

Journal Pre-proof

5GPy: A SimPy-based Simulator for Performance Evaluations in 5G Hybrid Cloud-Fog RAN Architectures

Rodrigo Izidoro Tinini, Matias RomÁrio Pinheiro dos Santos,
Gustavo Bittencourt Figueiredo, Daniel MacÊdo Batista

PII: S1569-190X(19)30161-3
DOI: <https://doi.org/10.1016/j.simpat.2019.102030>
Reference: SIMPAT 102030

To appear in: *Simulation Modelling Practice and Theory*

Please cite this article as: Rodrigo Izidoro Tinini, Matias RomÁrio Pinheiro dos Santos, Gustavo Bittencourt Figueiredo, Daniel MacÊdo Batista, 5GPy: A SimPy-based Simulator for Performance Evaluations in 5G Hybrid Cloud-Fog RAN Architectures, *Simulation Modelling Practice and Theory* (2019), doi: <https://doi.org/10.1016/j.simpat.2019.102030>

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

5GPy: A SimPy-based Simulator for 5G Hybrid Cloud-Fog RAN Architectures

Rodrigo Izidoro Tinini^{a,*}, Matias Romário Pinheiro dos Santos^b, Gustavo Bittencourt Figueiredo^b and Daniel Macêdo Batista^a

^aDepartment of Computer Science - University of São Paulo - Brazil - Zip Code 05508-090

^bDepartment of Computer Science - Federal University of Bahia - Brazil - Zip Code 40170-110

ARTICLE INFO

Keywords:

5G Networks
Cloud Computing
Fog Computing
CF-RAN
NFV
FOSS
Simulator

ABSTRACT

The joint cooperation of cloud and fog computing emerges as a new architectural pattern for future 5G networks in order to cope with the increasingly number of mobile elements presented in such networks. Through the use of the cloud, power efficiency can be achieved through centralization of processing. On the other hand, the use of fog processing nodes increases power consumption but helps to decrease the latency of delay-sensitive applications and to increase the coverage of the network. As the use of cloud and fog presents conflicting characteristics, it is important to accurately study their behaviour in order to define the best way to use such a hybrid architecture. In this work we present a three-fold contribution to the study of joint cloud and fog computing architectures. First, we present a hybrid architecture called Cloud-Fog RAN (CF-RAN) that focus on dynamic activation and deactivation of both network and processing resources in order to maintain a balanced operation between the cloud and the fog. Second, we present a performance evaluation model used to analyse the performance of different metrics of CF-RAN. Third, as it is very difficult and costly to build cloud and fog real scenarios, we introduce 5GPy, a SimPy event-driven simulator, publicly available, used to perform small and large scale simulations on architectures such as CF-RAN. We present the architectural details of 5GPy and, by using Integer Linear Program (ILP) and graph-based heuristics to allocate resources in 5G networks, we performed simulations of CF-RAN operation in a small network and in a large network based on a Brazilian city. The results show interesting aspects and trade-offs between cloud and fog computing that were possible to be found with the proposed performance evaluation model and with the 5GPy simulator.

1. Introduction

Cloud Radio Access Networks (CRANs) have emerged as energy-efficient access networks to mobile users in the upcoming 5G technology. Its energy efficiency comes by the decoupling of BaseBand Units (BBUs) from the antennas to a centralized pool in a cloud processing node. In this regard, all baseband main processing is moved from the antenna facilities to the cloud, and the antennas are implemented as Remote Radio-Heads (RRHs) that are only responsible to perform simple processing, like Radio Frequency (RF) processing, analog-digital conversion and signal amplification, besides sending the baseband signals to be processed on the BBUs at the cloud.

Although CRAN can greatly reduce energy consumption, the centralization of all baseband processing can lead the cloud to operate above its capacity in scenarios of high traffic demands, which can increase the latency of the baseband processing and decrease the Quality of Service (QoS) of latency-sensitive applications [4]. As latency is a crucial aspect of 5G technology, the use of a cloud to process all signals can limit the extension of the implementation of the 5G networks, implying that rural or more distant locations can suffer with high latencies or even without access to 5G services. As RRHs transmit their signals to the cloud, an optical transport interface, called the fronthaul, is used to implement these transmissions. In this context, the fronthaul can experience heavy burdens of traffic, which can even lead to blocking of transmissions [18].

In order to surpass the potential limitations of CRAN, the joint cooperation between Cloud and Fog Computing [19] is expected to play an important role in the development of future 5G networks. To reduce the latency experienced in CRAN in high traffic demand scenarios, fog computing can be used, allowing for instance, the deployment of Internet

*Corresponding author

✉ rtinini@ime.usp.br (R.I. Tinini); matiasrps@ufba.br (M.R.P.d. Santos); gustavobf@ufba.br (G.B. Figueiredo); batista@ime.usp.br (D.M. Batista)

ORCID(s): 0000-0002-8356-157X (M.R.P.d. Santos)

of Things and Smart Cities applications in an energy and latency-efficient manner. In this context, an architecture like CRAN can be extended by the implementation of local processing nodes that can be used in metropolitan and rural areas to support low-latency applications and increase the coverage of CRANs.

Such combined architecture of cloud and fog computing has been recently proposed in the literature as a hybrid Cloud-Fog RAN (CF-RAN) architecture [18]. In CF-RAN, power efficiency is maintained from the centralized characteristics of CRAN. However, additional local processing nodes, called fog nodes, are put closer to the RRHs. These fog nodes can be used to receive baseband processing when the cloud is experiencing high workloads or to serve latency-sensitive applications. Naturally, these fog nodes will increase the coverage of CRAN but at the cost of an increase on the power consumption. So, in order to avoid a huge growth in power consumption, the BBUs in CF-RAN are implemented as virtual machines called virtual BBUs (vBBUs) by means of Network Functions Virtualization (NFV). In this regard, fog nodes and their vBBUs are dynamically activated only when the network traffic load demands. Hence, this cooperation between cloud and fog in CF-RAN can lead to gains in power consumption, network coverage, latency reduction and low rates of service blocking probability [18].

Despite the expected gains, the cooperative use of cloud and fog paradigms as in CF-RAN is still in its early developments and much of its architectural patterns and protocols have not been defined. In this context, a performance model that captures each operational aspect of CF-RAN is an important tool for its complete development. This performance model would allow specific performance analysis and the evaluation of different protocols and algorithms in the architecture. Among all the options to realize performance evaluation in 5G networks, simulators stand out because they allow the rapid creation of complex large scale network infrastructures for real-time tests without the high costs involved when real deployments or testbeds are used. However, many existing simulators only allow the simulation of protocols above layer 3 in 5G scenarios. In order to enable computationally efficient evaluations of 5G networks, a general purpose and scalable simulator considering layers 1 and 2 operations is needed.

In this paper we achieved three contributions: (1) a study on the joint collaboration of cloud and fog in CF-RAN, with a focus on the energy and latency aspects of its operation. In order to achieve this, (2) we propose a performance evaluation model for CF-RAN and a (3) simulator of CF-RAN-based networks called 5GPy, a Python-based simulator focused in small and large scale simulations of 5G networks. 5GPy is based on the SimPy library and is implemented under a process-oriented paradigm, in which the interactions between different parts of the CF-RAN are implemented as process communications. Moreover, 5GPy is a modular simulator, with each important aspect of CF-RAN modeled independently. Hence, a user is able to implement and evaluate different protocols without having to concern about the complexity of the CF-RAN architecture itself, the simulator or incompatibilities between different protocols. It is worth mentioning that 5GPy is publicly available as a free and open-source software (FOSS). To demonstrate the features and advantages of 5GPy, we report a set of experiments made in the simulator by implementing an Integer Linear Programming (ILP) formulation and a graph-based heuristic previously proposed in [18] to allocate resources in 5G networks.

The rest of this paper is organized as follows: Section II presents the state-of-the-art in tools to simulate several aspects of 5G networks. Section III presents the CF-RAN architecture. The performance evaluation model of CF-RAN is also presented in Section III, while Section IV presents the architecture and operation of 5GPy. In Section V some experiments and performance evaluations are presented. Finally, Section VI concludes the paper.

2. Related Works

Several aspects of 5G networks have been extensively studied in the literature. Energy-efficient and high speed mobile networks. The use of simulators became increasingly popular in several studies, like in [6, 14, 13, 1]. However, all those simulators focused only on the LTE and LTE-A networks, not responding to current network requirements associated with the requirements of 5G networks like increased bandwidth requirements, spectrum efficiency and low latency. Other proposed simulators, like the one proposed in [8], present only a few extensions on the protocols stack of the LTE-A as an additional feature to 5G, not satisfying the overall requirements of these networks.

The system-level C-RAN simulator, presented in [11], is based on Vienna LTE system-level simulator [15] and was designed, as its main contribution, to test some C-RAN system functionalities, such as centralized user scheduling and aggregation of global carrier per antenna to perform edge-user joint transmission. It also allows the simulation of networks with different cell sizes, the configuration of several cloud parameters and the inclusion of different RRHs on the network. However, despite these benefits, there is the necessity of development of general purpose simulators to enable efficient computation evaluations of 5G networks with physical (PHY) and link layers assignments. This

Table 1

Comparison of the Related Works with the 5GPy

Simulator	Language	Type	Open Source	Main Features
C-RAN Sim. [11]	MATLAB	System/link level	No	Edge-user joint transmission, global per-antenna carrier aggregation and centralized user scheduling, adoption of the TU-Vein Simulator to modeling realistic channel environment
mmWave [10]	NS-3	Link level	Yes	5G system-level simulation, allow modulation of the Physical (PHY) and Medium Access Control (MAC) layers
GTEC 5G [3]	MATLAB	Link level	Yes	link layer simulator for Orthogonal Frequency-Division Multiplexing (OFDM) and Filter Bank Multicarrier (FBMC)
Vienna 5G [12]	MATLAB	System level	Yes	propagation models simulation, macroscopic propagation analysis, heterogeneous interfaces and networks
EdgeCloudSim [16]	JAVA	System level	Yes	CloudSim-based, implemented to provide network delay calculation in a single server queue model, XML devices configuration
MyiFogSim [9]	JAVA	System level	Yes	mobility support through VMs migrations between cloudlets
5GPy	Python	System/link level	Yes	PHY and Link-level simulator with Time-and-Wavelength division multiplexed passive optical network (TWDM-PON); uses NFV and Fog computing; various statistical analysis

limitation of the system-level C-RAN simulator is circumvented by the 5GPy simulator.

Mezzavilla et al. [10] presented a module for the NS-3 simulator called mmWave. The integrated module was developed to provide discrete event simulation of PHY and Medium Access Control (MAC) layers. Interfaces with the NS-3 Long Term Evolution (LTE) module were also developed. Although it presents features that allow customization of developed modules for simulating the PHY and MAC layers and the mmWave full-stack, this is a LTE focused simulator, not responding to all the needs of 5G networks in terms of the transport of baseband signals through the fronthaul to processing resources.

The GTEC 5G Simulator is another tool developed as a link layer simulator. It considers Orthogonal Frequency-Division Multiplexing (OFDM) and Filter Bank Multicarrier (FBMC) signals [3] in its operation. The simulator code is organized in modules to facilitate the implementation of new functionalities. Furthermore, it presents the simulation of radio transmitters and receivers, as well as different channel models and baseband processing functions. Even with the modularity of the simulator, the specific focus on the link layer limits a series of investigations that are necessary for the design and evaluation of 5G networks that lies beyond the radio technology domain.

A popular tool used in 5G simulations is Vienna 5G [12]. It is a system-level simulator based on MATLAB allowing performance evaluation of multi-tier networks, and supporting connection of different types of nodes. The Vienna 5G simulator provides compatibility with its LTE-A predecessor. It simulates propagation models by means of variability of macroscopic propagation analysis, the 3GPP 3D channel model and heterogeneous interfaces and networks. However, this tool does not support analysis on the optical fronthaul, a fundamental aspect for the operation of 5G networks.

Regarding the simulation of fog computing scenarios, the literature has a wide range of cloud-based simulators. The EdgeCloudSim [9], for example, is based on CloudSim [2] and proposed as a tool to simulate processing in virtual machines (VMs) in edge computing scenarios. Another simulator is MyiFogSim [16], an extension of iFogSim [5], that was designed for evaluation of resource allocation algorithms in fog computing-based mobile network scenarios. Although these presented tools make use of fog computing paradigm, they are not designed for the simulation and evaluation of fog computing operation in 5G networks, especially related to constraints in optical fronthaul networks that allows communication between users and fog nodes.

Regarding related works, the objective of 5GPy is to cover simulations of the fronthaul communications among RRHs, fog nodes and cloud, focusing on the allocation of network and processing resources. Moreover, our tool aims to promote the evaluation of a wide range of performance metrics in function of the operation and state of fronthaul and processing nodes.

Table 1 summarizes all the simulators presented on this section by comparing them with the 5GPy. A more detailed qualitative analysis will be provided in subsection 4.3 to compare the objectives of 5GPy with other available tools.

3. CF-RAN Architecture for Collaborative Use of Cloud and Fog Computing

In this section we present CF-RAN, a 5G network architecture designed to promote energy-efficiency and low-latency in future mobile networks through the combined use of cloud and fog computing, optical networks and the NFV paradigm. First, we will present the aspects of the architecture and then, its operation.

CF-RAN is a two-tier mobile edge computing architecture, where the first tier comprises a cloud computing layer and the second tier comprises a fog computing layer. In both layers, baseband processing is performed in vBBUs that are hosted in virtualized containers called Virtual Digital Units (VDUs). Each VDU serves as a virtualized pool of BBUs that, thanks to the NFV paradigm, are dynamically instantiated.

We assume that both the cloud and fog layer are equipped with the same processing functions, so, relying on the NFV paradigm, processing functions of the network can be activated or deactivated in function of the network demand and on the optimization objectives of the telecommunication operators.

3.1. Details of the Processing Nodes

As both cloud and fog nodes share the same processing capabilities, their architecture is similar, except for the cloud naturally having more processing capacity than fog nodes. Each processing node implements a set of VDUs in which vBBUs are instantiated to perform the baseband processing of some RRH's Common Public Radio Interface (CPRI) flow. In this regard, vBBUs are activated by the NFV paradigm in function of the network traffic demand. Moreover, Virtual Private Optical Networks (VPONs) are dynamically created to support CPRI transmissions to active vBBUs considering the availability of wavelengths in the fronthaul.

The choice of using only the cloud, only the fog or both cloud and fog nodes relies on the objectives of the network operators. For instance, if operator wants the most power efficient operation, the use of the cloud must be prioritized over the fog nodes. On the other hand, if low-latency is prioritized, the fog processing functions must be activated prior to the cloud.

Each processing node also implements the virtualized Optical Line Terminal (OLT) and its set of virtualized Line Cards (LC). Each LC forwards the CPRI traffic it receives from a VPON directly to the VDU associated to it. Note that, as each VDU has limited capacity, eventually the CPRI traffic in some VPON may exceed the processing capacity of its associated VDU. In this case, two alternatives arise for CF-RAN. The first is the use of an internal backplane switch to forward a LC/VPON's surplus CPRI traffic between its associated VDU and another VDU associated to other LC. The second option is to use the technology of elastic Virtual Machines in order to dynamically expand the capacity of a VDU.

3.2. TWDM-PON Fronthaul Architecture

To promote energy-efficiency and low-latency, a TWDM-PON is used to implement the fronthaul and connect RRHs to both cloud and fog nodes. In TWDM-PON, each RRH is directly connected to a single Optical Network Unit (ONU), that is responsible to transmit the CPRI data from that RRH through an optical channel towards a virtualized OLT deployed in each processing node.

Each OLT comprises a set of virtualized LCs, which are virtualized transceivers responsible to receive the traffic from a specific wavelength of the TWDM-PON and forward it to an associated VDU. In this regard, several ONUs can share a common wavelength to transmit CPRI traffic to a LC in a common processing node in order to form a VPON. A VPON is a dedicated PON between several RRHs and a common processing node, where the PON is shared by the RRHs in a TDM manner.

Regarding the fronthaul fiber architecture, a three-tier optical splitters architecture is used to multiplex traffic from several ONUs towards the cloud and fog nodes. As seen in Figure 1, each ONU connects to a tier-3 optical splitter internal to a fog node through a dedicated fiber. This tier-3 optical splitter is responsible for reflecting incoming VPONs signals both to the LCs in the fog and to a tier-2 optical splitter that forwards traffic to the cloud. The tier-2 optical

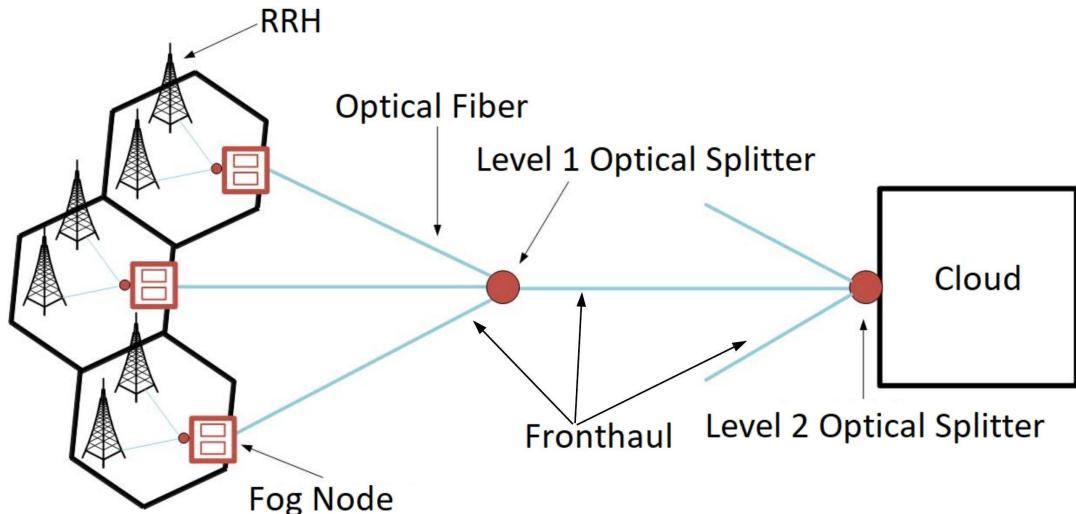


Figure 1: Overall CF-RAN architecture

splitter multiplex optical signals from several VPONs from another tier-3 optical splitters and forward them to a tier-1 optical splitter located in the cloud. Finally, the tier-1 optical splitter is capable of multiplexing the signals from several tier-2 incoming VPONs and forward them to its set of LCs and consequently to VDUs and vBBUs instantiated at the cloud. Note that each VPON can only transmit to a single processing node in order to avoid that different VPONs that share the same wavelength have their optical signals collided in optical links due to optical splitters reflecting.

3.3. Overview of CF-RAN Operation

The cooperation between cloud and fog nodes in CF-RAN comes from the capability of dynamically activate processing and network resources to support the network demand. So, CF-RAN operation relies on dynamically instantiating vBBUs and creating VPONs to support processing and transmission of CPRI flows, respectively. We consider that a centralized controller is responsible to process each incoming CPRI request and properly activate the network resources.

The overall CF-RAN operation can be summarized as the solving of the vBBUs Placement and VPON Formation (VP-VF) problem][17]: For each incoming CPRI request in the network, the centralized controller must allocate this request in a vBBU in the cloud or in a fog node. If the cloud has enough capacity on its VDUs, a vBBU is activate in it to receive the CPRI flow. However, if the cloud is experiencing a high workload, the request is allocated in a vBBU in a fog node. However, if neither the cloud nor the fog has enough processing capacity on its VDUs, the request is blocked.

After the processing of the request is determined, a VPON must be used to transmit the request to the allocated vBBU. If the node which hosts the vBBU already has created VPONs with free capacity, the request is sent through it. Otherwise, a new VPON is created in this node using a free wavelength that is not being used by any other node. Note that, if no VPON was found to transmit the request, the request is also blocked.

Finally, after the vBBU and the VPONs are allocated to a request, the transmission and processing of the request is initiated. When the request is processed, the vBBU and the VPON bandwidth allocated to it must be released so other requests can use it.

CF-RAN is also capable of re-configuring its active elements as resources becomes unbalanced due to some requests leaving the network or due to changes on the network demand across time. Basically, when requests begin to leave the network and release used resources, a centralized controller checks if the active resources can be minimized in order to support the traffic being processed. If so, the requests are re-allocated both to vBBUs and VPONs in order to minimize the amount of active resources.

As the CF-RAN operation considers several network elements and behaviours, in next subsection we will describe a mathematical model proposed by us to perform evaluation on important aspects of the CF-RAN operation.

Table 2
vBBU Processing Latency

RRH RF UL/DL Processing Time	$\sim 40\mu\text{s}$
CPRI Processing Time (RRH + BBU)	$\sim 10\mu\text{s}$
BBU Processing Time (UL/DL PHY+MAC)	$\sim 2700\mu\text{s}$

3.4. Performance Evaluation Model for CF-RAN

As CF-RAN operation relies on the cooperation between cloud and fog computing, the evaluation of its performance is crucial when designing protocols because, as fog and cloud perform similar but sometimes opposite paradigms (i.e. the cloud resorts to the centralization of processing and the fog resorts to the distribution of the cloud capabilities), several trade-offs may arise during this operation.

For instance, although network coverage can be increased in CF-RAN when the fog is used, this leads to an increasingly power consumption [19]. On the other side, if only the cloud is used, power consumption is reduced but at the cost of an increasingly latency and blocking probability [18].

In this subsection, we present a performance evaluation model for the operation of CF-RAN that can be used in the design of algorithms and performance evaluations. Following, we present mathematical models for evaluating important CF-RAN performance metrics identified so far:

Power consumption: The power consumption in CF-RAN comes from the consumption of the active processing elements, such as processing nodes, VDUs, vBBUs, the internal backplane switch and LCs activated to receive traffic from VPONs. We model the overall power consumption by Equation 1, where x_n is the set of all N processing nodes, C_n is the set of power costs of each processing node n , z_{wn} is the set of each created VPON w that transmits traffic to processing node n , W is the total number of VPONs, C_{lc} is the power cost to activate each one of the LCs, e_n is the set of each backplane ethernet switch in each node n and C_e is the power to activate each one of them. x_n , z_{wn} , and e_n assume value 1 when activated and 0 when deactivated. C_n , C_{lc} , and C_e can be provided by the hardware manufacturer or can be previously measured through benchmarks.

$$C_{network} = \left(\sum_{n=1}^N x_n \cdot C_n \right) + \left(\sum_{w=1}^W \sum_{n=1}^N z_{wn} \cdot C_{lc} \right) + \left(\sum_{n=1}^N e_n \cdot C_e \right) \quad (1)$$

Fronthaul latency: During vBBU processing, CPRI protocol establishes a strict round-trip latency of at most 3ms between RRHs and vBBUs. This latency requirement comes from the Hybrid Automatic Retransmit reQuest (HARQ) protocol, used to control frame retransmissions between User Equipments (UEs) and RRHs.

The vBBU maximum latencies of processing functions performed prior to the HARQ protocol operation are presented in Table 2 (UL means Upload and DL means Download). The sum of all latencies is equal to $2750\mu\text{s}$, which allows the fronthaul to provide a round-trip propagation latency of at most $250\mu\text{s}$ between RRHs and vBBUs.

As TWDM-PON do not implement active intermediate nodes between RRHs and vBBUs, in our model, the fronthaul latency is only the time that each optical signal from a VPON takes to be transmitted between two end points expressed by Equation 2, where $F_{latency}$ is the overall fronthaul propagation latency, $D_{rrh-proc}$ is the distance in km between the RRH and its processing node and L_{speed} is the speed of light inside the optical fiber, which is $\sim 2 * 10^8\text{m/s}$, considering a multi-mode fiber with a core of size $50\mu\text{m}$. The factor of 2 is used to compute the propagation time for a round-trip between RRHs and vBBUs.

$$F_{latency} = 2(D_{rrh-proc} / L_{speed}) \quad (2)$$

Intercommunication latency among vBBUs: This latency comes from the use of the backplane ethernet switch to switch traffic among VDUs. For instance, if the CPRI traffic transmitted in a VPON is processed in two or more

different VDUs, the internal switch is activated to commute traffic among these VDUs. To model this switching operation, we define the following binary variables:

x_{iwn} : = 1 if the traffic demand of RRH i is processed at node n being transmitted at the VPON w . 0 otherwise.

u_{iwn} : = 1 if RRH i is processed at the VDU w at node n . 0 otherwise.

g_{iwn} : = 1 if the traffic from RRH i , transmitted through VPON w , is switched among different VDUs in node n . 0 otherwise.

In order to account the latencies as result of traffic switching among VDUs, the relations between the aforementioned variables presented on Equations 3, 4, 5, and 6 are proposed. In the equations, R is the total number of RRHs. The equations impose a XOR operation for variables x_{iwn} and u_{iwn} to equal variable g_{iwn} to 1.

$$g_{iwn} \leq x_{iwn} + u_{iwn}, \forall i, w, n \in \{1, \dots, R\}, \{1, \dots, W\}, \{1, \dots, N\} \quad (3)$$

$$g_{iwn} \geq x_{iwn} - u_{iwn}, \forall i, w, n \in \{1, \dots, R\}, \{1, \dots, W\}, \{1, \dots, N\} \quad (4)$$

$$g_{iwn} \geq u_{iwn} - x_{iwn}, \forall i, w, n \in \{1, \dots, R\}, \{1, \dots, W\}, \{1, \dots, N\} \quad (5)$$

$$g_{iwn} \leq 2 - x_{iwn} - u_{iwn}, \forall i, w, n \in \{1, \dots, R\}, \{1, \dots, W\}, \{1, \dots, N\} \quad (6)$$

Finally, the overall network latency from traffic switching among VDUs is given by the Equation 7.

$$\sum_{i=1}^R \sum_{w=1}^W \sum_{n=1}^N g_{iwn} \quad (7)$$

Note that as we are using binary variables to represent the switching of traffic, the aforementioned variables and relations can be used as input parameters and restrictions to ILP optimization models.

Blocking probability: The blocking probability shows the amount of RRHs requests that can not be processed due to lack of processing or network resources. It is traditionally given by $R_{lost}/R_{arrived}$, where R_{lost} is the amount of RRHs requests not processed and $R_{arrived}$ is the total amount of RRHs requests that arrived in the network.

Bandwidth wastage: The efficient use of bandwidth in CF-RAN comes from the transmission of all CPRI flows through the least possible activated VPONs in the network. Regarding the algorithm used to allocate bandwidth on CF-RAN, the rate of wasted bandwidth can be less or more for a given number of CPRI flows. We define the bandwidth wastage by Equation 8, where T_{cpri} is the total CPRI flow and T_{vpont} the amount of available bandwidth.

$$1 - (T_{cpri}/T_{vpont}) \quad (8)$$

Usage of vBBUs: The usage of vBBUs can be accounted as a function of the amount of CPRI processing load in some node and the amount of vBBUs activated to support this load. We define the usage of vBBUs by Equation 9, where $T_{processing}$ is the total CPRI traffic being processed on the network and T_{vBBUs} is the amount of vBBUs activated in the network.

$$U_{vBBU} = T_{processing}/T_{vBBUs} \quad (9)$$

Percentage of down time of vBBUs during Live Migration process: Considering the average operation time of each vBBU, this metric evaluates the rate of time that the vBBU service will be down due to a migration from a fog node to the cloud. It is expressed as the ratio presented in Equation 10, where $T_{DownTime}$ is the average interruption time of the vBBUs services and T_{OpTime} is the average operation time of the RRHs.

$$T_{DownTime}/T_{ProcTime} \quad (10)$$

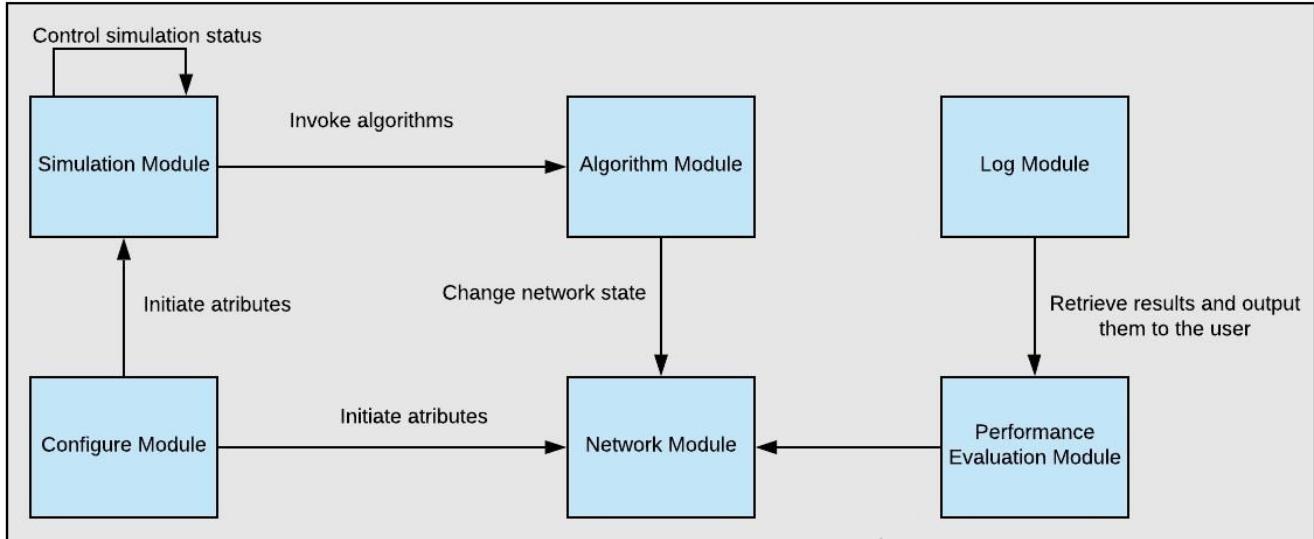
Execution time of algorithms: This general metric evaluates the convergence time of the algorithms executed in the network, probably by the network operator, to take decisions about resources allocation. It is used to evaluate the time feasibility of proposed algorithms.

4. The 5GPy Simulator

In this section we present the architecture of the proposed 5GPy simulator¹. The 5GPy simulator is a modular simulator where each relevant aspect of the 5G network is encapsulated in a specific Python module apart from others. The performance evaluation model presented on Subsection 3.4 is implemented inside 5GPy.

The core of 5GPy relies on a core simulation module based on a extension of the SimPy simulator. SimPy is a Python library that implements generic tools for event-driven simulations. In the simulator, active network elements, such as a RRH, are modelled as processes. Processes are a representation of Python generators that are responsible to create events (for instance, in a event queue) and, regarding a timeout value, yielding them for processing. In this regard, the timeout itself is another process responsible to control the timeline of the simulation.

When an event is yielded, the process that yields the event is suspended and waits for the processing of the event to be resumed. For instance, when a CPRI transmission arrives at the network, a RRH yield this event, gets suspended and waits for any algorithm to handle the transmission of the request so the RRH operation is resumed, e.g. the CPRI traffic was transmitted or not. In 5GPy, SimPy processes are used to model the generation of events of single or multiple network elements, for instance, a single RRH or several RRHs.


In order to implement the event-driven simulation of CF-RAN, 5GPy relies on three main elements: A traffic-generator (TG), a network scheduler and processing elements. The TG is a SimPy process responsible for generating any kind of events in certain time intervals and providing them to the network scheduler. Given some probability distribution with a certain mean value, e.g. a Poisson distribution, it yields events from an event list. The event list can contain any type of event related to the operation of a 5G network, e.g. a RRH CPRI traffic, a wireless sensor generating data or a smart phone generating applications requests, among others.

In this paper, we consider that the event being generated by the TG is a RRH request, which is retrieved from a list of turned off RRHs that are created prior to the start of the simulation. A RRH request comprises the request for a processing node with a vBBU and a VPON with free capacity to receive and process the baseband signals from a RRH. Each RRH request has also a service time, given by any probability distribution, that indicates how long the RRH will be processed in its vBBU. Similarly to the list of turned off RRHs, our simulator also implements a list for keeping RRHs that are active and being processed in the network.

Moreover, in order to implement traffic variations during certain periods of time, e.g. a daily, weekly or monthly traffic pattern, the TG also implements a traffic pattern generator (TPG). The TPG is responsible to feed different mean values for the probability distribution used by the TG following specific time intervals during a simulation. For instance, the TPG can control the TG to increase its traffic generation in a hour-per-hour pattern or in a minute-to-minute pattern.

The network scheduler is implemented via another SimPy tool, the Store resource. A SimPy Store resource is a class that stores received events in an object queue and provides them to a processing element in the network. In other words, SimPy's Store models the production and consumption of events. The network scheduler stores the events generated by the TG and, following any policy, removes an event and sends it to its responsible processing element. Finally, the processing elements can be any class created by the user that is responsible to perform the processing of the generated events. For instance, a centralized control plane responsible for receiving events of CPRI requests and finding available processing nodes and bandwidth to these transmissions can be a implementation of a 5GPy processing element.

¹The simulator is available at <https://github.com/rodrigo-tinini/5GPy> (Last accessed at Jun 30, 2019).

Figure 2: Relations between modules of 5GPy

The architecture of 5GPy comprises the following modules: Simulation, Configuration, Network, Algorithm, Performance Evaluation, and Log, which will be explained below. The relations between these modules are depicted in Figure 2.

Simulation

The Simulation module comprises a main class that is responsible to initiate one or more TPs, the network scheduler and the processing elements. The values used for this initiation comes from the Configuration Module. It is important to notice that 5GPy allows the simulation of both dynamic and static traffic scenarios. In static traffic scenarios, for a given number of simulation runs, a pre-determined load of RRH requests is passed as the input for any algorithm to be evaluated, without randomly arrival or departure of these requests. Although static traffic does not reflect real scenarios like dynamic traffic simulations, it is often used to evaluate time-consuming optimization models in order to guide the development of time-efficient heuristics and also to give insights into the dynamic network operation itself [20].

Configuration

The Configuration module is used to set the parameters of the simulation (e.g. the details of the topology, the algorithms to be executed) and invoke the Simulation module to execute one or more simulation runs. It is basically a Python script in which the user set values to built-in variables of the simulator in order to model the topology that he/she wants to simulate. In this module, the user defines the duration of the simulation (e.g. a daily or a weekly operation of a 5G network) and time steps for change of traffic load as the parameters of the TPG to handle the dynamic arrival and departure of RRH requests. Parameters for the performance evaluation are set in this module, like the confidence level used to calculate the confidence interval for the average results of multiple simulation runs.

Network

The network module contains attributes that represents the capacities of the elements in the network topology. In this module, Python 1D and 2D arrays are used to represent the network elements and their capacities. For instance, a network with three processing nodes can be represented by the 1D array $nodes$, where $|nodes| = 3$, and the capacity of each processing node i can be represented by the 2D array I_i , where, for instance, $I_i = (10, 10, 10)$ tells us that the processing node i has 3 vBBUs with the capacity to process 10 CPRI traffic requests. Similarly, the VPONs allocated to each processing node can be represented by the 2D array W_n , where, for instance, $W_i = (1, 4)$ indicates that VPONs 1 and 4 were created on node i .

The rationale behind the use of basic Python data structures to represent the topology instead of classes is because in order to scale the simulations to large scenarios, it is less computationally expensive to use simple data structures than to create and instantiate several complex classes to represent each element of the topology. Furthermore, for ILP and heuristic-based solutions that will be executed in the simulator to allocate resources, it is more practical to describe the characteristics of a topology in the form of indexed elements of basic data structures, since input parameters and decision variables are commonly represented as 2D or 3D arrays in ILP and heuristic-based solutions.

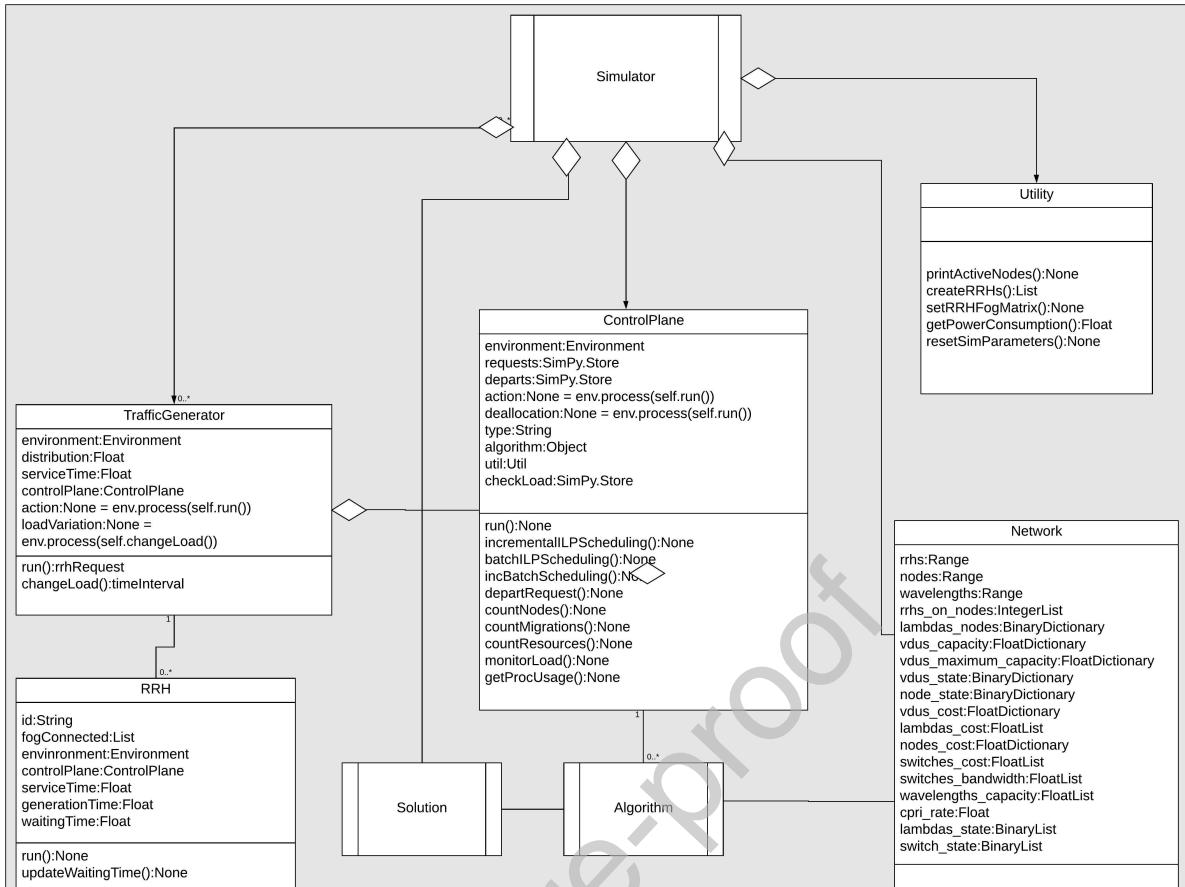


Figure 3: Class diagram of 5GPy

Algorithm

The Algorithm module comprises the attributes, methods and statements that define an algorithm that can be used to solve a problem in the 5G network. For each single algorithm developed by the user on the simulator, a single algorithm module needs to be created. Hence, the complexity of each algorithm is transparent to the rest of the simulator.

It is the role of the network scheduler to invoke an algorithm to decide the placement of a RRH request. The Algorithm module can also iterate with the network scheduler to send an event back to it, e.g. to inform that the processing of a CPRI traffic of RRH i is initiated on some processing node or if it is terminated.

As each single algorithm is defined in a single module, the simulator is empowered to operate with any algorithm that the user wants to develop and evaluate without concerning about its details and complexity.

Performance Evaluation

The Performance Evaluation module implements the set of functions designed to evaluate the performance metrics of CF-RAN and developed algorithms. Any new evaluated method designed by the user must be placed in this module. This module communicates directly with the Network module in order to read its state and perform evaluations.

Log

Finally, the Log module is responsible to access the Performance Evaluation module to generate outputs to the user with the results of the performance evaluation. The latest version of 5GPy outputs all results as plain text (.txt) files.

4.1. Simulation Classes

The current version of 5GPy is composed of the following classes: Simulator, ControlPlane, TrafficGenerator, RRH, Algorithm, Network, Solution and Utility.

As depicted in the class diagram of Figure 3, the Simulator class, which is responsible to initiate the simulation, encapsulates the TrafficGenerator, ControlPlane, Network and Utility classes. The TrafficGenerator class is responsible to generate events that represent the incoming requests of RRHs, represented by the class RRH, that is associated by TrafficGenerator through a RRHs list. The TrafficGenerator also aggregates the ControlPlane class, which is respon-

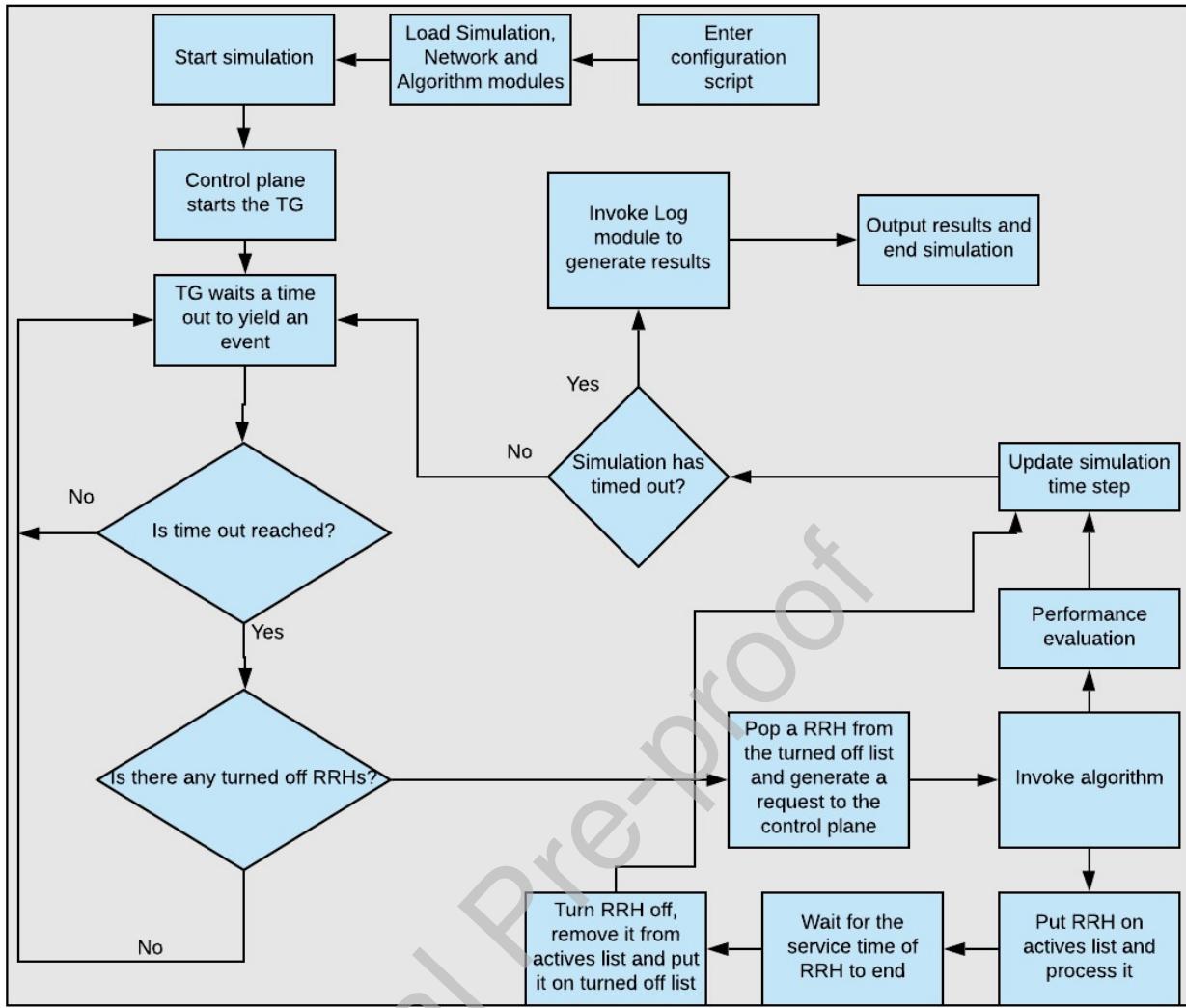


Figure 4: Workflow of a simulation run in 5GPy

sible to receive events from TrafficGenerator and executing them by invoking an algorithm that is aggregated from the class Algorithm. The Algorithm class is associated to the Network class in order to access the topology state and run its algorithm. It is also associated with Solution class, which keeps the outputs of the developed model and aggregates to the Simulator class. Finally, the Simulator class evaluates the network metrics through the aggregation of the Utility class, which contains several methods to evaluate performance.

4.2. Simulation Workflow

A single simulation run is depicted on the workflow of Figure 4. In this example, the simulator runs for a determined simulation time and has a time step attribute used to update an artificial clock in order to check when the simulation has timed out.

First, through the configuration script, the Simulation, Network and Algorithm modules are loaded and the simulation starts. The Control Plane initiates the TG and then, the TG waits for a time out to yield an event and check if there is any turned off RRH, i.e. RRHs that did not generate any CPRI request. If not, the TG waits for the next time out. If so, it pops an RRH from the RRHs list and generate a CPRI request event for this RRH. Then, it passes this event to the control plane for it to invoke some algorithm to handle this request and find a suitable vBBU and VPON to process it.

After the algorithm is executed, two operations are performed. The network state is updated with the output of the algorithm and the performance is evaluated. The RRH is also put in a list of active RRHs and the request begins to be processed. The simulation time step is updated. In parallel, the simulator checks if the simulation time or if the

processing of the RRH request has timed out.

If the simulation has timed out, it invokes the Log module to output results from the performance evaluation. If not, it waits for another event to be yield by the TG. If the processing time of some RRH request has timed out, the RRH is removed from the list of actives RRHs and put on the list of turned off RRHs. The resources are released and the simulation time step is updated.

Note that in this workflow example we did not depict the case of a blocking of a RRH request. In this case, the performance would also be evaluated, the simulation time step would be updated and the RRH would be put again on the turned off list.

4.3. Qualitative Analysis for 5GPy

In this section we will provide a qualitative analysis between our proposed simulator and those refereed in Section 2 in order to asset the advantages of 5GPy with the objective of pointing out how one can benefit from 5GPy when simulating 5G fog-based networks. As the referee simulators are considerably different in their implementations and objectives, it is no reasonable to promote a performance evaluation between them and 5GPy.

As noted in the related works, many of the studied simulators have a great focus on the simulation of the PHY and MAC layer of 5G wireless networks, neglecting the transport of baseband signals from RRHs to processing elements. In this regard, the work in [11] presents a simplified framework for both simulation of link and system level, comprising the generation of baseband signals from RRHs considering large and small scale fading of signals that are transmitted to be processed in servers in a cloud, which comprises the system level simulation. The system level simulation allows the simulation of base stations containing RRHs of macro or micro size and the generation of mobile users that are served by these RRHs. This model allows the simulation of interference between RRHs considering its size, which also generates requests from interference mitigation processing through Coordinated Multi-Point (CoMP) techniques [7]. However, all the complexity of the fronthaul is abstracted as latency values that are given in function of the baseband signals generated by the RRHs. Regarding the processing resources, the simulator presents a round-robin and the Best Channel Quality Indicator (CQI) algorithms to perform this task. Besides its simplicity, it allows the users to evaluate spectral efficiency through Cloud Frequency Reuse (CFR), CoMP and carrier aggregation techniques.

In [12], the proposed simulator is heavily focused on system level simulators of the radio transmissions of 5G networks. It considers the geometry of the base stations and several propagation models. The performance evaluation is focused on the strength of the signal, accumulated interference and signal to interference plus noise ratio (SINR). It also simulates sophisticated channel models, as Full Dimension MIMO (FD MIMO). The tool in [3] is focused on link level simulators of radio transmissions. It is specialized in generating radio signals, since from the generation of preamble, data bits, and pilot symbols to the insertion of data in a frequency/time grid. Operations such as clipping and filtering are also implemented and at the receiver side it allows operations such as channel estimation, equalization and hard symbol detection, among others. Several channel models are implemented, such as Additive White Gaussian Noise (AWGN), Flat Rayleigh fading, Standardized channel models, such as ITU-R Outdoor-to-Indoor and Pedestrian A (ITU-R M.1225 (1997-2)), 3GPP Typical Urban channel model (3GPP TR 25.943 V6.0.0 (2004-12)), etc. The tool in [10] simulates the full-stack of mmWave, focusing on end-to-end radio communications since the frame generation until the transmission and reception, considering signal attenuations and interference. The following channel models are implemented: 3GPP Statistical Channel Model, Ray-tracing Model and NYU Statistical Model.

Considering these simulators, both [3] and [10] can be considered the most sophisticated because they provide a wide range of channel models for radio communications simulations. In comparison to our tool, they simplified the operation of the fronthaul, which is a focus of our simulation. However, as they provide good estimates of the radio communications operation, their outputs could be used by 5GPy in order to consider more scenarios of performance evaluation. As they are modular simulators, a module could be proposed to integrate one of them with 5GPy.

Regarding the simulation of communications between RRHs and cloud/fog nodes, the tool in [9], provides to users simulations related to the placement and migration of VMs in cloud/fog scenarios. Different from the simulations focused on radio communications, in this tool the radio segment of the network and its complexity are abstracted and the focus is on the simulation of users mobility that triggers VMs migration among processing nodes. The tool provides measures on latency, network utilization and power consumption. However, this simulator completely abstracts the operation of the fronthaul, which is an important aspect of operation when measuring the utilization of network resources.

Similar to [9], the tool in [16] also promotes the simulation of communications between mobile users and VMs in cloud/fog nodes. This tool models segments of Wireless Local Area Networks (WLANs) and Wide Area Networks

(WAN), however, the complexity of these networks are once again abstracted and only the delay generated in their links is considered. There is no detailed simulation of the layer 1 and 2 of the transport networks. So, the impact in the cloud/fog operation regarding strategies for bandwidth allocation on the fronthaul is not measured. In this aspect, 5GPy is dedicated to simulate the fronthaul considering the allocation of its resources. Hence, it can provide accurate estimates on network performance by considering restrictions on the transport network and on processing resources both in static and dynamic scenarios when VMs migration can also be performed.

5GPy shows itself as a simulation tool that provides more details and capabilities on the simulation of 5G fog-based networks. By using the proposed performance model presented on subsection 3.4, our tool offers the evaluation of several important metrics that consider much more details of the transmission of data through the fronthaul, which was neglected on some aforementioned simulators. However, as already pointed, to be more general than it is, our tool needs to be extended to support the management of radio resources, because this is abstracted in the current implementation, or, at least, be integrated to some of the aforementioned radio communication-focused simulators.

Finally, regarding details of implementation and ease of use and even extend, the code of all evaluated tools are organized in modules, so any extension to the original tool can be written in new modules that can be integrated with old ones. Moreover, they also provide simplified configuration of simulation scenarios through dedicated configuration files, which avoids the user to change the code itself to create simulation scenarios.

5. Simulations

In this section we will conduct some experiments to show the simulation and performance evaluation capabilities of 5GPy. In order to perform the simulations, we will use two algorithms already proposed in our previous works to solve the VP-VF problem.

ILP model for power consumption minimization in VP-VF

The first algorithm [18], is an ILP model used to allocate vBBUs and VPON to RRH requests in a energy-efficient way. Its objective function seeks to minimize the power consumption equation 1.

The ILP takes as parameters the following sets and variables: R : set of RRH traffic demands i , N : set of processing nodes (cloud of fog nodes) n , F_{in} : set of binary values representing fog nodes n connected to RRH i , V_{wn} : set of binary values that represent the availability of each VPON w to be placed on node n , W : set of available wavelengths w and VDUs, B_i : bandwidth demand of RRH i , B_w : capacity of wavelength w , I_w : processing capacity of VDU w , B_{e_n} : bandwidth of the backplane switch e at node n , C_n : power cost of node n , C_{lc} : power cost of a LC, C_e : power cost of the backplane switch, B : a very big positive number, α , β and ρ : binary weights used to prioritize the minimization of specific components.

As decision variables, the ILP consider the following binary variables: x_{iwn} : = 1 if the traffic demand of RRH i is processed at node n being transmitted at the VPON w , u_{iwn} : = 1 if RRH i is processed at the VDU w at node n , y_{in} : = 1 if i was allocated to node n , x_n : = 1 if node n is active, z_{wn} : = 1 if wavelength w transmits to node n , k_{in} : = 1 if traffic from RRH i was redirected to VDU w at node n , r_{wn} : = 1 if VDU w was activated to receive a redirected RRH at node n , s_{wn} : = 1 if VDU w is active at node n , e_n : = 1 if the backplane switch e is active at node n , g_{iwn} : auxiliary variable that equals 1 if traffic of RRH i is redirected to VDU w at node n .

As constraints, it ensures that each RRH request is allocated to only one processing node, vBBU and VPON and that each wavelength is used to create a VPON in a single processing node, via the following constraints (11-16):

$$\sum_{w=1}^W \sum_{n=1}^N x_{iwn} = 1, \forall i \in \{1, \dots, R\} \quad (11)$$

$$\sum_{w=1}^W \sum_{n=1}^N u_{iwn} = 1, \forall i \in \{1, \dots, R\} \quad (12)$$

$$\sum_{i=1}^R u_{iwn} \geq 0, \forall w, n \in \{1, \dots, W\}, \{1, \dots, N\} \quad (13)$$

$$\sum_{n=1}^N y_{in} = 1, \forall i \in \{1, \dots, R\} \quad (14)$$

$$\sum_{n=1}^N z_{wn} \leq 1, \forall w \in \{1, \dots, W\} \quad (15)$$

$$z_{wn} \leq V_{wn}, \forall w, n \in \{1, \dots, W\}, \{1, \dots, N\} \quad (16)$$

Regarding the connectivity of each RRH to one or more fog nodes, the following constraint 17 ensures that each RRH request can only be processed in the cloud or in a fog node that it is connected to:

$$y_{in} \leq F_{in}, \forall i, n \in \{1, \dots, R\}, \{1, \dots, N\} \quad (17)$$

The capacities constraints of VDUs, VPONs and the backplane switch is guaranteed by constraints 18-20.

$$\sum_{i=1}^R \sum_{n=1}^N x_{iwn} \cdot B_i \leq B_w, \forall w \in \{1, \dots, W\} \quad (18)$$

$$\sum_{i=1}^R \sum_{n=1}^N u_{iwn} \leq I_w, \forall w \in \{1, \dots, W\} \quad (19)$$

$$\sum_{i=1}^R k_{in} \cdot B_i \leq B_{e_n}, \forall n \in \{1, \dots, N\} \quad (20)$$

The following constraints (21-30) use the auxiliary decision variables to account when processing nodes, VDUs, VPONs and backplane switches are activated by the ILP solution:

$$B \cdot x_n \geq \sum_{i=1}^R \sum_{w=1}^W x_{iwn}, \forall n \in \{1, \dots, N\} \quad (21)$$

$$x_n \leq \sum_{i=1}^R \sum_{w=1}^W x_{iwn}, \forall n \in \{1, \dots, N\} \quad (22)$$

$$B \cdot z_{wn} \geq \sum_{i=1}^R \sum_{n=1}^N x_{iwn}, \forall w \in \{1, \dots, W\} \quad (23)$$

$$z_{wn} \leq \sum_{i=1}^R \sum_{n=1}^N x_{iwn}, \forall w \in \{1, \dots, W\} \quad (24)$$

$$B.y_{in} \geq \sum_{w=1}^W x_{iwn}, \forall i, n \in \{1, \dots, R\}, \{1, \dots, N\} \quad (25)$$

$$y_{in} \leq \sum_{w=1}^W x_{iwn}, \forall i, n \in \{1, \dots, R\}, \{1, \dots, N\} \quad (26)$$

$$B.y_{in} \geq \sum_{w=1}^W u_{iwn}, \forall i, n \in \{1, \dots, R\}, \{1, \dots, N\} \quad (27)$$

$$y_{in} \leq \sum_{w=1}^W u_{iwn}, \forall i, n \in \{1, \dots, R\}, \{1, \dots, N\} \quad (28)$$

$$B.s_{wn} \geq \sum_{i=1}^R u_{iwn}, \forall w, n \in \{1, \dots, W\}, \{1, \dots, N\} \quad (29)$$

$$s_{wn} \leq \sum_{i=1}^R u_{iwn}, \forall w, n \in \{1, \dots, W\}, \{1, \dots, N\} \quad (30)$$

Finally, the following constraints (31-40) uses auxiliary variables k_{in} , r_{wn} , e_n and g_{iwn} to evidence and account the redirection of traffic among VDUs. Note that constraints 24 to 31 are the same expressions of traffic redirection presented in Section 3.4.

$$B.k_{in} \geq \sum_{w=1}^W g_{iwn}, \forall i, n \in \{1, \dots, R\}, \{1, \dots, N\} \quad (31)$$

$$k_{in} \leq \sum_{w=1}^W g_{iwn}, \forall i, n \in \{1, \dots, R\}, \{1, \dots, N\} \quad (32)$$

$$B.r_w \geq \sum_{i=1}^R \sum_{n=1}^N g_{iwn}, \forall w \in \{1, \dots, W\} \quad (33)$$

$$r_w \leq \sum_{i=1}^R \sum_{n=1}^N g_{iwn}, \forall w \in \{1, \dots, W\} \quad (34)$$

$$B.e_n \geq \sum_{i=1}^R k_{in}, \forall n \in \{1, \dots, N\} \quad (35)$$

$$e_n \leq \sum_{i=1}^R k_{in}, \forall n \in \{1, \dots, N\} \quad (36)$$

$$g_{iwn} \leq x_{iwn} + u_{iwn}, \forall i, w, n \in \{1, \dots, R\}, \{1, \dots, W\}, \{1, \dots, N\} \quad (37)$$

$$g_{iwn} \geq x_{iwn} - u_{iwn}, \forall i, w, n \in \{1, \dots, R\}, \{1, \dots, W\}, \{1, \dots, N\} \quad (38)$$

$$g_{iwn} \geq u_{iwn} - x_{iwn}, \forall i, w, n \in \{1, \dots, R\}, \{1, \dots, W\}, \{1, \dots, N\} \quad (39)$$

$$g_{iwn} \leq 2 - x_{iwn} - u_{iwn}, \forall i, w, n \in \{1, \dots, R\}, \{1, \dots, W\}, \{1, \dots, N\} \quad (40)$$

Graph-model heuristic for power and latency-efficient VP-VF

The second algorithm is a graph-based model and heuristic used to perform the placement of vBBUs and formation of VPONs in a power and latency-efficient way.

In this algorithm, CF-RAN is modelled as a flow graph. RRHs and processing nodes are modelled as vertices and the fronthaul links that connect them are represented by the arcs connecting them with a capacity value that represents the amount of free bandwidth on that link. A source vertex S that inputs flow into the network is connected to each RRH vertex and each processing node connects to a output destination vertex D . The objective is to maintain the maximum flow between a source and destination vertices, inputting flow through all RRHs and processing nodes through the fronthaul links/arcs.

Initially, the fronthaul links/arcs have capacity 0. Hence, the algorithm is break into two procedures: First, an wavelength dimensioning algorithm is used to increase the capacity of the arcs in order to support incoming flow from RRH vertices. Then, a max flow-min cost is executed to input flow into the network arcs.

For the complete definition of this algorithm, we welcome the readers to refer to publication [18], where the graph-based model is explained with deep details.

5.1. Static Traffic Scenario

The first scenario is a static traffic scenario where the total demand of CPRI requests is known before-hand and there is no dynamicity on the arrival and departure of CPRI requests in the network. In this static traffic scenario we only considered the execution of the ILP formulation to solve the VP-VF problem. Using the proposed ILP formulation, we compared two different minimization objectives: the minimization of the VPONs, referred as minVPON policy, and the minimization of traffic switching among VDUs, referred as minRedir policy.

As ILP formulations are known to not scale well with the size of the problem, we considered a relative small topology for this scenario. The simulated CF-RAN is composed of 1 cloud node, 2 fog nodes and a TWDM-PON fronthaul composed of 4 wavelengths of 10Gbps capacity each one. The maximum traffic load in the network is achieved by the amount of 60 RRHs, however, we slotted the network operation as in a daily traffic pattern slotted in 24 periods of 1 hour. Each RRHs generates a basic CPRI flow of 614.4Mbps. The operation begins with the amount of 5 activated RRHs, and, hour by hour this amount is increased in 5 RRHs until the period of noon, after that, the amount of activated RRHs is decreased in 5 hour by hour. Using the performance evaluation model proposed in Section 3.4, we evaluated the following performance metrics: power consumption, the wastage of network and processing resources, the number of activated resources (VPONs, vBBUs and switches), the switching of traffic among VDUs, the migrations of vBBUs as traffic increases or decreases and the execution time of the algorithms. To execute the simulation we used a computer equipped with an Intel i7 processor with 16GB of RAM running on top of Ubuntu 18. The ILP formulation is implemented in 5GPy using the DOCPLEX library, that provides access to the IBM CPLEX Optimization Tool in order to get the optimal solutions from the ILP formulation.

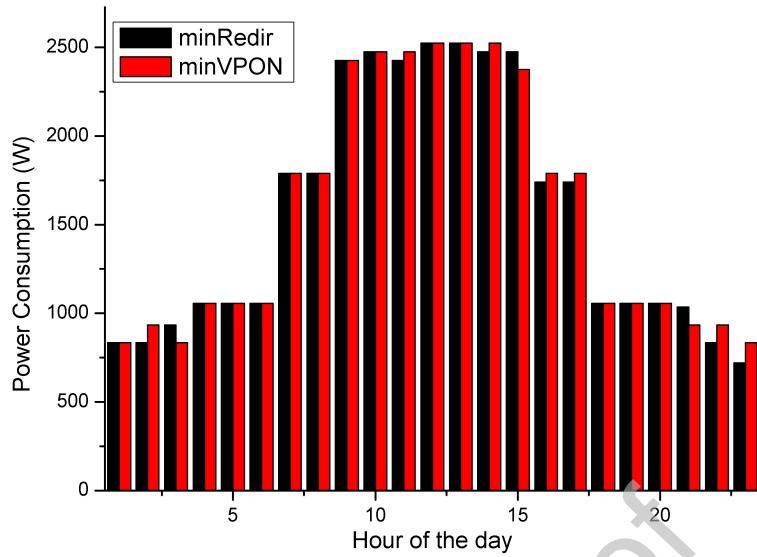


Figure 5: Power Consumption in CF-RAN

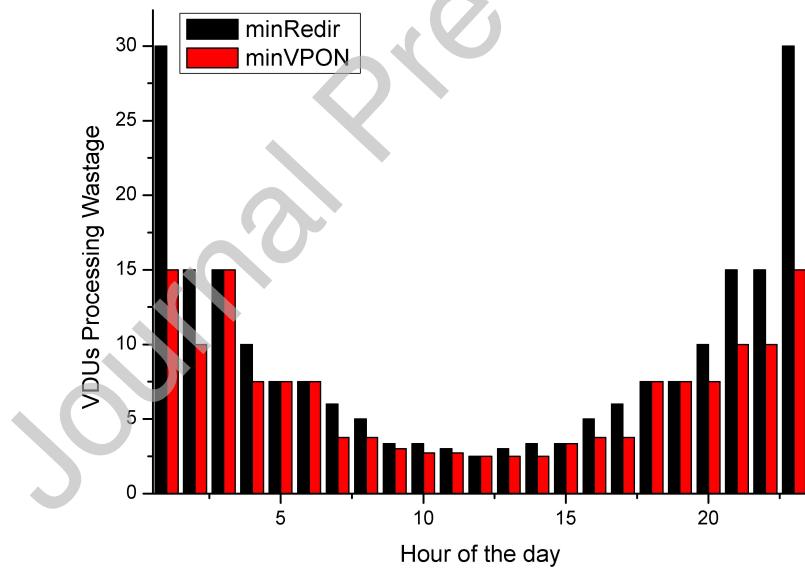
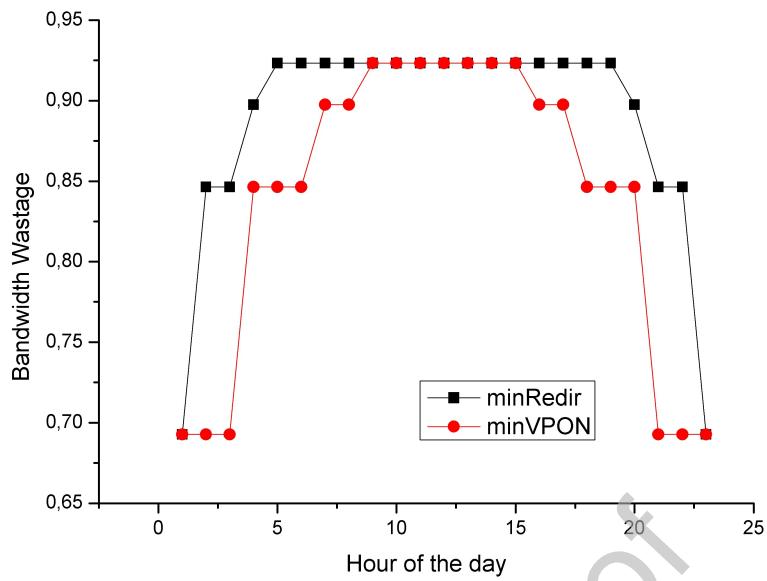



Figure 6: VDUs processing resources wastage

Figure 5 shows the power consumption obtained by both minVPON and minRedir of the ILP formulation. Note that for both policies, power consumption follows closely the increasing or decreasing of network load. There is no peak of power consumption in any time of the day, and this is because of the dynamic activation of both processing and network resources in CF-RAN, which promotes a very energy-efficient operation. Note that the minVPON policy tends to consume a bit more power than minRedir policy in some hours, on the order of about 2% more power. This tiny growing in power consumption can be explained because when VPONs are minimized, its traffic can exceed the capacity of its associated VDU, causing more VDUs and the internal switch to be activated in order to support the

Figure 7: Bandwidth wastage rate

demands of each VPON. It is interesting to note that sometimes when the traffic changes, minVPON provides better power performance than minRedir. It happens when the time transitions from 2 to 3 a.m., from 2 to 3 p.m. and from 8 to 9 p.m., when minRedir increases the power consumption in about 10% in comparison to minVPON. This happens because in that time the minimization of VPONs provide a better network scheduling to the upcoming traffic demands.

Following, in Figure 6 we investigate the impact of both minimization policies in the wastage of processing resources. Note that, mostly, minVPON provides a better usage of the VDUs, specially for lower traffic demands. In the moments of low workloads, the minimization of the activated wavelengths provides an optimization of about 50% in the processing resources usage in comparison to minRedir. When traffic increases, minVPON optimizes the usage of VDUs in at most 37.5%. This happens because, when minimizing VPONs, the system will try to fully use the VDUs associated with the activated VPONs before activating additional VDUs. So, we find that the an optimal usage of the processing resources is closely related to an optimal use of the network/fronthaul resources.

The bandwidth utilization rate is shown in Figure 7. The values were normalized to represent the maximum utilization rate that each policy can achieve when supporting traffic demands. As expected, minVPON provides a better utilization of the available bandwidth, activating only the necessary VPONs in order to support the traffic demands. Note that in high traffic demands both policies presents the same utilization rate of the available bandwidth. Specifically, when the traffic demand is low, minVPON optimizes the bandwidth utilization in at most 19%. Following the growth of traffic, this utilization rate is decreased up to 8% in comparison to minRedir before the peak time of the network operation is achieved.

Figures 8, 9 and 10 presents the amount of activated elements in the network. As expected, minVPON always activated less VPONs than minRedir, except in peak hours, providing a reduction of at most 50% on the amount of activated VPONs, thus leading to less wastage of the available bandwidth, as shown in Figure 8. Regarding the amount of VDUs activated to support the traffic demands, as shown in Figure 9, minVPON needs to activate more VDUs, about 37.5% than minRedir, in order to reduce the amount of VPONs created in the network. This also causes the power consumption of minVPON to be greater than minRedir. However, note that even activating more VDUs than minRedir, minVPON policy is capable of maintaining a better usage of the processing resources, as Figure 6 shows that minVPON provides less wastage of processing resources. This happens because, as minRedir seeks to activated more VPONs to reduce traffic switching, both the VPONs and its associated VDUs operates with a low workload, leading to both wastage of bandwidth and processing resources. On the other hand, note in Figure 10 that minVPON policy will naturally increase the use of the internal switch to switch traffic among VDUs, which will also cause minVPON to be more power-consuming than minRedir. In this regard, minRedir does not perform the activation of the internal

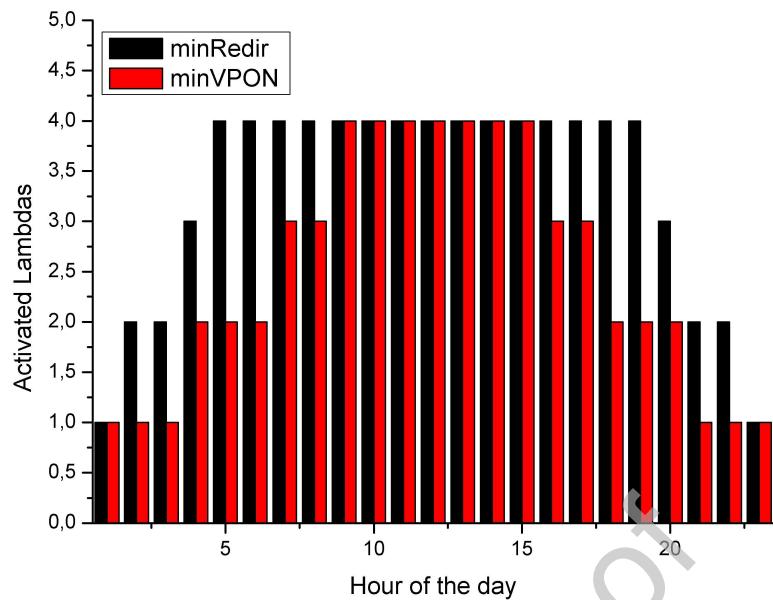


Figure 8: Amount of activated VPONs

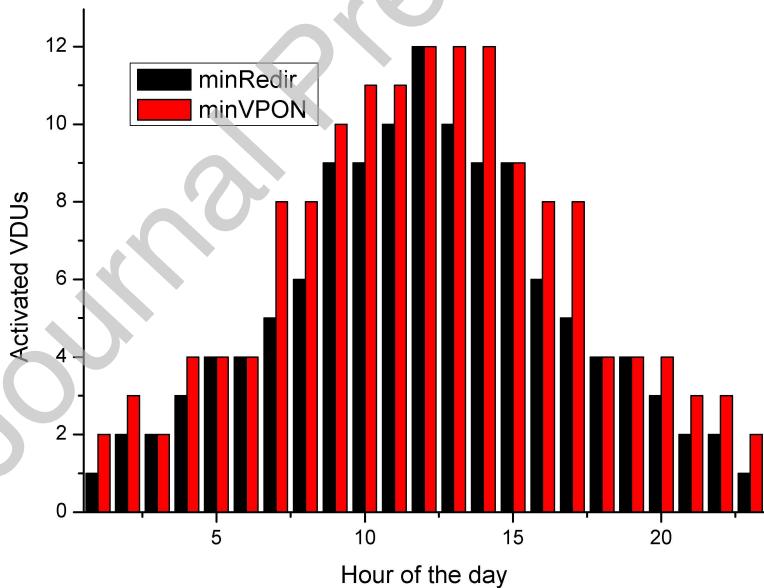
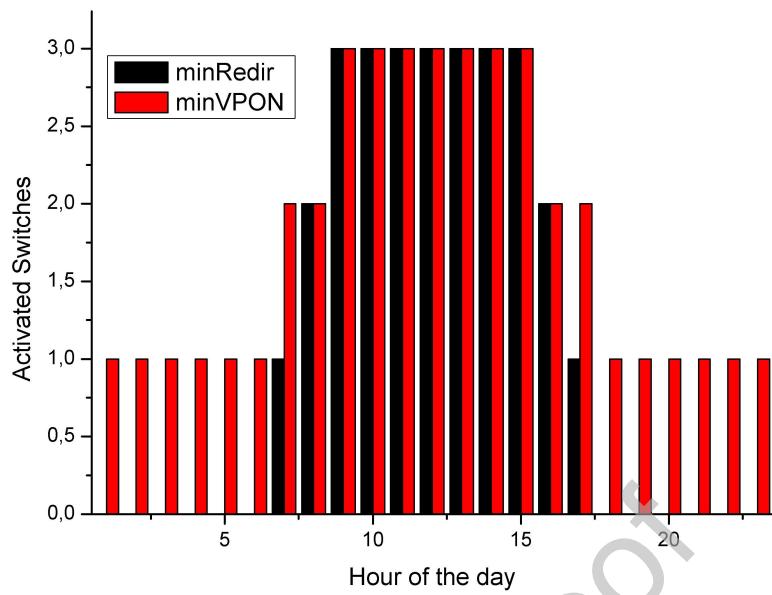



Figure 9: Amount of activated VDUs

switch in any processing node of the network between 6p.m. and 6a.m.. The internal switch begins to be activated only at 7a.m., when minRedir activates only 50% of internal switches in comparison to minVPON. During the peak time of network operation, both policies provides the same amount of switches activated and when traffic begins to be decreased at 5.p.m., minRedir will again activate half of the switches in comparison to minVPON.

Regarding the amount of traffic switching among VDUs, as expected, minVPON presents much more inter VDUs traffic switching, as shown in Figure 11. Between 6 p.m. and 6 a.m. the traffic switching is completely mitigated by

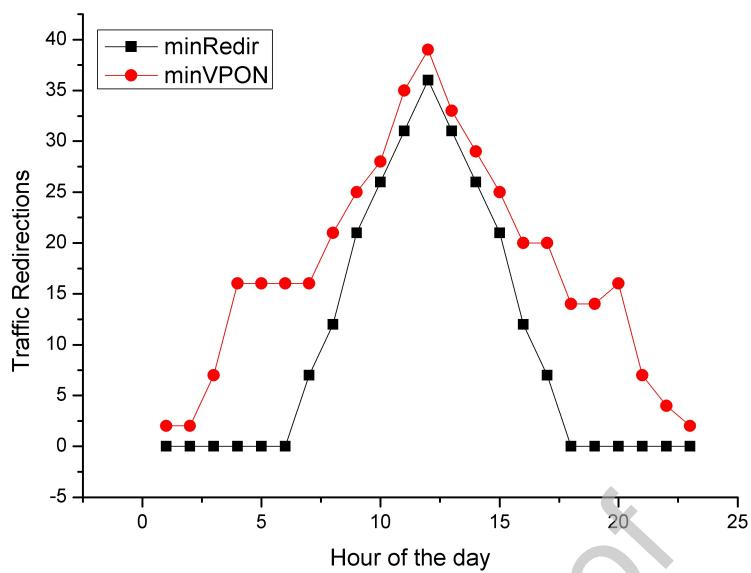
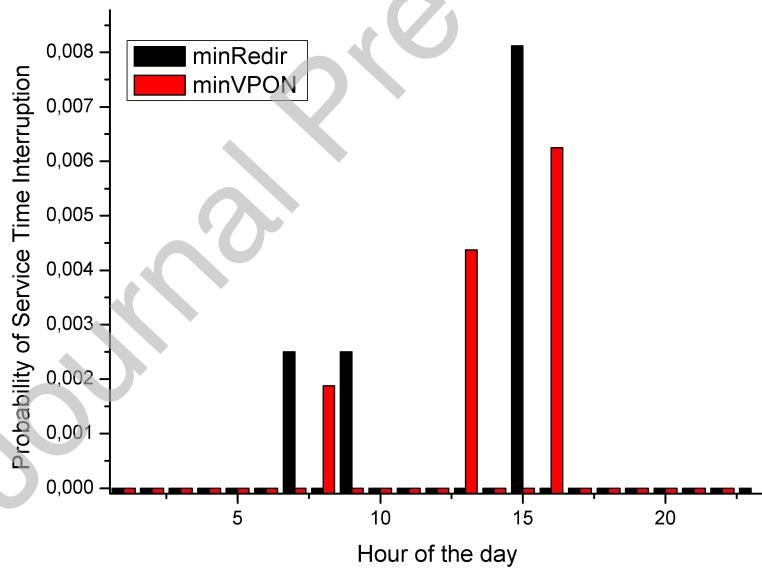


Figure 10: Amount of activated Switches


minRedir. The maximum difference of traffic switching between minRedir and minVPON is of about 56%, that happens when traffic begins to be increased at 7 a.m.. This shows that, even using both network and processing resources in a more optimal way, minVPON can cause the network latency to be increased. However, note that an increased difference on the number of redirected traffic occurs mostly in low traffic periods. At the peak network operation, one can decide to take the advantages provided by minVPON as the amount of redirected traffic is slightly greater than minRedir, on the order of about 6%. Nevertheless, for a more accurate conclusion on what policy is the best regarding latency, the use of different applications in the network must be investigated. For some kind of applications, like messengers of any kind of social media, latency is not a big problem, however, when some latency-driven applications such remote medical procedures or autonomous vehicles need to be supported by CF-RAN, the littlest variation in latency can impact those applications.

We also investigated the probability of traffic migrations among VDUs for both minVPON and minRedir policies. A migration occurs when the ILP formulation decides that some CPRI requests must be migrated from fog nodes to the cloud in order to save energy. As shown in Figure 12, in almost all times there is no migration, which shows that both policies of the ILP formulation are able to provide scheduling of CPRI requests in a way that prevents migrations when traffic increases or decreases. However, note that there is occurrence of traffic migrations in 5 hours of the day. In the migrations that occurred at early hours of the day, this can be explained by the fact that in that times, the fog can be used to support low traffic loads as the activation of only one fog node is cheaper than the use of the cloud. However, as traffic demand is slightly increased, migrations are performed to move traffic of several fog nodes to the cloud. This also explains why the amount of migrations reaches its peak at the peak load of the network. Note that when the traffic load decreases in nightly hours, migration is completely mitigated. In general, minRedir provided an average of about 2% more probabilities of traffic migrations than minVPON during the day.

Finally, the execution times provided by the ILP formulation and the simulator execution are provided in Figure 13. We can observe that minVPON, besides providing a better use of the network and processing resources, also provides its solutions in times very closer to 0. On the other hand, minRedir takes additional computing time in order to decide the allocation of resources while minimizing the traffic switching among VDUs. Specifically, minVPON provides a minimum and maximum reduction of the execution time in about 25%, or 1.3x, and in about 98.5%, or 65x, respectively, in comparison to minRedir.

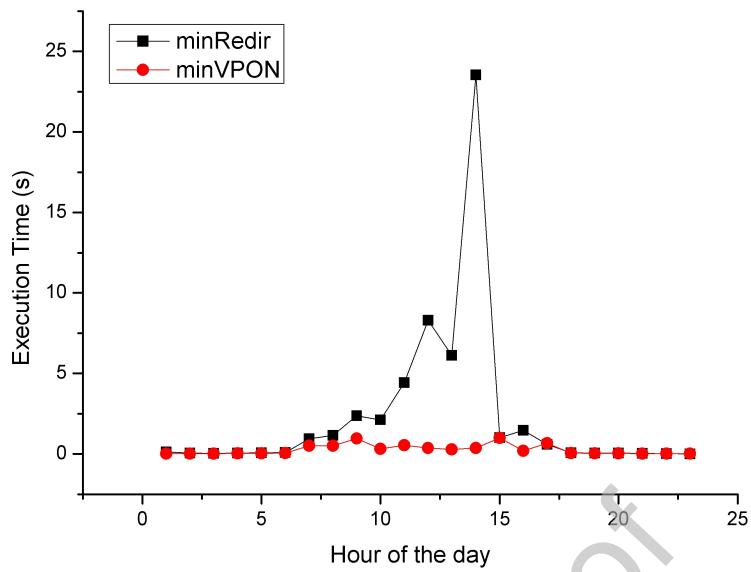

Figure 11: Amount of traffic switched among VDUs

Figure 12: Probability of migrations of traffic among vBBUs

5.2. Dynamic Traffic Scenario

In this scenario we simulated the mobile network operation of the city of Campinas, in the state of São Paulo in Brazil. In this scenario, the network is composed of 640 RRHs, each one generating a basic CPRI flow of 614.4Mbps, 1 cloud node able to process up to 320 RRHs and 10 fog nodes able to process 32 RRHs each one. We modelled the traffic as the traffic pattern of Figure 14. Each RRH is deactivated in the beginning of the simulation and them, RRHs begins to be activated following a Poisson process with mean equals to $(e/60)$, where e is the maximum *erlang* for a given hour of the day. The TWDM-PON fronthaul is composed of 40 wavelengths of 10Gbps capacity each. The

Figure 13: Execution time of the ILP formulation

fronthaul extension is 20km from RRHs to fog nodes and 20km from fog nodes to the cloud, resulting in a total of 40km of fiber extension from the RRHs to the cloud.

To evaluate the mobile network operation of the city of Campinas, we use the graph-based heuristics from [18]. We compare three heuristics for VPONs creation provided in [18], Most Loaded (ML), Least Loaded (LL) and Fog First (FF) in order to solve the VP-VF in CF-RAN. ML is a heuristic that seeks that prioritizes the creation of VPONs first in the cloud and then in the fog nodes with the biggest workloads, LL, on the other hand, prioritizes the cloud and then fog nodes with the lesser workload. FF prioritizes the use of the fog nodes and only when their capacity is exhausted, it creates VPONs in the cloud. We compare the operation of CF-RAN under these three heuristics with a traditional H-CRAN architecture, where the cloud and fog nodes are always active.

We evaluate the following metrics: power consumption, blocking probability, average propagation delay, wavelength usage and the execution times of the algorithms. All results are the average results of 40 simulation runs.

The power consumption is shown in Figure 15. Note that with low traffic demands, both CF-RAN and H-CRAN has similar power consumption, in exception of the FF heuristics. As FF prioritizes the use of the fog before the cloud, its power consumption tends to be much greater than that of CF-RAN and H-CRAN. However, note that when the cloud is exhausted at around noon, H-CRAN presents a growth of about 54% in power consumption due to the activation of all fog nodes, surpassing the heuristic FF. The best power consumption is achieved when the cloud is prioritized and fog nodes are activated in demand by heuristics ML and LL. In this regard, both ML and LL has similar performance and are able to promote a optimization of about 51% on power consumption in comparison to H-CRAN and FF heuristic.

Regarding blocking probability in Figure 16, both FF heuristic and H-CRAN has a huge advantage over ML and LL at peak hours. However, between 12 and 1 p.m., the ML heuristic is able to reduce blocking in about 56% in comparison to FF and in about 77% in comparison to LL heuristic. However, results in this figure show that it is hard to dynamically allocate CF-RAN resources on fog nodes as the cloud gets exhausted, which leads to the higher blocking probabilities of ML and LL in most times of the day. In this regard, around 3 p.m. ML and LL show the worst performance, with LL providing 19% more blocking than ML. On the other hand, if the power consumption is not the priority, blocking can be practically mitigated by the H-CRAN architecture and achieve extremely low rates with the prioritized use of the fog nodes over the cloud in all times of the day and by FF in almost all times of the day. This shows an interesting trade off between power consumption and blocking probability that needs to be accurately addressed by more sophisticated heuristics.

The average propagation delay is shown in Figure 17. Regardless of the policy and architecture, it was possible to

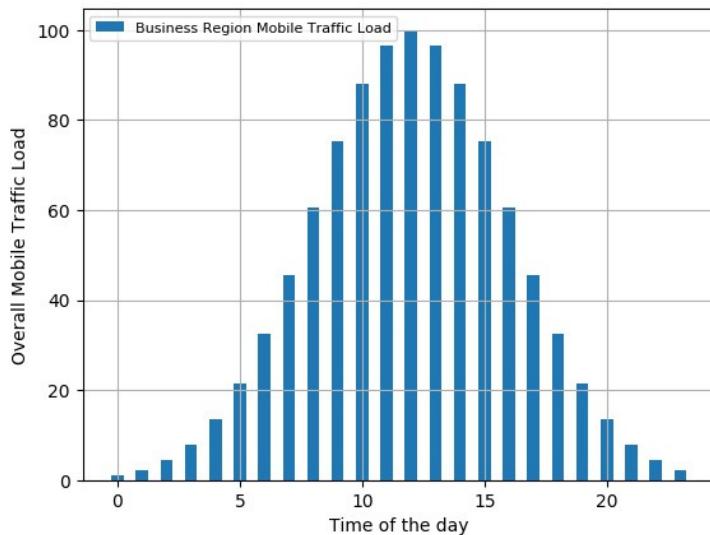


Figure 14: Typical traffic load pattern in a daily operation

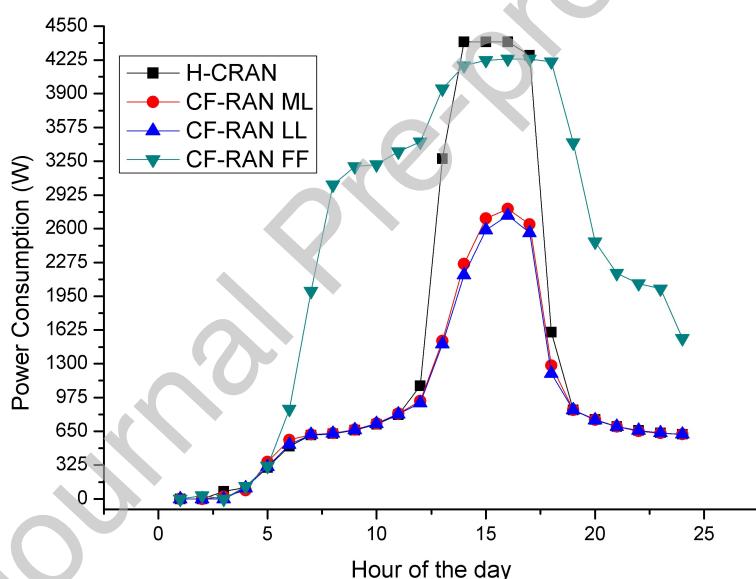


Figure 15: Power consumption in a dynamic traffic scenario

maintain the delay below the upper propagation latency limit of the fronthaul. There is a relation between the latency provided and the use of the cloud, which leads to a trade off between the overall network power consumption and overall propagation latency. The H-CRAN and CF-RAN, that prioritizes the cloud, provides low power consumption in low load hours but at the cost of an increased overall latency. Otherwise, the prioritized use of the fog always provides a low overall latency but at the cost of more power consumption. In this regard, FF is able to decrease latency in at most 50% in comparison to H-CRAN and CF-RAN with ML and LL heuristics. At peak times of operation, FF and H-CRAN provides very similar latency values at peak times of operation where ML and LL show an increasing in about 7% in latency. It is interesting to note that the prioritized use of the fog leads to an increased latency even when traffic load begins to decreased. This happens because the cloud is probably processing CPRI requests even when traffic decreases.

The efficiency of the bandwidth usage in the dynamic scenario is shown in Figure 18. The y axis provides an

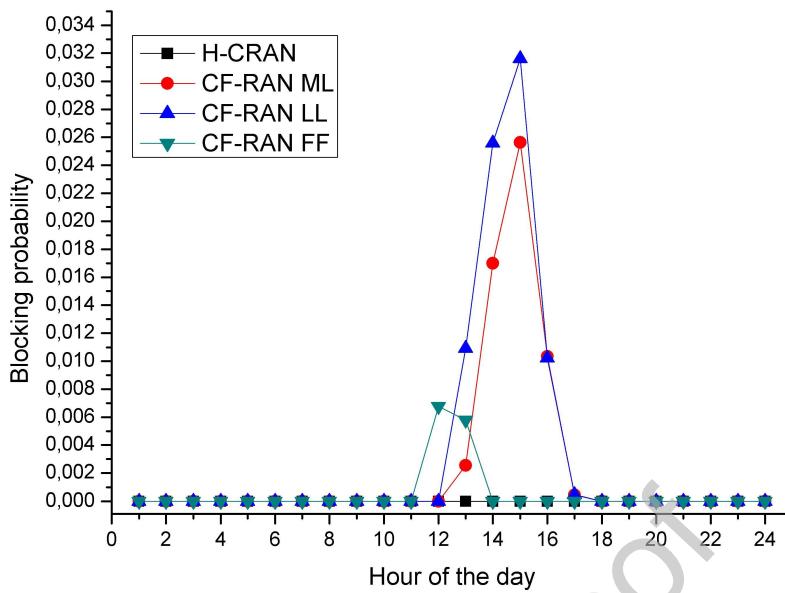


Figure 16: Blocking probability in a dynamic traffic scenario

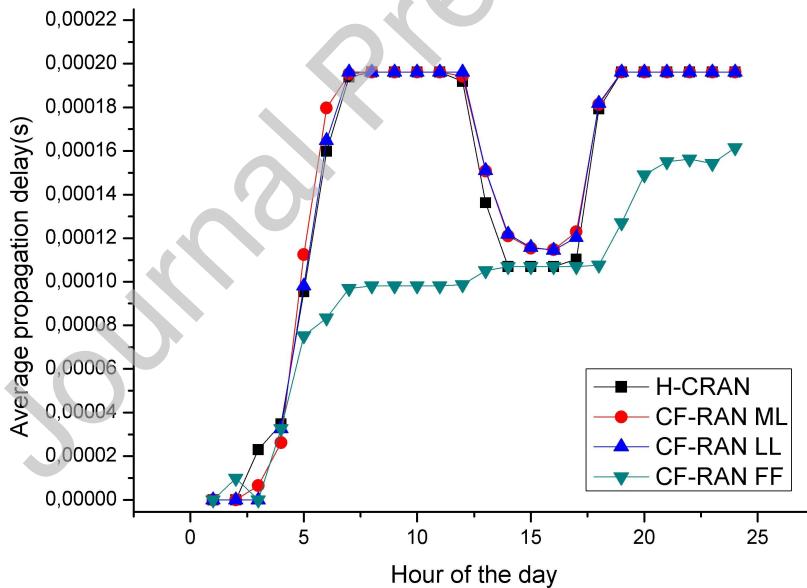
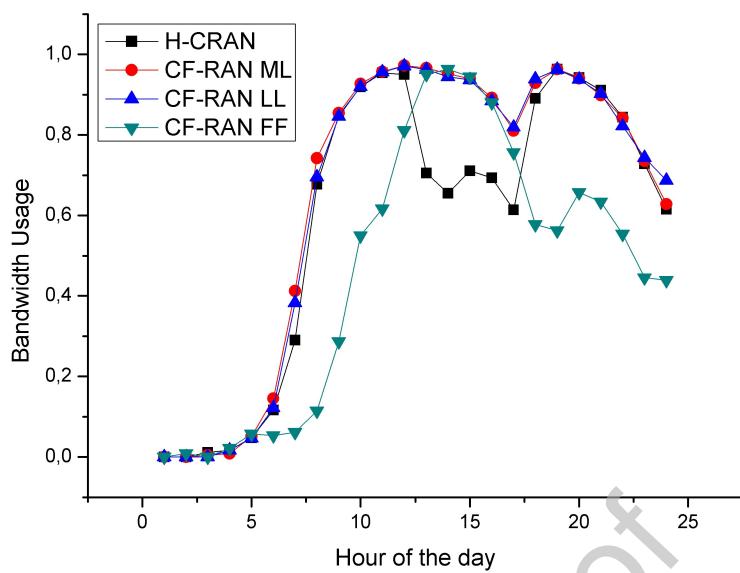
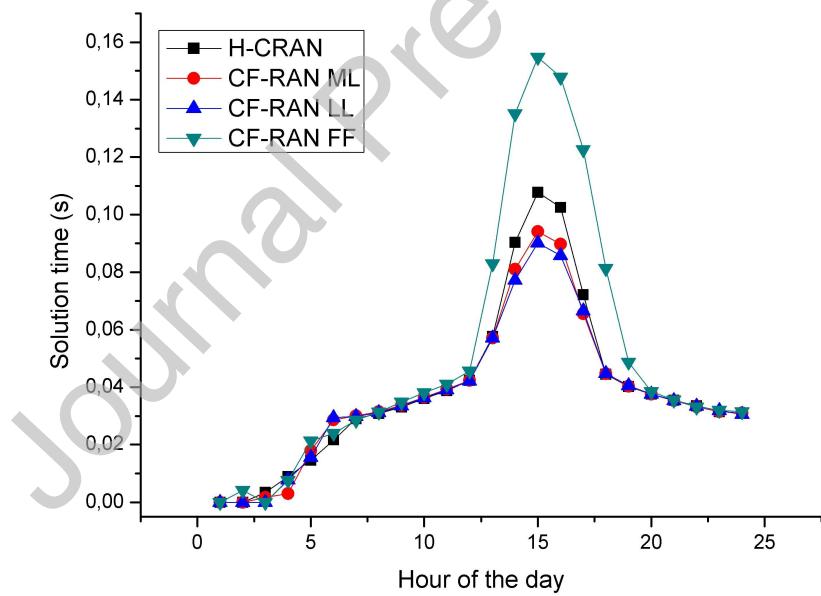




Figure 17: Average propagation delay in a dynamic traffic scenario

scale that measures the efficient use of the available wavelengths in the network. CF-RAN with ML and LL policies provides a better usage of the network resources than FF for almost all traffic loads of the day. Note that H-CRAN fails to maintain a performance closer to the optimal usage of the bandwidth in peak hours, where its performance is about 32% worst than CF-RAN. However, around 7 p.m., H-CRAN shows a performance similar to CF-RAN, being able to optimize the use of bandwidth in at most 42% in comparison to FF. For CF-RAN with FF, the prioritized use of fog nodes provides a worst usage of the bandwidth in almost all the day, except in peak hours where created VPONs are

Figure 18: Bandwidth wastage in a dynamic traffic scenario

Figure 19: Execution time in a dynamic traffic scenario

used closer to its full capacities.

Finally, the execution times of the algorithms are presented in Figure 19. Note that it is more computationally expensive to prioritize the fog nodes in peak hours. ML and LL heuristics provide a reduction of about 40% in the execution time in comparison to FF heuristic. For H-CRAN, the execution time is reduced in 10%.

6. Discussion and Conclusions

In this paper we investigated the joint collaboration of cloud and fog computing on the support of 5G networks through an architecture called CF-RAN. We also proposed a performance evaluation model to CF-RAN and a 5G network simulator focused on simulations of CF-RAN called 5GPy. 5GPy uses SimPy library to implement an process-oriented environment in order to model the behaviours of the components of a CF-RAN architecture. We performed evaluations in a small static traffic network scenario and in a large scale dynamic scenario based on the Brazilian city of Campinas. With the use of the simulator, interesting conclusions could be drawn about the cooperative use of cloud and fog computing. We found that the minimization of the wavelengths used in the network can promote a better usage of the processing resources, as more CPRI requests are transmitted on each wavelength and processed on a few number of vBBUs. The minimization of the wavelengths also reduces the switching of traffic between vBBUs in different VDUs, thus reducing switching latencies that could harm latency-sensitive applications that request communication between two or more vBBUs. We also found that a combined use of cloud and fog with dynamic activation of processing resources leads to remarkable savings in power consumption and in the bandwidth usage, however, we also found that when power consumption and bandwidth are optimized, the network may suffer from an increased blocking probability and propagation latency. On the other hand, we found that there is a trade off between the prioritized use of the fog and the cloud, because, when fog nodes are activated, the power consumption is increased, but on the other hand the blocking probability and propagation latency can be decreased. This points out the necessity of more sophisticated heuristics that seeks to balance the trade off found in this paper.

Acknowledgements

This work was supported in part by CAPES - Finance Code 001, the INCT of the Future Internet for Smart Cities (CNPq 465446/2014-0, CAPES 88887.136422/2017-00, and FAPESP 14/50937-1 and 15/24485-9) and CNPq 311608/2017-5, 420907/2016-5, and 312324/2015-4.

References

- [1] Baldo, N., Miozzo, M., Requena-Esteso, M., Nin-Guerrero, J., 2011. An open source product-oriented lte network simulator based on ns-3, in: Proceedings of the 14th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, ACM, New York, NY, USA. pp. 293–298. URL: <http://doi.acm.org/10.1145/2068897.2068948>, doi:10.1145/2068897.2068948.
- [2] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R., 2011. Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. *Software: Practice and experience* 41, 23–50.
- [3] Dominguez-Bolano, T., Rodriguez-Pineiro, J., Garcia-Naya, J.A., Castedo, L., 2016. The gtec 5g link-level simulator, in: 2016 1st International Workshop on Link- and System Level Simulations (IWSLS), pp. 1–6. doi:10.1109/IWSLS.2016.7801585.
- [4] Figueiredo, G.B., Wang, X., Meixner, C.C., Tornatore, M., Mukherjee, B., 2016. Load balancing and latency reduction in multi-user comp over twdm-vpns, in: 2016 IEEE International Conference on Communications (ICC), IEEE. pp. 1–6.
- [5] Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R., 2017. ifogsim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. *Software: Practice and Experience* 47, 1275–1296.
- [6] Ikuno, J.C., Wrulich, M., Rupp, M., 2010. System level simulation of lte networks, in: 2010 IEEE 71st Vehicular Technology Conference, pp. 1–5. doi:10.1109/VETECS.2010.5494007.
- [7] Irmer, R., Droste, J., Marsch, P., Grieber, M., Fettweis, G., Brueck, S., Mayer, H.P., Thiele, L., Jungnickel, V., 2011. Coordinated multipoint: Concepts, performance, and field trial results. *IEEE Communications Magazine* 49, 102–111.
- [8] Liu, M., Ren, P., Du, Q., Ou, W., Xiong, X., Li, G., 2016. Design of system-level simulation platform for 5g networks, in: 2016 IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–6. doi:10.1109/ICCCChina.2016.7636796.
- [9] Lopes, M.M., Higashino, W.A., Capretz, M.A., Bittencourt, L.F., 2017. Myifogsim: A simulator for virtual machine migration in fog computing, in: Companion Proceedings of the 10th International Conference on Utility and Cloud Computing, ACM, New York, NY, USA. pp. 47–52. URL: <http://doi.acm.org/10.1145/3147234.3148101>, doi:10.1145/3147234.3148101.
- [10] Mezzavilla, M., Zhang, M., Polese, M., Ford, R., Dutta, S., Rangan, S., Zorzi, M., 2017. End-to-end simulation of 5g mmwave networks. *CoRR* abs/1705.02882. URL: <http://arxiv.org/abs/1705.02882>, arXiv:1705.02882.
- [11] Mohsen, N., Hassan, K.S., 2015. C-ran simulator: A tool for evaluating 5g cloud-based networks system-level performance, in: 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 302–309. doi:10.1109/WiMOB.2015.7347976.
- [12] Müller, M.K., Ademaj, F., Dittrich, T., Fastenbauer, A., Elbal, B.R., Nabavi, A., Nagel, L., Schwarz, S., Rupp, M., 2018. Flexible multi-node simulation of cellular mobile communications: the Vienna 5G System Level Simulator. *EURASIP Journal on Wireless Communications and Networking* 2018, 17. doi:10.1186/s13638-018-1238-7.
- [13] Piro, G., Baldo, N., Miozzo, M., 2011. An lte module for the ns-3 network simulator, in: Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium. pp. 415–422. URL: <http://dl.acm.org/citation.cfm?id=2151054.2151129>.

- [14] Piro, G., Grieco, L.A., Boggia, G., Capozzi, F., Camarda, P., 2011. Simulating lte cellular systems: An open-source framework. *IEEE Transactions on Vehicular Technology* 60, 498–513. doi:10.1109/TVT.2010.2091660.
- [15] Rupp, M., Schwarz, S., Taranetz, M., 2016. *The Vienna LTE-Advanced Simulators: Up and Downlink, Link and System Level Simulation*. 1st ed., Springer Publishing Company, Incorporated.
- [16] Sonmez, C., Ozgovde, A., Ersoy, C., 2017. Edgecloudsim: An environment for performance evaluation of edge computing systems, in: 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), pp. 39–44. doi:10.1109/FMEC.2017.7946405.
- [17] Tinini, R.I., Batista, D.M., Figueiredo, G.B., 2018. Energy-Efficient VPON Formation and Wavelength Dimensioning in Cloud-Fog RAN over TWDM-PON, in: 2018 IEEE Symposium on Computers and Communications (ISCC), pp. 521–526. doi:10.1109/ISCC.2018.8538610.
- [18] Tinini, R.I., Batista, D.M., Figueiredo, G.B., Tornatore, M., Mukherjee, B., 2019. Low-latency and energy-efficient bbu placement and vpon formation in virtualized cloud-fog ran. *Journal of Optical Communications and Networking* 11, B37–B48.
- [19] Tinini, R.I., Reis, L.C.M., Batista, D.M., Figueiredo, G.B., Tornatore, M., Mukherjee, B., 2017. Optimal placement of virtualized bbu processing in hybrid cloud-fog ran over twdm-pon, in: GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp. 1–6. doi:10.1109/GLOCOM.2017.8254770.
- [20] Wang, X., Thota, S., Tornatore, M., Chung, H.S., Lee, H.H., Park, S., Mukherjee, B., 2016. Energy-efficient virtual base station formation in optical-access-enabled cloud-ran. *IEEE Journal on Selected Areas in Communications* 34, 1130–1139.