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Geodesic modes driven by plasma fluxes during oblique NB heating

in tokamaks

F. Camilo de Souza, A. G. Elfimov, and R. M. O. Galvao
Institute of Physics, University of Sao Paulo, Sao Paulo 05508-090, Brazil

(Received 10 May 2018; accepted 23 November 2018; published online 13 December 2018)

Some relevant aspects of the instability of Geodesic Acoustic Modes (GAMs) driven by Neutral
Beam (NB) injection are studied, in particular its dependence on the injection direction, that is, co-
or counter-injection, and on the pitch angle distribution of the beam particles in velocity space. In
this paper, we further investigate these and other related issues considering the excitation of GAMSs
by energetic ions created during NB injection and modeled by a bump-on-tail distribution function
with a sharp Gaussian dependence over the pitch angle at the injection angle. The bump is consid-
ered to have an energetic ion tail with temperature of the order of the third part of the critical
energy that appears due to the slowing down effect on electrons. It is found that the maximum fre-
quency of the GAM instability stays below the particle circulation frequency at the critical energy,
and it is substantially reduced to be closer to parallel injection conditions. The instability may
be preferentially driven for counter NB injection due to the interaction of plasma rotation and/or

diamagnetic drift with electron current velocity. Published by AIP Publishing.

https://doi.org/10.1063/1.5039729

I. INTRODUCTION

Geodesic Acoustic Modes (GAMs) are M=0 and N=0
axisymmetric modes combined with M = *1 and *2 poloi-
dal side-bands, with frequency wZ = (7T:/2 + 2T,)/R3m;,
driven by electron and anisotropic ion pressure perturba-
tions.! In this expression, T, and T; are the electron and ion
temperatures in energy units, respectively, Ry is the major
radius of the plasma column, and m; is the ion mass. These
modes may drive anomalous plasma transport and energetic
jons loss, as it has been theoretically established®’ and
experimentally observed.*”'* Furthermore, they may be use-
ful as a diagnostic tool to indicate the L-H confinement tran-
sition*™® in tokamaks. Eigenmodes in the geodesic frequency
range have been experimentally observed for a wide range of
tokamak ohmic discharges’® and were also detected in ion
cyclotron resonance (ICR)9 and Neutral Beam (NB) heating
discharges.'®'* In the latter case, the instability is preferen-
tially driven by counter injection in comparison to co-
injection, especially during the current rump-up.lo_]4

According to the early theoretical models, in discharges
with NB injection, the GAM instability can be driven due to
an inhomogeneous dependence on the pitch angle distribu-
717 in velocity space. For the parallel balanced injec-
tion,'” the inverse Landau damping is found to be the origin
of instability, but a cold beam model'®'® of the bump may
also reproduce the GAM instability that is named'® as reac-
tive and it begins without threshold due to the absence of dis-
sipation. Generally, the energetic ion model was used in the
form of a slowing down distribution Fj, o< ny/(v? + V2),
where Ve = \/2Ee/my ~ 5.5, \/To]my, is defined™ by
the critical energy E . (m,, is the mass of the beam particles,
Ay, is the mass number, and 7, is the fractional density of the
energetic particles). Two kinds of geodesic modes were
found, namely, the standard GAM and the geodesic mode
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driven by energetic particles (EGAM), which may appear
above some critical energetic ion density. It should be noted
that numerical simulations using the TRANSP code?' show
that the energetic ions’ “bump on tail” is formed at the criti-
cal velocity, where the GAM phase resonance may occur,
and that accounting for the energetic ion temperature may
affect the GAM dispersion and instability criteria.

In this work, we analyze the effect of a minor concentra-
tion of energetic ions, with velocity distribution produced by
NB injection, on the GAM spectrum using a fully kinetic
description for the energetic particles, while the basic plasma
particles are treated in the fluid approximation. This model is
based upon the following simplifying assumptions: large val-
ues of the safety factor ¢, namely, ¢> > 1 and frequency
band characterized by vz,/Rq > wgam > vri/Rg. In com-
parison to previous investigations,'>'® the new features in
our model are to consider the situation in which the GAM
phase resonance may appear at the critical velocity where
the energetic ions form the bump that begins to be substan-
tially diffused/scattered, having the parallel temperature
T,~E./3, and the difference in the physics of the modes
driven by balanced and co/counter injection is under
discussion.

Il. THEORETICAL MODEL FOR GAM DRIVEN BY THE
BEAM

The kinetic treatment of the GAM type modes driven by
NB injection in large aspect ratio tokamaks, i.e., Ry > a,
where a is the minor radius of the plasma column, with cir-
cular surfaces (R = Ry + rcos¢ and z = rsind), is carried
out using the quasi-toroidal set of coordinates (r, ¥, {), which
are formed by the magnetic field with toroidal and poloidal
components, such as B; = BoRo/R and By = rB;/qR,, where
By is the value of the magnetic field at the magnetic axis.

Published by AIP Publishing.
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The simplified drift kinetic equation®*>* for any species o
(electron, energetic, or main ions), for electrostatic oscilla-
tions, is written in the plasma species coordinate frame as

Ofy
0+ Vo) 22— 6,
2 _
_a | =3)
my 2kovroWead,
S T
sin?) — .
VI eokoR udu ' kovi, udu
(1

Here, E,,; are the radial, bi-normal, and parallel compo-
nents of the wave field; Q = wRyq/vr, is the normalized
wave frequency; w., = e,B/m,c are the cyclotron frequen-
cies; ko = hy/r =1/gR is the parallel wave vector; hy
= By/Bo is the magnetic field inclination; w = v /vry,

Yy =vy1/vry, and u = \/w? +y? are the normalized space
velocities;  Ong/Or = —ng/d, is the density gradient;
Ne; =0InT,.;/0lnny; and vp, = /T,/m, is the particle
thermal velocities. It is assumed that unbalanced NB injec-
tion may drive ion rotation with shifted Maxwell distribution
Fy = Fuslyyv0y With vo, = Vo, /vy, having the respective
parallel equilibrium velocity Vj;, accounting for the centrifu-
gal effect with the parameter 7, = T,/(T, + T;) for ions.”*
Due to the ohmic current, a shifted distribution is also valid
for electrons. To model the respective equilibrium distribu-
tion for the energetic ions, we take into account the dynamic
friction of NB ions with electrons, considering Vy < Vre,
and strong scattering by ions below critical velocity,*® i.e

Vi < V. Within this model, the energetic particles can
be described by a “bump-on-tail like” distribution, F},
= Cv?’g(4)exp [—v*/2v2,], with hot ion temperature T
~ O(mypV?,/6) and Gaussian angular distribution (similar to

Refs. 15 and 17) g(4) = glzexp [—(2 — ho)’/A%], o =

Vb

with maximum at the injection pitch angle - ‘”” =/ (1= 4o),

V(1=
C= ::2<73/> is the normalization coefficient, and A o T, is
T[V

some characteristic of the angular thermal spread.

We expect that the GAM frequency be of the order of
the critical circulation one and much higher than the ion tran-
sit frequency, i.e., wgay ~ Ver/Rq >> vri/Rq, which leads to
fluid results for the main plasma particles.'*** Keeping the
leading terms in the respective electron and ion radial current
perturbations driven by the radial magnetic drift velocity
Vi = —[(w = vor)® = vt /(1 + 1.) + y2/2]v}, sin 9 /Ry,
we get the expressions for the average radial components
of the perturbed electron and ion current densities,
respectively,

2 2
(o) = a0 Kl + %(1 - re))Ec

m;e;

PN R
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) = €irig { [E - £92(92 + Dexp (— Q—ZHEL

m,‘wC,’Q Q 2

. VTi
—HQ U+ m) o) Es o

{<7+2Q32+2 (2—tc))

Q, ., ) Q?
—|—\/2TEZ(Q +2Q% + 2)exp -5

El}, 3)

where Q} = vy;/d,w.h, and Q = wRoq/vy; are the normal-
ized drift and wave frequencies, respectively, t, = T,/T;,
and the term v},7./(1 + t.))v%, is responsible for centrifugal
correction of the magnetic drift via the poloidal variation of
electrostatic potential over the magnetic surface. Then, using
the quasi-neutrality condition for the electron and ion densi-
ties,'*>* we find the electric field amplitudes E; . to complete
the calculations of the radial currents

VTi'EeEl 2
E, ~ Q7 (1 )+ 2voi
’ Ry <92 (T (14m) + VO)
V0e npVT;
+1\/2ni— b Nc), 4)
V1h
TeVTi . o Vri
=——10i|2 (1 —t, — N,
R {20 )] —im

o’ o8
2n[2 o (Vo +97) —=-exp (-7)]}15,. (5)

Here, the density perturbation response via the coefficients,
N¢s =~ O(1), driven by the energetic ions is assumed to be
small because it is proportional to the relative density of
energetic ions n, = nop/no and v; <K vy,.

To evaluate the effect of energetic ions in Eq. (1),
we follow the standard procedure by taking the first terms,
E3; = Egsind + E.cos? and f, = f;;sind + ., cos ¥, of
Fourier expansion of the respective function. Equilibrating
the sinv// cos ¥ coefficients after substitution of the E;-field
and respective distribution function into Eq. (1) and ignoring
the hot species rotation, drift, and second poloidal harmonic
effects, we obtain equations for the perturbed distributions'*

iethq(W2 + y2/2)E1 %

fa = Oy (QF — w2) udu
R(QE, — wE.) OF
eaq (] /’; S w. )7}77 (63)
Ty(Q, —w?)  udu
s ehqw(w2 + yz/Z)El OF,
c,h —

oy (QF — w2) udu
enqR(IQE, + wE, )8Fh

By L (6b)

Here, the bump rotation vy, = 0 is omitted because it is
included into the basic ion rotation, the finite orbit width
effect® is not included due to the proposed geodesic contin-
uum study, and the diamagnetic effect® is ignored in the
energetic ion distribution, consistently with the assumption
of plasma ion pressure larger than the hot ion pressure. In
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fact, it is rather difficult to carry out analytical calculations
taking into account these effects; therefore, this will be the
subject of a later separate study. Next, using the sin-compo-
nent distribution from Eq. (6a), we have to calculate the v-
averaged radial current

o0 1
h 3 2 Vinfs nd?.
) =epv u” du pdv —
)= o [ aufan 3 |35

which is driven by hot ions. Changing variables y = v/Zu and
w = agy/(1 — 2)u in Eq. (6a) where ¢ = *1 for co- and coun-
ter injection, respectively, we may easily proceed with inte-
gration over the u-velocity using standard incomplete Gamma
and Z(x)-plasma dispersion functions. To demonstrate the
evaluation procedure of an unwieldy equation, we show the
intermediate results of integration over u = 0, oo related to
the current driven by the electric field. Below, the E;-compo-
nent of the current is presented separately from others

1
S . V2jony RogE; (= 20)’
'y = = V= A)
Ur) = 0 12E;  vpm J 0 expl A?
0
2— Q) — Jo) 2
« L A)ZQ,I h 2+4—4—(2 f‘))
T T A

o Q; o
X((1—ﬂ~)+2>+(1—z)2 (2(1—1) :

Y G ioM) Re <r (o, 2&%)) +inm

AZ

QZ
Xexp < m) }, (73)

°°dt exp (—1/2)
=)

e h n()q"Th E
myRo w

where jo = and the integration f

=1lexp (— 7> [Re(F(O - 7)) +in] is completed using the

real part of I'(0, —x?/2) = exp (—x?/2) [~ 122 dzexp (—z)/2z,
that is, the incomplete Gamma function, which is equivalent to

the E;(—x?/2) function,”® where x = Q;,/+/(1 — A). The rest
of the current is
1
Gy = dom Jd_z exp |- =20 | VI— o 2= 2)
12ﬁ0 A AP VT=2 (1= 2)
chh ( ))Qh
E +i——""F
X|:VT]1 '+12(1—/1) !
—0) +Q — Q21— 7)—9(1 — 1)
(1-2) !

PRpRY
a0} + 301 - ) +3(1 - 27) %}

V2 Q; = 0)
(1= \(1-42) A

,
Z( 2(1 — z)> } (7b)
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where  integral®® \/- Jo? dte’q’tz—:zgz) ﬁexp (—x?/2)(i
—erfi(x/v2)) =+ (x/\/—) is presented by the plasma dis-
persion function Z(x ) f dr =) eXp ) with ¥ = 2

) 2(1-2)
To further proceed with the evaluanon of Egs. (7a) and (7b),
the Laplace method of integration over 4 may be used in the
asymptotic limit /g, (1 — 20)* > A for the integrals same as
in Egs. (7a) and (7b)

1
_(d (.= Jo)
1(%0) —l N [cbou)+ x 0 cpl(x)]
N ,
o [ 1o+ 220

o)+ o(A“))erf((’* ‘A“))

(1 — )vo)z)] l
A? o

where @ (1) are some arbitrary functions whose deriva-
tives are assumed to be not large erf(x) =2 J; exp (—z%)dz/
/T is the probability integral®® that has asymptotic proper-
ties, erf((1 — 49)/A) ~ 1, and erf(—/o/A) &~ —1. The above
integration method is applied to Eqgs. (7a) and (7b), and omit-
ting the Az—corrections, we obtain

+0((D071 ) exXp (—

<].41 )= a\f Jonn R QLE; (2—&0)92
rys 12 \/_El Ve (1 B A0)3/2 ( /10)2
2 . 2 -
VLSV Q, (2 io)% 4 )»0)2
(1= 20) 201 —40)* (1 =1o)
_Qz _QZ
Re|I'|0,———"— i %
X e( ( 201 —io)>> + 17 | exp (2(1 —%))]7
(8a)
<]’7h > o jOnh chhEC (i() - Z)QZ (6 — ﬂo)Qi
rrc 12E1 VTh(l _ /10) (1 - /10)3 (1 o /10)2
2 5
(zwvoﬂ)nh_?)(z_320)+ ﬁgh”
(1= %) 2(1 — 49)Y
) 2
x| 8— 2/10 o (2 /“O)Qh 7 Qh
(1= 40) 2(1 = 7o)
i(2 - )vo)QhE (2o —2)Q5 (6 + 40)Q;
2020 | (1=2)  (1—=1)
2 5
(2+3AO)Q,1_6+1510_ ﬁQh“
(1= 40) 2(1 — 2o)”

(2 —20)% Q,
X( (1— o) _8>Z( 2(1—)@)”’ &0

where o = 0 for balanced NB. It should be noted that the
above result is not dependent on the A-width in the limit
23, (1= Jg)* > A%
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Furthermore, taking into account the electric field ampli-
tudes E; . from Eq. (5) in the sum of the components of cur-
rent species Jy = (11, + ]T:. + Jil) + Jj, together with the ion
radial polarization current, j, = —iwc?E;/4nc;, where
¢y = B/+/4nn;m;, we obtain the total radial current valid for
the GAM dispersion (ImJ/sE] =0) and instability
(ReJzE7 < 0) analyses

2 . 2

enoiqvrn ) . 1vp [T , Q

Jy = S04 ) SN ) PRAY Sl
= m;w?R {O’ Vo + Qvpy, (2 + 2T Ay, q*

;@ o’
—|—\/2nv—T {— (Q2 + 47, + 2)exp(— 7)

VT1h 4

}Eh (9)

where the toroidal rotation term vy, is extended to the earlier
calculated diamagnetic effect'*** v, = vo; + (1 +; + 31,/
2)Q7 /2, v, & Voe.

Generally, the evolution of the wave amplitude is deter-
mined by the condition that the time rate of change in wave
energy W is equal to the negative of the power dissipated into
the background plasma plus the power of the energetic particles
transferred to the waves, which is the integral of the power den-
sity over the coordinate space W /0t = — [ReJsE;d’r. Here,
we study the wave stability in the local continuum approxima-
tion that leads to the resonance condition J5 = 0; the instability
growth rate can be calculated perturbatively by assuming that
the imaginary part of the frequency w = wgay + iy is small
in comparison to the real part y < wgay. Using Eq. (9) in
the implicit form of @ after multiplication by the E7-complex
conjugate part of E; to eliminate the time oscillation factor and
expanding the equation JsE} = 0 in Taylor series of y, we have
the resonance condition ImJ/zE} =0 and OlmJ/sE}/
00l p-—oy = ReJsE]. It is evident that the GAM stability
analysis using Eq. (8) is rather involved; therefore, we initially
circumvent this difficulty by finding the region where the insta-
bility may occur ignoring the exact GAM dispersion. In the case
of a local approximation, we may use the power density P =
JsE7 to define the instability region. Then, the correct GAM
dispersion is found in the instability region. We also assume that
the additional dissipated power related to the parallel electric
field, Egs. (4) and (5), is small in Eq. (8), i.e., proportional to
T,/T), =~ 2/15, and it may be ignored (E,., = 0) in comparison
to the E;-component effect for a preliminary investigation.

* Lk
_» Y0eVoi
QZ

lll. NUMERICAL RESULTS AND DISCUSSION

We begin analyzing the possible region for the GAM insta-
bility using the normalized dissipated/emitted power density
Ps = Re(jsE?)/(myjoE?). It is plotted as a function of the nor-
malized frequency €, and 1, in Fig. 1, where negative power
means instability drive. The maximum of power emission

B 125V2n ex( -5 ) (10)
21— 72—y T \22 = )

is found at the frequency Quax &~ \/5(1 — 49)/(2 — 29) and
the region of instability is upper bounded by the condition

max
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FIG. 1. Plot of normalized emitted power density driven by energetic ions as
a function of the normalized frequency , and /y-value for nj, = 5%,
17, =15,T,/T, = 15/2,and E. ; = 0.

Qy < Quiim = 24/2(1 — 249)/(2 — /), due to the strong
Landau damping in the hot ions which has the maximum of
the order of O(Pp,y) at

Qe 24/ (3~ fo +- VB~ VEo/2) (1 — Ao}/ 2~ o)

which is partly shown in Fig. 1 and the Landau damping in
the hot ions begins to be exponentially small for
Qp > 1.5Qnax2, Where the geodesic modes may be indirectly
excited due to the modification of equilibrium parameters
such as the diamagnetic drift or rotation.'***

The criterion for the geodesic mode
ReJsE] < 0is used in the form

V2 v, % <

instability

=Py, > Prandau = —

~ @QZ+413+2
4 Vi 2 h

VTi

QZ 2
xexp<—7h%>. )
Ti

Assuming that all ions are identical and choosing the critical
energy at the energetic ion distribution maximum and
T,/T, ~ 15/2, both parts of Eq. (11) are plotted as a
function of Qy, for n, = 5%, 49 = 0.3,0.7, and 7, = 1,1.5 in
Fig. 2. The instability may appear in the frequency region,
where dash and/or dash-dotted lines related to the instability
drive power density (—n,Pj) stay above solid or dashed
lines, which mark the Py ,qq.y-power densities responsible for
the ion Landau damping. Here, the driving power density
may be shifted up or down for another energetic ion density
in the respective relation to the calculated value 7, and the
respective instability may appear when the nj-value stays
above some threshold value ng,.

To clarify the lower bound frequency, the GAM instabil-
ity threshold ny,, which is defined by Landau damping on
basic and hot ions, is calculated for 4y = 0.6 and different
electron temperatures 7, = 0.8,1,1.2,and 1.5. In Fig. 3, we
see that the instability region n;, > n,, begins to be strongly
lower bounded with diminishing of the electron temperature
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FIG. 2. Plot of normalized dissipated power due to Landau damping in
plasma ions (t, = 1—solid and t,=1.5—dashed lines) and driving power by
energetic ions for n;, = 5%, /o = 0.3,0.7 represented as dash-dot-dotted and
dash-dotted lines, respectively.

7, < 1. For higher electron temperatures, the Landau dump-
ing begins to be very small and the GAM instability may
even occur with a very small concentration of the energetic
ions. In this case, 1o ~ 0.5 and 7,=/.2, we obtain the insta-
bility condition criteria n, > 3% at the frequency €
=~ 0.92Q.x = 1.16 of the power density emission maximum
in Fig. 1 and the GAM instability is approximately limited
by the frequency band 0.92Q.« < Q; < Quim. Next, the
GAM dispersion is analyzed using the resonance condition
ImJ/sz = 0 in Eq. (9), with respect to the instability limita-
tions shown in Figs. 1-3. The developed theory is valid in
the limit of large values of the safety factor, ¢° > 1, but the
GAM instability spectrum may only appear for ¢ < 3.5, due
to the upper bounded frequency limitation.

We begin the GAM dispersion study in the unstable
region for ¢ =2.8 and n; = 3%. The results are plotted in
Fig. 4 as a function of the pitch angle for 7,=1, 1.4, and 2.
Three geodesic modes appear for 4y > 0.4: the lowest fre-
quency mode is unstable, the intermediate mode is strongly
dissipated in hot ions, and the highest mode is slightly

0.101

0.081

0.061
th

0.04+

0.021

11 12 13 14 15
o
h

09 1

FIG. 3. Plot of the geodesic instability threshold n,, as a function of €, for
Ao = 0.6 and different electron temperatures 7, = 0.8, 1,1.2,and 1.4 (dot,
dash-dotted, dashed, and solid lines, respectively).
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FIG. 4. Plot of normalized geodesic frequency Q;, = wRoq /vy, as a function
of Ay for n, = 3%, ¢=2.8, and 1, = 1, 1.4, 2 (dash, dash-dotted and dotted
lines, respectively). Solid line (t, = 1 andn, = 3%) shows the frequency
limit for the GAM instability region, demonstrating that all lower frequency
modes are unstable.

dissipated. Here, the GAM spectrum for ¢=2.8 is plotted
slightly below the instability threshold and the curves move
down to the instability region for lower g-values. However, the
instability region stays below the maximum of the circulation
frequency at the bump maximum, and it is limited by the
Landau damping in the hot ions €, < 2+/2(1 — 4)/(2 — 4o).
which is similar to limitations discussed in Refs. 17 and 27.
The lower bounded condition is defined by competition
between the ion Landau damping in Eq. (9) and the driving
power by energetic ions in Eq. (8), shown in Figs. 1-3.

It should be noted that the substantial deviation of the
unstable region may appear for A > 0.3 near the trapped hot
ion region Ay~ 1 — ¢, where the bounce effect may be
strong and has to be taken into account; however, the unsta-
ble GAM/EGAM frequencies stay far from bounce resonan-
ces Q> +/r/Ro. To calculate the effect analytically, a new
technique has to be developed, and the results will be pub-
lished elsewhere.

A. Discussion of the GAM-EGAM difference

To understand the behavior of the geodesic mode disper-
sion splitting on the standard GAM and EGAM, we plot the
geodesic frequency as a function of the energetic ion concen-
tration in Fig. 5, for 1o = 0.6, ¢ = 2.8, and different electron
temperatures 7, = 1, 1.4, 1.6, and 2. For a small energetic ion
concentration and low electron temperature 7, < 1.6, the
normalized GAM frequency grows with ny, as approximately

described by formula Q;; ~ ¢*[L (4 + Il) + npA(Lo)],
where A(4y) ~ %W for QiG > 1, with the respec-
tive dependence shown by dotted and dash-dotted lines in
Fig. 5.

This GAM branch has exponentially small Landau damp-
ing for nyv2, /v, < 1, which is also confirmed by Eq. (11).
Above some density threshold of the order of nj o ~ 1-2%,
two EGAM branches appear.'>'®?” The higher mode with

asymptotic ~ frequency Qi poay & Qmaxz 1S strongly



122507-6

Camilo de Souza, Elfimov, and Galvao

FIG. 5. Plot of the geodesic frequencies as a function of the hot ion density 7,
for 29 =0.6,¢ = 2.8, and different electron temperatures 7, = 1, 1.4, 1.6,
and 2 (dotted, dash-dotted, solid, and dashed lines, respectively).

dissipative, and the lower EGAM branch is unstable in the
region Q) < Qupiim = 21/2(1 — Z0)/(2 — Z9) together with
the threshold shown in Fig. 3. For quasi parallel injection
Ao = 0, the upper limit coincides with critical (or maximum)
circulation frequency wg < V../qRy, which is the same in
Refs. 17 and 25.

The situation is dramatically changed for the higher elec-
tron temperature 7, > 1.5 and the respective value of the hot
ion temperature T),/T; ~ 157, /2. In this case, the starting nor-
malized geodesic frequency begins to be lower, due to the
changing sign of the hot ion correction to the dispersion
A(%9) < 0, the standard GAM frequency starts to diminish,
and the mode begins to be unstable below Qypiim. Then, two
EGAM branches appear with higher frequency for nj, > n,,
and both appeared modes are stable. The mode splitting hap-

pens at the frequency prh = (7/2+21,)¢*T: /Ty, ~ 4(3 — 1o

+14/3+ 25 —340)(1 — J9)/(2— Z) when the classical

GAM frequency coincides with the zero condition for the hot
ion current Im/J/,E} = 0. Similar mode splitting into the stable
GAM and the respective unstable EGAM driven by parallel
NB injection for n;, > 7%, ¢ =3, and 1, = 1 is calculated in
Ref. 27. However, we found that threshold may be substan-
tially modified by the oblique injection to n; ~ 2% and the
mode properties are changed, which means that the GAM
moves to low frequency and begins to be unstable and higher
frequency EGAM becomes stable for 7, > 1.5.

Analyzing the distribution of the emitted power shown
in Fig. 1 and in Eq. (8b), we conclude that the GAM instabil-
ity is easily driven at lower pitch angles /1 — 4y < 0.5,
which is only limited by the region of trapped particles
(1 — Jo > €). The additional limitations A2, (1 — 29)> > A?
are used in Eq. (8), which is obtained in an asymptotic limit.
In this case, the GAM frequency shown in Figs. 4 and 5 is
substantially diminished from the standard values gy
=/7/2 4+ 2t,vriq/vrn = 2-2.4 to 1.2-1.3. Similar fre-
quency reduction has been also observed in the experi-
ments.'®"® Tt should be noted that our results are
numerically different from that published'>™'” earlier due to
the thermal distribution of the bump at the critical velocity.

Phys. Plasmas 25, 122507 (2018)

B. GAM instability driven by rotation

In an experimental series with NB heating,''™'* the

GAM instability appears after the electron temperature satu-
ration. This may happen before the bump density accumula-
tion by the beam, which occurs after some time delay of the
order of the slowing down time?’ 74 ~ 6.3 - 108AT3/ 2 /
Zyng In A, which is approximately about 3040 ms for stan-
dard plasmas. It means that the bump hot ions may have very
low density. In this case of n,A(y) < 1, ignoring small
imaginary part Im(]P,hEﬁ in Eq. (8b), the respective decre-
ment or increment can be calculated in the form

* 4
TVTiq VoeVo; Q 5 ]
VAR 4= 47, — —+Q (27, +1
4 \[221%{T Q@ LJF (27 +1)

Xex( gﬁ) m(2 = 20)V3, [(2 = 70) Q2 g
P\™2 24(1 — 20)°*v3, \ (1= o),

2.2
wexp |- | L (12)
2(1 - AO)V%h

where Q ~ wgayRq/vri is the respective normalized GAM
frequency. Naturally, it is possible that modifications of the
basic plasma parameters may drive the instability of the

upper GAM branch, which has small dissipation.
Furthermore, to discuss the difference between co/counter
NB injections on GAM stability in experiments,''™'* we

have to take into account the asymmetric terms produced by
the E;-component in ReJsE7}. The co/counter NB effect does
not appear directly in Eq. (1); it appears indirectly in radial
current perturbations [Egs. (2), (3), and (8)] through the
plasma response to plasma species fluxes or diamagnetic
terms via the E. --parallel components of the electric field in
density perturbations. These components couple the radial
electric field in Egs. (4) and (5) due to the quasi-neutrality
condition. In this case, we have interplay'**® (synergy
effect) between the electron current, plasma flows, and drifts.
Using E; ~ i Zn%%, the cross-terms vg,v;,; appear in
the imaginary and real parts of the Jx-current [Eq. (9)], mod-
ifying the GAM dispersion or increment, respectively, as it
is shown in Eq. (12), where the vo.v;-term is negative for
co-injection and positive for the counter injection, which
coincides with the electron velocity of the current. We also
note that the synergetic effect similar to cold rotating ions
may be produced by the hot bump ions for GAM frequencies
Q% > 4(1 — Jg)v2,/v3;, and the detailed analyses will be
published elsewhere.

Furthermore, estimating the Landau damping maximum
at Qrandan ~ 2+/1 +1/2(1 +7,.), which begins to drop
exponentially  for the upper geodesic  branch
Q > ¢+/7/2 + 21,, we find that the instability may occur for
q > 2.2 and 7, > 1.1, when vg. vy, > 0.8 - 10%. The electron
current velocity may have the value Vo, > 0.1vy, in ohmic®
and counter NBI discharges,'*'* the dimensionless diamag-
netic frequency is estimated Qf ~ 0.05, 1, ~ 1.5 -2, and
the instability threshold may have been overcome, even
though the plasma rotation is not measured in these dis-
charges. It should be noted that the accumulated bump
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momentum (order of n,nyVoy/1 — /) begins to be trans-
ferred to the main plasma after #y-time delay due to ion-ion
collisions,? increasing or reducing the plasma rotation by
this value. In this case, the emitted/dissipated power in Eq.
(11) should be corrected with the additional velocity
Vaa = mpVer/1 — Jotpi/ts, where tp; is the ion confinement
time.

C. GAM formation and orbit width effect (FOW)

Here, our study is limited by zero FRL and FOW
effects,”’27 which are responsible for eigenmode formation®®
defined by the respective k,p;-parameter, and an additional
FOW dissipation®® begins to be strong for k.p,q > 0.1, 1,
=~ 1-2 in comparison to Landau damping. Typically, the for-
mation of the EGAM eigenmode structure is assumed that to
be at maxima (or minima) of the geodesic continuum,?*%
which depends on the radial distribution of the energetic ion
density and electron temperature in the radius. The EGAM
continuum dependence on the parameters may be approxi-
mated by the formula wggay ~ 2V, /Rq+/3n;, adapted to the
data shown in Figs. 4 and 5 in the interval 2% < n;, < 6%.
The continuum maximum/minimum depends on OInT,/
O0lnny, and it may easily appear at g=¢p;, in specific toka-
mak discharges with shear reversal and preferentially elec-
tron heating by NB injection.'*'? In this case, the FOW
parameter may be small k,p;q < 0.1 for guin < 3. In Fig. 6,
the frequencies of geodesic continua modified by energetic
ions are schematically reproduced for DIII-D parame-
ters;'*'% 1y = 0.6, Tp,=1.8keV, 7, = 1.4, and T}, /T, = 15/2
with respective profiles T, = To,(1 —x2)2‘5, x=r/a, and
q = 2x(4x* — 2x — 1) + 4.4, where @i, = 3.4 at x=0.5 and
the hot ion concentrations are simulated for the on-axis beam
injection,?' as an example, by Gaussian radial distributions
o nop exp (—2r%/a*) with ng, = 0%, 2.5%, and 6%. We note
that the lowest modes (f=22 and 29kHz) related to ng,
=2.5% and 6%, which are marked by solid and dash-dotted
lines, may be unstable according to dissipative limitations
presented in Figs. 3 and 4.

601
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FIG. 6. Plot of the GAM and EGAM continuum frequency [kHz] branches
for T,o=2keV, 1, = 1.4, T/T, =7.5, and ¢min = 3.4 at r/a=0.5 as a
function of the normalized minor radius for different NB concentrations
(nop = 0%—dashed, ngy, = 2.5%—dash-dotted, and n;, = 6%—solid line),
and the horizontal line presents an expected eigenmode frequency.?*
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IV. SUMMARY

As mentioned in the Introduction, we first note that the
new features in our model are to consider the situation in
which the GAM phase resonance may appear at the critical
velocity, where the energetic ions form the bump which
begins to be substantially diffused/scattered which is also
considered in detail the difference in the physics of the
modes driven by the NB injection. Specifically, we found
limitations (due to Landau damping in hot and cold ions) on
the neutral beam density to drive the GAM instability, in
oblique injection, at the critical ion circulation frequency
g < 2+/2(1 — 20)/(2 — Z0)vri/qRo, where there is a maxi-
mum of the distribution. Actually, the slowing down model
used in Refs. 15 and 16 is not valid at the circulation fre-
quency, where the maximum of the hot ion distribution has
to be located, and the hot beam model discussed in Refs. 17
and 27 is related only to parallel injection. On the other
hand, the cold beam model discussed in Refs. 18 and 19 does
not include the effect of Landau damping in hot and cold
ions, which produces a strong limitation on the geodesic
instability due to the condition T), < E,,. All these effects
are taken into account in this work.

Finally, we may conclude the following:

In the approximation of the hot bump-on-tail model, the
effect of a minor concentration of energetic ions produced
by oblique unbalanced NB injection on the GAM spectrum
is successfully evaluated using analytical solutions of the
drift kinetic equation when basic plasma particles are treated
in the fluid model in the limit of the large safety factor.

It is demonstrated that the GAM-EGAM splitting (bifur-
cation) of the unstable mode appears for substantially lower
neutral beam densities in comparison to the value observed
for parallel injection, as shown in Refs. 17 and 27. The effect
appears due to an additional drive by the inhomogeneous
dependence on the pitch angle distribution.

The regions of the GAM instability characterized by
the negative dissipated power density are found below the
frequency Dlim = 2\/2(1 — AQ)/(Z — j.Q)VTh/qRQ and
shown in Figs. 1-4. Two kinds of unstable modes are dis-
cussed, which are the standard GAM and energetic GAM
shown in Fig. 5. The EGAM instability may be only
excited above the critical energetic ion density that
depends on the relationship between the safety factor
parameter, pitch angle, and electron temperature, and the
results are used to reproduce the EGAM observations in
DII-D experiments, which are shown in Fig. 6. The GAM
instability may be driven before the bump-on-tail forma-
tion, but after electron heating, it results from the cross-
term of the electron/ion fluxes and diamagnetic effect
additionally induced by the NB injection. In this case, the
counter NBI has the preference for GAM excitation in
comparison to the co-injection.
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