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Abstract

Let (M, D, g) be a sub-Riemannian manifold (i.e. M is a smooth
manifold, D is a smooth distribution on M and g is a smooth metric de-
fined on D) such that the dimension of M is either three or four and D
is a contact or odd-contact distribution, respectively. We construct an
adapted connection V on M and use it to study the equivalence prob-
lem. Furthermore, we classify the three-dimensional sub-Riemannian
manifolds which are sub-homogeneous and show the relation to Car-
tan’s list of homogeneous CR manifolds. Finally, we classify the four-
dimensional sub-Riemannian manifolds which are sub-symmetric.

0 Introduction

Sub-Riemannian geometry is concerned with the study of a smooth manifold
M equipped with a metric defined only on a subbundle D of the tangent
bundle T M, henceforth a sub-Riemannian manifold, and of the related geo-
metric structures in analogy with Riemannian geometry. When D = TM we
recover Riemannian geometry. Despite the similarities between the two ge-
ometries, there are new interesting phenomena occuring in sub-Riemannian
geometry; see [11] for a survey and references.

It is worth noting that this subject is of more than only formal interest
since the several applications and connections range from control theory and
mechanics with non-holonomic constraints, sub-Laplacians and hypoelliptic
differential equations, to contact geometry and Cauchy-Riemann structures.



Now we come to the subject of this paper. A sub-Riemannian homoge-
neous space is a sub-Riemannian manifold which admits a transitive group
of sub-Riemannian isometries. A sub-Riemannian symmetric space ([13]) is
a homogeneous sub-Riemannian manifold for which there is an involutive
isometry which is a central symmetry when restricted to the distribution.

This work is divided into two parts. In the first part, we study 3-
dimensional sub-Riemannian homogeneous spaces. We use a connection
adapted to the sub-Riemannian structure (the pseudo-Hermitian connec-
tion of Webster [15] which was subsequently generalized in [10, 7]) to define
geometric invariants and establish an equivalence theorem. Then we classify
all the 3-dimensional sub-Riemannian homogeneous spaces by reducing the
structure to some algebraic data (see Table 1 for a complete list of spaces
and their invariants). This classification adds two new classes of examples
(namely, types (7) and (8) in Table 1) to Strichartz’s list of 3-dimensional
sub-Riemannian symmetric spaces ([13]). Furthermore, we show how our
classification is a refinement of Cartan’s classification of 3-dimensional homo-
geneous non-degenerate Cauchy-Riemann manifolds ([4, 5]; see also [3, 6]).
In fact, in dimension 3, CR structures are equivalent to conformal sub-
Riemannian structures (see [9]), in analogy with the correspondence between
complex structures and conformal Riemannian structures in dimension 2.

In the second part of the paper, we consider 4-dimensional sub-Rieman-
nian symmetric spaces. We define a connection adapted to a sub-Riemannian
structure of odd-contact type in dimension 4 and then we classify all the
4-dimensional sub-Riemannian symmetric spaces by using a canonical lin-
earization of the structure (see Table 2). This classification is the first step
towards a classification of odd-contact sub-Riemannian symmetric spaces in
arbitrary dimension, which shall appear in a forthcoming paper ([8]). For
an analysis of the case of contact sub-Riemannian symmetric spaces, see [7].

Notably absent from this work is the case of a codimension 2 distribution
in a 4-dimensional manifold which is under investigation by S. Namur ({12]).

The authors would like to thank J. M. Veloso and S. Namur for valuable
suggestions and CNPq for partial support.

1 Sub-Riemannian geometry

A sub-Riemannian manifold is a triple (M,D,g) where M is an oriented
manifold, D is an oriented smooth distribution on M and g is a smoothly
varying positive definite symmetric bilinear form defined on D.



In this paper we shall consider only the case of contact and odd-contact
distributions on manifolds of dimensions 3 and 4, respectively.

1.1 Dimension 3

Let M be of dimension 3 throughout this subsection. Consider the Levi
form

(1) L:DxD—TM[D, L(X,Y)=[X,Y] mod D

where X, ¥ are extensions to sections of D. We assume that D is a contact
distribution, that is, £ is a non-degenerate skew-symmetric bilinear form on
D. Let dV be the volume form on D. The (normalized) contact form is the
1-form @ on M such that

keré = D,
dilp = 2dV.

Observe that M has a canonical orientation given by 8 A df which is inde-
pendent of the orientation on D.
Since d@ has rank 2, there is a unique vector field £ on M such that

&) = 1,
L(do = 0.

It is called the characteristic vector field.

Note that the sub-Riemannian metric g has a natural extension to a
Riemannian metric on M by setting £ to be orthonormal to D.

A canonical connection analogous to the Levi-Civita connection in the
case of Riemannian geometry is uniquely defined on M. This connection
is in fact defined for a contact sub-Riemannian manifold of arbitrary (odd)
dimension; in the 3-dimensional case it is the same as the pseudo-Hermitian
connection of Webster ([15]). Let TM and D denote respectively the set of
sections of TM and of D.

Theorem 1.1 ([10, 7]) There ezists a unique connectionV : TM — TM"®
TM, called the adapted connection, and a unique symmetric tensorr : D —
D, called the sub-torsion, with the following properties (T is the torsion ten-
sor of the connection):

a. Vy:D —D;



b. VE=0;

c. Vg=0;
4 TXY) = déX,Y),
©OT(EX) = T(X)

for X, YeD, UeTM.
The curvature of this connection is given by
R(X.Y)Z =VxVyZ - VyVxZ - Vixy)2.
Observe that
< R(X,Y)Z,W >= - < R(X,Y)W,Z >

for Z,W € D.
From the general theory of connections we have the first Bianchi identity

SR(X,Y)Z = ST(T(X,Y), Z) + §(VxT)(Y, 2)

where & denotes the cyclic summation in X, Y and Z. In the case of the
adapted connection we get the following identities

(2) SR(X,Y)Z = 6d8(X,Y)r(Z),
(3) R(E,Y)Z — R(E,2)Y = (Vzr)(Y) - (Vy7)(Z),
(4) T(r(X),Y)-T(r(Y),X) = —(VTXX,Y),

where X,Y,Z € D.

Consider a local positive orthonormal frame {X;,X:} on D. Then
T(X,,X3) = 2€, identity (2) is trivial and identities (3) and (4) can be
rewritten as

(8) R(§, X1) X3 — R(§, X2)X,
(6) T(r(Xy), Xp) — T(r(X2), X1)

(szr)(Xl) i (VXxT)(‘X?)s
0.

We set
K=-«< R(lexﬂ)le-¥2 >

and note that the definition is independent of the chosen local frame.



Define also
Wy = - < R(£,X,)X3, X, > and W, =< R(£, X5)X1, X, >,

and
W =W+ W2

Note that W, and W, depend on the local frame, but W does not.
Assume now that {X;, X} are eigenvectors of the symmetric operator
7. By using identity (6) we can write

T(Xl) = TOXI and T(Xz) = —ToX-_;,

where ; > 0.
From now on we suppose that 7, is constant. Then identity (5) gives
(7N R(£, X)X, 215V x, X3,
R(§, X2)Xy = -~21Vx,X,.

If o > 0 we have that the frame of eigenvectors is uniquely defined up
to a sign, so W, and W, are well-defined up to a sign and the sign of W, W,
is fixed. It also follows from (7) that in this case

= Wiy 4 W2
[X1, Xa] = —2¢ 2TOX1 + 2T0X2'

If W, # 0, we change, if necessary, the local frame so that the sign of W, is
positive. This defines a parallelism on the space.

If 7o = 0 then the frame of eigenvectors is not uniquely defined, but then
identity (7) implies R(¢(,X)Y =0forall X,Y € D,so W, =W, =W =0,

From the general theory of connections we have the second Bianchi iden-
tity

S(VxR)Y,2)+ 6R(T(X,Y),Z)=0

from where we get the following identity:

2
—~VeK + Ve, W, — Vy, Wy = —W?;Wl
2To
It follows that if K, W, and W, are constants, then W, = +W,.
A local isometry between two sub-Riemannian manifolds (M, D.g) and
(M’,T,¢") is a diffeomorphism between open sets ¥ : U C M — U' Cc M’
such that ¥.(D) = D’ and ¢°¢’ = g. In the contact case it follows that



that @ = 40 and ¥.£ = ££ (and therefore ¥ will be a local Riemannian
isometry relative to the extended Riemannian metrics on M and M’). If ¢
is globally defined on M to M’, we say simply that 3 is an isometry.
Observe that an isometry ¢ : M — M’ is affine with respect to the
adapted connections, that is, Vi x¥.Y = ¢.(VxY) for X,Y € TM.
We can now state the following equivalence theorem which is proved in
the special case of null subtorsion in [10].

Theorem 1.2 If (M,D,g) and (M',D',g') are two sub-Riemannian man-
ifolds which have the same constant invariants K, 7o, W,, W as defined
above, then they are locally isometric.

Remark 1.1 Assume that the invariants K, 3, W, and W, are constant.

a. The frame was chosen so that W, > 0. It is easy to check that a change
of orientation of D will not affect the invariants W, and W, (neither
K nor 7y, for that matter).

b. In the case 7, = 0, we have also W, = W, = 0. So the only invariant
is the sectional curvature K. In the case 1y # 0 we have the identity
1 w?
3 (K + E) = —T1osgn(Ws).
¢. In the simply-connected case, if the sub-Riemannian metrics are re-
strictions of complete Riemannian metrics then the local isometry in

Theorem 1.2 can be extended to a global isometry. We will be inter-
ested in the homogeneous case, so completeness will hold.

1.2 Dimension 4

Throughout this subsection we assume that the dimension of M is 4. Recall
the Levi form £ that was defined in (1). Since £ is a skew-symmetric bilinear
form defined on a three-dimensional space, it has at least a one-dimensional
kernel. The distribution D is odd-contact if the dimension of the kernel of £
is exactly one. Set D, to be the orthogonal complement to ker £ in D. Since
M and D are oriented, £ induces an orientation on D, and an orientation
on ker L. Let dV be the volume form on D, and let X; be the positive
unitary vector in ker £. The (normalized) odd-contact form is the 1-form 8
on M such that

ker 6
d0|~D_

D,
24V,



Let D = [D,,, D,}®D,. Then dim D = 3 and the skew-symmetric bilinear
form
d0:DxD—-R

has a one-dimensional kernel transversal to D,. There is a unique vector
field £ on M which is in this kernel and such that 8(§) = 1. It is called the
characteristic vector field.

Note that the sub-Riemannian metric ¢ has a natural extension to a
Riemannian metric on M by setting £ to be orthonormal to D.

A local isometry between two sub-Riemannian manifolds (M, D, g) and
(M',7',¢') is a diffeomorphism between open sets ¢ : U C M — U’ Cc M’
such that ¢,(D) = D' and ¥°¢’ = g. In the odd-contact case it follows that
that ¥°¢' = 16, Y. X3 = £X; and ¥.£ = +£ (and therefore ¥ will be a
local Riemannian isometry relative to the extended Riemannian metrics on
M and M'). If ¢ is globally defined on M to M’, we say simply that ¢ is
an isometry.

A canonical connection analogous to the Levi-Civita connection in the
case of Riemannian geometry is uniquely defined on M. The definition of
this connection is very similar to the adapted connection from Theorem 1.1.

Theorem 1.3 There ezists a unique connection V: TM — TM" @ TM,
called the adapted connection, and a unique symmetric tensor v : D — D,
called the sub-torsion, with the following properties (T is the tlorsion tensor
of the connection):

a. Vy:D —D;
b. V& =0;
c. Vg=0;
d T(X,}_’) = di(X,Y)¢,
T, X) = r(X)+do(EX)E;

for X,YeD, UeTM.

Proof. Let X,Y, Z € D. As is Riemannian geometry, we determine
VxY by using a., c. and d. and the permutation trick:
X<Y.Z>+Y <Z,X>-Z < X,Y >=
2<VxY.Z>+<VY,[X,Z]+T(X,Z2)>
+< X, Y, 2]+ T(Y.2)> + < Z,[Y, X]+ T(Y,X) > .
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Because of b., it remains only to define V¢ X. But VX — Vi€ = [, X]+
T(§ X), 50

VeX = [€ X]+ 7(X) + d8(E, X)E.
Finally,

E<X,Y>

<VeX,Y > + <X, VeY >

< [6, X]+ 7(X) + (£, X)E,Y >
+ < X, [6,Y)+ 7(Y) +dO(¢,Y)E >

< [6, X]+ d8(E, X)E,Y > + < [6, Y] +dO(E,Y)E, X >
+2< 7(X),Y >

determines 7(X) (note that

dB(€, X) = £(8(X)) — X(8(€)) - 8([¢, X]) = -08([¢. X)),
so [€, X] + d8(E, X )¢ € D). ]

Corollary 1.1 The connection V has the following properties:
a. L¢: Dy — Dy;
b. dO(X,Y) = 8(T(X,Y));
e. <7(X),Y >=1Lg(X,Y);

fJor X,Y € D.

Corollary 1.2 The characteristic vector field £ is a Killing field on M rel-
ative to the extended Riemannian metric if and only if 7 = 0.

The curvature of this connection is given by
R(X,Y)Z =VxVyZ - VyVxZ - Vixy|Z.

As before, from the general theory of connections we have the Bianchi
identity

SR(X,Y)Z = 6T(T(X,Y), Z) + S(VxT)(Y, Z).



In the case of the adapted connection we get the following identities
6R(X,Y)Z

Sdo(X,Y)dd(£, Z)¢
R(§, X)Y ~ R(E,Y)X

Sdd(X,Y)r(2),
-6(VxT)(Y,2),
di(&, X)r(Y) - di(¢,Y)r(X)
HVyr)(X) - (VxT)(Y),
VeT(X,Y) + {Vxdb(£,Y) - Vydb(£, X)}E,

It

T(r(X),Y) - T(r(Y), X)

where X,Y,Z € D.
Let {X,,X;} and {X3} be, respectively, positive orthonormal bases of
D, and ker £. The above identities translate into

R(X,, X3) X3+ R(X3, X1) X2+ R(X2, X3)X; = 27(X3),
2d0(£, X3)¢ = -6(Vx,T) X3 Xs),
R(frxl)xz v R(E,Xz)xl = (VX,T)(Xl)

=(Vx,7)(X2),
—df(¢, Xa)r(X,)
+H(Vx,7)(X))
=(Vx,7)(X3),
0,
T(r(Xa), X))

R(&, X1)Xs5 - R(§, Xa) X,

T(r(X1), X3) — T(r(X2), X1)
=T(X,,VeX3) - dO(E, Vx, X, )€

1

Observe that an isometry ¥ : M — M’ is affine with respect to the
adapted connections, that is, Vex¥.Y =9.(VxY)for X, Y € TM.

2 Sub-Riemannian homogeneous and symmetric
spaces

A sub-Riemannian homogeneous space (or sub-homogeneous space, for short)
is a sub-Riemannian manifold (M, D, g) which admits a transitive Lie group
of isometries acting smoothly on M. A sub-Riemannian symmetric space
(or sub-symmetric space) is a sub-homogeneous space (M, D, g) such that
for every point zo € M there is an isometry ¥, called the sub-symmetry at
zo, with ¥(z¢) = 7o and ‘l/J.'D.' = —1 (recall that D is either contact or

odd-contact; for a more general definition see [13]).



In the three-dimensional (resp., four-dimensional) case the sub-symmetry
1 preserves the orientation of D (resp., D, ), s0 ¥°8 = 8. Then we must have
Vebzo = &, since (¥°0)(§) = 8(4.4).

It is easy to see that the sub-symmetry at a point z, must be unique; in
fact, it is given by exp, (X + af,,) — exp, (=X + af.,), where exp is the
affine exponential map associated to the adapted connection and X € D,,,
a € R. Moreover, by homogeneity it is enough to check the existence of the
sub-symmetry at one single point of M.

Let p : M — M be the universal covering of a smooth manifold M.
Then it is easy to see that a sub-Riemannian (resp., sub-homogeneous, sub-
symmetric) structure on M lifts to a unique sub-Riemannian (resp., sub-
homogeneous, sub-symmetric) structure on M such that p is a local sub-
Riemannian isometry.

3 The classification of 3-dimensional sub-homoge-
neous spaces

The 3-dimensional simply-connected sub-symmetric spaces were classified
by Stritchartz in {13]. They fall into six classes which include Lie groups
of semisimple, nilpotent and solvable type. More precisely, they are the
universal coverings (to be denoted with a tilde) of the Heisenberg group
H?3, the Euclidean proper motion group Euc} = §0(2) 0« R?, the Poincaré
orthochronological proper group Poined = SO(1,1)0a R?, the special linear
group SL,R = SU(1,1) (this space admits two distinct distributions; one
of them is given by the usual Cartan involution; we distinguish the space
equipped with the other distribution with a “prime”) and the sphere group
53 2 SU(2). In this section we shall see that there are exactly two other
3-dimensional sub-homogeneous spaces which are not sub-symmetric (the
detailed list of sub-homogeneous spaces with the respective distributions
and metrics is in Table 1).

Proposition 3.1 Let (M2, D% g) be a simply-connected three-dimensional
sub-homogeneous space. Then:

a. there is a connected, simply-connected Lie group G of sub-Riemannian
isometries of M which acts simply transitively on M;

b. the Lie algebra g of G has a decomposition g = [p,p]+p where p is the
subspace of g corresponding to D,, under the identification of g with
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T.,M for a chosen base-point z, and p does not depend on the chosen
Zos

c. the inner product B induced on p by the identification of p with D,,
does not depend on the chosen z, € M.

Proof. As observed in [13}, if the space is sub-symmetric, then the sub-
symmetry 1 induces an automorphism s = Ady of the Lie algebra g’ of the
group G’ of all sub-Riemannian isometries of M, and so there is a decompo-
sition g’ = b + p into the +1-eigenspaces of s. Now [p,p] + p is a subalgebra
of g’ and the corresponding 3-dimensional subgroup G of G’ will do.

If the space is not sub-symmetric, then proceed as follows. Write M =
G/K where G is the connected (OK, as long as M is connected) Lie group of
sub-Riemannian isometries of M and K is the isotropy subgroup at a chosen
base-point zo € M. Let g, t denote the respective Lie algebras of G, K. Then
K is compact, since G is a group of Riemannian isometries, so there is an
Adg-invariant decomposition g = t+m. Consider the projectionx : G — M,
7(g) = g(zo). Then =, identifies T,,M with m. Let p be the inverse image
in m of D,, under .. Since D is contact, we have g = ¥ + (p,p] + p, Adg-
invariant decomposition. Let h = ¢+ [p,p]. Then § = ker d6" for 6 = x°(8)
and so b is a subalgebra of g and h contains ¥ as an ideal (see [1, 7]). Let B
be g., lifted to p by x. Then B is an Ad-invariant inner product on p and
dim t is at most one.

We want to show that t = 0. It is enough to show that [b,p] = 0, as Adk
must be effective on p (because p modulo ¢ generates g/t and and Ady is
effective on g/t). We apply the Jacobi identity to get

(¥, [p,P]]) C [[t.¥). 9] C [p.¥].

But [t [p,p]] C ¢ because b is an ideal of h. Thus [&,[p,p]] = 0 and b is
abelian. Using Jacobi again,

[{p. pl. [&. p]] C [t [(p, p), ¥]] C [t B] + [t p] C p.

H, to the contrary, [¥,p] # 0, then [t,p] = p as ady is skew-symmetric on p.
Thus {[p,p],p] C p and so the endomorphism s of g which is +1 on b and
—1 on p is an automorphism. Therefore it descends to an automorphism ¢
of the corresponding simply-connected group G. Let K be the connected
subgroup of G for t. Now G/K is a simply-connected sub-symmetric space
(the sub-symmetry at the base-point is conjugation with o) which covers M,
hence it is M. But we assumed M not to be sub-symmetric. contradiction.
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The subspace p of g and the inner product B on p induced by g., do not
depend on z, since G acts on M preserving D and g. Finally, dimG = 3
and M is simply-connected, so the action is simple transitive. a

Conversely, given a three-dimensional Lie algebra g, a subspace p of
codimension one such that g = [p,p] + p and an inner product B on p,
we can construct a simply-connected three-dimensional sub-homogeneous
space by taking the simply-connected Lie group G with Lie algebra g and
the G-invariant distribution P and metric g determined by p and B, re-
spectively. Note that a sufficient (but not necessary) condition for G to be
sub-symmetric is that [[p,p],p] C p.

Now we take up the classification of three-dimensional simply-connected
sub-homogeneous spaces. According to Proposition 3.1 it is enough to clas-
sify the three-dimensional simply-connected Lie groups equipped with a left-
invariant sub-Riemannian structure (G, D, g). Consider the associated alge-
braic data (g, p, B) as above. Let {X, X,} be an orthonormal basis of p and
let Y = [X,, X,]. We may assume that p is not ady-invariant, for otherwise
the space is sub-symmetric and these spaces have already been classified.
Consider the matrix of ady : p — p relative to {X,, X3, Y}:

(8) A= @ G2 43
s az; G23

The Jacobi identity in g is equivalent to the following relations:

g + ax =0
(9) @34y —ana;; = 0
01382 =~ G232 = 0

If we take a different basis {X,, X,Y = [X;, X,]} for g and the change of
basis is given by the matrix

0
M= ¥ o |, w~eo
0 0 detN

then A is transformed to A = (det N)NAM ™',
Observe that a?, + a3; # 0 since p is not ady-invariant. Therefore,
a1 Gr2

relations (9) imply that the minor
Gz Qa3

) is singular. Now the same
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relations yield that ady|p is singular and so there is an orthonormal basis

of p such that
0 a b
A-(o 0 0), b#0.

Hence the normal forms for A are:

FIRST CASE;
0 0%
(538). 50

In this case the transformation

X; =.4x,
X, = Y+4bX,
Y =Y

maps g onto the direct product of the two-dimensional non-abelian Lie al-
gebra spanned by Y’, X (i.e., [Y’, X{] = Y’) and the one-dimensional Lie
algebra spanned by X;; and it maps p onto the subspace spanned by the
orthonormal vectors bX{ and }(Xj; — Y’). Denote with Ty(b) the corre-
sponding simply-connected (solvable) group. We shall see below that this
sub-homogeneous space is isometric to a sub-symmetric space whose under-

lying group is SL;R = SU(1,1).

SECOND CASE:
0 a b
(0 0 0), a#0, b>0.

In this case the transformation

o o,
X; = X
Y' = I:Ii‘ﬁy

maps g onto the semidirect product of the one-dimensional Lie algebra
spanned by X; with the two dimensional abelian Lie algebra spanned by
X3 and Y’ relative to the X{-action: X} — Y’, ¥' — —sgn(a)X} - 'a—",-,-;Y';
and it maps p onto the subspace spanned by the orthonormal vectors |a|'/2 X}
and X;. Denote with T,(¥’) (resp., T_(¥')), &' = b/|al]*’> > 0, the corre-
sponding simply-connected (solvable) group if @ > 0 (resp.. a < 0). Observe
that these families of solvable groups generalize the groups SO(2) ba R? and
50(1,1)a R%.
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The adapted connection

In this subsection we shall compute the adapted connection and its asso-
ciated invariants for a three-dimensional Lie group equipped with a left-
invariant sub-Riemannian structure (G,D,g). According to earlier results,
this includes all three dimensional sub-homogeneous manifolds (of sub-sym-
metric and non-sub-symmetric type).

Let g be the Lie algebra of G, p = D; and B = g;. Then g = [p,p] + p.
Consider the normalized contact (left-invariant) 1-form 6 on G and the (left-
invariant) characteristic vector field £. Choose a positive orthonormal basis
{X1, Xy} of p and let Y = [X,, X,). Note that the Lie algebra structure of
g is completely determined by the linear map ady :p — g. Let A asin (8)
be its matrix relative to the basis { X1, X5,Y}. We can express the adapted
connection in terms of the entries of A:

1 A
£ = —E(Y - anX; + 2)3X5);
T(X1,X3) = =Y +a3X; —a13Xs;
B R e sl
(T) — 2 ( ‘lziz"ll as, ) )
Vx. X, = —a33Xy;
Vx,Xs = —a13Xy;

Vx, X2 = anX;
Vi, X, = aiXy;
Vx,Y = -a3; X — a13a23X3;
Vx,Y = afaXl + 413823 X35
i e
Vy_Xl = [5(“12 = aZl) = (‘1?3 + aiil)]‘X 2

. 1 SR
VyX; = [5(‘121—‘112)*‘(‘1334‘“53)]-\1-

14



The invariants are then:

K

1
5(“12 —-ay) - (“fa + 023);

1
To = Z\/‘Mf; + (812 + a21)?;

2 (a2 4 o2 2 2 2 2
W, = \/3011(013 + a3s) + af,ai; + aj,a3;

8 1
W, = Wy
_ 1/K le)
€ = —E(T—o+§1—_§ J

The complete classification is summarized in Table 1. In the first column
we list representatives G for the three-dimensional groups which are sub-
homogeneous; in the second column we describe the Lie algebra structure of
g: there is a basis { X}, X3} of p such that Y’ = [X{, X}] and A’ is the matrix
of ady|p relative to the basis {X{, X3,Y"}; in the third column we give the
matrix of inner products B’ = (< X{, X] >); the remaining columns list the
invariants: 1o, K, W} and W,.

It is easy to compute that the invariants for the space Lo(b) are K = —b?,
1o = W, = W, = 0, namely, exactly the same as the ones for space (4; b?,b?)
in Table 1. Hence, these spaces are isometric as sub-Riemannian manifolds
by Theorem 1.2. In particular, we get

Remark 3.1 There are left-invariant Riemannian metrics on R cross the
affine group of R and on the universal covering of §L(2, R) which turn them
into isometric, but not isomorphic, Lie groups.

Spaces (1) through (6) in Table 1 are the sub-symmetric spaces. By
looking at the invariants in Table 1 and applying Theorem 1.2 we conclude
that spaces (7) and (8) are (the only) sub-homogeneous spaces which are
not sub-symmetric.

4 Homogeneous CR manifolds

A CR manifold is a triple (M, D, J) where M is a smooth manifold, D is a
smooth distribution on M and J is a smoothly varying complex structure

defined on D.
We shall always assume that dim M = 3 and the CR structure is non-
degenerate, i.e. D is a contact distribution on M.
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type] G A B’ To K w, W,
Wl B ggg)(;‘l’)o 0 0 0
el Bt (Do o)|(80)]5] ¢ | 0|
(3a)| Poinc} g '01 g) (; (1’) s| -2 0 0
(aa)|STT D[ 2 7' g)(; g)—;i _egd | 0 | o
GaalsTL )| ( 0 ¢ g) (; g)—i—‘ a4 | g 0
6ad) U |( ° ¢ g) (; g)f';‘ et 0 0
(Tab)| T,(b) g 7 '0")(3 ‘l’) e | a(d - b7) @262 -a3/p Y2
(sab) =-0) | § g) (; ‘1’)  |—a(2 + 9lare2] 03260
Table 1: Three-dimensional sub-homogeneous spaces: {Xj,X3Y' =

[X!,X3]} is a basis of the Lie algebra of G, {X{, X3} is a basis of the dis-
tribution and A’ is the matrix of ady. restricted to the distribution; B’ is
the matrix of the inner product on the distribution; 7o, K, W; and W, are
invariants; a, b and d are positive parameters; we may assume a 2 d for

types (4) and (6).
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Type (6ad) A
The sphere § = SU(2) has a one-parameter family of CR structures given
by the complex line bundle < \/aX] + iVdX} >=< X{ + isX} >, where
s = \/dfa € (0,1). The structure is spherical if and only if s = 1.

Types (4ad) and (5ad)

The group SL(2,R) = SU(1,1) has two distinct one-parameter families of
CR structures. In order to describe them, let X}, X3, Y’ be a basis of its Lie
algebra such that [X{, X3} = V', [X},Y’] = X{, [X},Y'] = X!. Then they
are given by the complex line bundles < X| + isX} > and < Y’ 4 isX} >
for s € (0,1}. In each case, the value s = 1 correspond to a spherical
CR structure on the group (and the other values correspond to aspherical
strctures). Note that the former spherical CR structure comes from a sub-
torsionless sub-Riemannian structure on the group, but not the latter one.

Type (8abd)

For each & > 0, the group £_(b) has a unique CR structure given by <
X{ +1X] >. It can be checked to be aspherical.

Type (7ab)

The group X,(b) has a unique CR structure given by < X| +iX} >. It
can be checked to be spherical for b = 3/v/2 and aspherical otherwise (in
fact, C = 3/2 - 5?/3). The spherical case is exactly the universal covering
of the CR structure on D = {(z,w) € C* : Qw = |z]?, 3z > 0} with group
of CR automorphisms isomorphic to R v« R? and ¢t € R acting on R? by
t(z,y) = (e'z, e®y).

5 Sub-orthogonal involutive Lie algebras

In this section we assume dim M = 4 and we construct a linear object asso-
ciated to a four-dimensional sub-symmetric space: its sub-OIL algebra. We
also show how to recover a four-dimensional sub-symmetric space from an
abstract sub-OIL algebra. The construction can be substantially general-
ized, see e. g. [13, 7, 8], but we do not pursue this matter here since we have
no use for it.
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Proposition 5.1 ([13])) Let(M*,D?,g) be a simply-connected sub-symmetric
space of dimension four. Then:

a. there is a connected, simply-connected Lie group G of sub-Riemannian
isometries of M which acts simply transitively on M;

b. there is an involution s of the Lie algebra g of G such that g = [p,p]+p
is the decomposition of g into the t1-eigenspaces of s, where p cor-
responds to D,, under the identification of G with M for a chosen
base-point z, and p does not depend on the chosen z;

c. the inner product B induced on p by the identification of p with D,,
does not depend on the chosen zq.

Proof. Let G’ be the Lie group of all sub-Riemannian isometries of M,
choose zo € M, let K be the isotropy subgroup at zo, and let ¢ € K be
the sub-symmetry at zo. Let g’ and b denote the respective Lie algebras
of G’ and K and let g’ = b + p be the decomposition of g’ into the +1-
eigenspaces of the involution s’ = Ady of ¢. Then M is represented as
the coset space G'/K. K is a compact subgroup of G’, since G’ is a group
of Riemannian isometries relative to the canonical extended Riemannian
metric on M. For any k € K, Ad, factors through a linear map on g/t, and
because K is compact we can find a complementary Ad-invariant space m.
Now . identifies m with the tangent space T.,M and is easily seen to be
an equivalence between the Adg-action on m and the K-action on T;, M.
Define p, to be the inverse image of D,, in m under x,. Then p, C p because
w‘l'D., = —1. P contains no nonzero ideal of g because Ady is effective on
m (because K is effective on T, M). In fact, Adg is effective on p, as p,
modulo ¢ generates g/t by the odd-contact condition. Let X € tand Y € p,.
Then [X — s'X,Y] € py, s0

[X - §X,Y]=¢[X - X,Y] = [¢'X — X,s'Y] = [X - §'X,Y]

and so adx_, x[po] = 0. But the centralizer of p, in ¢ is zero since Adx is
effective on p,. Thus we have X — s’X =0 and ¢ C h. Now h =t + [p,, b,)
and p = p,. Since g = [p,p] + p is a subalgebra, it defines a connected
subgroup G of G’'. Let us show that dimG = dimg = 4. It is enough to
prove that dim(p,p] = 1. In fact, decompose p = p, @ ker © where p,, is
a 2-dimensional space and © : p x p — b/t is the skew-symmetric bilinear
form O(A, B) = [A. B] mod t. Then the Jacobi identity gives

(10) [12.p, ), ker ©] C ([t ker 8], p,] + [[ker ©,p,], t].
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Now ady is effective and skew-symmetric on p, so [t,p,] = p,,, dimt < 1 and
[t,ker ©] = 0. Since [ker ©,p,] C ¢, (10) implies that [p,,ker®] = 0, and so
dim[p,p] = 1. Let s = #'|5. The subspace p of g and the inner product B on
p induced by g., do not depend on z, since G’ acts on M preserving D and
g- Finally, dim G = 4 and M is simply-connected, so the action is simply
transitive. O

To a four-dimensional sub-symmetric space (M, D, g) we have now as-
sociated a triple (g, p, B) where g is a four-dimensional Lie algebra, p is a
three-dimensional subspace of g such that g = [p,p] +p, {[p,p],p) C p and B
is an inner product on p. The triple is called the sub-orthogonal involutive
Lie (sub-OIL) algebra of (M, D, g).

An abstract sub-orthogonal involutive Lie algebra is defined to be a triple
(@, p, B) with the properties in the above paragraph. Given an abstract sub-
OIL algebra (g,p, B) we can construct a simply-connected sub-symmetric
space as follows. Let G be the simply-connected group with Lie algebra
9. Then g = [p,p] + p so that p translates to a G-invariant odd-contact
distribution D on G such that D; = p, and B translates to a G-invariant
metric g on D such that g, = B. The involutive automorphism s of g which
is +1 on [p,p] and is —1 on p induces an automorphism ¥ of G. ¥ is an
isometry of G and ¥, = s, so ¥ fixes 1 and induces —1 on D,. Thus ¥ is the
sub-symmetry at 1 and gyg~! is the sub-symmetry at g. We have proved
that G is sub-symmetric. In other words,

Proposition 5.2 Let(g,p, B) be an abstract sub-OIL algebra. Let (G, D,g)
be the simply-connected sub-symmetric space of dimension four constructed
above from (g,p, B). Then (g,p, B) is the sub-OIL algebra associated to
(G,D,qg).

6 The classification of 4-dimensional sub-symmetric
spaces

Let (G,D,g) be a simply-connected sub-symmetric space of dimension 4
and odd-contact distribution and consider its associated sub-OIL algebra
(8,p, B). Thendimg =4,dimp=3,9 = [p,p)+p.{[p,pl,p] Cpand Bis an
inner product on p. The Levi form £ on D induces a skew-symmetric bilinear
form © on p which is exactly the bracket of vectors on p, i.e. O(X,Y) =
[X,Y].
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Choose a positive orthonormal basis { X, X3, X3} of p such that X spans
the kernel of ©. Then Xj centralizes X, and X, and the characteristic field
€ = -iX,,X;] € [p,p]. Let Y = [X1,X3] and consider the matrix of
ady : p — p relative to the basis {X1, X2, Xs}:

a;; G173 O3
A=1] an az; dn
@3; G3z Q33

Now the Jacobi identity is equivalent to the last row of A being zero (i.e.,
X3 central in g) and A being traceless. If we take a different basis for p
given by X = M X for

0
(11) M= 0 |, Neo@), A=+l
00 A

then A is transformed to A = (det N)M AM~". Next we classify the (unori-
ented) isomorphism classes of (g, p, B); let p, be the subspace of p generated
by .X] and Xg:

p, is ady-invariant

Then a3 = a3 = 0 and g is the direct product of a three-dimensional
Lie algebra generated by Y, X;, X, with the one-dimensional Lie algebra
generated by Xz. We distinguish three cases.

ady|p_ is null

In this case the matrix A is null and g is the sub-OIL algebra of H® x R.

ady|p_ is singular and non-null

In this case there is an orthonormal basis of p such that the matrix A has
the form

a#0.

(=N — R =]
(=N =R ~]
oo o
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The transformation

3 1
Xl = mﬁ;x'
X; = Xz
X; = X3
Y =
- [a]1/2

is an isomorphism onto the sub-OIL algebra of
Euci xR ifa>0
Poinc xR ifa<0

spanned by X|, X}, X3, Y’ = [X{, X}] and distribution spanned by the X;'s.
The matrix of ady- relative to {X{, X}, X3} is

0 sgn(a) 0
6 0 0
o 0 0

and the matrix of the inner product on the distribution relative to the same
basis is

00
1 0
01

o ofl

ady|p is non-singular

In this case there is an orthonormal basis of p such that the matrix A has
the form

0 a0
d 00}, ad#0.
000
The transformation
1
X; = —Ia|1/2Xl
. 1
=t
X_-; = X3
1
¢ —
Y lad|1/?
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is an isomorphism onto the sub-OIL algebra of

SU(L)XxR ifa<0,d>0;

SU(L,1y xR ifad > 0;
SU(2)x R ifa>0,d<0.

The matrix of ady. is

0 sgn(a) 0
sgn{d) O 1
0 0 0

0
0
1

O Al

Note the following isomorphisms: SU(1,1) x R 2 U(1,1) and U(1,1) is the
full sub-Riemannian isometry group of the subtorsionless SL,R = SU(1,1)

and SU(2) xR = (7(33 and U(2) is the full sub-Riemannian isometry group
of the subtorsionless §3 2 SU(2).

Remark 6.1 The sub-symmetric spaces constructed above are exactly the
ones that we get by taking the direct product of a three-dimensional sub-
symmetric space with R.

p, is not ady-invariant and ady|p_ is singular

Then there is an orthonormal basis of p such that the matrix A has the form

0 a b

0 00|, acR, b#0.

000

Hence the normal forms for A are:
FIRST CASE:

0 0 b
00 0], b>0.
0 0 O
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In this case the transformation

X{ = X]
X, = X,
X; = —bXS
Y =Y

is an isomorphism onto the sub-OIL algebra of the Engel group E4. Here
the matrix of ady: is

00 -1
00 0
00 0

and the matrix of the inner product on the distribution is

1
0
0

oo
Lo

SECOND CASE:

b
0], a#0, b>0.
0

[— = =]
oo R

In this case the transformation

X = ﬁ;;X,
X; = Xo+1iX,
X: = X,

Y = M+,,Y

is an isomorphism onto the sub-OIL algebra of

Euci xR ifa>0;
Poinc xR ifa<0.

Here the matrix of the inner product on the distribution is

L0 0
0 14545 ¢
o ¢ 1



p, is not ady-invariant and ady|p_is nonsingular

Let 7 : p — p, be the orthogonal projection. We consider two cases sepa-
rately.

7 oady is singular

In this case there is an orthonormal basis of p such that the matrix A has
the form

0 a b
00 ¢c]|, ae#0, beR
000
Hence the normal forms are:
0 a b
00 c|, a#0, ¢>0, b2>0.
000
The transformation
1= @k
¢IIC
X; = M (X, + 2X)
Xs = Xa
Vil = FIT]{?,;Y

is an isomorphism onto a sub-OIL algebra spanned by X{, X;, X3, Y' =
[X1{.X!] and distribution spanned by the X,’s. Here the matrix of ady. is

0 sgn(a) 0
0 0 1
0 0 0

and the matrix of the inner product on the distribution is

L 0 0
fo]

al /3 .3 a 1/4 L
o Lk (‘1,.+ ) Lt
0 st 1

The corresponding groups are the universal coverings of the semidirect prod-
ucts

S0(2)s H®  ifa>0;
50(1,1)a H? ifa<0.
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Note that these groups are respectively isomorphic to the full sub- Riemannian
isometry group of H3, and to the full sub-Lorentzian isometry group of H?
(i-e. we replace the definite metric on the distribution by an indefinite one).

x o ady is non-singular

In this case there is an orthonormal basis of p such that the matrix A has

the form
0 a b

d 0 c|, a,d#0, b+t #£0.
0 00

Hence the normal forms are:

y a,d#0, b¥4+c2#£0, be>0.

o ao
[=2 — Ry~
[— I T~

The transformation

Xi = @nXi+5Xs)
X; = p,‘lnﬁ(xz +1X;)
X; = X;g

Y = ;Y

is an isomorphism onto the sub-OIL algebra of

U(1,1) ifa<0,d>0;
U@,1y ifad> 0
U(2) ifa>0,d<0.

Here the matrix of the inner product on the distribution is
1 2 1) 1
W+ @) pamed @i
Lode Ly by 1
|nd|l'7’ sd  Ja@\ T @) @7
FTd @7 1
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The adapted connection

Next we compute the adapted connection and its associated invariants in
each of the above examples. We get:

1
{ = -EY’
T(X,,X3) = -Y;
1 a = 20 !';A
(r) = 3 "“’;‘m a2 !g* :
= " i

VxX, = VxXz:VxX;:O fOl‘XGp;
1 1
Vexl = Z(an = au)Xz = ialaxai

1 1
V¢X2 = :{(Gu = 021)X1 = 5“23X3;

1
VeXs = Z(alsxl + 623.X3);
R(X.Xs) = R(X,6)=0 for X € g;

X, ~ l(‘ln - a12) X2 — 13X,
R(X,,X,) : Xz — 3(—an +612)X; - 623X,
X3 — 3a13X) + janXy;

K(X[,Xz) - < R(Xl,Xz)Xh‘X’z >= %(Gu—agl).

We organize the classification in Table 2. In the first column we list
representatives G for the four-dimensional groups which are sub-symmetric;
in the second column we describe the Lie algebra structure of g: there is a
basis {X{, X}, X3} of p such that X} is central, ¥’ = [X{, X3] and A’ is the
matrix of ady. relative to that basis; in the last column we give the matrix
of inner products B’ = (< X{, X] >).

The full group of isometries

Finally we compute the full group of isometries for each of these spaces. It
suffices to find the group K of all isometries that preserve the identity, since
these together with G generate all isometries. To do this, we need to find
all orthogonal transformations of (p, B) which extend to automorphisms of
g. If we identifly the transformation with the 3 x 3 matrix M (cf. (11)), we
require (det N)M AM-! = A for M to extend (via ¥ — (det N)Y') to an
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type| G A | B
000 100
()| H*xR 000 010
000 001
— 010 L0 o0
(2ab)| Euct xR 000 0 1+4%5 ¢
000 0 L 1
0 -1 0 0 o0
(3ab)| Poinci xR || 0 0 o 0 1+% -2
0 0 0 0 -+
0 -1 0 i+ %) -mmk a6
(4abed)]  U(1,1) 1 0 0 —rE M1+ E5) st
0 0 0J\ Zhs Tkt G
o 010 1+ %) (ad)lzﬁ g
(5abed)| U(1,1y 100 ol 5 §(1+.:—, it
0o0a a_}ﬁ; dllii 1
~ 0 10 0+ %) —@ms —and
(6abed)|  U(2) -1 00 -y M1+ %) 2t
0 00 Y ot 1
0 0 -1 1 0 0
(7d) E? 00 0 010
00 0 00 &
010 i 0 0
(8abd)] SO(2)a H3 || 0 0 1 0 L(1+Y) s
000 0 =it !
0 -1 0 : 0 0
(9abd)|SO(1, 1)sa H3|[ 0 0 1 0 =1+ %) -km
0 0 0 0 ——an 1

Table 2: Four-dimensional sub-symmetric spaces: {X|,X;, X3,Y' =
[X1, X3]} is a basis of the Lie algebra of G, {X], X4, X3} is a basis of the
distribution such that X3 is central and A4’ is the matrix of ady. restricted to
the distribution; B’ is the matrix of the inner product on the distribution;
a, b, ¢, d are parameters such that a, d > 0 and b, ¢ > 0; we may assume
a > d for types (4) and (6).
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automorphism of g. A simple computation shows that K is discrete, except
in the cases (1), (4 : a,0,0,a) and (6 : a,0,0,a), where any M of the form

0
N o], Neo@, e=4l,
0 0 €

is allowed.
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