference identified. As for differences between performance
and brain regions, HW and RG estimators seemed to be better indicators. We also found
that Fp seems to be the most differentiable brain region while O is the least differentiable,
indicating that the former might be the most appropriate for analysing EEG data of patients
undertaking mental tasks.

In conclusion, we believe that both frequency- and time-based methods were useful
in the analysis and recommend that they should be used together in order to gain insights
towards building a classifier of EEG data regarding mental tasks. In order to further
investigate the matter and to exhaust related possibilities, in future work, we intend to
explore some of the following options: (i) an analysis of the signals from other kinds of
mental tasks; (ii) a consideration of the EEG channels individually (i.e., not using averages
for each brain region); (iii) an extention of the number of mathematical tools, both within
the scope of fractal dimensions as the frequency domain; (iv) the design of distinct analyses
involving Lyapunov exponents applied to time series; and (v) the employment of machine
learning approaches, such as deep learning and parametric models to extract features and
to compare it with the results herein obtained.
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Abbreviations

The following abbreviations are used in this manuscript:

ANOVA  Analysis of variance

ARIMA  Autoregressive integrated moving average

ARFIMA  Autoregressive fractionally integrated moving average

DFA Detrended fluctuation analysis
Bm Brownian motion

EEG Electroencephalography

fBm Fractional Brownian motion

H Hurst

HSD Honestly significant difference
HW Hall-Wood

ICA Independent component analysis
MA Moving average

PSD Power spectral density

RG Robust-Genton

TS Time series

Appendix A. Further Information on the Classification of Subjects According
to Performance

Table A1. Subject information and classification.

Number of Percentage of

Subject Age Gender Subtractions the Best Score Classification
Subject 00 21 F 9.7 28% Poor
Subject 01 18 F 29.35 85% Good
Subject 2 19 F 12.88 37% Average
Subject 3 17 F 31 90% Good
Subject 4 17 F 8.6 25% Poor
Subject 5 16 F 20.71 60% Average
Subject 6 18 M 4.35 13% Poor
Subject 7 18 F 13.38 39% Average
Subject 8 26 M 18.24 53% Average
Subject 9 16 F 7 20% Poor
Subject 10 17 F 1 3% Poor
Subject 11 18 F 26 75% Good
Subject 12 17 F 26.36 76% Good
Subject 13 24 M 34 98% Good
Subject 14 17 F 9 26% Poor
Subject 15 17 F 22.18 64% Good
Subject 16 17 F 11.59 34% Poor
Subject 17 17 F 28.7 83% Good
Subject 18 17 F 20 58% Average
Subject 19 22 M 7.06 20% Poor
Subject 20 17 F 15.41 45% Average
Subject 21 20 F 1 3% Poor
Subject 22 19 F 4.47 13% Poor
Subject 23 16 F 27.47 79% Good
Subject 24 17 M 14.76 43% Average
Subject 25 17 M 30.53 88% Good
Subject 26 17 F 13.59 39% Average
Subject 27 19 F 34.59 100% Good
Subject 28 19 F 27 78% Good
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Table A1. Cont.

Subject Age Gender Sljs?::)c:oorfs tl;eer;e;tta;gceoci Classification
Subject 29 19 M 16.59 48% Average
Subject 30 17 M 10 29% Poor
Subject 31 19 F 19.88 57% Average
Subject 32 20 F 13 38% Average
Subject 33 17 M 21.47 62% Average
Subject 34 18 F 31 90% Good
Subject 35 17 F 12.18 35% Poor

References

1. Rideout, V.C. Mathematical and Computer Modeling of Physiological Systems; Prentice Hall: Englewood Cliffs, NJ, USA, 1991.

2. Debbouche, A.; Polovinkina, M.; Polovinkin, I.; Valentim, C.; David, S. On the stability of stationary solutions in diffusion models
of oncological processes. Eur. Phys. . Plus 2021, 136, 1-18. [CrossRef]

3. Valentim, C.A.; Rabi, J.A; David, S.A.; Machado, ].A.T. On multistep tumor growth models of fractional variable-order. Biosystems
2021, 199, 104294. [CrossRef] [PubMed]

4. Lahmiri, S. Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients. Phys. A Stat. Mech.
Its Appl. 2018, 490, 378-385. [CrossRef]

5. Bhaduri, S.; Ghosh, D. Electroencephalographic data analysis with visibility graph technique for quantitative assessment of brain
dysfunction. Clin. Eeg Neurosci. 2015, 46, 218-223. [CrossRef] [PubMed]

6.  Ghosh, D.; Dutta, S.; Chakraborty, S. Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure
free status. Chaos Solitons Fractals 2014, 67, 1-10. [CrossRef]

7.  Frackowiak, R.S. Human Brain Function; Elsevier: Amsterdam, The Netherlands, 2004.

8.  Sanei, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013.

9. Jayakar, P; Gotman, J.; Harvey, A.S.; Palmini, A.; Tassi, L.; Schomer, D.; Dubeau, E; Bartolomei, F.; Yu, A.; Krek, P; et al.
Diagnostic utility of invasive EEG for epilepsy surgery: Indications, modalities, and techniques. Epilepsia 2016, 57, 1735-1747.
[CrossRef]

10. David, S.A,; Cassela, C.I, Jr. Detrended fluctuation analysis and Hurst exponent as a measure to differentiate EEG signals.
Biomath Commun. Suppl. 2018, 5.

11.  Acharya, U.R,; Fujita, H.; Sudarshan, V.K,; Bhat, S.; Koh, ].E. Application of entropies for automated diagnosis of epilepsy using
EEG signals: A review. Knowl.-Based Syst. 2015, 88, 85-96. [CrossRef]

12.  Pellinen, J.; Carroll, E.; Friedman, D.; Boffa, M.; Dugan, P; Friedman, D.E.; Gazzola, D.; Jongeling, A.; Rodriguez, A.J.; Holmes, M.
Continuous EEG findings in patients with COVID-19 infection admitted to a New York academic hospital system. Epilepsia 2020,
61,2097-2105. [CrossRef]

13. Miraglia, F.; Vecchio, F; Bramanti, P.; Rossini, PM. EEG characteristics in “eyes-open” versus “eyes-closed” conditions: small-
world network architecture in healthy aging and age-related brain degeneration. Clin. Neurophysiol. 2016, 127, 1261-1268.
[CrossRef] [PubMed]

14. Canuet, L.; Ishii, R.; Pascual-Marqui, R.D.; Iwase, M.; Kurimoto, R.; Aoki, Y.; Ikeda, S.; Takahashi, H.; Nakahachi, T.; Takeda, M.
Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PLoS ONE 2011,
6, €27863. [CrossRef] [PubMed]

15. Aboalayon, K.A.; Ocbagabir, H.T.; Faezipour, M. Efficient sleep stage classification based on EEG signals. In Proceedings of the
IEEE Long Island Systems, Applications and Technology (LISAT) Conference 2014, Farmingdale, NY, USA, 2 May 2014; pp. 1-6.

16. Platt, B.; Riedel, G. The cholinergic system, EEG and sleep. Behav. Brain Res. 2011, 221, 499-504. [CrossRef]

17.  Gibbs, S.A.; Proserpio, P.; Terzaghi, M.; Pigorini, A.; Sarasso, S.; Russo, G.L.; Tassi, L.; Nobili, L. Sleep-related epileptic behaviors
and non-REM-related parasomnias: insights from stereo-EEG. Sleep Med. Rev. 2016, 25, 4-20. [CrossRef] [PubMed]

18. Park, J.L.; Fairweather, M.M.; Donaldson, D.I. Making the case for mobile cognition: EEG and sports performance. Neurosci.
Biobehav. Rev. 2015, 52, 117-130. [CrossRef]

19. Goodman, R.N; Rietschel, ].C.; Lo, L.C.; Costanzo, M.E.; Hatfield, B.D. Stress, emotion regulation and cognitive performance:
The predictive contributions of trait and state relative frontal EEG alpha asymmetry. Int. |. Psychophysiol. 2013, 87, 115-123.
[CrossRef] [PubMed]

20. Johnson, R.R.; Popovic, D.P,; Olmstead, R.E.; Stikic, M.; Levendowski, D.J.; Berka, C. Drowsiness/alertness algorithm develop-
ment and validation using synchronized EEG and cognitive performance to individualize a generalized model. Biol. Psychol.
2011, 87, 241-250. [CrossRef] [PubMed]

21. Sanyal, S.; Nag, S.; Banerjee, A.; Sengupta, R.; Ghosh, D. Music of brain and music on brain: A novel EEG sonification approach.
Cogn. Neurodynamics 2019, 13, 13-31. [CrossRef] [PubMed]

22. JauSovec, N.; Jausovec, K. EEG activity during the performance of complex mental problems. Int. J. Psychophysiol. 2000, 36, 73-88.

[CrossRef]


http://doi.org/10.1140/epjp/s13360-020-01070-8
http://dx.doi.org/10.1016/j.biosystems.2020.104294
http://www.ncbi.nlm.nih.gov/pubmed/33248201
http://dx.doi.org/10.1016/j.physa.2017.08.084
http://dx.doi.org/10.1177/1550059414526186
http://www.ncbi.nlm.nih.gov/pubmed/24781371
http://dx.doi.org/10.1016/j.chaos.2014.06.010
http://dx.doi.org/10.1111/epi.13515
http://dx.doi.org/10.1016/j.knosys.2015.08.004
http://dx.doi.org/10.1111/epi.16667
http://dx.doi.org/10.1016/j.clinph.2015.07.040
http://www.ncbi.nlm.nih.gov/pubmed/26603651
http://dx.doi.org/10.1371/journal.pone.0027863
http://www.ncbi.nlm.nih.gov/pubmed/22125634
http://dx.doi.org/10.1016/j.bbr.2011.01.017
http://dx.doi.org/10.1016/j.smrv.2015.05.002
http://www.ncbi.nlm.nih.gov/pubmed/26164370
http://dx.doi.org/10.1016/j.neubiorev.2015.02.014
http://dx.doi.org/10.1016/j.ijpsycho.2012.09.008
http://www.ncbi.nlm.nih.gov/pubmed/23022494
http://dx.doi.org/10.1016/j.biopsycho.2011.03.003
http://www.ncbi.nlm.nih.gov/pubmed/21419826
http://dx.doi.org/10.1007/s11571-018-9502-4
http://www.ncbi.nlm.nih.gov/pubmed/30728868
http://dx.doi.org/10.1016/S0167-8760(99)00113-0

Fractal Fract. 2021, 5, 225 23 of 25

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Lin, C.J.; Hsieh, M.H. Classification of mental task from EEG data using neural networks based on particle swarm optimization.
Neurocomputing 2009, 72, 1121-1130. [CrossRef]

Wang, Q.; Sourina, O. Real-time mental arithmetic task recognition from EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2013,
21,225-232. [CrossRef] [PubMed]

Miiller-Putz, G.R.; Scherer, R.; Pfurtscheller, G.; Rupp, R. EEG-based neuroprosthesis control: A step towards clinical practice.
Neurosci. Lett. 2005, 382, 169-174. [CrossRef]

del R Millan, J.; Mourifio, J.; Franzé, M.; Cincotti, F.; Varsta, M.; Heikkonen, J.; Babiloni, F. A local neural classifier for the
recognition of EEG patterns associated to mental tasks. IEEE Trans. Neural Netw. 2002, 13, 678-686. [CrossRef]

Lotte, F; Larrue, F; Miihl, C. Flaws in current human training protocols for spontaneous brain-computer interfaces: Lessons
learned from instructional design. Front. Hum. Neurosci. 2013, 7, 568. [CrossRef]

Acharya, U.R.; Molinari, F,; Sree, S.V.; Chattopadhyay, S.; Ng, K.H.; Suri, ].S. Automated diagnosis of epileptic EEG using
entropies. Biomed. Signal Process. Control 2012, 7, 401-408. [CrossRef]

Yuan, Q.; Zhou, W,; Li, S.; Cai, D. Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy
Res. 2011, 96, 29-38. [CrossRef] [PubMed]

Ruiz, R.A.S.; Ranta, R.; Louis-Dorr, V. EEG montage analysis in the blind source separation framework. Biomed. Signal Process.
Control 2011, 6, 77-84. [CrossRef]

Coyle, D.; McGinnity, T.M.; Prasad, G. Improving the separability of multiple EEG features for a BCI by neural-time-series-
prediction-preprocessing. Biomed. Signal Process. Control 2010, 5, 196-204. [CrossRef]

Ince, N.F,; Goksu, F; Tewfik, A H.; Arica, S. Adapting subject specific motor imagery EEG patterns in space-time-frequency for a
brain computer interface. Biomed. Signal Process. Control 2009, 4, 236-246. [CrossRef]

Accardo, A.; Affinito, M.; Carrozzi, M.; Bouquet, F. Use of the fractal dimension for the analysis of electroencephalographic time
series. Biol. Cybern. 1997, 77, 339-350.

Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y.; Al-Wabil, A. Review and Classification of Emotion Recognition Based on EEG Brain-
Computer Interface System Research: A Systematic Review. Appl. Sci. 2017, 7, 1239. [CrossRef]

Zhang, Y.; Zhang, S.; Ji, X. EEG-Based Classification of Emotions Using Empirical Mode Decomposition and Autoregressive
Model. Multimed. Tools Appl. 2018, 77, 26697-26710. [CrossRef]

Pachori, R.B.; Sharma, R.; Patidar, S. Classification of Normal and Epileptic Seizure EEG Signals Based on Empirical Mode
Decomposition. In Complex System Modelling and Control Through Intelligent Soft Computations; Zhu, Q., Azar, A.T., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; Volume 319, pp. 367-388.

Amin, HU,; Mumtaz, W.; Subhani, A.R.; Saad, M.N.M.; Malik, A.S. Classification of EEG Signals Based on Pattern Recognition
Approach. Front. Comput. Neurosci. 2017, 11, 103. [CrossRef]

Merlin Praveena, D.; Angelin Sarah, D.; Thomas George, S. Deep Learning Techniques for EEG Signal Applications—A Review.
IETE ]. Res. 2020, 1-8. [CrossRef]

Craik, A.; He, Y.; Contreras-Vidal, ].L. Deep Learning for Electroencephalogram (EEG) Classification Tasks: A Review. |. Neural
Eng. 2019, 16, 031001. [CrossRef] [PubMed]

Oh, S.L.; Hagiwara, Y.; Raghavendra, U.; Yuvaraj, R.; Arunkumar, N.; Murugappan, M.; Acharya, U.R. A Deep Learning
Approach for Parkinson’s Disease Diagnosis from EEG Signals. Neural Comput. Appl. 2020, 32, 10927-10933. [CrossRef]

Ullah, I; Hussain, M.; Qazi, E.u.H.; Aboalsamh, H. An Automated System for Epilepsy Detection Using EEG Brain Signals Based
on Deep Learning Approach. Expert Syst. Appl. 2018, 107, 61-71. [CrossRef]

wu, E.Q.; Deng, PY.; Qiu, X.Y; Tang, Z.; Zhang, WM.; Zhu, L.M.; Ren, H.; Zhou, G.R.; Sheng, R.S.F. Detecting Fatigue Status of
Pilots Based on Deep Learning Network Using EEG Signals. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 575-585. [CrossRef]

Zeng, H.; Yang, C.; Dai, G.; Qin, F,; Zhang, J.; Kong, W. EEG Classification of Driver Mental States by Deep Learning. Cogn.
Neurodynamics 2018, 12, 597-606. [CrossRef] [PubMed]

Tao, W.; Li, C.; Song, R.; Cheng, J.; Liu, Y.; Wan, E; Chen, X. EEG-Based Emotion Recognition via Channel-Wise Attention and
Self Attention. IEEE Trans. Affect. Comput. 2020. [CrossRef]

Gannouni, S.; Aledaily, A.; Belwafi, K.; Aboalsamh, H. Emotion Detection Using Electroencephalography Signals and a Zero-Time
Windowing-Based Epoch Estimation and Relevant Electrode Identification. Sci. Rep. 2021, 11, 7071. [CrossRef] [PubMed]
Zheng, X.; Chen, W.; You, Y,; Jiang, Y.; Li, M.; Zhang, T. Ensemble Deep Learning for Automated Visual Classification Using EEG
Signals. Pattern Recognit. 2020, 102, 107147. [CrossRef]

Varshney, A.; Ghosh, S.K.; Padhy, S.; Tripathy, R.K.; Acharya, U.R. Automated Classification of Mental Arithmetic Tasks Using
Recurrent Neural Network and Entropy Features Obtained from Multi-Channel EEG Signals. Electronics 2021, 10, 1079. [CrossRef]
Youngworth, R.N.; Gallagher, B.B.; Stamper, B.L. An overview of power spectral density (PSD) calculations. In Optical
Manufacturing and Testing VI, International Society for Optics and Photonics: San Diego, CA, USA, 2005; Volume 5869, p. 58690U.
Solomon, O.M, Jr. PSD Computations Using Welch’s Method. [Power Spectral Density (PSD)]; Technical report; Sandia National Labs:
Albuquerque, NM, USA, 1991.

Demuru, M.; La Cava, S.M.; Pani, S.M.; Fraschini, M. A comparison between power spectral density and network metrics: an
EEG study. Biomed. Signal Process. Control 2020, 57, 101760. [CrossRef]

Carrier, J.; Land, S.; Buysse, D.J.; Kupfer, D.J.; Monk, T.H. The effects of age and gender on sleep EEG power spectral density in
the middle years of life (ages 2060 years old). Psychophysiology 2001, 38, 232-242. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.neucom.2008.02.017
http://dx.doi.org/10.1109/TNSRE.2012.2236576
http://www.ncbi.nlm.nih.gov/pubmed/23314778
http://dx.doi.org/10.1016/j.neulet.2005.03.021
http://dx.doi.org/10.1109/TNN.2002.1000132
http://dx.doi.org/10.3389/fnhum.2013.00568
http://dx.doi.org/10.1016/j.bspc.2011.07.007
http://dx.doi.org/10.1016/j.eplepsyres.2011.04.013
http://www.ncbi.nlm.nih.gov/pubmed/21616643
http://dx.doi.org/10.1016/j.bspc.2010.06.007
http://dx.doi.org/10.1016/j.bspc.2010.03.004
http://dx.doi.org/10.1016/j.bspc.2009.03.005
http://dx.doi.org/10.3390/app7121239
http://dx.doi.org/10.1007/s11042-018-5885-9
http://dx.doi.org/10.3389/fncom.2017.00103
http://dx.doi.org/10.1080/03772063.2020.1749143
http://dx.doi.org/10.1088/1741-2552/ab0ab5
http://www.ncbi.nlm.nih.gov/pubmed/30808014
http://dx.doi.org/10.1007/s00521-018-3689-5
http://dx.doi.org/10.1016/j.eswa.2018.04.021
http://dx.doi.org/10.1109/TCDS.2019.2963476
http://dx.doi.org/10.1007/s11571-018-9496-y
http://www.ncbi.nlm.nih.gov/pubmed/30483367
http://dx.doi.org/10.1109/TAFFC.2020.3025777
http://dx.doi.org/10.1038/s41598-021-86345-5
http://www.ncbi.nlm.nih.gov/pubmed/33782458
http://dx.doi.org/10.1016/j.patcog.2019.107147
http://dx.doi.org/10.3390/electronics10091079
http://dx.doi.org/10.1016/j.bspc.2019.101760
http://dx.doi.org/10.1111/1469-8986.3820232
http://www.ncbi.nlm.nih.gov/pubmed/11347869

Fractal Fract. 2021, 5, 225 24 of 25

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.
71.
72.
73.

74.

75.

76.

77.

78.

79.

80.

81.

Wang, R.; Wang, J.; Yu, H.; Wei, X.; Yang, C.; Deng, B. Power spectral density and coherence analysis of Alzheimer’s EEG. Cogn.
Neurodynamics 2015, 9, 291-304. [CrossRef] [PubMed]

Glass, A.; Kwiatkowski, A. Power spectral density changes in the EEG during mental arithmetic and eye-opening. Psychol. Forsch.
1970, 33, 85-99. [CrossRef]

Hasan, M.].; Shon, D.; Im, K.; Choi, HK.; Yoo, D.S.; Kim, ].M. Sleep state classification using power spectral density and residual
neural network with multichannel EEG signals. Appl. Sci. 2020, 10, 7639. [CrossRef]

Granger, C.W,; Joyeux, R. An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1980,
1, 15-29. [CrossRef]

David, S.A.; Machado, J.; Trevisan, L.R.; Inacio, C., Jr.; Lopes, A.M. Dynamics of Commodities Prices: Integer and Fractional
Models. Fundam. Inform. 2017, 151, 389-408. [CrossRef]

David, S.; Inécio, C., Jr.; Quintino, D.; Machado, J. Measuring the Brazilian ethanol and gasoline market efficiency using
DFA-Hurst and fractal dimension. Energy Econ. 2020, 85, 104614. [CrossRef]

Ionescu, C.M. The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics;
Springer Science & Business Media: Cham, Switzerland, 2013.

Ionescu, C.M.; Copot, D. Monitoring respiratory impedance by wearable sensor device: Protocol and methodology. Biomed.
Signal Process. Control 2017, 36, 57-62. [CrossRef]

Assadi, I; Charef, A.; Copot, D.; De Keyser, R.; Bensouici, T.; Ionescu, C. Evaluation of respiratory properties by means of
fractional order models. Biomed. Signal Process. Control 2017, 34, 206-213. [CrossRef]

Braeken, M.A.K.A ; Jones, A,; Otte, R.A.; Widjaja, D.; Van Huffel, S.; Monsieur, G.J.Y.J.; Van Oirschot, C.M.; den Bergh, B.R.H.
Anxious women do not show the expected decrease in cardiovascular stress responsiveness as pregnancy advances. Biol. Psychol.
2015, 111, 83-89. [CrossRef]

Aubert, A.E.; Vandeput, S.; Beckers, F.; Liu, J.; Verheyden, B.; Van Huffel, S. Complexity of cardiovascular regulation in small
animals. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1239-1250. [CrossRef]

Mortier, E.; Struys, M.; De Smet, T.; Versichelen, L.; Rolly, G. Closed-loop controlled administration of propofol using bispectral
analysis. Anaesthesia 1998, 53, 749-754. [CrossRef] [PubMed]

Jameson, L.C.; Sloan, T.B. Using EEG to monitor anesthesia drug effects during surgery. J. Clin. Monit. Comput. 2006, 20, 445-472.
[CrossRef]

David, S.A.; Machado, ].A.T.; Inacio, C.M.; Valentim, C. A combined measure to differentiate EEG signals using fractal dimension
and MFDFA-Hurst. Commun. Nonlinear Sci. Numer. Simul. 2020, 84, 105170. [CrossRef]

Fraschini, M.; Demuru, M.; Crobe, A.; Marrosu, E; Stam, C.J.; Hillebrand, A. The effect of epoch length on estimated EEG
functional connectivity and brain network organisation. J. Neural Eng. 2016, 13, 036015. [CrossRef] [PubMed]

Box, G.; Jenkins, G.M.; Reinsel, G. Time Series Analysis: Forecasting & Control; Prentice Hall: Upper Saddle River, NJ, USA, 1994.

Xu, L.; Ivanov, P.C; Hu, K,; Chen, Z.; Carbone, A.; Stanley, H.E. Quantifying signals with power-law correlations: A comparative
study of detrended fluctuation analysis and detrended moving average techniques. Phys. Rev. E 2005, 71, 051101. doi:
10.1103 /PhysRevE.71.051101. [CrossRef]

Welch, PD. A direct digital method of power spectrum estimation. IBM J. Res. Dev. 1961, 5, 141-156. [CrossRef]

Hurst, H. The long-term dependence in stock returns. Trans. Am. Soc. Civ. Eng. 1951, 116, 77-99. [CrossRef]

Bryce, R.; Sprague, K. Revisiting detrended fluctuation analysis. Sci. Rep. 2012, 2, 315. [CrossRef]

Gneiting, T.; Sev¢ikova, H.; Percival, D.B. Estimators of fractal dimension: Assessing the roughness of time series and spatial
data. Stat. Sci. 2012, 27, 247-277. [CrossRef]

Zyma, I.; Tukaev, S.; Seleznov, I.; Kiyono, K.; Popov, A.; Chernykh, M.; Shpenkov, O. Electroencephalograms during mental
arithmetic task performance. Data 2019, 4, 14. [CrossRef]

Goldberger, A.; Amaral, L.; Glass, L.; Hausdorff, J.; Ivanov, P.; Mark, R.; Mietus, J.; Moody, G.; Peng, C.; Stanley, H. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000,
101, e215-e220. [CrossRef] [PubMed]

Abhang, P.A.; Gawali, B.W.; Mehrotra, S.C. Chapter 2—Technological Basics of EEG Recording and Operation of Apparatus.
In Introduction to EEG- and Speech-Based Emotion Recognition; Abhang, P.A., Gawali, B.W., Mehrotra, S.C., Eds.; Academic Press:
Cambridge, MA, USA, 2016; pp. 19-50.

Baillie, R.T. Long memory processes and fractional integration in econometrics. J. Econom. 1996, 73, 5-59. [CrossRef]

Franco, G.C.; Reisen, V.A. Bootstrap approaches and confidence intervals for stationary and non-stationary long-range dependence
processes. Phys. A Stat. Mech. Its Appl. 2007, 375, 546-562. [CrossRef]

Cizeau, P; Liu, Y.; Meyer, M,; Peng, C.K.; Stanley, H.E. Volatility distribution in the S&P500 stock index. Phys. A Stat. Mech. Its
Appl. 1997, 245, 441-445.

Ausloos, M.; Vandewalle, N.; Boveroux, P.; Minguet, A.; Ivanova, K. Applications of statistical physics to economic and financial
topics. Phys. A Stat. Mech. Its Appl. 1999, 274, 229-240. [CrossRef]

Tarnopolski, M. On the relationship between the Hurst exponent, the ratio of the mean square successive difference to the
variance, and the number of turning points. Phys. A Stat. Mech. Its Appl. 2016, 461, 662—-673. [CrossRef]

Mandelbrot, B. Statistical methodology for nonperiodic cycles: From the covariance to R/S analysis. In Annals of Economic and
Social Measurement; NBER: Cambridge, MA, USA, 1972; pp. 259-290.


http://dx.doi.org/10.1007/s11571-014-9325-x
http://www.ncbi.nlm.nih.gov/pubmed/25972978
http://dx.doi.org/10.1007/BF00424979
http://dx.doi.org/10.3390/app10217639
http://dx.doi.org/10.1111/j.1467-9892.1980.tb00297.x
http://dx.doi.org/10.3233/FI-2017-1499
http://dx.doi.org/10.1016/j.eneco.2019.104614
http://dx.doi.org/10.1016/j.bspc.2017.03.018
http://dx.doi.org/10.1016/j.bspc.2017.02.006
http://dx.doi.org/10.1016/j.biopsycho.2015.08.007
http://dx.doi.org/10.1098/rsta.2008.0276
http://dx.doi.org/10.1046/j.1365-2044.1998.00467.x
http://www.ncbi.nlm.nih.gov/pubmed/9797518
http://dx.doi.org/10.1007/s10877-006-9044-x
http://dx.doi.org/10.1016/j.cnsns.2020.105170
http://dx.doi.org/10.1088/1741-2560/13/3/036015
http://www.ncbi.nlm.nih.gov/pubmed/27137952
doi: 10.1103/PhysRevE.71.051101
doi: 10.1103/PhysRevE.71.051101
http://dx.doi.org/10.1103/PhysRevE.71.051101
http://dx.doi.org/10.1147/rd.52.0141
http://dx.doi.org/10.1061/TACEAT.0006518
http://dx.doi.org/10.1038/srep00315
http://dx.doi.org/10.1214/11-STS370
http://dx.doi.org/10.3390/data4010014
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
http://dx.doi.org/10.1016/0304-4076(95)01732-1
http://dx.doi.org/10.1016/j.physa.2006.08.027
http://dx.doi.org/10.1016/S0378-4371(99)00307-6
http://dx.doi.org/10.1016/j.physa.2016.06.004

Fractal Fract. 2021, 5, 225 25 of 25

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.
94.

Mandelbrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical
dependence. Water Resour. Res. 1969, 5, 967-988. [CrossRef]

Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short,
modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70-73. [CrossRef]

Roerink, G.J.; Menenti, M.; Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. |.
Remote Sens. 2000, 21, 1911-1917. [CrossRef]

Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys.
Rev. E 1994, 49, 1685-1689. [CrossRef]

Shieh, S.J. Long memory and sampling frequencies: Evidence in stock index futures markets. Int. J. Theor. Appl. Financ. 2006,
9, 787-799. [CrossRef]

Serinaldi, F. Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series.
Phys. A Stat. Mech. Its Appl. 2010, 389, 2770-2781. [CrossRef]

Peters, E.E. Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility; John Wiley & Sons: Hoboken,
NJ, USA, 1996; Volume 1.

Kristoufek, L.; Vosvrda, M. Measuring capital market efficiency: Global and local correlations structure. Phys. A Stat. Mech. Its
Appl. 2013, 392, 184-193. [CrossRef]

Kristoufek, L. How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study.
Phys. A Stat. Mech. Its Appl. 2012, 391, 4252-4260. [CrossRef]

Genton, M.G. Variogram fitting by generalized least squares using an explicit formula for the covariance structure. Math. Geol.
1998, 30, 323-345. [CrossRef]

Hall, P.; Wood, A. On the performance of box-counting estimators of fractal dimension. Biometrika 1993, 80, 246-251. [CrossRef]
Ma, Y.; Genton, M.G. Highly Robust Estimation of the Autocovariance Function. |. Time Ser. Anal. 2000, 21, 663—684. [CrossRef]
Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591-611. [CrossRef]


http://dx.doi.org/10.1029/WR005i005p00967
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1080/014311600209814
http://dx.doi.org/10.1103/PhysRevE.49.1685
http://dx.doi.org/10.1142/S0219024906003780
http://dx.doi.org/10.1016/j.physa.2010.02.044
http://dx.doi.org/10.1016/j.physa.2012.08.003
http://dx.doi.org/10.1016/j.physa.2012.04.005
http://dx.doi.org/10.1023/A:1021733006262
http://dx.doi.org/10.1093/biomet/80.1.246
http://dx.doi.org/10.1111/1467-9892.00203
http://dx.doi.org/10.1093/biomet/52.3-4.591

	Introduction
	Data Characteristics
	Proposed Methods
	Welch's Power Spectral Density
	ARIMA and ARFIMA Models
	Detrented Fluctuation Analysis (DFA)
	Fractal Dimension
	Hall–Wood Estimator
	Robust–Genton Estimator


	Results and Discussion
	Power Spectral Density Analysis
	Comparison between Activity and Rest
	Comparison between Performance Groups

	Time-Domain Analysis and Fractal Indexes
	Statistical Comparison between Activity and Rest
	Statistical Comparison between Performance Groups
	Statistical Comparison between Brain Regions during Activity
	Graphical Analysis of Results


	Conclusions
	Further Information on the Classification of Subjects According to Performance
	References

