

Review

Technological Aspects and Potential Cutaneous Application of Wine Industry By-Products

Alexandra de Almeida Hübner ¹, Michelle Maria Gonçalves Barão de Aguiar ¹, Daniel Pecoraro Demarque ¹, Catarina Rosado ², Maria Valéria Robles Velasco ¹, Irene Satiko Kikuchi ¹, André Rolim Baby ^{1,*}, and Fabiana Vieira Lima Solino Pessoa ^{3,†}

¹ Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil

² CBIOS—Universidade Lusófona’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal

³ Department of Health Sciences, Faculty of Pharmacy, Federal University of Espírito Santo, São Mateus 29932-540, Brazil

* Correspondence: andrerb@usp.br

† These authors contributed equally to this work.

Abstract: The biomass of vinification results in up to 20% by-products (seeds, skins, pulp, and/or stems) that can be used in the production of diverse functional food, nutraceutical, pharmaceutical, and cosmetic ingredients, mainly due to their high polyphenol content. Conventional polyphenol extraction techniques are based on the use of solvents that are harmful to health and to the environment, creating a demand for sustainable complementary initiatives that mitigate part of the environmental effects and offer consumer safety. Current advances in these technologies allow for the recovery of valuable antioxidants from winemaking by-products free of hazardous solvents, biocompatible, and in compliance with international sustainable development guidelines. Nanotechnology has gained prominence in the development of green technologies to reduce or eliminate toxic agents and improve the stability and bioavailability of waste polyphenols. These efforts have led to the application of bioactive compounds from wine by-products in the development of more efficacious sunscreens, as a skin protection approach, and improvements in the antioxidant effectiveness of nanocarriers with potential use in the promotion of cutaneous health. We aimed to present different extraction and encapsulation technologies for biologically active compounds from wine by-products (*Vitis vinifera* L.). We also focused on a particular application of such compounds towards the development of value-added skin protection products aligned with a sustainable circular economy.

Keywords: *Vitis vinifera* L.; winemaking; by-products; circular economy; green extraction; health; biotechnology; nanotechnology

Citation: Hübner, A.d.A.; de Aguiar, M.M.G.B.; Demarque, D.P.; Rosado, C.; Velasco, M.V.R.; Kikuchi, I.S.; Baby, A.R.; Pessoa, F.V.L.S. Technological Aspects and Potential Cutaneous Application of Wine Industry By-Products. *Appl. Sci.* **2023**, *13*, 9068. <https://doi.org/10.3390/app13169068>

Academic Editor: Alessandro Genovese

Received: 6 July 2023

Revised: 28 July 2023

Accepted: 5 August 2023

Published: 8 August 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

In 2022, wine production volume was estimated at between 257 and 262 million hectoliters (mL), and the top four producer countries were Italy (50.3 mL), France (44.2 mL), Spain (33.0 mL), and the United States (EUA) (23.1 mL) [1]. According to Tacchini et al. [2], each liter of wine produces around 166 g of grape pomace. Wine by-products contain a wide variety of compounds, such as nitrogen, salts, fats, and the main ingredients of economic interest, “natural antioxidants”, notably phenolic compounds, representing up to 20% of all wine biomasses (seeds > skin > pulp) [3–9].

Winemaking is an important market in the food industry. About 30% of vinified grapes represent nearly 20 million tons of by-products [10], which can be reused for different purposes, such as in agriculture, livestock, distillery, biorefinery, and as a potential source of phytochemicals for health [10,11]. However, when wine by-products are discarded without proper treatment, they can cause environmental concerns for the water system,

animal and insect infestations, and soil acidification [5,7,8,12]. Although the European Commission Decision 2000/532/EC includes waste from agriculture and horticulture, by-products from wine and beer production remained excluded, unlike spirit distillation residues [4,13].

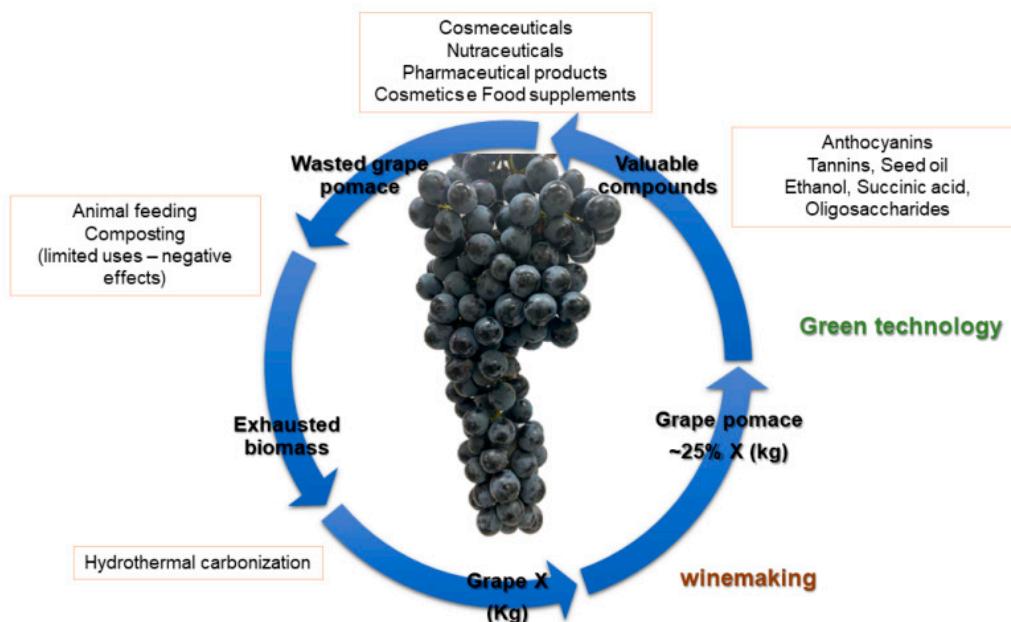
About 70% of grapes' phenolic content remains in the organic residue (Table 1) [6,14]. The chemical composition and bioactivities of wine residues can be influenced by edaphoclimatic conditions and winemaking technology, including similar varieties grown at other sites [7,11,15]. Grapes are rich in health-promoting polyphenols [3,5] and *Vitis vinifera* L. is one of the most used polyphenol-rich grape species cultivated worldwide to produce wine, surpassing 70 million tons [5,16–18].

Table 1. Main compound classes of red and white grape pomaces from winemaking.

By-Product	Compounds		References
	Red Grape	White Grape	
Grape pomace (mixture)	Phenolic acids; flavonoids; proanthocyanidins; anthocyanins; stilbenes; protein; lipid; fiber; and ash	Phenolic acids; flavonoids; proanthocyanidins; stilbenes; polysaccharides	[7,11,19–21]
Grape seeds	Phenolic acids; flavonoids; proanthocyanidins; anthocyanins lignocellulosic material, oil (linoleic— ω 6 > oleic— ω 9 acid); proteins; sugars; minerals; polysaccharides (cell wall)	Phenolic acids; flavonoids; proanthocyanidins; stilbenes	[7,20,22–24]
Grape skins	Phenolic acids; flavonoids; anthocyanins; polysaccharides	Phenolic acids; flavonoids; proanthocyanidins; stilbenes	[7,20,22]
Stalks	Phenolic acids; flavonoids; proanthocyanidins; anthocyanins; polysaccharides; ash; cellulose; proteins; tannins; lignin; hemicelluloses; monosaccharides	Phenolic acids; flavonoids; proanthocyanidins	[23,25,26]

The synergy of the circular economy involves reducing wine grape pomace and increasing the useful life of bioresources [7,27] as functional food, nutraceutical, pharmaceutical, and cosmetic ingredients [5,7,28], which contributes positively to the environment, society, and the economy itself, as recommended by the United Nations Sustainable Development Goals [27]. Winery biowaste management strategies (first and second generation) are requirements for the development of a sustainable bioeconomy [16,29]. First-generation biowaste is sent to facilities for composting, landfill, or biogas via anaerobic digestion; second-generation biowaste is directed to green technology, valuing products such as seed oil, fibers, tartaric acid, squalene, and ethanol, for example [2,29]. It should also be taken into consideration that in many European and non-European countries, more than 5% of organic waste is prohibited in landfills. Winemaking residues with lower investment and transportation costs may be recycled if cooperatives in strategic locations assist the wineries. In Bulgaria, for example, waste-free technology was introduced to process winemaking by-products [8]. In this review, we aimed to present different extraction and encapsulation technologies of biologically active compounds from wine by-products (*Vitis vinifera* L.). We also focused on a particular application of such compounds towards the development of value-added skin protection products aligned with a sustainable circular economy. From our perspective, we believe this review could encourage the following: sustainable development of a circular economy based on wine agroindustry (zero waste and reduction in environmental damage and damage to living beings); the recovery of active compounds from winemaking residues to obtain products with high added value for health, especially for skin protection; increasing the visibility of functional polyphenols from *V. vinifera*

by-products; and the safe and effective application and consumption of skin protection products based on wine residues.


2. Opportunity to Obtain Value-Added Products in Circular Economy

The evident climate changes outline a worrying panorama in several sectors. It is estimated that around 1/3 of agricultural products are wasted before reaching the market, leading to environmental pressure. Although considered comparatively more polluting, regarding greenhouse gases, livestock shows reduced loss and waste. The “healthy” food system is represented by, for example, the production of vegetable proteins, using up-to-date agricultural techniques, restricting the pollution of terrestrial and aquatic ecosystems, limiting, or replacing fertilizers, such as nitrogen and phosphorus, and the recycling of water resources. This complex scenario requires complementary initiatives that mitigate part of the environmental effects arising from the agricultural sector and its influence on food and nutrition security [30]. In this context, the education of the population is urgent since once people become aware of the problem of natural adversities, they can actively participate in reducing the pressure on the environment.

Food choices (type, quantity, etc.) associated with maintaining people’s health and/or reducing the incidence of non-communicable diseases can help achieve environmental sustainability goals by curbing environmental degradation [31]. Viticulture generates various residues from pruning the vine and the fruits used in winemaking (stems, pomace, and grape seed), being a small part of these residues that is reused in value-added products. Existing technologies and the demand for by-products can help to reallocate such wastes [32]. The stalks and stems of pruning vines are considered sources of procyandins, lignin, cellulose, and hemicellulose. The cellular contents of these wall components depend on the cultivar, winemaking, and destemming processes. The stalks, for example, represent an average of 25% weight of the grape pomace [33]. Additionally, the effluent can be used for other purposes, for example, as a medium for microalgae cultivation [34]. Researchers suggest a sequence of zero-waste alternatives applying circular economy guidelines as follows: (I) the recuperation of higher value compounds, such as polyphenols through “green” techniques (biorefinery of economically viable and environmentally correct agro-industrial residues); (II) anaerobic biodegradation for biogas production; and (III) composting of depleted biomass [35] (Figure 1). Obtaining biogas using processed water, initiated during the hydrothermal carbonization of depleted grape pomace, can enable the preservation of energy and physical-chemical properties of hydro charcoal, suggesting its use in adsorbing atmospheric and water pollutants.

Polyphenols from wine production residue are natural raw materials that can help to prevent diseases [36]. Studies indicated their beneficial effects, mainly linked to the elimination and transmission of reactive oxygen species through the processes of autoxidation by donating hydrogen atoms or electrons and the synthesis of antioxidant molecules involved in the signaling of enzyme-linked receptors [17,36]. An overview of recent trials (Table 2) reports a strong antioxidant effect of white and red wine grape pomace extracts mostly performed using *in vitro* assays [5,11,20,24,25,28,37–48]. The bioaccessibility and bioavailability potential of phytochemicals of white wine grape pomace (*V. vinifera* cv. Zalema grapes) depend on the type of by-product, digestion phase, and recovery of phenolic groups. The phenolic compounds in seeds and pomace extract significantly decreased after gastric digestion compared to undigested samples. The total contents of phenolic acids (skin extract) and flavanols (stem and pomace extracts) increased significantly after gastric and intestinal digestion compared to undigested samples. The antioxidant activity of seed and stem extracts increased (~149% and 219%, respectively) after intestinal digestion. However, it decreased in skin and pomace (~52% and 75%, respectively) [25]. Muscat grape pomace drying revealed the negative impact of time and temperature (6 h at 80 °C) on flavanol and monomeric anthocyanins content and radical scavenging potential compared to the untreated (fresh) material. Catechin was the most thermolabile among several compounds isolated from those raw materials, and it was followed by rutin. The researchers pointed

out that the recovery of polyphenols should be carried out using low-impact extraction [37]. Even though many investigations indicate the abundance of polyphenols and the high antioxidant potential of the fermented residues from wine production after simulated gastrointestinal digestion, further studies are needed for exploring their applicability in human health and well-being.

Figure 1. Simplified outline of the circular economy application for the valorization of winemaking by-products.

Bioactives from winemaking residues have attracted attention due to their health benefits and potential economic and social improvements for the cosmetic and pharmaceutical industries [49]. An example is tocopherol, which can act as an antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, and anticancer agent. Grape pomace pre- and post-fermentation from red and white wines demonstrated considerable concentrations of tocopherol. The red grapes were slightly richer in tocopherols than the white ones, and the alcoholic distillation of the waste mixture moderately reduced the tocopherol concentration, even so, resulting in a valuable secondary ethanolic extract for health applications [6].

The efficient industrial extraction of waste phytochemicals provides greater extractive yield, reduction in discard, and economic gains with high-value substances, such as alcohol, tartaric salts, food pigments, and grape seed oil. Tempranillo grape has been shown to contain higher phenolic content and antioxidant activities in red grape seeds and similar values in washed grape pomace [7]. The main compounds found in hydroethanolic grape pomace extracts were flavonoids and proanthocyanidins, which corroborated the antioxidant capacity of such material [50]. Although many papers proved the significant content of antioxidants, mainly polyphenols, the number of studies in the cosmetic and pharmaceutical areas that attest to these benefits in humans is still insufficient to stimulate the large-scale production of phenolic derivatives from winemaking in promoting health.

Highly bisphenol-stable aqueous grape pomace extracts were obtained using microwave hydro-diffusion and gravity (MHG) of Sicilian grapes, including Syrah, Perricone, and N. d'Avola. In the aqueous extract, high levels of enocyanin were found. Gallic acid and its ethyl ester derivative reached considerable amounts in the Perricone grape, followed by hydroxybenzoic and syringic acids. Quercetin was predominant in the Perricone and Syrah aqueous extracts, and resveratrol was abundant in the Perricone pomace [51].

Table 2. Biological effects associated with bioactive compounds from winemaking by-products (red/white *V. vinifera*).

By-Product	Cultivar	Chemical Compounds	Bioactivity	References
	C. Sauvignon	Total phenolics and flavonoids, flavonoids (dihydroflavonol and flavonols), anthocyanins, and procyanidin dimers and trimers	Efficacy and safety photoprotective in volunteers and in vitro antioxidant activity model	[28,41]
Whole grape pomace and/or skins/seeds/stems separated	Mixture of Sangiovese and Montepulciano	Total polyphenols, flavonoids, tannins, and anthocyanins	In vitro antioxidant and anticholesterolemic (7a-hydroxylase—7a1 and sterol 27-hydroxylase—cyp27a1) activities	[39]
	Zalema	Total phenolic, phenolic acids, flavonoids (flavanols and flavonols), and dimeric proanthocyanidins	In vitro antioxidant and antiproliferative activities on the human colon adenocarcinoma cells (Caco-2)	[25,48]
	Pinot Noir and Merlot	Ash, protein, and fat content, soluble sugar, insoluble and soluble dietary fiber, pectin, total phenolic, anthocyanin, flavonoid (flavanol), and condensed tannin	In vitro antibacterial (<i>Escherichia coli</i> and <i>Listeria innocua</i>) activity	[47]
Seed + skins and/or skins/seeds separated	Not mentioned, only (<i>V. vinifera</i>)	Phenol acids, flavan-3-ols, flavonols, and anthocyanins	In vitro antioxidant, cytotoxic (human cervical carcinoma—HeLa and human breast adenocarcinoma—MCF-7), and antibacterial (<i>Klebsiella pneumoniae</i> , <i>Klebsiella pneumoniae</i> ESBL, and <i>Morganella morganii</i>) activities	[20]
	Nero d'Avola	Polyunsaturated fatty acids, polyphenols, proanthocyanidins, flavonoids, anthocyanin total, and stilbenes (resveratrol)	In vitro antioxidant (human skin fibroblast HS-68) and antiproliferative hepatoma Hep-G2) effects	[24]
	Grenache, Syrah, Carignan, Mourvedre, Counoise and Alicante	Total phenols, anthocyanins, and proanthocyanidins	In vitro antihypertensive potential in a chronic disease model	[42]

Table 2. *Cont.*

By-Product	Cultivar	Chemical Compounds	Bioactivity	References
Skins	Tempranillo, Tintilla de Rota, C. sauvignon, Petit verdot and Syrah	Hydroxybenzoic and hydroxycinnamic acids, flavan-3-ols, tyrosol, flavonols and anthocyanins	In vitro antioxidant activity	[38]
	Barbera, Croatina, Dolcetto, Grignolino, Nebbiolo and Pinot Nero	Total phenolics, flavonoids (flavonols) anthocyanins, and proanthocyanidin	In vitro antioxidant and anti-glycation activities	[40]
	Carignano	Organic acids, phenolic acids, flavonoids, stilbenes, anthocyanins, proanthocyanidin, triterpenes, lipids	In vitro model for the prevention of oxidative stress-induced ROS (3T3 cells)	[45]
	Merlot	Flavonoids (flavan-3-ols, galloyl derivatives, and flavonols), anthocyanins and procyanidin B-type (epi)catechin dimer/trimer/tetramer	In vitro antioxidant, cytotoxic, and antibacterial activities	[5]
Not specified, only “grape pomace”	Muscat	Phenolic acids, flavonoids (Catechin, rutin, and quercetin), and anthocyanins	In vitro free radical scavenging activity	[37]
	Nasco	Hydroxybenzoic acids (gallic acid), (+)-catechin, (-)-epicatechin, condensed tannins	In vivo neuroprotective effects	[44]
	Mixture of Trebbiano and Verdicchio	Phenol acids, flavanols, tannins, and mono-glycoside stilbenes	In vitro antioxidant, anti-tyrosinase, and anti-inflammatory on human embryonic kidney cells (HEK293) activities	[11]
	Chenin Blanc, Petit Verdot, and Syrah	Hydroxybenzoic acid (gallic acid), flavan-3-ols and flavonols, anthocyanins, and condensed tannins	In vitro antioxidant and anti-inflammatory (Tumor necrosis factor-alpha—TNF- α) activities	[43]
Extract and process patent protected	Albariño	Non-flavonoids, flavonoids, proanthocyanidins B, and total procyanidins	In vitro antimicrobial and anti-parasitic activities	[46]

The relevant enzymes of unconventional habitats, such as wild oenological industry yeasts (*S. cerevisiae*) isolated from two different white grape pomace (Prosecco and Moscato), have shown to be interesting for future biotechnological applications [52]. A review evaluated that treatment combined with cellulase and pectinase enzymes increased the extraction of phenolic compounds from wastes, and it also could overcome the cost and security limitations of the current technologies [4]. Ethanol and aqueous extracts of dried white grape pomace obtained using enzyme-assisted extraction (EAE) showed antioxidant, anti-tyrosinase, and anti-inflammatory properties [11].

Nowadays, consumers are interested in minimally processed products and the use of natural antioxidants for food preservation. Considering the high content of antioxidant “polyphenols” remaining in wine grape pomace, hamburgers were mixed with 0, 2, and 4% of pomace. In these conditions, the pH, cooking yield, and patty colors decreased, while the shear strength and hardness of Allo-Kramer increased as pomace was added. Burgers containing by-products did not differ in flavor, juiciness, and hue compared to control burgers [53].

The spontaneous microbiological deterioration of grape pomace extracts led to significant losses in polyphenols and, consequently, antioxidant activity. To minimize these effects, methods of stabilization of phytochemicals from grape pomace were also employed, such as drying methods, vacuum drying oven, and lyophilization [54]. Researchers using high voltage atmospheric cold plasma—HVACP (60 kV)—in different periods (5, 10, and 15 min) to modify the surface properties of wine by-products and enhance the recovery of active compounds found that HVACP-treated grape pomace was able to increase up to 22.8% of the total phenolics and 34.7% of the antioxidant effect. The use of this innovative technology enabled the increase in the content and nutritional quality of functional foods and nutraceuticals based on the by-product of winemaking [55]. Grape pomace flours are also a source of nutrients and bioactive compounds. However, there are risks to human health that may come from the soil or external contamination, like heavy metals. European Commission regulations recommend in-depth studies, logistical and handling controls of wine waste before insertion into industrial food production [56].

3. Valorization of Winemaking Residues—Use of Technologies

According to different authors [9,57], the replacement of conventional technologies (solid-liquid extraction, heating, grinding) with unconventional ones—pulsed electric field extraction (PEFE), high voltage electrical discharge, pulsed ohmic heating, ultrasound-assisted extraction (UAE), EAE, microwave-assisted extraction (MAE), sub- and super-critical fluid extraction (SFE CO_2), and pressurized liquid extraction—for the recovery of valuable antioxidants in winemaking by-products presents indisputably greater efficiency and selectively extractive power and consonance with “green” extraction methods. Such technologies are promising, and the challenges of equipment, installation costs, and waste processing on a pilot scale must be overcome before industrialization. Table 3 shows studies on conventional and non-conventional techniques that have been used to improve the extraction, separation, and purification of chemical constituents from wine by-products (*V. vinifera*) with potential applications in cosmetics, pharmaceuticals, nutraceuticals, and food supplements.

Table 3. Techniques used to extract, separate, and purify chemical constituents from winery by-products (*V. vinifera* grape).

Cultivar	By-Product	Technique	Compound	References
Red Saperavi and white Rkatsiteli grapes	Skins and seeds	GD, SLE	Tocopherols	[6]
Red Chardonnay grape	Seeds, grape skin, and stems	SLE, HT, MAE	Polyphenols (gallic acid)	[50]

Table 3. *Cont.*

Cultivar	By-Product	Technique	Compound	References
Red Tempranillo grape	Red grape pomace, seeds, and seed flour	GD, CCD, HT, SLE	Total protein, lipid, fiber, ash, polyphenols	[7]
Red Prokupac grape	Skin, seed, stem, and whole pomace	GD, SLE, ST, FT,	Polyphenols	[15]
White Albarino grape	Seeds	MSPD	Polyphenols	[16]
Red Alicante Bouschet grape	Skins	MR-XAD-7HP	Polyphenols (anthocyanins)	[58]
Red Syrah, Perricone and N. d'Avola grapes	Skins, seeds, residual pulp, and stems	MHG	Polyphenols	[51]
Red Merlot grape	Grape pomace	EAE	Polyphenols	[5]
Red wine grape	Grape pomace (whole and seedless) and seeds separated	EAE	Polyphenols	[59]
White Trebbiano and Verdicchio grapes	Grape pomace	EAE	Polyphenols	[11]
Red Sangiovese and Montepulciano grapes	Skins, seeds, petioles, and stalks	EAE	Polyphenols	[39]
Red Sagrantino grape	Skins and seeds	GD, MacE	Polyphenols	[3]
Red Tempranillo grape	Grape pomace	GD, SE, SoxE, CT, DNF	Polyphenols	[9]
Red grape	Grape pomace powder	GD	Polyphenols	[18]
Red Syrah, Merlot, and C. Sauvignon grapes	Grape pomace (seedless) and seeds	SLE	Polyphenols	[53]
White Auxerrois and P. Blanc grapes	Skins, seeds, and residual stalks	GD, SLE, UAE	Polyphenols	[54]
Red Gamay and P. Noir grapes				
Not mentioned	Grape pomace	GD, SLE, ST, HT, CT, FT	Polyphenols	[60]
Red C. Sauvignon grape	Grape pomace (stemless)	GD, HVACP	Polyphenols	[55]
Red Merlot grape	Grape pomace	GD, SLE, RA,	Carbohydrates and polyphenols	[61]
Red Tempranillo grape	Grape pomace	GD, PHWE- NADES	Polyphenols (anthocyanins)	[62]
Red Tannat grape	Skin powder	GD, SLE, MacE, UAE, FT	Carbohydrates, protein, monomeric anthocyanins, polyphenols	[63]
Red Merlot and Syrah grapes	Grape pomace	GD, SLE, UAE, SFE CO ₂ + CS	Polyphenols	[64]
Red Muscat of Hamburg grapes	Grape pomace	HT, ST, US-NADES	Polyphenols	[65]
Red Graciano grapes	Grape pomace	GD, SLE, ST, CT	Polyphenols	[66]
Red P. Noir grape	Grape pomace seedless	GD, SLE, HT, ST, FT	Cellulose	[67]
Red grape	Seeds and stalks	GD, SLE, ST, CT	Polyphenols	[23]
Red Cannonau red grape	Grape pomace	SLE, ST, CT, pellets re-dispersed in olive oil, ST, CT	Polyphenols	[68]

Table 3. *Cont.*

Cultivar	By-Product	Technique	Compound	References
Red Merlot grape	Seeds	GD, SLE, CT	Polyphenols (catechins)	[36]
Red Cannonau grape	Grape Pomace	SLE, MacE, CT,	Polyphenols	[69]
Non mentioned	Grape pomace	GD, SLE, HT, FT	Polyphenols (tannins)	[70]

Conventional Technologies: centrifuged (CT), filtering (FT), grinding (GD), heating (HT), Maceration Extraction (MacE), solid–liquid extraction (SLE), Soxhlet Extraction (SoxE), stirring (ST). Non-Conventional Technologies: Centrifugal Force (CF), Counter-Current Diffusion (CCD), Diananofiltration (DNF), Enzyme-Assisted Extractions (EAE), High Voltage Atmospheric Cold Plasma (HVACP), Matrix Solid-Phase Dispersion (MSPD), Microwave-Assisted Extraction (MAE), Microwave Hydrodiffusion and Gravity (MHG), Pressurized Hot Water Extraction and Natural Deep Eutectic Solvents (PHWE- NADES), Resin Adsorption (RA) Supercritical Fluid Extraction- CO_2 co-solvent (SFE CO_2 + CS), Ultrasonic-Assisted Deep Natural Eutectic Solvent Extraction (US-NADES), Ultrasound-Assisted Extraction (UAE), and XAD-7HP Macroporous Resin (MR-XAD-7HP).

The critical points of bioactive extraction from agro-industrial residues for use in food include the choice of biodegradability and non-toxicity of solvents and the physical-chemical conditions. Combined extractive methods can improve the separation and purification of phenolic compounds from grape pomace. Solid–liquid extraction with hydroethanolic solution and fractionation through membrane filtration according to their molecular weight, with less energy consumption and at low temperatures, increasing the recovery of phenolics. However, due to the similarity of molecular weight of the phenols and carbohydrates, it was not possible to separate them by such a process, but they were successfully separated through a process of adsorption on resin and vacuum evaporation. This technique separates the phenols according to the dipole–induced dipole interaction [61]. MSPD is an emerging technique used for the extraction of phytochemical or organic contaminants from food, employing low amounts of samples, sorbents, and solvents [71]. Also, it is considered an efficient method to extract antioxidants with neuroprotective activity from viticultural residues [16].

To attain an increased yield of anthocyanins from grape pomace after vinification applying sustainable strategies, the implementation of pressurized hot water extraction (PHWE) combined with NADES satisfactorily met the extraction efficiency of the reddish pigments [62]. Recently, the literature pointed out the technological potential of NADES solvents as a promising green alternative characteristic of biodegradability and better extraction efficiency for polyphenols extraction from grape pomace [72,73]. NADES achieved extractive yields like those obtained with organic solvents and, in an optimized process, doubled them [73]. The acidified hydroalcoholic solution of grape skin pomace combined with a mixture of organic solvents was more effective in extracting polyphenols than other tested techniques [63]. The development of technologies aimed at removing seeds from fresh wine waste directly in the winery makes it possible to minimize the disposal of organic residue [49] and increase the source of income, mainly for small winegrowers with environmental responsibility.

4. Delivery Systems Based on Bioactive from Wine By-Products

Advances in nanotechnology have led to the development of innovative and safer nanoparticles that do not use toxic chemicals in their synthesis, further supporting the development of the bioeconomy based on winemaking residues. Table 4 exhibits a compilation of studies on the application of technologies with phenolic metabolites recovered from winemaking, showing that these systems can contribute to the antioxidant efficacy of promising products applied in the prevention of various health problems [23,36,65–70,74].

Table 4. Carrier systems of/for bioactive(s) of the grape pomace (*V. vinifera*) from vinification for health promotion.

Carriers	Winery Waste	Encapsulation or Nanoparticle	Mean Diameter (nm)	Recovery or Encapsulation Efficiency (%)	Compound (s)	Application (s)	References
Liposomes	Grape pomace cv. Graciano extract	An aqueous dispersion containing extract and phospholipid lipid [®] S75 was sonicated	104	75 ± 30	Phenol acids, flavonoids, mainly anthocyanins	Treatment of oxidative skin conditions	[66]
Liposomes	Grape seeds cv. Merlot extract	Lipoid [®] S100, lipid, vitamin E, and Tween [®] 80 were dissolved in ethanol after aqueous dispersion containing extract and polysorbate 80 was added; followed by agitation, evaporation, and membrane filtration	179.8–420.2	-	Flavonoid (catechin)	Sustainable packaging and antioxidants for food products	[36]
Microemulsions	Grape pomace cv. Muscat of Hamburg extract	Isopropyl-myristate, Span [®] 20, and Tween [®] 80 were mixed, the extract was added, and after stirring	-	-	Hydroxycinnamic acid (caftaric acid) and flavonoids (rutin, quercetin, catechin)	Natural chemical stabilizer and the antioxidant of nutraceuticals and cosmetics	[65]
Nanocrystals	Grape pomace seedless cv. P. Noir extract	The cellulose isolated was hydrolyzed with sulfuric acid. The recovered material was washed with water until forming a colloidal suspension that was dialyzed until neutral pH	7–8	80.1	Polysaccharides (cellulose)	Non-toxic reinforcing materials for packaging or gels in food and pharmaceutical products	[67]

Table 4. Cont.

Carriers	Winery Waste	Encapsulation or Nanoparticle	Mean Diameter (nm)	Recovery or Encapsulation Efficiency (%)	Compound (s)	Application (s)	References
Nanoparticles	Grape pomace extract	Aqueous extract of grape pomace rich in tannins and the silver nitrate solution were mixed (1:10, respectively) in a magnetic stirrer, after concentrated and water was added to the separated pellet	15–20	-	Condensed tannins	Development of antidiabetic, antioxidant, and antimicrobial products	[70]
Phospholipid vesicles	Grape pomace cv. Cannonau extract	Dispersions containing Lipoïd® S75 (120 mg), pellet extractive olive oil (100 mg), and, 1 mL of grape pomace extract in a mixed solvent system were sonicated	150–193	98 and 84	Hydroxybenzoic acids, flavan 3-ols, flavonols, anthocyanins, fatty acids	Antioxidants for pharmaceutical and/or cosmetic products	[68]
Phospholipid vesicles	Grape seeds and stalks extracts	Lipoïd® S75, Tween® 80, and water or sodium hyaluronate	62–139	90–96	Phenol acids and flavonoids	Treatment of oxidative skin disorders	[23]
Phospholipid vesicles	Grape pomace cv. Cannonau extract	Aqueous dispersion containing Lecinova®, extract, water, gelatin or Nutriose® FM06, or both were sonicated	128–175	65–88	Hydroxycinnamic and hydroxybenzoic acids, flavanols, flavonols anthocyanins	Gastrointestinal protection	[69]

The encapsulation technology of active compounds with polymeric materials on a micrometer scale ensured the stability of the material. Infusions of dried *V. vinifera* waste encapsulated with organic matrices at 50, 60, and 70 °C showed that the sensorial characteristics were influenced by the matrix used in the encapsulation. Physical-chemical parameters, and antioxidant activity of the preparations, depended on the grape variety. The encapsulation of by-products preserved the antioxidant capacity of the active compounds. No matrix altered the sensory characteristics of the infusions after two months. The infusions prepared at higher temperatures had better phenolic content and were more promising for use in human food, and the addition of honey made it more enjoyable [75].

Acid hydrolysis allowed for high crystallinity and the purification of cellulose from *P. Noir* grape pomace, and its cellulose crystals showed needle-shaped morphology, stability in aqueous dispersion after seven days of storage, and biocompatibility with human colon epithelial cells [67]. Grape pomace-loaded vesicles promoted cell proliferation, migration and reduced oxidative stress of keratinocytes and fibroblasts [23].

From the exposure, nanocarriers containing active substances from the grape pomace(s) may be allies in favor of human health since robustly investigated to prove safety and efficacy and improvements regarding the compounds in their free state.

5. The Use of Wine By-Products towards Sunscreen Development

By-product ingredients from the wine industry can elevate the sun protection factor (SPF) of sunscreens using different mechanisms, contributing to reducing the concentration of UV filters, that could be potentially harmful to the environment, decreasing the use of natural resources and, in parallel, adding value to compounds from renewable sources. The efficacy profile of these innovative formulations has been studied both via *in vitro* and *in vivo* tests by our research group [28,41,76].

Hübner and coworkers developed a sunscreen system containing UVA/B organic filters associated with 10.0% *w/w* of grape pomace (*V. vinifera* cv. *C. Sauvignon*). A significant increase was observed in the *in vitro* SPF value (172%) and antioxidant ability (710% in Trolox equivalents), in comparison to the extract-free formulation. Moreover, the study probed *in vivo* the photoprotective capacity of grape pomace. The sunscreen formulation containing pomace extract delayed by ~20% the appearance of the initial signs of erythema, compared to the control formulation [28].

Recently, the same research group reported the biocompatibility of two fractions of grape pomace (*C. Sauvignon*), chloroform (GPE-CHF), and ethyl acetate (GPE-EAF), using a fibroblast culture (NIH 3T3). When the cells were stressed with H₂O₂, an oxidative agent, the authors observed a cytotoxic effect from the GPE-CHF, whereas the ethyl acetate fraction (GPE-EAF) was non-cytotoxic in the used conditions. According to these findings, GPE-EAF (10.0% *w/w*) was associated with a mixture of UV filters, and the *in vitro* SPF was determined using a diffuse reflectance spectrophotometer with the integrated sphere as well the functional photostability. GPE-EAF increased the photoprotective efficacy by 66% and improved the photostability of the sunscreen system after 1 h of artificial UV exposure [76].

These studies are indicative of the potential of using extracts of winemaking residues in the development of sunscreens aligned with the challenges of sustainable development to face poverty, inequalities, and climate change.

6. Conclusions

The valorization of agro-industrial phytochemicals brings and highlights positive impacts for wine producers, consumers, and the environment. However, there are economic, technological, and agronomic challenges that require financial, human resources, infrastructure, and research investments to ensure the quality of green industrial production and zero waste through the circular economy. The choice and combined use of technologies can reduce costs, energy, and toxic solvents. In this context, various non-conventional technologies with different approaches for extraction, separation, and purification of actives

from winery by-products have offered a viable and safer alternative with social, economic, and environmental balance. An effective partnership among different sectors of society responsible for the management and recycling of wine residues can intensify the resolution of disposal problems with eco-friendly, innovative technological solutions, and multiple high-value products. Thus, this present review found technological advances and promising biotechnological and nanotechnological applications of winemaking by-products for health promotion.

Author Contributions: Conceptualization, A.d.A.H. and A.R.B.; methodology, A.d.A.H., M.M.G.B.d.A. and A.R.B.; formal analysis, A.d.A.H., D.P.D., F.V.L.S.P., I.S.K., M.V.R.V., C.R. and A.R.B.; investigation, A.d.A.H., D.P.D., F.V.L.S.P., I.S.K., C.R., M.M.G.B.d.A. and A.R.B.; writing-original draft preparation, A.d.A.H. and A.R.B.; writing-review and editing, A.d.A.H., D.P.D., F.V.L.S.P., I.S.K., M.V.R.V., C.R. and A.R.B.; supervision, A.R.B.; funding acquisition, C.R. and A.R.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Process 303862/2022-0); Fundação para a Ciência e a Tecnologia, I.P., funding UIDB/04567/2020; and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, Finance Code 001).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the corresponding author.

Acknowledgments: The authors deeply thank Edna Tomiko Miyake Kato for knowledge sharing. M.M.G.B.d.A. is highly thankful to the Provost of Inclusion and Belonging (Pró-Reitoria de Inclusão e Pertencimento, PRIP) and Provost of Research and Innovation (Pró-Reitoria de Pesquisa e Inovação), University of São Paulo, for the post-doctoral fellowship (001/2023).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. International Organization of Vine and Wine. *State of the World Vine and Wine Sector in 2022*; OIV: Dijon, France, 2023; pp. 1–8.
2. Tacchini, M.; Burlini, I.; Bernardi, T.; De Risi, C.; Massi, A.; Guerrini, A.; Sacchetti, G. Chemical characterisation, antioxidant and antimicrobial screening for the revaluation of wine supply chain by-products oriented to circular economy. *Plant Biosyst.* **2019**, *153*, 809–816. [[CrossRef](#)]
3. Angelini, P.; Flores, G.A.; Piccirilli, A.; Venanzoni, R.; Acquaviva, A.; Di Simone, S.C.; Ferrante, C. Polyphenolic composition and antimicrobial activity of extracts obtained from grape processing by-products: Between green biotechnology and nutraceutical. *Process Biochem.* **2022**, *118*, 84–91. [[CrossRef](#)]
4. Barros, A.; Gironés-Vilaplana, A.; Texeira, A.; Bañas, N.; Domínguez-Perles, R. Grape stems as a source of bioactive compounds: Application towards added-value commodities and significance for human health. *Phytochem. Rev.* **2015**, *14*, 921–931. [[CrossRef](#)]
5. Corrêa, R.C.; Haminiuk, C.W.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Kato, C.G.; Correa, V.G.; Peralta, R.M.; Ferreira, I.C.F.R. Stability and biological activity of Merlot (*Vitis vinifera*) grape pomace phytochemicals after simulated in vitro gastrointestinal digestion and colonic fermentation. *J. Funct. Foods* **2017**, *36*, 410–417. [[CrossRef](#)]
6. Goloshvili, T.; Akhalkatsi, M.; Badridze, G.; Kikvidze, Z. Tocopherol contents and antioxidant activity in grape pomace after fermentation and alcohol distillation. *Cell. Mol. Biol.* **2021**, *67*, 112–115. [[CrossRef](#)]
7. Mora-Garrido, A.B.; Cejudo-Bastante, M.J.; Heredia, F.J.; Escudero-Gilete, M.L. Revalorization of residues from the industrial exhaustion of grape by-products. *LWT* **2022**, *156*, 113057. [[CrossRef](#)]
8. Osipova, L.; Khodakov, A.; Radionova, O.; Tkachenko, L.; Abramova, T. The current state and trends of processing secondary raw materials of winemaking in Ukraine. *Food Sci. Technol.* **2021**, *15*, 50–60. [[CrossRef](#)]
9. Syed, U.T.; Brazinha, C.; Crespo, J.G.; Ricardo-da-Silva, J.M. Valorization of grape pomace: Fractionation of bioactive flavan-3-ols by membrane processing. *Sep. Purif. Technol.* **2017**, *172*, 404–414. [[CrossRef](#)]
10. Ferrer-Gallego, R.; Silva, P. The wine industry by-products: Applications for food industry and health benefits. *Antioxidants* **2022**, *11*, 2025. [[CrossRef](#)] [[PubMed](#)]
11. Ferri, M.; Rondini, G.; Calabretta, M.M.; Michelini, E.; Vallini, V.; Fava, F.; Rodac, A.; Minnuccid, G.; Tassonia, A. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities. *New Biotechnol.* **2017**, *39*, 51–58. [[CrossRef](#)]
12. Monteiro, G.C.; Minatel, I.O.; Junior, A.P.; Gomez-Gomez, H.A.; de Camargo, J.P.C.; Diamante, M.S.; Basílio, L.S.P.; Tecchio, M.A.; Lima, G.P.P. Bioactive compounds and antioxidant capacity of grape pomace flours. *LWT* **2021**, *135*, 110053. [[CrossRef](#)]

13. European Commission. Commission Decision of 3 May 2000 Replacing Decision 94/3/EC Establishing a List of Wastes Pursuant to Article 1(a) of Council Directive 75/442/EEC on Waste and Council Decision 94/904/EC Establishing a List of Hazardous Waste Pursuant to Article 1(4) of Council Directive 91/689/EEC on Hazardous Waste. *Off. J. L.* **2000**, *226*, 1–31.

14. Kua, Y.L.; Gan, S.; Morris, A.; Ng, H.K. Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products. *Sustain. Chem. Pharm.* **2016**, *4*, 21–31. [\[CrossRef\]](#)

15. Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Z.; Bajić, S.S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Tešić, Z.L.; Pešić, M.B. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. *LWT* **2021**, *138*, 110739. [\[CrossRef\]](#)

16. Gómez-Mejía, E.; Vicente-Zurdo, D.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Screening the extraction process of phenolic compounds from pressed grape seed residue: Towards an integrated and sustainable management of viticultural waste. *LWT* **2022**, *169*, 113988. [\[CrossRef\]](#)

17. Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of polyphenols from agri-food by-products: The olive oil and winery industries cases. *Foods* **2022**, *11*, 362. [\[CrossRef\]](#) [\[PubMed\]](#)

18. Zhao, X.; Zhu, H.; Zhang, G.; Tang, W. Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders. *Powder Technol.* **2015**, *286*, 838–844. [\[CrossRef\]](#)

19. Canalejo, D.; Guadalupe, Z.; Martínez-Lapuente, L.; Ayestarán, B.; Pérez-Magariño, S.; Doco, T. Characterization of polysaccharide extracts recovered from different grape and winemaking products. *Food Res. Int.* **2022**, *157*, 111480. [\[CrossRef\]](#)

20. Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. *Food Chem.* **2018**, *253*, 132–138. [\[CrossRef\]](#) [\[PubMed\]](#)

21. Piazza, D.M.; Romanini, D.; Meini, M.R. High-efficiency novel extraction process of target polyphenols using enzymes in hydroalcoholic media. *Appl. Microbiol. Biotechnol.* **2023**, *107*, 1205–1216. [\[CrossRef\]](#) [\[PubMed\]](#)

22. Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol screening of pomace from red and white grape varieties (*Vitis vinifera* L.) by HPLC-DAD-MS/MS. *J. Agric. Food Chem.* **2004**, *52*, 4360–4367. [\[CrossRef\]](#)

23. Manca, M.L.; Firoznezhad, M.; Caddeo, C.; Marongiu, F.; Escribano-Ferrer, E.; Sarais, G.; Perisd, J.E.; Usachd, I.; Zaruf, M.; Manconia, M.; et al. Phytocomplexes extracted from grape seeds and stalks delivered in phospholipid vesicles tailored for the treatment of skin damages. *Ind. Crop. Prod.* **2019**, *128*, 471–478. [\[CrossRef\]](#)

24. Messina, C.M.; Manuguerra, S.; Catalano, G.; Arena, R.; Cocchi, M.; Morghese, M.; Montenegro, L.; Santulli, A. Green biotechnology for valorisation of residual biomasses in nutraceutical sector: Characterization and extraction of bioactive compounds from grape pomace and evaluation of the protective effects in vitro. *Nat. Prod. Res.* **2021**, *35*, 331–336. [\[CrossRef\]](#)

25. Jara-Palacios, M.J.; Gonçalves, S.; Hernanz, D.; Heredia, F.J.; Romano, A. Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. *Food Res. Int.* **2018**, *109*, 433–439. [\[CrossRef\]](#)

26. Prozil, S.O.; Evtuguin, D.V.; Lopes, L.P.C. Chemical composition of grape stalks of *Vitis vinifera* L. from red grape pomaces. *Ind. Crop. Prod.* **2012**, *35*, 178–184. [\[CrossRef\]](#)

27. Prokic, D.; Stepanov, J.; Curcic, L.; Stojic, N.; Pucarevic, M. The role of circular economy in food waste management in fulfilling the United Nations' sustainable development goals. *Acta Univ. Sapientiae Aliment.* **2022**, *15*, 51–66. [\[CrossRef\]](#)

28. Hübner, A.A.; Sarruf, F.D.; Oliveira, C.A.; Neto, A.V.; Fischer, D.C.; Kato, E.; Lourenço, F.R.; Baby, A.R.; Bacchi, E.M. Safety and photoprotective efficacy of a sunscreen system based on grape pomace (*Vitis vinifera* L.) phenolics from winemaking. *Pharmaceutics* **2020**, *12*, 1148. [\[CrossRef\]](#)

29. Dimou, C.; Vlysidis, A.; Kopsahelis, N.; Papanikolaou, S.; Koutinas, A.A.; Kookos, I.K. Techno-economic evaluation of wine lees refining for the production of value-added products. *Biochem. Eng. J.* **2016**, *116*, 157–165. [\[CrossRef\]](#)

30. Springmann, M.; Clark, M.; Mason-D'Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. *Nature* **2018**, *562*, 519–525. [\[CrossRef\]](#) [\[PubMed\]](#)

31. Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple health and environmental impacts of foods. *Proc. Natl. Acad. Sci. USA* **2019**, *116*, 23357–23362. [\[CrossRef\]](#) [\[PubMed\]](#)

32. Mandade, P.; Gnansounou, E. Potential value-added products from wineries residues. In *Biomass, Biofuels, Biochemicals*, 1st ed.; Varjani, S., Pandey, A., Taherzadeh, M., Ngo, H., Tyagi, R.D., Eds.; Elsevier: Lausanne, Switzerland, 2022; pp. 371–396.

33. Perra, M.; Bacchetta, G.; Muntoni, A.; De Gioannis, G.; Castangia, I.; Rajha, H.N.; Manca, M.L.; Manconi, M. An outlook on modern and sustainable approaches to the management of grape pomace by integrating green processes, biotechnologies and advanced biomedical approaches. *J. Funct. Foods* **2022**, *98*, 105276. [\[CrossRef\]](#)

34. Cavali, M.; Junior, N.L.; de Sena, J.D.; Woiciechowski, A.L.; Soccol, C.R.; Belli Filho, P.; Bayard, R.; Benbelkacem, H.; Castilhos Junior, A.B. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. *Sci. Total Environ.* **2023**, *857*, 159627. [\[CrossRef\]](#) [\[PubMed\]](#)

35. Farru, G.; Cappai, G.; Carucci, A.; De Gioannis, G.; Asunis, F.; Milia, S.; Muntoni, A.; Perra, M.; Serpe, A. A cascade biorefinery for grape marc: Recovery of materials and energy through thermochemical and biochemical processes. *Sci. Total Environ.* **2022**, *846*, 157464. [\[CrossRef\]](#) [\[PubMed\]](#)

36. Montagner, G.E.; Ribeiro, M.F.; Cadoná, F.C.; Franco, C.; Gomes, P. Liposomes loading grape seed extract: A nanotechnological solution to reduce wine-making waste and obtain health-promoting products. *Future Foods* **2022**, *5*, 100144. [\[CrossRef\]](#)

37. Alibade, A.; Lallas, S.I.; Lakka, A.; Chatzilazarou, A.; Makris, D.P. The combined effect of time and temperature during oven drying on red grape pomace polyphenols, pigments, and antioxidant properties. *Acta Univ. Sapientiae Aliment.* **2022**, *15*, 11–26. [\[CrossRef\]](#)

38. Carmona-Jiménez, Y.; García-Moreno, M.V.; García-Barroso, C. Effect of drying on the phenolic content and antioxidant activity of red grape pomace. *Plant Foods Hum. Nutr.* **2018**, *73*, 74–81. [\[CrossRef\]](#)

39. Ferri, M.; Bin, S.; Vallini, V.; Fava, F.; Michelini, E.; Roda, A.; Minnucci, G.; Bucchi, G.; Tassoni, A. Recovery of polyphenols from red grape pomace and assessment of their antioxidant and anti-cholesterol activities. *New Biotechnol.* **2016**, *33*, 338–344. [\[CrossRef\]](#)

40. Harsha, P.S.; Gardana, C.; Simonetti, P.; Spigno, G.; Lavelli, V. Characterization of phenolics, in vitro reducing capacity and anti-glycation activity of red grape skins recovered from winemaking by-products. *Bioresour. Technol.* **2013**, *140*, 263–268. [\[CrossRef\]](#)

41. Hubner, A.; Sobreira, F.; Vetore Neto, A.; Pinto, C.A.S.O.; Dario, M.F.; Díaz, I.E.C.; Lourenço, F.R.; Rosado, C.; Baby, A.R.; Bacchi, E.M. The synergistic behavior of antioxidant phenolic compounds obtained from winemaking waste's valorization, increased the efficacy of a sunscreen system. *Antioxidants* **2019**, *8*, 530. [\[CrossRef\]](#)

42. Ky, I.; Crozier, A.; Cros, G.; Teissedre, P.L. Polyphenols composition of wine and grape sub-products and potential effects chronic diseases. *Nutr. Aging* **2014**, *2*, 165–177. [\[CrossRef\]](#)

43. Melo, P.S.; Massarioli, A.P.; Denny, C.; dos Santos, L.F.; Franchin, M.; Pereira, G.E.; Vieira, T.M.F.S.; Rosalen, P.L.; Alencar, S.M. Winery by-products: Extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species. *Food Chem.* **2015**, *181*, 160–169. [\[CrossRef\]](#)

44. Parekh, P.; Serra, M.; Allaw, M.; Perra, M.; Marongiu, J.; Tolle, G.; Pinna, A.; Casu, M.A.; Manconi, M.; Caboni, P.; et al. Characterization of Nasco grape pomace-loaded nutriosomes and their neuroprotective effects in the MPTP mouse model of Parkinson's disease. *Front. Pharmacol.* **2022**, *13*, 935784. [\[CrossRef\]](#) [\[PubMed\]](#)

45. Perra, M.; Lozano-Sánchez, J.; Leyva-Jiménez, F.J.; Segura-Carretero, A.; Pedraz, J.L.; Bacchetta, G.; Muntoni, A.; Gioannis, G.; Manca, M.L.; Manconi, M. Extraction of the antioxidant phytocomplex from wine-making by-products and sustainable loading in phospholipid vesicles specifically tailored for skin protection. *Biomed. Pharmacother.* **2021**, *142*, 111959. [\[CrossRef\]](#) [\[PubMed\]](#)

46. Rama, J.L.R.; Mallo, N.; Biddau, M.; Fernandes, F.; de Miguel, T.; Sheiner, L.; Choupina, A.; Lores, M. Exploring the powerful phytoarsenal of white marc against bacteria and parasites causing significant diseases. *Environ. Sci. Pollut. Res.* **2021**, *28*, 24270–24278. [\[CrossRef\]](#)

47. Tseng, A.; Zhao, Y. Effect of different drying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot). *J. Food Sci.* **2012**, *77*, H192–H201. [\[CrossRef\]](#) [\[PubMed\]](#)

48. Jara-Palacios, M.J.; Hernanz, D.; Cifuentes-Gomez, T.; Escudero-Gilete, M.L.; Heredia, F.J.; Spencer, J.P. Assessment of white grape pomace from winemaking as source of bioactive compounds, and its antiproliferative activity. *Food Chem.* **2015**, *183*, 78–82. [\[CrossRef\]](#)

49. Romaniello, R.; Tamborrino, A.; Leone, A. Development of a centrifugal separator for grape marc: Effect of the blade position and rotor speed on grape seed separation performance. *Heliyon* **2019**, *5*, e01314. [\[CrossRef\]](#) [\[PubMed\]](#)

50. Garrido, T.; Gizzavice-Nikolaïdis, M.; Leceta, I.; Urdanpilleta, M.; Guerrero, P.; de la Caba, K.; Kilmartin, P.A. Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. *Waste Manag.* **2019**, *88*, 110–117. [\[CrossRef\]](#)

51. Sciortino, M.; Avellone, G.; Scurria, A.; Bertoli, L.; Carnaroglio, D.; Bongiorno, D.; Pagliaro, M.; Ciriminna, R. Green and Quick Extraction of stable biophenol-rich red extracts from grape processing waste. *ACS Food Sci. Technol.* **2021**, *1*, 937–942. [\[CrossRef\]](#)

52. Lorenzo, F.; Viviana, C.; Alessio, G.; Marina, B.; Sergio, C. Grape marcs as unexplored source of new yeasts for future biotechnological applications. *World J. Microbiol. Biotechnol.* **2013**, *29*, 1551–1562. [\[CrossRef\]](#)

53. Pereira, A.; Lee, H.C.; Lammert, R., Jr.; Wolberg, C., Jr.; Ma, D.; Immoos, C.; Casassa, F.; Kang, I. Effects of red-wine grape pomace on the quality and sensory attributes of beef hamburger patty. *Int. J. Food Sci. Technol.* **2022**, *57*, 1814–1823. [\[CrossRef\]](#)

54. Corte-Real, J.; Archaimbault, A.; Schleeh, T.; Cocco, E.; Herrmann, M.; Guignard, C.; Hausman, J.-F.; Iken, M.; Legay, S. Handling wine pomace: The importance of drying to preserve phenolic profile and antioxidant capacity for product valorization. *J. Food Sci.* **2021**, *86*, 892–900. [\[CrossRef\]](#) [\[PubMed\]](#)

55. Bao, Y.; Reddivari, L.; Huang, J.Y. Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. *LWT* **2020**, *133*, 109970. [\[CrossRef\]](#)

56. Pereira, P.; Palma, C.; Ferreira-Pêgo, C.; Amaral, O.; Amaral, A.; Rijo, P.; Gregório, J.; Palma, L.; Nicolai, M. Grape pomace: A potential ingredient for the human diet. *Foods* **2020**, *9*, 1772. [\[CrossRef\]](#)

57. Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant'Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. *Trends Food Sci. Technol.* **2016**, *49*, 96–109. [\[CrossRef\]](#)

58. Mohammad, S.S.; Rodrigues, N.R.; Barbosa, M.I.M.; Junior, J.L.B. Useful separation and purification of anthocyanin compounds from grape skin pomace Alicante Bouschet using macroporous resins. *J. Iran. Chem. Soc.* **2023**, *20*, 875–883. [\[CrossRef\]](#)

59. Del Pino-García, R.; González-SanJosé, M.L.; Rivero-Pérez, M.D.; García-Lomillo, J.; Muñiz, P. Total antioxidant capacity of new natural powdered seasonings after gastrointestinal and colonic digestion. *Food Chem.* **2016**, *211*, 707–714. [\[CrossRef\]](#)

60. Joulak, I.; Concórdio-Reis, P.; Torres, C.A.; Sevrin, C.; Grandfils, C.; Attia, H.; Filomena Freitas, F.; Reis, M.A.M.; Azabou, S. Sustainable use of agro-industrial wastes as potential feedstocks for exopolysaccharide production by selected *Halomonas* strains. *Environ. Sci. Pollut. Res.* **2022**, *29*, 22043–22055. [\[CrossRef\]](#) [\[PubMed\]](#)

61. Zagklis, D.P.; Paraskeva, C.A. Preliminary design of a phenols purification plant. *J. Chem. Technol. Biotechnol.* **2020**, *95*, 373–383. [[CrossRef](#)]
62. Loarce, L.; Oliver-Simancas, R.; Marchante, L.; Diaz-Maroto, M.C.; Alanon, M.E. Modifiers based on natural deep eutectic mixtures to enhance anthocyanins isolation from grape pomace by pressurized hot water extraction. *LWT-Food Sci. Technol.* **2021**, *149*, 111889. [[CrossRef](#)]
63. Fernández-Fernández, A.M.; Iriondo-DeHond, A.; Dellacassa, E.; Medrano-Fernandez, A.; del Castillo, M.D. Assessment of antioxidant, antidiabetic, antiobesity, and anti-inflammatory properties of a Tannat winemaking by-product. *Eur. Food Res. Technol.* **2019**, *245*, 1539–1551. [[CrossRef](#)]
64. Oliveira, D.A.; Salvador, A.A.; Smânia, A., Jr.; Smânia, E.F.; Maraschin, M.; Ferreira, S.R. Antimicrobial activity and composition profile of grape (*Vitis vinifera*) pomace extracts obtained by supercritical fluids. *J. Biotechnol.* **2013**, *164*, 423–432. [[CrossRef](#)]
65. Alibade, A.; Kaltza, O.; Bozinou, E.; Athanasiadis, V.; Palaiogiannis, D.; Lalas, S.; Chatzilazarou, A.; Makris, D.P. Stability of microemulsions containing red grape pomace extract obtained with a glycerol/sodium benzoate deep eutectic solvent. *OC&L* **2022**, *29*, 28. [[CrossRef](#)]
66. Asensio-Regalado, C.; Alonso-Salces, R.M.; Gallo, B.; Berrueta, L.A.; Porcedda, C.; Pintus, F.; Vassallo, A.; Caddeo, C. A Liposomal formulation to exploit the bioactive potential of an extract from graciano grape pomace. *Antioxidants* **2022**, *11*, 1270. [[CrossRef](#)]
67. Coelho, C.C.; Michelin, M.; Cerqueira, M.A.; Gonçalves, C.; Tonon, R.V.; Pastrana, L.M.; Freitas-Silva, O.; Vicente, A.A.; Cabral, L.M.C.; Teixeira, J.A. Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment. *Carbohydr. Polym.* **2018**, *192*, 327–336. [[CrossRef](#)] [[PubMed](#)]
68. Manconi, M.; Marongiu, F.; Manca, M.L.; Caddeo, C.; Sarais, G.; Cencetti, C.; Puccic, L.; Longo, V.; Bacchetta, G.; Fadda, A.M. Nanoincorporation of bioactive compounds from red grape pomaces: In vitro and ex vivo evaluation of antioxidant activity. *Int. J. Pharm.* **2017**, *523*, 159–166. [[CrossRef](#)] [[PubMed](#)]
69. Perra, M.; Manca, M.L.; Tuberoso, C.I.; Caddeo, C.; Marongiu, F.; Peris, J.E.; Orrù, G.; Ibba, A.; Fernandez-Busquets, X.; Fattouch, S.; et al. A green and cost-effective approach for the efficient conversion of grape byproducts into innovative delivery systems tailored to ensure intestinal protection and gut microbiota fortification. *Innov. Food Sci. Emerg. Technol.* **2022**, *80*, 103103. [[CrossRef](#)]
70. Saratale, R.G.; Saratale, G.D.; Ahn, S.; Shin, H.S. Grape pomace extracted tannin for green synthesis of silver nanoparticles: Assessment of their antidiabetic, antioxidant potential and antimicrobial activity. *Polymers* **2021**, *13*, 4355. [[CrossRef](#)] [[PubMed](#)]
71. Pérez, R.A.; Albero, B.; Tadeo, J.L. Matrix solid phase dispersion. In *Solid-Phase Extraction*; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 531–549.
72. Alibade, A.; Lakka, A.; Bozinou, E.; Lalas, S.I.; Chatzilazarou, A.; Makris, D.P. Development of a green methodology for simultaneous extraction of polyphenols and pigments from red winemaking solid wastes (pomace) using a novel glycerol-sodium benzoate deep eutectic solvent and ultrasonication pretreatment. *Environments* **2021**, *8*, 90. [[CrossRef](#)]
73. Palos-Hernández, A.; Fernández, M.Y.G.; Burrieza, J.E.; Pérez-Iglesias, J.L.; González-Paramás, A.M. Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges. *Sustain. Chem. Pharm.* **2022**, *29*, 100773. [[CrossRef](#)]
74. Souza, E.L.; Leal, I.L.; Umsza-Guez, M.A.; Machado, B.A. Evaluation of the technological potential of grape peels through patent document analysis: Agro-industrial: Waste with biotechnological potential. *Recent Pat. Nanotechnol.* **2021**, *15*, 35–46. [[CrossRef](#)] [[PubMed](#)]
75. Vilela, A.; Cruz, I.; Oliveira, I.; Pinto, A.; Pinto, T. Sensory and nutraceutical properties of infusions prepared with grape pomace and edible-coated dried-minced grapes. *Coatings* **2022**, *12*, 443. [[CrossRef](#)]
76. Hübner, A.A.; Demarque, D.P.; Lourenço, F.R.; Rosado, C.; Baby, A.R.; Kikuchi, I.S.; Bacchi, E.M. Phytocompounds recovered from the waste of Cabernet Sauvignon (*Vitis vinifera* L.) vinification: Cytotoxicity (in normal and stressful conditions) and in vitro photoprotection efficacy in a sunscreen system. *Cosmetics* **2023**, *10*, 2. [[CrossRef](#)]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.