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Geodesic modes driven by plasma fluxes during oblique NB heating
in tokamaks
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(Received 10 May 2018; accepted 23 November 2018; published online 13 December 2018)

Some relevant aspects of the instability of Geodesic Acoustic Modes (GAMs) driven by Neutral

Beam (NB) injection are studied, in particular its dependence on the injection direction, that is, co-

or counter-injection, and on the pitch angle distribution of the beam particles in velocity space. In

this paper, we further investigate these and other related issues considering the excitation of GAMs

by energetic ions created during NB injection and modeled by a bump-on-tail distribution function

with a sharp Gaussian dependence over the pitch angle at the injection angle. The bump is consid-

ered to have an energetic ion tail with temperature of the order of the third part of the critical

energy that appears due to the slowing down effect on electrons. It is found that the maximum fre-

quency of the GAM instability stays below the particle circulation frequency at the critical energy,

and it is substantially reduced to be closer to parallel injection conditions. The instability may

be preferentially driven for counter NB injection due to the interaction of plasma rotation and/or

diamagnetic drift with electron current velocity. Published by AIP Publishing.
https://doi.org/10.1063/1.5039729

I. INTRODUCTION

Geodesic Acoustic Modes (GAMs) are M¼ 0 and N¼ 0

axisymmetric modes combined with M ¼ 61 and 62 poloi-

dal side-bands, with frequency x2
G � ð7Ti=2þ 2TeÞ=R2

0mi,

driven by electron and anisotropic ion pressure perturba-

tions.1 In this expression, Te and Ti are the electron and ion

temperatures in energy units, respectively, R0 is the major

radius of the plasma column, and mi is the ion mass. These

modes may drive anomalous plasma transport and energetic

ions loss, as it has been theoretically established2,3 and

experimentally observed.4–14 Furthermore, they may be use-

ful as a diagnostic tool to indicate the L-H confinement tran-

sition4–6 in tokamaks. Eigenmodes in the geodesic frequency

range have been experimentally observed for a wide range of

tokamak ohmic discharges7,8 and were also detected in ion

cyclotron resonance (ICR)9 and Neutral Beam (NB) heating

discharges.10–14 In the latter case, the instability is preferen-

tially driven by counter injection in comparison to co-

injection, especially during the current rump-up.10–14

According to the early theoretical models, in discharges

with NB injection, the GAM instability can be driven due to

an inhomogeneous dependence on the pitch angle distribu-

tion15–17 in velocity space. For the parallel balanced injec-

tion,17 the inverse Landau damping is found to be the origin

of instability, but a cold beam model18,19 of the bump may

also reproduce the GAM instability that is named18 as reac-
tive and it begins without threshold due to the absence of dis-

sipation. Generally, the energetic ion model was used in the

form of a slowing down distribution Fh / nh=ðv3 þ V3
crÞ,

where Vcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ecr=mb

p
� 5:5A

1=3
h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mb

p
is defined20 by

the critical energy Ecr (mb is the mass of the beam particles,

Ah is the mass number, and nh is the fractional density of the

energetic particles). Two kinds of geodesic modes were

found, namely, the standard GAM and the geodesic mode

driven by energetic particles (EGAM), which may appear

above some critical energetic ion density. It should be noted

that numerical simulations using the TRANSP code21 show

that the energetic ions’ “bump on tail” is formed at the criti-

cal velocity, where the GAM phase resonance may occur,

and that accounting for the energetic ion temperature may

affect the GAM dispersion and instability criteria.

In this work, we analyze the effect of a minor concentra-

tion of energetic ions, with velocity distribution produced by

NB injection, on the GAM spectrum using a fully kinetic

description for the energetic particles, while the basic plasma

particles are treated in the fluid approximation. This model is

based upon the following simplifying assumptions: large val-

ues of the safety factor q, namely, q2 � 1 and frequency

band characterized by vTe=Rq� xGAM � vTi=Rq. In com-

parison to previous investigations,15,16 the new features in

our model are to consider the situation in which the GAM

phase resonance may appear at the critical velocity where

the energetic ions form the bump that begins to be substan-

tially diffused/scattered, having the parallel temperature

Th�Ecr=3, and the difference in the physics of the modes

driven by balanced and co/counter injection is under

discussion.

II. THEORETICAL MODEL FOR GAM DRIVEN BY THE
BEAM

The kinetic treatment of the GAM type modes driven by

NB injection in large aspect ratio tokamaks, i.e., R0 � a,

where a is the minor radius of the plasma column, with cir-

cular surfaces (R ¼ R0 þ r cos# and z ¼ r sin#), is carried

out using the quasi-toroidal set of coordinates (r; #; f), which

are formed by the magnetic field with toroidal and poloidal

components, such as Bf ¼ B0R0=R and B# ¼ rBf=qR0, where

B0 is the value of the magnetic field at the magnetic axis.
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The simplified drift kinetic equation22–24 for any species a
(electron, energetic, or main ions), for electrostatic oscilla-

tions, is written in the plasma species coordinate frame as

ðwþ v0aÞ
@fa
@#
� iXfa

¼ ea

ma

2þ ga u2� 3ð Þ
� �

2k0vTaxcadr
FaE2

"

þ
ðwþ v0aÞ2� v2

0itcþ y2=2

� �
vTaxcak0R

@Fa

u@u
E1 sin#� wE3

k0v2
Ta

@Fa

u@u

3
5:
(1)

Here, E1,2,3 are the radial, bi-normal, and parallel compo-

nents of the wave field; X ¼ xR0q=vTa is the normalized

wave frequency; xca ¼ eaB=mac are the cyclotron frequen-

cies; k0 ¼ h#=r ¼ 1=qR is the parallel wave vector; h#
¼ B#=B0 is the magnetic field inclination; w ¼ vjj=vTa,

y ¼ v?=vTa, and u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ y2

p
are the normalized space

velocities; @n0=@r ¼ �n0=dr is the density gradient;

ge;i ¼ @ ln Te;i=@ ln n0; and vTa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ta=ma

p
is the particle

thermal velocities. It is assumed that unbalanced NB injec-

tion may drive ion rotation with shifted Maxwell distribution

Fa ¼ FMajw¼w�v0a with v0a ¼ V0a=vTa having the respective

parallel equilibrium velocity V0i, accounting for the centrifu-

gal effect with the parameter tc � Te=ðTe þ TiÞ for ions.24

Due to the ohmic current, a shifted distribution is also valid

for electrons. To model the respective equilibrium distribu-

tion for the energetic ions, we take into account the dynamic

friction of NB ions with electrons, considering Vh � VTe,

and strong scattering by ions below critical velocity,20 i.e.,

Vh < Vcr. Within this model, the energetic particles can

be described by a “bump-on-tail like” distribution, Fh

¼ Cv2gðkÞ exp ½�v2=2v2
Th�, with hot ion temperature Th

� OðmbV2
cr=6Þ and Gaussian angular distribution (similar to

Refs. 15 and 17) gðkÞ ¼ 1
D
ffiffi
p
p exp ½�ðk� k0Þ2=D2�, k0 ¼ v2

?b

v2
b

,

with maximum at the injection pitch angle
vjjb
vb
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k0Þ

p
,

C ¼ nh

ffiffiffiffiffiffiffiffiffiffi
ð1�k0Þ
p

6ð2p v2
Th
Þ3=2

is the normalization coefficient, and D / Th is

some characteristic of the angular thermal spread.

We expect that the GAM frequency be of the order of

the critical circulation one and much higher than the ion tran-

sit frequency, i.e., xGAM � Vcr=Rq� vTi=Rq, which leads to

fluid results for the main plasma particles.14,24 Keeping the

leading terms in the respective electron and ion radial current

perturbations driven by the radial magnetic drift velocity

Vra ¼ �½ðw � v0iÞ2 � v2
0ise=ð1 þ seÞ þ y2=2�v2

Ta sin #=Rxca,

we get the expressions for the average radial components

of the perturbed electron and ion current densities,

respectively,

h~je

ri ¼
e2

i qn0e

mixci
1þ v2

0i

2
ð1� seÞ

� �
Ec

	

�
ffiffiffiffiffiffi
2p
p

8
2v0e þ seX

�
i 2þ gið Þ

� �
Es



; (2)

h~ji

ri ¼
e2

i n0iq

mixciX
2

X
� i

ffiffiffiffiffiffi
2p
p

4
X2 X2 þ 1ð Þexp �X2

2

� �	 

Ec

(

�i X�i 1þ gið Þ þ v0i

� �
Es þ

vTi

R0xci

	 i
7

2
þ 23

2X2
þ 2v2

0ið2� tcÞ
� �	

þ
ffiffiffiffiffiffi
2p
p X

4
X4 þ 2X2 þ 2ð Þexp �X2

2

� �#
E1

)
; (3)

where X�i ¼ vTi=drxcihp and X ¼ xR0q=vTi are the normal-

ized drift and wave frequencies, respectively, se ¼ Te=Ti,

and the term v2
0ise=ð1þ seÞÞv2

Ta is responsible for centrifugal

correction of the magnetic drift via the poloidal variation of

electrostatic potential over the magnetic surface. Then, using

the quasi-neutrality condition for the electron and ion densi-

ties,14,24 we find the electric field amplitudes Es;c to complete

the calculations of the radial currents

Es �
vTiseE1

R0xci

2

X2
seX

�
i 1þ gið Þ þ 2v0i

� ��

þi
ffiffiffiffiffiffi
2p
p v0e

X
� r

nhvTi

X2vTh

Nc

�
; (4)

Ec ¼
sevTi

R0xciX
i 2þ v2

0ið1� tcÞ
� �

� inh
vTi

vTh
Ns




�
ffiffiffiffiffiffi
2p
p

2
v0e

X
v0i þ X�i
� �

� X3

2
exp �X2

2

� �	 
)
E1: (5)

Here, the density perturbation response via the coefficients,

Nc;s � Oð1Þ, driven by the energetic ions is assumed to be

small because it is proportional to the relative density of

energetic ions nh ¼ n0h=n0 and vTi � vTh.

To evaluate the effect of energetic ions in Eq. (1),

we follow the standard procedure by taking the first terms,

E3 ¼ Es sin#þ Ec cos# and fh ¼ fs;h sin#þ fc;h cos#, of

Fourier expansion of the respective function. Equilibrating

the sin#= cos# coefficients after substitution of the E3-field

and respective distribution function into Eq. (1) and ignoring

the hot species rotation, drift, and second poloidal harmonic

effects, we obtain equations for the perturbed distributions14

fs;h ¼
iehXhq w2 þ y2=2

� �
E1

xchmhvThðX2
h � w2Þ

@Fh

u@u

� w
eaqRðiXhEs � wEcÞ

ThðX2
h � w2Þ

@Fh

u@u
; (6a)

fc;h ¼
ehqw w2 þ y2=2

� �
E1

xchmhvThðX2 � w2Þ
@Fh

u@u

� w
ehqR iXEc þ wEsð Þ

ThðX2 � w2Þ
@Fh

u@u
: (6b)

Here, the bump rotation v0h ¼ 0 is omitted because it is

included into the basic ion rotation, the finite orbit width

effect25 is not included due to the proposed geodesic contin-

uum study, and the diamagnetic effect24 is ignored in the

energetic ion distribution, consistently with the assumption

of plasma ion pressure larger than the hot ion pressure. In
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fact, it is rather difficult to carry out analytical calculations

taking into account these effects; therefore, this will be the

subject of a later separate study. Next, using the sin-compo-

nent distribution from Eq. (6a), we have to calculate the #-

averaged radial current

h~jh

r i ¼ ehv3
Th

ð1
0

u2 du

þ
d#
X
r¼61

ð1
0

Vrhfs;hdk

2
ffiffiffiffiffiffiffiffiffiffiffi
1� k
p ;

which is driven by hot ions. Changing variables y ¼
ffiffiffi
k
p

u and

w ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kÞ

p
u in Eq. (6a) where r ¼ 61 for co- and coun-

ter injection, respectively, we may easily proceed with inte-

gration over the u-velocity using standard incomplete Gamma
and Z(x)–plasma dispersion functions. To demonstrate the

evaluation procedure of an unwieldy equation, we show the

intermediate results of integration over u ¼ 0; 1 related to

the current driven by the electric field. Below, the Es-compo-

nent of the current is presented separately from others

h~jh

rsi ¼ ir

ffiffiffi
2
p

j0nh

12E1

RxchEs

vThp

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0

p dk
D

exp �ðk� k0Þ2

D2

" #

	 ð2� kÞ
ð1� kÞ2

Xh
X4

h

ð1� kÞ2
þ 4� 4

ðk� k0Þk
D2

(

	 X2
h

ð1� kÞ þ 2

 !
þ X4

h

ð1� kÞ2
X2

h

2ð1� kÞ � 1

 "

�2
ðk� k0Þk

D2

!#
	 Re C 0;

�X2
h

2ð1� kÞ

 ! !
þ ip

" #

	exp � X2
h

2ð1� kÞ

 !)
; (7a)

where j0 ¼ e2
hn0qvTh

mhR0x2
ch

E1 and the integration
Ð1

0
dt2

2

exp ð�t2=2Þ
ðt2�x2Þ

¼ 1
2

exp � x2

2

� �
½ReðCð0;� x2

2
ÞÞ þ ip� is completed using the

real part of Cð0;�x2=2Þ ¼ exp ð�x2=2Þ
Ð1
�x2=2

dz exp ð�zÞ=2z,

that is, the incomplete Gamma function, which is equivalent to

the E1ð�x2=2Þ function,26 where x ¼ Xh=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kÞ

p
. The rest

of the current is

h~jh

rr;ci ¼
j0nh

12
ffiffiffi
p
p
ð1
0

dk
D

exp �ðk� k0Þ2

D2

" # ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0

p ffiffiffiffiffiffiffiffiffiffiffi
1� k
p ð2� kÞ

ð1� kÞ2

	 Rxch

vTh
Ec þ i

ð2� kÞXh

2ð1� kÞ E1

	 


	 �X6
h

ð1� kÞ þ X4
h � X2

hð1� kÞ�9ð1� kÞ2
"(

þ4 X4
h þ X2

hð1� kÞ þ 3ð1� kÞ2
� � ðk� k0Þk

D2

#

�
ffiffiffi
2
p

X5
h

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kÞ

p X2
h

ð1� kÞ � 2� 4
ðk� k0Þk

D2

 !

	 Z
Xhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� kÞ
p

 !)
; (7b)

where integral26 1ffiffi
p
p
Ð1

0
dt exp ð�t2=2Þ

ðt2�x2Þ ¼
ffiffi
p
p

2x exp ð�x2=2Þði
�erfi x=

ffiffiffi
2
p� �
Þ ¼ 1

2x Z x=
ffiffiffi
2
p� �

is presented by the plasma dis-

persion function Zðx_ Þ ¼ 1ffiffi
p
p

Ð1
�1

dt exp ð�t2Þ
ðt� x

_Þ
with x

_ ¼ Xhffiffiffiffiffiffiffiffiffiffiffi
2ð1�kÞ
p .

To further proceed with the evaluation of Eqs. (7a) and (7b),

the Laplace method of integration over k may be used in the

asymptotic limit k2
0; ð1� k0Þ2 � D2 for the integrals same as

in Eqs. (7a) and (7b)

Iðk0Þ ¼
ð1
0

dkffiffiffi
p
p

D
U0ðkÞ þ

ðk� k0Þ
D2

U1ðkÞ
	 


	 exp �ðk� k0Þ2

D2

" #
� 1

2
Uðk0Þ þ

U01ðk0Þ
2

�	

þD2

4
U00ðk0Þ þ OðD4Þ

�
erf
ðk� k0Þ

D

� �

þO U0;1ð Þ exp �ðk� k0Þ2

D2

 !#1

0

;

where U0;1ðkÞ are some arbitrary functions, whose deriva-

tives are assumed to be not large, erfðxÞ ¼ 2
Ð x

0
exp ð�z2Þdz=ffiffiffi

p
p

is the probability integral26 that has asymptotic proper-

ties, erfðð1� k0Þ=DÞ � 1, and erfð�k0=DÞ � �1. The above

integration method is applied to Eqs. (7a) and (7b), and omit-

ting the D2-corrections, we obtain

h~jh

r;si ¼ ir

ffiffiffi
2
p

12

j0nhffiffiffi
p
p

E1

RxchXhEs

vThð1� k0Þ3=2

2� k0ð ÞX4
h

ð1� k0Þ2

"

�4
X2

h

ð1� k0Þ
� 4k0 þ X4

h

ð2� k0ÞX2
h

2ð1� k0Þ3
� 4� k0ð Þ
ð1� k0Þ2

 !

	 Re C 0;
�X2

h

2ð1� k0Þ

 ! !
þ ip

" #
exp

�X2
h

2ð1� k0Þ

 !#
;

(8a)

h~jh

r;rci ¼
j0nh

12E1

RxchEc

vThð1� k0Þ
ðk0 � 2ÞX6

h

ð1� k0Þ3
þ ð6� k0ÞX4

h

ð1� k0Þ2

"(

þð2þ k0ÞX2
h

ð1� k0Þ
�3ð2� 3k0Þ þ

ffiffiffi
2
p

X5
h

2ð1� k0Þ5=2

	 8� 2k0 �
ð2� k0ÞX2

h

ð1� k0Þ

 !
Z

Xhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k0Þ

p
 !#

þi
ð2� k0ÞXh

2ð1� k0Þ2
E1

ðk0 � 2ÞX6
h

ð1� k0Þ3
þ ð6þ k0ÞX4

h

ð1� k0Þ2

"

þð2þ 3k0ÞX2
h

ð1� k0Þ
�6þ 15k0 �

ffiffiffi
2
p

X5
h

2ð1� k0Þ5=2

	 ð2� k0ÞX2
h

ð1� k0Þ
� 8

 !
Z

Xhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k0Þ

p
 !#)

; (8b)

where r ¼ 0 for balanced NB. It should be noted that the

above result is not dependent on the D-width in the limit

k2
0; ð1� k0Þ2 � D2.
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Furthermore, taking into account the electric field ampli-

tudes Es;c from Eq. (5) in the sum of the components of cur-

rent species JR ¼ h~j
e

r þ ~j
i

r þ ~j
h

r i þ jp together with the ion

radial polarization current, jp ¼ �ixc2E1=4pc2
A, where

cA ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnimi

p
, we obtain the total radial current valid for

the GAM dispersion (ImJRE�1 ¼ 0) and instability

(ReJRE�1 < 0) analyses

JR ¼
e2

i n0iqvTh

mix2
i R

h~jh

r i=j0 þ
i

X
vTi

vTh

7

2
þ 2se þ 4v2

0i �
X2

q2

 !(

þ
ffiffiffiffiffiffi
2p
p vTi

vTh

X2

4
X2 þ 4se þ 2
� �

exp �X2

2

� �	

�2
v�0ev�0i

X2

#)
E1; (9)

where the toroidal rotation term v0i is extended to the earlier

calculated diamagnetic effect14,24 v�0i ¼ v0i þ ð1þ gi þ 3se=
2ÞX�i =2, v�0e � v0e.

Generally, the evolution of the wave amplitude is deter-

mined by the condition that the time rate of change in wave

energy W is equal to the negative of the power dissipated into

the background plasma plus the power of the energetic particles

transferred to the waves, which is the integral of the power den-

sity over the coordinate space @W=@t ¼ �
Ð

ReJRE�1d3r. Here,

we study the wave stability in the local continuum approxima-

tion that leads to the resonance condition JR ¼ 0; the instability

growth rate can be calculated perturbatively by assuming that

the imaginary part of the frequency x ¼ xGAM þ ic is small

in comparison to the real part c� xGAM. Using Eq. (9) in

the implicit form of x after multiplication by the E�1-complex

conjugate part of E1 to eliminate the time oscillation factor and

expanding the equation JRE�1 ¼ 0 in Taylor series of c, we have

the resonance condition ImJRE�1 ¼ 0 and @ImJRE�1=
@xjImJRE�¼0c ¼ ReJRE�1. It is evident that the GAM stability

analysis using Eq. (8) is rather involved; therefore, we initially

circumvent this difficulty by finding the region where the insta-

bility may occur ignoring the exact GAM dispersion. In the case

of a local approximation, we may use the power density P ¼
JRE�1 to define the instability region. Then, the correct GAM

dispersion is found in the instability region. We also assume that

the additional dissipated power related to the parallel electric

field, Eqs. (4) and (5), is small in Eq. (8), i.e., proportional to

Te=Th � 2=15, and it may be ignored (Ec,s ¼ 0) in comparison

to the E1-component effect for a preliminary investigation.

III. NUMERICAL RESULTS AND DISCUSSION

We begin analyzing the possible region for the GAM insta-

bility using the normalized dissipated/emitted power density

PR ¼ Reh~jRE�1i=ðnhj0E�1Þ. It is plotted as a function of the nor-

malized frequency Xh and k0 in Fig. 1, where negative power

means instability drive. The maximum of power emission

Pmax ¼
125

ffiffiffiffiffiffi
2p
p

24 1� k0ð Þ3=2
2� k0ð Þ2

exp
�5

2 2� k0ð Þ

� �
(10)

is found at the frequency Xmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð1� k0Þ=ð2� k0Þ

p
and

the region of instability is upper bounded by the condition

Xh < Xulim ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k0Þ=ð2� k0Þ

p
, due to the strong

Landau damping in the hot ions which has the maximum of

the order of OðPmaxÞ at

Xmax2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� k0 þ

ffiffiffi
3
p
�

ffiffiffi
3
p

k0=2

� �
ð1� k0Þ=ð2� k0Þ

r
;

which is partly shown in Fig. 1 and the Landau damping in

the hot ions begins to be exponentially small for

Xh > 1:5Xmax2, where the geodesic modes may be indirectly

excited due to the modification of equilibrium parameters

such as the diamagnetic drift or rotation.14,24

The criterion for the geodesic mode instability

ReJRE�1 < 0 is used in the form

�nhPh > PLandau ¼
ffiffiffiffiffiffi
2p
p

4

vTh

vTi
X2

h

v2
Th

v2
Ti

X2
h þ 4se þ 2

 !

	 exp �X2
h

2

v2
Th

v2
Ti

 !
: (11)

Assuming that all ions are identical and choosing the critical

energy at the energetic ion distribution maximum and

Th=Te � 15=2, both parts of Eq. (11) are plotted as a

function of Xh for nh ¼ 5%, k0 ¼ 0:3; 0:7, and se ¼ 1; 1:5 in

Fig. 2. The instability may appear in the frequency region,

where dash and/or dash-dotted lines related to the instability

drive power density (�nhPh) stay above solid or dashed

lines, which mark the PLandau-power densities responsible for

the ion Landau damping. Here, the driving power density

may be shifted up or down for another energetic ion density

in the respective relation to the calculated value nh and the

respective instability may appear when the nh-value stays

above some threshold value nth.

To clarify the lower bound frequency, the GAM instabil-

ity threshold nth, which is defined by Landau damping on

basic and hot ions, is calculated for k0 ¼ 0:6 and different

electron temperatures se ¼ 0:8; 1; 1:2; and 1:5. In Fig. 3, we

see that the instability region nh 
 nth begins to be strongly

lower bounded with diminishing of the electron temperature

FIG. 1. Plot of normalized emitted power density driven by energetic ions as

a function of the normalized frequency Xh and k0-value for nh ¼ 5%,

se ¼ 1:5, Th=Te � 15=2, and Ec,s ¼ 0.

122507-4 Camilo de Souza, Elfimov, and Galv~ao Phys. Plasmas 25, 122507 (2018)



se < 1. For higher electron temperatures, the Landau dump-

ing begins to be very small and the GAM instability may

even occur with a very small concentration of the energetic

ions. In this case, k0 � 0:5 and se¼1.2, we obtain the insta-

bility condition criteria nh > 3% at the frequency Xh

� 0:92Xmax ¼ 1:16 of the power density emission maximum

in Fig. 1 and the GAM instability is approximately limited

by the frequency band 0:92Xmax < Xh < Xulim. Next, the

GAM dispersion is analyzed using the resonance condition

ImJR ¼ 0 in Eq. (9), with respect to the instability limita-

tions shown in Figs. 1–3. The developed theory is valid in

the limit of large values of the safety factor, q2 � 1, but the

GAM instability spectrum may only appear for q� 3.5, due

to the upper bounded frequency limitation.

We begin the GAM dispersion study in the unstable

region for q¼ 2.8 and nh ¼ 3%. The results are plotted in

Fig. 4 as a function of the pitch angle for se¼1, 1.4, and 2.

Three geodesic modes appear for k0 > 0:4: the lowest fre-

quency mode is unstable, the intermediate mode is strongly

dissipated in hot ions, and the highest mode is slightly

dissipated. Here, the GAM spectrum for q¼ 2.8 is plotted

slightly below the instability threshold and the curves move

down to the instability region for lower q-values. However, the

instability region stays below the maximum of the circulation

frequency at the bump maximum, and it is limited by the

Landau damping in the hot ions Xh < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k0Þ=ð2� k0Þ

p
,

which is similar to limitations discussed in Refs. 17 and 27.

The lower bounded condition is defined by competition

between the ion Landau damping in Eq. (9) and the driving

power by energetic ions in Eq. (8), shown in Figs. 1–3.

It should be noted that the substantial deviation of the

unstable region may appear for D 
 0:3 near the trapped hot

ion region k0 � 1� e, where the bounce effect may be

strong and has to be taken into account; however, the unsta-

ble GAM/EGAM frequencies stay far from bounce resonan-

ces Xh �
ffiffiffiffiffiffiffiffiffiffi
r=R0

p
. To calculate the effect analytically, a new

technique has to be developed, and the results will be pub-

lished elsewhere.

A. Discussion of the GAM-EGAM difference

To understand the behavior of the geodesic mode disper-

sion splitting on the standard GAM and EGAM, we plot the

geodesic frequency as a function of the energetic ion concen-

tration in Fig. 5, for k0 ¼ 0:6; q ¼ 2:8, and different electron

temperatures se ¼ 1; 1:4; 1:6; and 2. For a small energetic ion

concentration and low electron temperature se � 1:6, the

normalized GAM frequency grows with nh, as approximately

described by formula X2
h;G � q2½ 1

15
4þ 7

se

� �
þ nhKðk0Þ�,

where Kðk0Þ � 5
8

ð2�k0Þð6�7k0Þ
ð1�k0Þ for X2

h;G � 1, with the respec-

tive dependence shown by dotted and dash-dotted lines in

Fig. 5.

This GAM branch has exponentially small Landau damp-

ing for nhv2
Th=v2

Ti � 1, which is also confirmed by Eq. (11).

Above some density threshold of the order of nh;cr � 1–2%,

two EGAM branches appear.15,18,27 The higher mode with

asymptotic frequency X1;EGAM � Xmax2 is strongly

FIG. 2. Plot of normalized dissipated power due to Landau damping in

plasma ions (se ¼ 1—solid and se¼1.5—dashed lines) and driving power by

energetic ions for nh ¼ 5%, k0 ¼ 0:3; 0:7 represented as dash-dot-dotted and

dash-dotted lines, respectively.

FIG. 3. Plot of the geodesic instability threshold nth as a function of Xh for

k0 ¼ 0:6 and different electron temperatures se ¼ 0:8; 1; 1:2; and 1:4 (dot,

dash-dotted, dashed, and solid lines, respectively).

FIG. 4. Plot of normalized geodesic frequency Xh ¼ xR0q=vTh as a function

of k0 for nh ¼ 3%, q¼ 2.8, and se ¼ 1; 1:4; 2 (dash, dash-dotted and dotted

lines, respectively). Solid line (se ¼ 1 and nh ¼ 3%) shows the frequency

limit for the GAM instability region, demonstrating that all lower frequency

modes are unstable.
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dissipative, and the lower EGAM branch is unstable in the

region Xh < Xuplim ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k0Þ=ð2� k0Þ

p
together with

the threshold shown in Fig. 3. For quasi parallel injection

k0 � 0, the upper limit coincides with critical (or maximum)

circulation frequency xG < Vcr=qR0, which is the same in

Refs. 17 and 25.

The situation is dramatically changed for the higher elec-

tron temperature se 
 1:5 and the respective value of the hot

ion temperature Th=Ti � 15se=2. In this case, the starting nor-

malized geodesic frequency begins to be lower, due to the

changing sign of the hot ion correction to the dispersion

Kðk0Þ < 0, the standard GAM frequency starts to diminish,

and the mode begins to be unstable below Xuplim. Then, two

EGAM branches appear with higher frequency for nh > nh;cr,

and both appeared modes are stable. The mode splitting hap-

pens at the frequency X2
splt ¼ ð7=2þ 2seÞq2Ti=Th � 4 3� k0ð

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ k2

0 � 3k0

q
Þð1� k0Þ=ð2� k0Þ when the classical

GAM frequency coincides with the zero condition for the hot

ion current ImJhE�1 ¼ 0. Similar mode splitting into the stable

GAM and the respective unstable EGAM driven by parallel

NB injection for nh 
 7%, q¼ 3, and se ¼ 1 is calculated in

Ref. 27. However, we found that threshold may be substan-

tially modified by the oblique injection to nh � 2% and the

mode properties are changed, which means that the GAM

moves to low frequency and begins to be unstable and higher

frequency EGAM becomes stable for se > 1:5.

Analyzing the distribution of the emitted power shown

in Fig. 1 and in Eq. (8b), we conclude that the GAM instabil-

ity is easily driven at lower pitch angles
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0

p
< 0:5,

which is only limited by the region of trapped particles

(1� k0 > e). The additional limitations k2
0; ð1� k0Þ2 � D2

are used in Eq. (8), which is obtained in an asymptotic limit.

In this case, the GAM frequency shown in Figs. 4 and 5 is

substantially diminished from the standard values XhGAM

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7=2þ 2se

p
vTiq=vTh � 2–2:4 to 1.2–1.3. Similar fre-

quency reduction has been also observed in the experi-

ments.10–13 It should be noted that our results are

numerically different from that published15–17 earlier due to

the thermal distribution of the bump at the critical velocity.

B. GAM instability driven by rotation

In an experimental series with NB heating,11–14 the

GAM instability appears after the electron temperature satu-

ration. This may happen before the bump density accumula-

tion by the beam, which occurs after some time delay of the

order of the slowing down time20 tsl � 6:3 � 108AT3=2
e =

Zef n0 ln K, which is approximately about 30–40 ms for stan-

dard plasmas. It means that the bump hot ions may have very

low density. In this case of nhKðk0Þ � 1, ignoring small

imaginary part Imh~jh

r E�1i in Eq. (8b), the respective decre-

ment or increment can be calculated in the form

c �
ffiffiffi
p
2

r
vTiq

2R0

4se
v0ev�0i

X2
� X4

2
þ X2 2se þ 1ð Þ

	 
(

	exp �X2

2

� �
� nhð2� k0ÞX5v5

Ti

24ð1� k0Þ5=2v5
Th

ð2� k0ÞX2v2
Ti

ð1� k0Þv2
Th

� 8

 !

	 exp � X2v2
Ti

2ð1� k0Þv2
Th

 !)
; (12)

where X � xGAMRq=vTi is the respective normalized GAM

frequency. Naturally, it is possible that modifications of the

basic plasma parameters may drive the instability of the

upper GAM branch, which has small dissipation.

Furthermore, to discuss the difference between co/counter

NB injections on GAM stability in experiments,11–14 we

have to take into account the asymmetric terms produced by

the Es-component in ReJRE�1. The co/counter NB effect does

not appear directly in Eq. (1); it appears indirectly in radial

current perturbations [Eqs. (2), (3), and (8)] through the

plasma response to plasma species fluxes or diamagnetic

terms via the Ec,s-parallel components of the electric field in

density perturbations. These components couple the radial

electric field in Eqs. (4) and (5) due to the quasi-neutrality

condition. In this case, we have interplay14,28 (synergy

effect) between the electron current, plasma flows, and drifts.

Using Es � i
ffiffiffiffiffiffi
2p
p

v0e

X
vTiseE1

R0xci
, the cross-terms v0ev�0i appear in

the imaginary and real parts of the JR-current [Eq. (9)], mod-

ifying the GAM dispersion or increment, respectively, as it

is shown in Eq. (12), where the v0ev�0i-term is negative for

co-injection and positive for the counter injection, which

coincides with the electron velocity of the current. We also

note that the synergetic effect similar to cold rotating ions

may be produced by the hot bump ions for GAM frequencies

X2 > 4ð1� k0Þv2
Th=v2

Ti, and the detailed analyses will be

published elsewhere.

Furthermore, estimating the Landau damping maximum

at XLandau � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=2ð1þ seÞ

p
, which begins to drop

exponentially for the upper geodesic branch

X > q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7=2þ 2se

p
, we find that the instability may occur for

q 
 2:2 and se 
 1:1, when v0ev�0i 
 0:8 � 102. The electron

current velocity may have the value V0e 
 0:1vTe in ohmic8

and counter NBI discharges,13,14 the dimensionless diamag-

netic frequency is estimated X�i � 0:05, gi � 1:5� 2, and

the instability threshold may have been overcome, even

though the plasma rotation is not measured in these dis-

charges. It should be noted that the accumulated bump

FIG. 5. Plot of the geodesic frequencies as a function of the hot ion density nh

for k0 ¼ 0:6; q ¼ 2:8, and different electron temperatures se ¼ 1; 1:4; 1:6;
and 2 (dotted, dash-dotted, solid, and dashed lines, respectively).
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momentum (order of nhn0V0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0

p
) begins to be trans-

ferred to the main plasma after tsl-time delay due to ion-ion

collisions,20 increasing or reducing the plasma rotation by

this value. In this case, the emitted/dissipated power in Eq.

(11) should be corrected with the additional velocity

Vad � nbVcr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0

p
tDi=tsl, where tDi is the ion confinement

time.

C. GAM formation and orbit width effect (FOW)

Here, our study is limited by zero FRL and FOW

effects,17,27 which are responsible for eigenmode formation28

defined by the respective krqL-parameter, and an additional

FOW dissipation23 begins to be strong for krqLq > 0:1, se

� 1–2 in comparison to Landau damping. Typically, the for-

mation of the EGAM eigenmode structure is assumed that to

be at maxima (or minima) of the geodesic continuum,28,29

which depends on the radial distribution of the energetic ion

density and electron temperature in the radius. The EGAM

continuum dependence on the parameters may be approxi-

mated by the formula xEGAM � 2Vcr=Rq
ffiffiffiffiffiffiffi
3nh

p
adapted to the

data shown in Figs. 4 and 5 in the interval 2% < nh < 6%.

The continuum maximum/minimum depends on @ ln Te=
@ ln nh, and it may easily appear at q¼qmin in specific toka-

mak discharges with shear reversal and preferentially elec-

tron heating by NB injection.12,13 In this case, the FOW

parameter may be small krqLq < 0:1 for qmin < 3. In Fig. 6,

the frequencies of geodesic continua modified by energetic

ions are schematically reproduced for DIII-D parame-

ters;10,12 k0 ¼ 0:6, T0e¼1.8 keV, se ¼ 1:4, and Th=Te ¼ 15=2

with respective profiles Ta ¼ T0að1� x2Þ2:5, x ¼ r=a, and

q ¼ 2xð4x2 � 2x� 1Þ þ 4:4, where qmin ¼ 3:4 at x¼ 0.5 and

the hot ion concentrations are simulated for the on-axis beam
injection,21 as an example, by Gaussian radial distributions

/ n0b exp ð�2r2=a2Þ with n0b ¼ 0%, 2.5%, and 6%. We note

that the lowest modes (f¼ 22 and 29 kHz) related to n0b

¼ 2.5% and 6%, which are marked by solid and dash-dotted

lines, may be unstable according to dissipative limitations

presented in Figs. 3 and 4.

IV. SUMMARY

As mentioned in the Introduction, we first note that the

new features in our model are to consider the situation in

which the GAM phase resonance may appear at the critical

velocity, where the energetic ions form the bump which

begins to be substantially diffused/scattered which is also

considered in detail the difference in the physics of the

modes driven by the NB injection. Specifically, we found

limitations (due to Landau damping in hot and cold ions) on

the neutral beam density to drive the GAM instability, in

oblique injection, at the critical ion circulation frequency

xG < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k0Þ=ð2� k0Þ

p
vTh=qR0, where there is a maxi-

mum of the distribution. Actually, the slowing down model

used in Refs. 15 and 16 is not valid at the circulation fre-

quency, where the maximum of the hot ion distribution has

to be located, and the hot beam model discussed in Refs. 17

and 27 is related only to parallel injection. On the other

hand, the cold beam model discussed in Refs. 18 and 19 does

not include the effect of Landau damping in hot and cold

ions, which produces a strong limitation on the geodesic

instability due to the condition Th � Ecr . All these effects

are taken into account in this work.

Finally, we may conclude the following:

In the approximation of the hot bump-on-tail model, the

effect of a minor concentration of energetic ions produced

by oblique unbalanced NB injection on the GAM spectrum

is successfully evaluated using analytical solutions of the

drift kinetic equation when basic plasma particles are treated

in the fluid model in the limit of the large safety factor.

It is demonstrated that the GAM–EGAM splitting (bifur-

cation) of the unstable mode appears for substantially lower

neutral beam densities in comparison to the value observed

for parallel injection, as shown in Refs. 17 and 27. The effect

appears due to an additional drive by the inhomogeneous

dependence on the pitch angle distribution.

The regions of the GAM instability characterized by

the negative dissipated power density are found below the

frequency xlim ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k0Þ=ð2� k0Þ

p
vTh=qR0 and

shown in Figs. 1–4. Two kinds of unstable modes are dis-

cussed, which are the standard GAM and energetic GAM

shown in Fig. 5. The EGAM instability may be only

excited above the critical energetic ion density that

depends on the relationship between the safety factor

parameter, pitch angle, and electron temperature, and the

results are used to reproduce the EGAM observations in

DII-D experiments, which are shown in Fig. 6. The GAM

instability may be driven before the bump-on-tail forma-

tion, but after electron heating, it results from the cross-

term of the electron/ion fluxes and diamagnetic effect

additionally induced by the NB injection. In this case, the

counter NBI has the preference for GAM excitation in

comparison to the co-injection.
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FIG. 6. Plot of the GAM and EGAM continuum frequency [kHz] branches

for Te0¼ 2 keV, se ¼ 1:4, Th=Te ¼ 7:5, and qmin ¼ 3:4 at r=a ¼ 0:5 as a

function of the normalized minor radius for different NB concentrations

(n0b ¼ 0%—dashed, n0b ¼ 2:5%—dash-dotted, and nh ¼ 6%—solid line),

and the horizontal line presents an expected eigenmode frequency.28,29

122507-7 Camilo de Souza, Elfimov, and Galv~ao Phys. Plasmas 25, 122507 (2018)



1V. B. Lebedev, P. N. Yushmanov, P. H. Diamond, S. V. Novakovskii, and

A. I. Smolyakov, Phys. Plasmas 3, 3023 (1996).
2P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys.

Controlled Fusion 47, R35 (2005).
3K. Hallatschek and D. Biskamp, Phys. Rev. Lett. 86, 1223 (2001).
4G. D. Conway, Plasma Phys. Controlled Fusion 50, 124026 (2008).
5G. D. Conway, C. Angioni, F. Ryter, P. Sauter, and J. Vicente, Phys. Rev.

Lett. 106, 065001 (2011).
6W. W. Heidbrink, Phys. Plasmas 15, 055501 (2008).
7L. G. Askinazi, A. A. Belokurov, V. V. Bulanin, A. D. Gurchenko, E. Z.

Gusakov, T. P. Kiviniemi, S. V. Lebedev, V. A. Kornev, T. Korpilo, S. V.

Krikunov, S. Leerink, M. Machielsen, P. Niskala, A. V. Petrov, A. S.

Tukachinsky, A. Yu. Yashin, and N. A. Zhubr, Plasma Phys. Controlled

Fusion 59, 014037 (2017).
8A. V. Melnikov, L. G. Eliseev, S. V. Perfilov, S. E. Lysenko, R. V.

Shurygin, V. N. Zenin, S. A. Grashin, L. I. Krupnik, A. S. Kozachek, R.

Yu. Solomatin, A. G. Elfimov, A. I. Smolyakov, and M. V. Ufimtsev,

Nucl. Fusion 55, 063001 (2015).
9H. L. Berk, C. J. Boswell, D. Borba, A. C. A. Figueiredo, T. Johnson, M.

F. F. Nave, S. D. Pinches, S. E. Sharapov, and JET Contributors, Nucl.

Fusion 46, S888 (2006).
10R. Nazikian, G. Y. Fu, M. E. Austin, H. L. Berk, R. V. Budny, N. N.

Gorelenkov, W. W. Heidbrink, C. T. Holcomb, G. J. Kramer, G. R.

McKee, M. A. Makowski, W. M. Solomon, M. Shafer, E. J. Strait, and M.

A. Van Zeeland, Phys. Rev. Lett. 101, 185001 (2008).
11G. R. McKee, D. K. Gupta, R. J. Fonck, D. J. Schlossberg, M. W.

Shafer, and P. Gohil, Plasma Phys. Controlled Fusion 48, S123

(2006).
12G. Wang, W. A. Peebles, T. L. Rhodes, M. E. Austin, Z. Yan et al., Phys.

Plasmas 20, 092501 (2013).

13G. Matsunaga, K. Kamiya, K. Shinohara, N. Miyato, A. Kojima, and A.

Bierwage, in 39th EPS Conference & 16thICPP, July 2012, Stockholm/

Sweden, EPS Abstract Series Stockholm/Sweden (2012), p. P2.062.
14F. Camilo de Souza, A. G. Elfimov, R. M. O. Galv~ao, J. Krbec, J. Seidl, J.

St€ockel, M. Hron, J. Havlicek, and K. Mitosinkova, Phys. Lett. A 381,

3066 (2017).
15G. Y. Fu, Phys. Rev. Lett. 101, 185002 (2008).
16Z. Qiu, F. Zonca, and L. Chen, Plasma Phys. Controlled Fusion 52,

095003 (2010).
17D. Zarzoso, X. Garbet, Y. Sarazin, R. Dumont, and V. Grandgirard, Phys.

Plasmas 19, 22102 (2012).
18Z. S. Qu, M. J. Hole, and M. Fitzgerald, Phys. Rev. Lett. 116, 095004 (2016).
19Z. S. Qu, M. J. Hole, and M. Fitzgerald, Plasma Phys. Controlled Fusion

59, 055018 (2017).
20T. H. Stix, Plasma Phys. 14, 367 (1972).
21W. W. Heidbrink, M. A. Van Zeeland, M. E. Austin, E. M. Bass, K.

Ghantous, N. N. Gorelenkov, B. A. Grierson, D. A. Spong, and B. J.

Tobias, Nucl. Fusion 53, 093006 (2013).
22A. I. Smolyakov and X. Garbet, Phys. Plasmas 17, 042105 (2010).
23M. Artun and W. M. Tang, Phys. Plasmas 1, 2682 (1994).
24A. G. Elfimov, A. I. Smolyakov, and R. M. O. Galv~ao, Phys. Lett. A 378,

800 (2014).
25H. Sugama and T.-H. Watanabe, J. Plasma Phys. 72, 825 (2006).
26M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

(Dover, New York, 1972).
27J.-B. Girardo, D. Zarzoso, R. Dumont, X. Garbet, Y. Sarazin, and S.

Sharapov, Phys. Plasmas 21, 092507 (2014).
28A. G. Elfimov, Phys. Lett. A 378, 3533 (2014).
29S. I. Itoh, K. Itoh, M. Sasaki, A. Fujisawa, T. Ido, and Y. Nagashima,

Plasma Phys. Controlled Fusion 49, L7–L10 (2007).

122507-8 Camilo de Souza, Elfimov, and Galv~ao Phys. Plasmas 25, 122507 (2018)

https://doi.org/10.1063/1.871638
https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1103/PhysRevLett.86.1223
https://doi.org/10.1088/0741-3335/50/12/124026
https://doi.org/10.1103/PhysRevLett.106.065001
https://doi.org/10.1103/PhysRevLett.106.065001
https://doi.org/10.1063/1.2838239
https://doi.org/10.1088/0741-3335/59/1/014037
https://doi.org/10.1088/0741-3335/59/1/014037
https://doi.org/10.1088/0029-5515/55/6/063001
https://doi.org/10.1088/0029-5515/46/10/S04
https://doi.org/10.1088/0029-5515/46/10/S04
https://doi.org/10.1103/PhysRevLett.101.185001
https://doi.org/10.1088/0741-3335/48/4/S09
https://doi.org/10.1063/1.4819501
https://doi.org/10.1063/1.4819501
https://doi.org/10.1016/j.physleta.2017.07.033
https://doi.org/10.1103/PhysRevLett.101.185002
https://doi.org/10.1088/0741-3335/52/9/095003
https://doi.org/10.1063/1.3680633
https://doi.org/10.1063/1.3680633
https://doi.org/10.1103/PhysRevLett.116.095004
https://doi.org/10.1088/1361-6587/aa6636
https://doi.org/10.1088/0032-1028/14/4/002
https://doi.org/10.1088/0029-5515/53/9/093006
https://doi.org/10.1063/1.3360297
https://doi.org/10.1063/1.870595
https://doi.org/10.1016/j.physleta.2014.01.018
https://doi.org/10.1017/S0022377806004958
https://doi.org/10.1063/1.4895479
https://doi.org/10.1016/j.physleta.2014.10.015
https://doi.org/10.1088/0741-3335/49/8/L01

	s1
	s2
	d1
	d2
	d3
	d4
	d5
	d6a
	d6b
	d7a
	d7b
	s2
	d8
	d8a
	d8b
	d9
	d10
	s3
	d11
	f1
	s3A
	f2
	f3
	f4
	s3B
	d12
	f5
	s3C
	s4
	f6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29

