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Abstract: Synchronization is a prevalent phenomenon in biological systems, including social insects
such as ants. Certain ant species exhibit remarkable synchronization of their activities within the
nest. To elucidate the underlying mechanisms of this coordinated behavior, we propose an integro-
differential equation model that captures the autocatalytic nature of ant activation. Active ants can
stimulate inactive individuals, leading to a cascade of arousal. By incorporating a stochastic compo-
nent to represent variability in rest periods, we explore the conditions necessary for synchronization.
Our analysis reveals a critical threshold for fluctuations in rest duration. Exceeding this threshold
disrupts synchronization, driving the system towards a stable equilibrium. These findings offer
valuable insights into the factors governing ant activity synchronization and highlight the delicate
balance between model parameters required to generate rhythmic patterns.
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MSC: 34K24; 37N25; 34K60

1. Introduction

Endogenous synchronization arises from internal mechanisms within a system, i.e., it
is generated by the interactions and dynamics of the components within the system itself,
rather than being driven by external signals or influences. It is the source of remarkable
displays of self-organization in the biological world, from the cellular to the organismal to
the ecological level. Heart cells synchronize their contractions, certain species of fireflies
synchronize their flashing patterns, and predator and prey populations often exhibit
synchronized cycles [1,2]. Although less appealing than thousands of fireflies flashing in
unison, the synchronized bursts of activity in the nests of some ant species (e.g., Leptothorax
acervorum), occurring about three or four times an hour and involving the entire nest
population, is an equally fascinating manifestation of endogenous synchronization [3–6].
An evolutionary explanation for the existence of these short-term activity cycles is that
they may improve physical access to all parts of the nest, since inactive ants may act as
immobile obstacles to moving ants, promoting more efficient brood care [7,8].

A great deal of our knowledge about synchronization comes from the study of cou-
pled oscillators, where each oscillator begins with its own intrinsic natural frequency but
changes frequency through interactions with other oscillators [9]. The autocatalytic ant
colony model, introduced in the late 1980s to explain bursts of synchronized activity in
ant nests [10], follows this prescription: the model assumes a rest period τ that is the same
for all ants, introducing a natural time scale into the system. Ants are inactive (asleep)
during the rest period, and once this period is over, they are deterministically awake but
remain immobile (activatable inactive). Activatable inactive ants become active at a fixed
rate and active ants become inactive at another fixed rate. In this scenario of independent
ants, the resting times rapidly desynchronize and, at equilibrium, the ants become active
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(and inactive) at random times so that the proportion of active ants tends to a stationary,
time-independent value.

However, when interactions are taken into account by considering the empirical
observation that ants are stimulated to become active by nest mates [3–6], Monte Carlo
simulations [10] and process algebra [11] indicate that the autocatalytic ant colony model
appears capable of generating synchronized bursts of activity. These findings have recently
been confirmed by the analytical study of a set of delay differential equations that accurately
describe the Monte Carlo simulations in the limit of very large nest sizes [12]. In particular,
stable limit-cycle solutions appear when the rest period is greater than a threshold and the
ratio of contagious activation to spontaneous activation is sufficiently large.

Here, we build on the analytical formulation of the autocatalytic ant colony model [12]
to study the case where the rest periods are random variables, i.e., τ not only varies from
ant to ant, but changes each time an ant becomes inactive according to the probability
distribution p(τ). This is a more realistic scenario than that of uniform τ, since the duration
of rest periods has been observed to vary between species and can be highly variable within
the same species [6]. In addition, the validity of the model predictions for fixed τ depends
on their robustness to the effect of noise on the rest period, which is the focus of this study.

We show that when the rest periods are exponentially distributed, the resulting integro-
differential equations describing the time dependence of the fraction of ants in different
states have no periodic solutions. The only stationary solutions are time-independent
solutions that depend only on the mean of the rest period distribution. However, for the
zero-truncated normal distribution, which is more adequate to study the effect of noise
on the results for a fixed rest period, we find periodic solutions when the noise parameter
is below a threshold. To illustrate the complexity resulting from the ant interactions,
which are such that the activation rate increases with the number of active ants (hence,
the autocatalytic attribute), we note that both too weak and too strong interactions do not
produce synchronization. The periodic solutions of the integro-differential equations are
the result of a delicate balance of the model parameters, which can only be revealed by the
stability analysis of the equilibrium solutions. We note that the autocatalytic ant colony
model is not the only model that can explain the emergence of the short-term activity cycles
observed in ant nests. For example, there is a class of models that assume that the cycles
are caused by the need for energy (food) to meet the demands of the nest [13] (see also [14]).
However, the parameters of these models do not have as clear a biological interpretation as
those of the autocatalytic ant colony model.

Our goal is to study the mechanisms of synchronization in ant nests using an analyti-
cally solvable mathematical model [12]. As noted above, in the autocatalytic ant colony
model, both internal clocks and social interactions are required to explain the synchronized
bursts of activity in ant nests, and we explore the nontrivial interplay between these two
classical mechanisms of synchronization. The original result of the paper is the establish-
ment of the robustness of synchronization when the ants’ internal clocks are under the
influence of noise. This finding is in support of the autocatalytic ant colony model as a
plausible explanation for the observed synchronization in ant nests.

The rest of the paper is organized as follows. In Section 2, we briefly present the
autocatalytic ant colony model and write the integro-differential equations that describe
the model in the limit of infinite nest sizes (we call these equations mean-field equations,
but they are exact in this limit). The equilibrium solutions and their local stability are
also discussed in this section. In Section 3, we show that the equilibrium solutions are
always stable for exponentially distributed rest periods. In Section 4, we study the more
challenging case where the rest period distribution is the zero-truncated Gaussian, and
we obtain the regions in parameter space where the periodic solutions appear. Finally, in
Section 5, we summarize our results and give some concluding remarks.
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2. Mean-Field Equations

The derivation of the mean-field equations governing the dynamics of the autocatalytic
ant colony model [10] for colonies of infinite size follows the same line as in the case of
fixed rest periods [12]. Each ant can be in one of three possible states: inactive, activatable
inactive, and active. An active ant becomes inactive with rate µ and remains in this state
for a fixed time τ > 0, which is specified by a probability distribution p(τ). Each time
an ant becomes inactive, a new rest period τ is drawn using the distribution p(τ). When
the rest period is over, the inactive ant deterministically becomes an activatable inactive
ant. An activatable inactive ant can either become active spontaneously with a rate of α or,
more importantly, can be activated by physical contact with an active ant. The effectiveness
of the autocatalytic activation is determined by the activation rate β. Hence, the positive
feedback or autocatalytic property of the model. Introducing the notation a(t), b(t), and
s(t) for the fractions of active, activatable inactive, and inactive ants, respectively, at time t,
we write the equations:

da
dt

= −µa(t) + b(t)[α + βa(t)] (1)

db
dt

= −b(t)[α + βa(t)] + µ
∫ ∞

0
p(τ)a(t − τ)dτ (2)

ds
dt

= µ

[
a(t)−

∫ ∞

0
p(τ)a(t − τ)dτ

]
(3)

where a(t) + b(t) + s(t) = 1. The new ingredient, compared to the equations for fixed τ
(i.e., for p(τ) = δ(τ − τm), where δ(x) is the Dirac delta function) [12], is that the increment
to the fraction of inactive ants at time t comes from ants that became inactive at any time
before t, properly weighted by the distribution of rest times. Here, a(t − τ) is the fraction
of active ants at time t − τ. Multiplied by the inactivation rate µ, it gives the fraction of ants
that have become inactive at time t − τ and will deterministically wake up at time t. The
integral over the probability distribution of rest periods takes into account the fact that each
ant is inactive for a period of duration τ drawn from the probability distribution p(τ).

The mean-field Equations (1)–(3) are almost identical to those used in SIRS models
of epidemiology, where individuals can be in three different states, namely, susceptible
(S), infected (I), and recovered (R). After infection individuals become immune for a fixed
period of time τ and then transition deterministically to the susceptible state [15,16]. Thus,
recovered individuals are analogous to inactive ants, infected individuals are analogous to
active ants, and susceptible individuals are analogous to activatable inactive ants. The only
difference between the two models is that ants can spontaneously self-activate at a rate
α, so activity, unlike disease, can reappear even when there are no active ants. However,
this is a big difference. At α = 0, there is a disease-free equilibrium where the population
consists only of susceptible individuals, the stability of which is of primary interest in
epidemiological studies. This solution is of no interest in the ant scenario, since activity is
aimed at taking care of the brood, and a solution that eliminates the active state means the
death of the colony.

We note that although both fractional differential Equations (FDE) and integro-differen-
tial Equations (IDE) can be used to model systems in which the current state depends
on the past history and the present state, FDE describes systems with nonlocal effects,
i.e., the value of the derivative at a point depends on the values of the function over
an interval [17]. This is not the case for the autocatalytic ant colony model, which was
originally introduced and studied using Monte Carlo simulations [10], so the classical IDE
approach is appropriate [18].

Let us first consider the fixed point or equilibrium solutions a∗ = a(t), b∗ = b(t) and
s∗ = s(t) of these equations, which are obtained by setting the time derivatives to zero.
This procedure yields:

b∗ =
µa∗

α + βa∗
, (4)
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and so, we need one more equation to determine the equilibrium solution unambiguously,
since a∗ + b∗ + s∗ = 1. The additional equation is found by integrating Equation (3) from 0
to T: ∫ T

0

ds
dt

dt = µ

[∫ T

0
a(t)dt −

∫ T

0
dt

∫ ∞

0
dτp(τ)a(t − τ)

]
, (5)

which, after some simple arithmetic, can be rewritten as:

s(T)− s(0) = µ
∫ T

0
a(t)dt − µ

∫ ∞

0
dτp(τ)

∫ T−τ

−τ
a(u)du. (6)

We note that for t ∈ [−τ, 0) the fraction of active ants a(t) is given by the initial
conditions, which in turn determines the fraction of inactive ants at t = 0, namely:

s(0) = µ
∫ ∞

0
dτp(τ)

∫ 0

−τ
a(u)du, (7)

assuming that s(−τ) = 0. Using this result in Equation (6), we obtain:

s(T) = µ
∫ T

0
a(t)dt − µ

∫ ∞

0
dτp(τ)

∫ T−τ

0
a(u)du

= µ
∫ ∞

0
dτp(τ)

∫ T

T−τ
a(u)du. (8)

Next, we assume that the distribution of rest periods is such that p(τ) → 0 when
τ → ∞ so that we can take the limit T → ∞ and guarantee that T − τ → ∞ as well. In this
case, we can replace a(u) in the integrand of Equation (8) by its equilibrium value:

lim
T→∞

s(T) = µ lim
T→∞

∫ ∞

0
dτp(τ)

∫ T

T−τ
a(u)du = µa∗

∫ ∞

0
dττp(τ), (9)

and obtain:
s∗ = µa∗⟨τ⟩ (10)

regardless of our choice for a(t) in the range t ∈ [−τ, 0). Thus, with respect to the values
of the fixed points, selecting rest periods from a distribution p(τ) yields the same results
as a fixed rest period set to the mean of that distribution. Equation (10) shows that at
equilibrium, active ants become inactive at the rate µ and remain inactive on average for
the period ⟨τ⟩.

Finally, using Equations (4) and (10) together with the normalization condition allows
us to write an equation for the fraction of active ants at equilibrium:

β(1 + µ⟨τ⟩)(a∗)2 + [α(1 + µ⟨τ⟩) + µ − β]a∗ − α = 0, (11)

which always has one negative root and one positive root less than 1. The important point
here is that for all values of the model parameters, Equations (4), (10) and (11) always
produce valid equilibrium solutions, i.e., a∗, b∗, and s∗ are positive and less than 1.

In the case α = 0, which is the focus of epidemiological studies, Equation (4) gives
b∗ = µ/β, and Equation (11) gives:

a∗ =
β − µ

β(1 + µ⟨τ⟩) (12)

if β > µ. If β ≤ µ, we have b∗ = 1 and a∗ = 0, which corresponds to a disease-free
scenario. We can easily show that a∗, i.e., the positive root of the quadratic Equation (11), is
a monotonously increasing function of α, since da∗/dα = 0 only for µ = 0, and in the limit
α → ∞ we have:

a∗ =
1

1 + µ⟨τ⟩ , (13)
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which is greater than a∗ calculated at α = 0, given in Equation (12). The result that
da∗/dα > 0 will be of great value in analyzing the stability of the equilibrium solutions.

In summary, choosing the rest periods τ from a probability distribution has no effect
on the values of the equilibrium solutions, which are determined solely by the mean ⟨τ⟩.
However, the randomness has a strong effect on their stability, as we will show next.

The analysis of the stability of the fixed point solutions is standard [19] and involves
the linearization of Equations (1) and (3) for the equilibrium values a∗ and s∗ by writing
a(t) = a∗+ ϵa(t) and s(t) = s∗+ ϵs(t) and looking for solutions of the form ϵa(t) = ϵa(0)eλt

and ϵs(t) = ϵs(0)eλt, where ϵa(0) ≪ 1 and ϵs(0) ≪ 1 are constants. These solutions exist if
the eigenvalues λ satisfy the following characteristic equation:

λ(λ + X) +
(

1 − ⟨e−λτ⟩
)

Y = 0, (14)

where:
X = µ − β + α + βa∗(2 + µ⟨τ⟩) (15)

and
Y = µ(α + βa∗) (16)

are auxiliary variables.
Let us first consider the real solutions of Equation (14). Note that Y ≥ 0, so if X ≥ 0

too, only negative real solutions for λ are possible. Of course, the conclusion that X ≥ 0
follows immediately if µ ≥ β, so the tricky case is µ < β. Since X is a monotonically
increasing function of α, it is bounded from below by its value at α = 0, which is easily
obtained using Equation (12) and yields X = (β − µ)/(1 + µ⟨τ⟩) > 0. Therefore, X ≥ 0 for
all α and we conclude that Equation (14) has only negative real solutions.

Thus, we need to look for the complex solutions of Equation (14). We recall that the
fixed point solution is unstable if Re(λ) > 0, In fact, by writing λ = u + iv, where u and
v are real variables, and using Euler’s formula, we can easily show that if u and v are a
solution, then so are u and −v, so we can consider v > 0 without loss of generality. In
addition, u = v = 0 (i.e., λ = 0) is a solution. The challenge then is to write down and
solve the equations for the real and imaginary parts of λ, given the distribution p(τ). This
will be done next for two choices of the rest period distribution.

Finally, we note that for α = 0 and β ≤ µ the solution b∗ = 1 and a∗ = 0 is locally
stable regardless of the choice of p(τ), since λ = β − µ ≤ 0. This is an important result
because increasing α increases the region of stability of the fixed-point solutions [12], as
expected, since spontaneous activation begins to compete with the mechanism of activation
by contact between ants, which is one of the two key ingredients to produce synchronization
in the autocatalytic ant colony model (the other being the rest period) [10]. Therefore, for
β ≤ µ, there are no period solutions to the mean-field equations regardless of the value of
α and the choice of p(τ).

3. Exponential Distribution

Here, we consider the case where the rest times τ are distributed by the exponential
distribution with rate parameter γ:

p(τ) = γ exp(−γτ). (17)

Thus, ⟨τ⟩ = 1/γ and ⟨e−λτ⟩ = γ/(γ + λ). The nonzero eigenvalues λ are the roots of
the quadratic equation:

λ2 + λ(X + γ) + Y + γX = 0. (18)

Since we have already proved for a general distribution p(τ) that the real solutions
are negative, we only need to consider the complex solutions of Equation (18). In this case,
we have Re(λ) = −(X + γ)/2 < 0 since X ≥ 0, as shown before. Thus, the equilibrium
solutions are always stable for exponentially distributed rest periods.
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4. Zero-Truncated Normal Distribution

We need a distribution where the mean and the variance of the rest periods are
independent variables as in the Gaussian distribution. Since τ must be nonnegative, a good
candidate is the zero-truncated normal distribution [20]:

p(τ) =
2

erfc
(
−τm/

√
2σ2

) 1√
2πσ2

exp
[
−(x − τm)

2/2σ2
]

(19)

for τ ≥ 0. The mean value, which is necessary for the calculation of the equilibrium
solutions, is:

⟨τ⟩ = τm +
2σ2

erfc
(
−τm/

√
2σ2

) 1√
2πσ2

exp
(
−τ2

m/2σ2
)

, (20)

and the Laplace transform, which appears in Equation (14), is:

⟨e−λτ⟩ = 1

erfc
(
−τm/

√
2σ2

) exp[−λτm + λ2σ2/2]erfc
[
(λσ2 − τm)/

√
2σ2

]
. (21)

The advantage of the distribution (19) is that the fixed-point analysis reduces to the
case of fixed τ (i.e., p(τ) = δ(τ − τm)) when σ2 → 0, so we can check the robustness of the
results for fixed τ = τm against noise, which is measured by the parameter σ2.

The equations for the real and imaginary parts of the eigenvalue λ = u + iv are:

u2 − v2 + uX + Y − YRe(⟨e−λτ⟩) = 0 (22)

2uv + vX − YIm(⟨e−λτ⟩) = 0, (23)

where Laplace transform (21) can be written explicitly in terms of u and v as:

⟨e−λτ⟩ = exp[−uτm + (u2 − v2)σ2/2]

erfc
(
−τm/

√
2σ2

) exp
[
iv(uσ2 − τm)

]
erfc

[
uσ2 − τm√

2σ2
+ i

vσ2
√

2σ2

]
. (24)

Although there is no explicit analytical expression for the real and imaginary parts
of the error function, there is an excellent numerical approximation (see Equation 7.1.29
of [21]):

Re[erf(x + iy)] = erf(x) +
e−x2

2πx
(1 − cos 2xy) +

2
π

e−x2
∞

∑
k=1

e−k2/4

k2 + 4x2 fk(x, y) (25)

Im[erf(x + iy)] =
e−x2

2πx
sin 2xy +

2
π

e−x2
∞

∑
k=1

e−k2/4

k2 + 4x2 gk(x, y), (26)

where:
fk(x, y) = 2x − 2x cos 2xy cosh ky + k sin 2xy sinh ky (27)

and
gk(x, y) = 2x sin 2xy cosh ky + k cos 2xy sinh ky. (28)

Remarkably, the error of this approximation is less than 10−16 for all x and y [21].
Defining x = (uσ2 − τm)/

√
2σ2 and y = vσ2/

√
2σ2 we write:

Re(⟨e−λτ⟩) =
exp[−uτm + (u2 − v2)σ2/2]

erfc
(
−τm/

√
2σ2

) [
Im[erf(x + iy)] sin v(uσ2 − µ)

+(1 − Re[erf(x + iy)]) cos v(uσ2 − µ)
]

(29)
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and

Im(⟨e−λτ⟩) =
exp[−uτm + (u2 − v2)σ2/2]

erfc
(
−τm/

√
2σ2

) [
−Im[erf(x + iy)] cos v(uσ2 − µ)

+(1 − Re[erf(x + iy)]) sin v(uσ2 − µ)
]
, (30)

so that we can easily calculate all quantities that appear in Equations (22) and (23).
In the case of fixed τ, it is possible to write v explicitly in terms of u (see Appendix A),

but this is clearly impossible for the zero-truncated normal distribution (19). However,
Equations (22) and (23) can be solved in a simple way: for fixed u, we solve Equation (22)
for v using a bisection method, so that Equation (23) depends only on u and can be solved
by a second bisection.

Figure 1 shows the resulting values of u as a function of the noise parameter σ2, which
is the control parameter of interest. In the left panel, we fix τm and show u for several
values of the activation rate β. The important result is that u decreases with increasing σ2

and eventually becomes negative when σ2 is greater than a threshold. Since we associate
the instability regime of the fixed-point solutions (i.e., u > 0) with the oscillatory solutions,
increasing the variability of the rest periods by increasing σ2 beyond the threshold elimi-
nates the synchronized rhythmic activity. Although these results give the impression that
increasing β tends to destabilize the equilibrium solutions (i.e., u seems to increase with β
for fixed σ2), this is not the case. In fact, u is not a monotonically increasing function of β
and, for example, u becomes negative for β > 4.9 when σ2 = 4 (see Figure 2). In the right
panel of Figure 1, we fix β and vary τm to emphasize that the stability of the fixed-point
solutions depends on the parameters τm and σ2 separately, and not only on the coefficient
of variation, whose square is σ2/τ2

m. This panel also shows that there is a minimum value
τm below which the fixed-point solutions are stable, regardless of the value of the noise
parameter σ2. This minimum value is obtained by setting σ2 = 0.

−0.04
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 0

 0.01
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σ
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−0.01
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2
 /τ

2

m

Figure 1. (Left) Real part u of the eigenvalue λ as a function of the parameter σ2 of the truncated
normal distribution (19) with τm = 10 and (top to bottom) β = 3, 2, 1.748, and 1.5. (Right) u as a
function of the ratio σ2/τ2

m with β = 4 and (top to bottom) τm = 5.5, 5, 4.828, and 4.5. The fixed-point
solutions are unstable if u > 0. The other parameters are µ = 1 and α = 0.002.

Figure 2 shows the regions in the parameter plane (τm, β), where the fixed-point
solutions are unstable for σ2 = 0 and σ2 = 4. The figure reveals two remarkable features.
First, there is a minimum value of τm below which the fixed-point solutions are stable
regardless of the value of β, and this minimum increases with the noise parameter σ2.
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Second, there is a minimum value of the activation rate β below which the fixed-point
solutions are stable no matter how large τm is. Specifically, for the data in the figure, this
minimum is β ≈ 1.41 and occurs for τm ≈ 25 (we recall that for α = 0, the minimum
is β = µ). The lower boundary of the shaded region is practically not affected by the
variation of σ2. Somewhat surprisingly, too large values of β also lead to the stability of
the fixed-point solutions. This is interesting because the parameter β > 0 is central to the
functionality of the autocatalytic ant colony model to produce periodic oscillations, since it
controls the activation of ants by contact with active ants [10]. Too few (effective) contacts
will fail to synchronize the activity of the ants, as expected, but too many (effective) contacts
will fail as well. Therefore, there is an intricate interplay between the model parameters
necessary to maintain the periodic solutions. As expected, increasing σ2 leads to a shrinking
of the region of existence of periodic solutions.

 0

 2

 4
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 12
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 20

 0  4  8  12  16  20

β

τ
m

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  4  8  12  16  20

β

τ
m

Figure 2. Values of the activation rate β and the parameter τm of the truncated normal distribution (19)
(shaded region) for which the fixed-point solutions are unstable andthus mean-field equations exhibit
periodic solutions. (Left) σ2 = 0. (Right ) σ2 = 4. The other parameters are µ = 1 and α = 0.002.

Figures 3 and 4 show the results of the numerical solution of the mean-field
Equations (1)–(3) for σ2 = 4 and parameters in representative regions of the stability
analysis, summarized in the right panel of Figure 2. In particular, Figure 3 shows the effect
of increasing τm for fixed β. For small τm we observe an oscillatory convergence to the
fixed-point solution a∗, but for τm in the region of instability of the equilibrium solution, we
observe periodic solutions with period greater than τm. In fact, an ant should go through
three states in a cycle: inactive, which lasts τm on average, activatable inactive, which is
bounded by 1/α, and active, which lasts 1/µ on average. Thus, the period of the oscilla-
tions must be greater than τm. However, the amplitude of the oscillations is remarkably
insensitive to increasing τm. For example, the amplitude for τm = 100 is the same as for
τm = 20 shown in the figure. The amplitude increases with decreasing σ2, but the peak
of activity does not go beyond a = 0.4. An important feature here is that the periodic
solutions do not oscillate around the unstable fixed point as in the case of conservative
(e.g., Lotka–Volterra) systems [19,22]. Moreover, for large τm, the fractions of active and
activatable inactive ants vanish for some of the time periods and of course become nonzero
when the ants wake up from their rest periods. Figure 4 shows a similar analysis but with
fixed τm and increasing β. The results confirm the findings of the stability analysis that the
periodic solutions appear only for intermediate values of the activation rate.
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Figure 3. Fraction of active ants a(t) as a function of time t for (Left) τm = 8, (Middle) τm = 9, and
(Right) τm = 20. The horizontal lines indicate the values of the fixed point a∗. The other parameters
are β = 4, σ2 = 4, α = 0.002, and µ = 1. The fixed-point solutions are unstable for τm > 8.84.
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Figure 4. Fraction of active ants a(t) as a function of time t for (Left) β = 1.5, (Middle) β = 4, and
(Right) β = 8. The horizontal lines indicate the values of the fixed point a∗. The other parameters are
τm = 12, σ2 = 4, α = 0.002, and µ = 1. The fixed-point solutions are unstable for 1.72 < β < 6.05.

While the intuition for the nonexistence of periodic solutions for small β is clear—an
active ant is likely to become inactive before activating an activatable inactive ant, reducing
the effectiveness of the autocatalytic activation synchronization mechanism—we have no
intuition to explain the nonexistence of periodic solutions for large β as well. In fact, for
large β, activation is so effective that there are no ants in the inactive activatable state (more
precisely, b(t) vanishes with 1/β for any t), and the mean-field equations reduce to a single
linear integro-differential equation:

da
dt

= −µ

[
a(t)−

∫ ∞

0
p(τ)a(t − τ)dτ

]
, (31)
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describing the scenario of independent ants sleeping at rate µ and becoming active after
a period of time τ. The equation for the real part u of the eigenvalue of the characteristic
equation is:

u = −µ

[
1 −

∫ ∞

0
p(τ)e−uτ cos(vτ)dτ

]
, (32)

which has no solution with u > 0, since the rhs of this equation is always negative for
u > 0.

At this point, we can finally show a result that we have mentioned several times
before, namely that for independent (i.e., noninteracting) ants, the equilibrium solutions
are always stable. Setting β = 0 in Equations (15) and (16) yields X = µ + α and Y = µα,
so the characteristic Equation (14) does not depend on the equilibrium solutions. In the
Appendix A, we show that this characteristic equation has no solutions with positive real
part for σ2 = 0. Since our analysis of the zero-truncated Gaussian distribution shows that if
the equilibrium solution is stable for σ2 = 0, it is also stable for σ2 > 0, we can rule out the
possibility of periodic solutions in the case of noninteracting ants, demonstrating the key
role of the contagious activation mechanism in generating periodic oscillations.

5. Discussion

The mathematical analysis of the autocatalytic ant colony model, introduced in the
late 1980s to explain bursts of synchronized activity in ant nests [10], points to two key
mechanisms for their existence: the activation of inactive but awake (i.e., immobile) ants
by physical contact with active ants, and the resting period of inactive (sleeping) ants [12].
The effectiveness of the first mechanism is measured by the activation rate β, and that of
the second by the rest period τ. However, by itself, none of these mechanisms can produce
periodic solutions of the mean-field Equations (1)–(3), since setting β = 0 or neglecting the
rest period leads to the stability of the equilibrium solutions, i.e., the fixed points.

These key mechanisms are subject to noise, and understanding their robustness to
noise is essential to justify the relevance of the model to explain synchronized bursts of
activity in ant nests. In fact, spontaneous activation, as measured by the parameter α, acts
as noise to the contagious activation mechanism and can disrupt synchronization if it is
large enough [12]. It is interesting to note that for α = 0, the equations describing the
autocatalytic ant colony model reduce to those used in SIRS models in epidemiology, where
individuals become immune for a fixed period of time and transition deterministically
to the susceptible state [15,16]. Setting spontaneous activation to zero makes sense in
the epidemiological context because it allows for the possibility of a disease-free solution,
but in the ant model, the focus is instead on maintaining a periodic active state. Our
focus here was on the effect of noise on the rest period τ, rather than on the contagious
activation mechanism.

We show that for exponentially distributed rest periods, the equilibrium solutions are
always stable. The reason for this may be that the coefficient of variation (i.e., the ratio of
the standard deviation to the mean) for the exponential distribution (17) is 1, which may be
too much noise to maintain the delicate balance needed to stabilize the periodic solutions.
For the zero-truncated exponential distribution (19), we find regions in the parameter space
where periodic solutions exist. As the noise parameter σ2 increases, this region shrinks and
moves into the region of large τm to keep the coefficient of variation small, as shown in
Figure 2. Note, however, that even for a fixed distribution of rest periods, the stability of
the equilibrium solutions is not determined solely by the coefficient of variation, as shown
in Figure 1, since the fixed points depend only on the mean rest period.

We emphasize that we have shown analytically that the equilibrium solutions are
unstable in certain regions of the parameter space (see Figure 2). The solutions of the mean-
field Equations (1)–(3) in these regions were obtained numerically and always resulted to be
stable limit cycles (see, e.g., Figures 3 and 4), but we have no proof of this result. However,
since in the epidemiological scenario (i.e., for α = 0), the existence of locally asymptotically
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stable periodic solutions has been proved using Hopf bifurcation techniques [15], we expect
the same conclusion to hold for our model. This is a challenging topic for future research.

Although the autocatalytic ant colony model successfully reproduces qualitatively
the oscillatory activity pattern observed in the nest of some ant species, there is at least
one quantitative feature that the model fails to reproduce, namely, that a burst of activity
involves almost the entire nest population [3]. In the deterministic model studied here,
the maximum activity we find involves about 40% of the population, and this activity
peak decreases with increasing noise. The activity peaks may be higher in finite popula-
tions due to the coherence resonance effect, which prevents the decrease in amplitude of
the damped oscillations that would eventually bring the dynamics to the deterministic
equilibrium [23,24]. Perhaps this stochastic effect can also contribute to increasing the
amplitude of the oscillations in the case of unstable equilibrium solutions. Testing this pos-
sibility, as well as searching for the model features that produce higher activity peaks using
a group selection approach, similar to what was done to evolve response thresholds [25], is
a promising direction for future research.
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Appendix A

Here, we show that the equilibrium solutions are stable in the case of noninteracting
ants (i.e., β = 0). In fact, for β = 0 and p(τ) = δ(τ − τm) the characteristic Equation (14) is:

λ(λ + µ + α) +
(

1 − e−λτm
)

µα = 0. (A1)

This equation is rewritten in terms of the real and imaginary parts of the eigenvalue
λ = u + iv as:

u2 − v2 + u(µ + α) + µα = µαe−uτm cos(vτm) (A2)

2uv + v(µ + α) = −µαe−uτm sin(vτm). (A3)

Squaring and adding these equations yield:

v4 + bv2 + c = 0 (A4)

where:
b = 2u(u + µ + α) + µ2 + α2 (A5)

and
c = u2(u + µ + α)2 + 2µαu(u + µ + α) + µ2α2

(
1 − e−2uτm

)
. (A6)

If u > 0, we have b > 0 and c > 0, so Equation (A4) has no real solutions for v.
Therefore, u = Re(λ) ≤ 0 and the equilibrium solution:

a∗ =
α

µ + α + µατm
(A7)
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is stable for β = 0. Note that it is also possible to obtain a quartic equation for v in the case
β > 0, provided that τ is fixed [12].
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