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Abstract 
Let ( M, V, g) be a sub-Riemannian manifold (i.e. M is a smooth 

manifold, Vis a smooth distribution on M and g is a smooth metric de­
fined on V) such that the dimension of M is either three or four and V 
is a contact or odd-contact distribution, respectively. We construct an 
adapted connection "v on M and use it to study the equivalence prob­
lem. Furthermore, we classify the three-dimensional sub-Riemannian 
manifolds which are sub-homogeneous and show the relation to Car­
tan's list of homogeneous CR manifolds. Finally, we classify the four­
dimensional sub-Riemannian manifolds which are sub-symmet.ric. 

0 Introduction 

Sub-Riemannian geometry is concerned with the study of a smooth manifold 
M equipped with a metric defined only on a subbundle V of the tangent 
bundle TM, henceforth a sub-Riemannian manifold, and of the related geo­
metric structures in analogy with Riemannian geometry. When V = TM we 
recover Riemannian geometry. Despite the similarities between the two ge­
ometries, there are new interesting phenomena occuring in sub-Riemannian 
geometry; see [11) for a survey and references. 

It is worth noting that this subject is of more than only formal interest 
since the several applications and connections range from control throry and 
mechanics with non-holonomic constraints. sub-Laplacians and hypoelliptic 
differential equations, to contact geometry and Cauchy-Riemann structures. 
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Now we come to the subject of this paper. A sub-Riemannian homoge­

neous space is a sub-lliemannian manifold which admits a transitive group 

of sub-lliemannian isometries. A sub-Riemannian symmetric space ([13]) is 

a homogeneous sub-RJemannian manifold for which there is an involutive 

isometry which is a central symmetry when restricted to the distribution. 
This work is divided into two parts. In the first part, we study 3-

dimensional sub-RJemannian homogeneous spaces. We use a connection 

adapted to the sub-RJemannian structure (the pseudo-Hermitian connec­

tion of Webster [15) which was subsequently generalized in [10, 7)) to define 

geometric invariants and establish an equivalence theorem. Then we classify 

all the 3-dimensional sub-lliemannian homogeneous spaces by reducing the 

structure to some algebraic data (see Table 1 for a. complete list of spaces 

and their invariants). This classification adds two new classes of examples 

(namely, types (7) and (8) in Table 1) to Strichartz's list of 3-dimensional 

sub-RJemannian symmetric spaces ([13)). Furthermore, we show how our 

classification is a refinement of Cartan 's classification of 3-dimensional homo­

geneous non-degenerate Ca.uchy-RJemann manifolds ((4, 5]; see also [3, 61). 

In fact, in dimension 3, CR structures are equivalent to conformal sub­
RJemannian structures (see [9]), in analogy with the correspondence between 

complex structures and conformal RJemannian structures in dimension 2. 
In the second part of the paper, we consider 4-dimensional sub-RJeman­

nian symmetric spaces. We define a connection adapted to a sub-RJemannian 

structure of odd-contact type in dimension 4 and then we classify all the 

4-dimensional sub-RJemannian symmetric spaces by using a canonical lin­

earization of the structure (see Table 2). This classification is the first step 

towards a classification of odd-contact sub-RJemannian symmetric spaces in 
arbitrary dimension, which shall appear in a forthcoming paper ([81). For 

an analysis of the case of contact sub-lliemannian symmetric spaces, see [7}. 

Notably absent from this work is the case of a codimension 2 distribution 
in a 4-dimensional manifold which is under investigation by S. Namur ([121). 

The authors would like to thank J.M. Veloso and S. Namur for valuable 

suggestions and CNPq for partial support. 

1 Sub-Rie1nannian geometry 

A sub-Riemannian manifold is a triple (M, 1J,g) where M is an oriented 

manifold, 1) is an oriented smooth distribution on M and g is a smoothly 

varying positive definite symmetric bilinear form defined on 1J. 
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In this paper we shall consider only the case of contact and odd-contact 
distributions on manifolds of dimensions 3 a.nd 4, respectively. 

1.1 Dimension 3 

Let M be of dimension 3 throughout this subsection. Consider the Levi 
form 

(1) £: V x V-+ TM/V, £.(X, Y) = (X, YJ mod V 

where X, Y are extensions to sections of V. We assume that V is a contact 
distribution, that is, C is a non-degenerate skew-symmetric bilinear form on 
V. Let dV be the volume form on V. The (normalized) contact form is the 
1-form (Jon M such that 

kedJ- = V, 

d8lv :; 2dv. 

Observe that M has a canonical orientation given by (J A dB which is inde­
pendent of the orientation on V. 

Since d(J has rank 2, there is a unique vector field { on M such that 

8({) = 1, 
t(d8 = O. 

It is called the characteristic vector field. 
Note that the sub-IDemannian metric g has a natural extension to a 

ruemannian metric on M by setting { to be orthonormal to V. 
A canonical connection analogous to the Levi-Civita connection in the 

case of Riemannian geometry is uniquely defined on M. This connection 
is in fact defined for a contact sub-lliemannian manifold of arbitrary (odd) 
dimension; in the 3-dimensional case it is the same as the pseudo-Hermitian 
connection of Webster ([15)). Let TM and V denote respectively the set of 
sections of TM and of V. 

Theorem 1.1 ([10, 71) There exists a unique connection V : TM - TM"® 
TM, called the adapted connection, and a unique symmetric tensor r : V -
V, called the sub-torsion, with the following properties (Tis the torsion ten­
sor of the connection): 

a. ~u:12.-V; 
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b. ve = o; 
c. Vg=O; 

d T(X,Y) = dB(X,Y)e, 
. T(e,X) = r(X); 

for X, Y E 1J, U E TM. 

The curvature of this connection is given by 

Observe that 

< R(X,Y)Z, W >= - < R(X,Y)W,Z > 

for Z, WE V. 
From the general theory of connections we have the first Bianchi identity 

SR(X, Y)Z = ST(T(X, Y), Z) + 6(VxT)(Y, Z) 

where 6 denotes the cyclic summation in X, l' and Z. In the case of the 

adapted connection we get the following identities 

(2) SR(X, Y)Z = 6d8(X, Y)r(Z), 

(3) R({, Y)Z - R({, Z)Y = (V zT)(Y) - (Vyr)(Z), 

(4) T(r(X), Y) -T(r(l'),X) = -(V,TJ(X, Y), 

where X, Y, Z EV. 
Consider a local positive orthonormal frame {Xa,X2 } on V. Then 

T(X1,X2 ) = 2{, identity (2) is trivial and identities (3) and (4) can be 

rewritten as 

{5) R({,Xi)X2 - R({,X2)X1 = (Vx2
r)(Xi)- (Vx,r)(X2), 

(6) T(r(X1),X2) - T(r(X2),X1) = 0. 

We set 

and note that the definition is independent of the chosen local frame. 
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Define also 

and 
W= jwf+Wl. 

Note that W 1 and W2 depend on the local frame, but W does not. 
Assume now that {X1, X2} are eigenvectors of the symmetric operator 

r. By using identity (6) we can write 

where r0 ~ 0. 
From now on we suppose that To is constant. Then identity (5) gives 

(7) R({,X1)X2 = 2Tov'x,X,, 

R({,X2)X1 = -2Tov'x1 X1. 

If To > 0 we have that the frame of eigenvectors is uniquely defined up 
to a sign, so W1 and W2 are well-defined up to a sign and the sign of W1 W2 
is fixed. It also follows from (7) that in this case 

If W1 f- 0, we change, if necessary, the local frame so that the sign of W1 is 
positive. This defines a parallelism on the space. 

If To = 0 then the frame of eigenvectors is not uniquely defined, but then 
identity (7) implies R({,X)Y = 0 for all X, YE~. so W1 = W2 = W = 0. 

From the general theory of connections we have the second Bianchi iden­
tity 

6(v' xR)(Y, Z) + €iR(T(X, Y), Z) = 0 

from where we get the following identity: 

. . w;1-W; 
-VER+ v'x,W1 - v'x, W, = 

2 To 

It follows that if K, W1 and W2 are constants, then W, = ±W,. 
A local isometry between two sub-Riemannian manifolds (M,V,g) and 

( .\,f', V', g') is a diffeomorphism between open sets 1/J : U C M - lT' C M' 
such that rt,.(V) = V' a.nd ¢•g' = g. In the contact case it follows that 
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that t/, 0 8' = ±8 and 1/,.{ = ±{' ( and therefore ip will be a local ruemannian 
isometry relative to the extended lliemannian metrics on M and M'). If 1" 
is globally defined on M to M', we say simply that tJ, is an isometry. 

Observe that an isometry tJ, : M - M' is affine with respect to the 
adapted connections, that is, V~.x,J,.Y = ,J,.(VxY) for X, YE TM. 

We can now state the following equivalence theorem which is proved in 
the special case of null subtorsion in [10). 

Theorem 1.2 // (M, V,g) and (M', V',g') are two sub-Riemannian man­
ifolds which have the same constant invariants K, To, W1, W2 as defined 
above, then they are locally isometric. 

Remark 1.1 Assume that the invariants K, r0 , W1 a.nd W2 are constant. 

a. The frame was chosen so that W1 ~ O. It is easy to check that a change 
of orientation of V will not affect the invariants W1 and W2 (neither 
K nor To, for that matter). 

b. In the case To = 0, we have also W1 = W2 = 0. So the only invariant 
is the sectional curvature K. In the case To #- 0 we have the identity 

~ ( K + :;) = -rosgn(W2), 

c. In the simply-connected case, if the sub-Riemannian metrics are re­
strictions of complete lliemannian metrics then the local isometry in 
Theorem 1.2 can be extended to a global isometry. We will be inter­
ested in the homogeneous case, so completeness will hold. 

1.2 Dimension 4 

Throughout this subsection we assume that the dimension of Mis 4. Recall 
the Levi form {, that was defined in ( 1). Since {, is a skew-symmetric bilinear 
form defined on a three-dimensional space, it has at least a one-dimensional 
kernel. The distribution V is odd-contact if the dimension of the kernel of C 
is exactly one. Set V,. to be the orthogonal complement to ker {, in V. Since 
M and V are oriented, C induces an orientation on Vn and an orientation 
on ker C. Let dV be the volume form on Vn and let X3 be the positive 
unitary vector in ker £,. The (normalized) odd-contact form is the I-form 8 
on M such that 

ker9 = V, 

dBlv. = 2dV. 
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Let fJ = [1>,., V,.]$1>,.. Then dim fJ = 3 a.nd the skew-symmetric bilinear 
form 

has a on~dimensional kernel transversal to V,.. There is a unique vector 
field { on M which is in this kernel and such that 6({) = 1. It is called the 
characteristic vector field. 

Note that the sub-ruemannian metric g has a natural extension to a 
ruemannian metric on M by setting { to be orthonormal to V. 

A local isometry between two sub-ruemann.ian manifolds (M, V,g) and 
(M', 1>',g') is a diffeomorphism between open sets tf,: UC M -+ {!' c M' 
such that ,t,.(1>) = V' and v,•g' = g. In the odd-contact case it follows that 
that tJ.,"9' = ±6, t/J.X3 = ±X3 and t/J.{ = ±{' (and therefore tb will be a 
local ruemann.ian isometry relative to the extended Riemannian metrics on 
M and M'). If¢ is globally defined on M to M', we say simply that 'I/) is 
an isometry. 

A canonical connection analogous to the Levi-Civita connection in the 
case of ruemannian geometry is uniquely defined on M. The definition of 
this connection is very similar to the adapted connection from Theorem 1.1. 

Theorem 1.3 ThefY! erists a unique connection V : TM -. TM" ® TM, 
called the adapted connection, and a unique symmetric tensor T : 1) -+ 1), 
called the sub-torsion, with the following properties (Tis the torsion ten8or 
of the connection): 

a. Vu: Il.-+ V; 

b. ve = o; 
c. Vg=O; 

d T(X, Y) = d6(X, Y){, 
. T({,X) = T(X)td6({,X){; 

for X, Y E 1), U E TM. 

Proof. Let X, Y, Z E 'Jl... As is Riemannian geometry, we determine 
V x Y by using a., c. and d. and the permutation trick: 

X < Y, Z > +Y < Z,X > -Z < X, Y >= 
2 < VxY,Z > + < Y,[X,Z]+ T(X,Z) > 
+ < X,[Y,Z]+ T(Y, Z) > + < Z, [Y,X] + T(Y,X) >. 
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Because of b., it remains only to define V,X. But v,x -Vx{ = [{,X]+ 
T({,X), so . 

Finally, 

{<X,Y> = <V,X,Y>+<X,V,Y> 
= < It, X) + T(X) + d8({, X){, y > 

+ < X, ({, Y] + T(Y) + d8({, Y){ > 
= < ({,X]+d8({,X){,Y> + < [{,Y]+d9({,Y){,X > 

+2 < T(X),Y > 

determines T(X) (note that 

d9(e, X) = {(O(X)) - X(8({)) - 8([{, X]) = -8([{, X]), 

so [{,X]+dO({,X){ E 'D). 

Corollary 1.1 The connection V has the following properties: 

b. d9(X, Y) = 9(T(X, Y)); 

c. < T(X), Y >= ½L,g(X, Y); 

for X,Y E 'Q. 

D 

Corollary 1.2 The characteristic vector field { is a Killing field on M rel­
ative to the extended Riemannian metric i/ and only if T = 0. 

The curvature of this connection is given by 

As before, from the general theory of connections we have the Bianchi 
identity 

6R(X, Y)Z = 6T(T(X, Y),Z) + 6(VxT)(Y, Z). 

8 



In the case of the adapted connection we get the following identities 

SR(X,Y)Z = 8d9(X,Y)r(Z), 

6d8(X, Y)dO({, Z){ = -6(V xT)(Y, Z), 

R({,X)Y - R({, Y)X = d8({,X)r(Y) - d8({, Y)r(X) 

+(Vyr)(X)- (Vxr)(Y), 

T(r(X),Y)-T(r(Y),X) = VfT(X,Y) + {VxdO({,Y)-v'ydO({,X)}{, 

where X, Y, Z EV. 
Let {X1,X2} and {X3 } be, respectively, positive orthonormal bases of 

V,. and ker £. The above identities translate into 

R(X1,X2)X3 + R(X3,Xi)X2 + R(X2,X3)X1 = 2r(X3 ) , 

2d0({,X3){ = -6(V x, T)(X2,X3), 
R({,X1)X2 - R({,X2)X1 = (Vx3 r)(X1) 

-(V x, r)(X2), 

R({,Xi)X3 - R({,X3)X1 = -dO({, X3)r(X1) 

+(Vx1 r)(X1) 

-(V x, r)(X3), 
T(r(X1},X2)- T(r(X2), X 1 ) 0, 

-T(X1, VfX3 ) - dO({, Vx,X.){ = T(r(X3 ),Xi). 

Observe that an isometry t/) : M -- M' is affine with respect to the 
adapted connections, that is, V~.x tf,.Y = tf,.(V x Y) for X, Y E T Al. 

2 Sub-Riemannian homogeneous and symmetric 
spaces 

A sub-Riemannian homogeneous space (or sub-homogeneous space, for short) 
is a sub-Riema.nnia.n manifold (M, V,g) which admits a transitive Lie group 
of isometries acting smoothly on M. A sub-Rit.mannian symmetric apace 
(or sub-symmetric space) is a sub-homogeneous space (M, V,g) such that 
for every point :r0 E M there is an isometry l/J, called the sub-symmetry at 
Zo, with it,(:ro) = :ro and w.lv = -1 (recall that V is either contact or .. 
odd-contact; for a more general definition see [13]). 

9 



In the three-dimensional (resp., four-dimensional) case the sub-symmetry 
t/J preserves the orientation of V (resp., Vn), so t/J"fJ = fJ. Then we must have 
¢.{.,, = {.,., since ( ¢ 0 8)( {) = fJ( ¢.{). 

It is easy to see that the sub-symmetry at a point z 0 must be unique; in 
fact, it is given by exp.,

0
(X + a{.,0 ) 1-+ exp.,

0
(-X + a{.,0 ), where exp is the 

affine exponential map associated to the adapted connection and X E V.,., 
a E R. Moreover, by homogeneity it is enough to check the existence of the 
sub-symmetry at one single point of M. 

Let p : M -+ M be the universal covering of a smooth manifold M. 
Then it is easy to see that a sub-Riemannian (resp., sub-homogeneous, sub­
symmetric) structure on M lifts to a unique sub-lliemannian (resp., sub­
homogeneous, sub-symmetric) structure on M such that p is a local sub­
Riemannian isometry. 

3 The classification of 3-dimensional sub-homoge-
neous spaces 

The 3-dimensional simply-connected sub-symmetric spaces were classified 
by Stritchartz in (13]. They fall into six classes which include Lie groups 
of semisimple, nilpotent and solvable type. More precisely, they are the 
universal coverings (to be denoted with a tilde) of the Heisenberg group 
Ha, the Euclidean proper motion group Euct = S0(2) 1><11R2, the Poincare 
orthochronological proper group Poin4 = SO( 1, 1) 1><1 IR2

, the special linear 
group SL21R ~ SU(l, 1) (this space admits two distinct distributions; one 
of them is given by the usual Cartan involution; we distinguish the space 
equipped with the other distribution with a "prime") and the sphere group 
sa ~ SU(2). In this section we shall see that there are exactly two other 
3-dimensional sub-homogeneous spaces which are not sub-symmetric (the 
detailed list of sub-homogeneous spaces with the respective distributions 
and metrics is in Table 1 ). 

Proposition 3.1 Let (Ma, V2,g) be a simply-connected three-dimensional 
sub-homogeneous space. Then: 

a. there is a connected, simply-connected Lie group G of sub-Riemannian 
isometries of M which acts simply transitively on M; 

b. the Lie algebra g of G has a decomposition g = (p, p] + p where p is the 
subspace of 9 corresponding to V.,0 under the identification of g with 
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Tr0 M for a chosen base-point z 0 , and p does not depend on the chosen 
Xoi 

c. the inner product B induced on p by the identification of p with 'Dr, 
does not depend on the chosen z 0 E M. • 

Proof. As observed in (13), if the space is sub-symmetric, then the sub­
symmetry t/J induces an automorphism s = Ad• of the Lie algebra g' of the 
group G' of all sub-lliemannian isometries of M, and so there is a decompo­
sition g' =I)+ pinto the ±1-eigenspaces of s. Now [P,P} +pis a subalgebra 
of g' and the corresponding 3-dimensional subgroup G of G' will do. 

If the space is not sub-symmetric, then proceed as follows. Write M = 
G/K where G is the connected(OK, as long as Mis connected) Lie group of 
sub-lliemannian isometries of Mand K is the isotropy subgroup at a chosen 
base-point z0 EM. Let g, tdenotethe respective Lie algebras ofG, K. Then 
K is compact, since G is a group of lliemannian isometries, so there is an 
AdK-invariant decomposition g = t+m. Consider the projection 11' : G -+ M, 
r(g) = g(z0 ). Then r. identifies T.,

0
M with m. Let p be the inverse image 

in m of 1J.,0 under r •. Since 1J is contact, we have g = t + [p,p] + p, AdK­
invariant decomposition. Let I)= t + [p, p]. Then I)= ker d8° for o· = 11'

0 (9) 
and so I) is a subalgebra of g and I) contains t as an ideal (see (1, 7]}. Let B 
be 9ro Lifted top by 11'. Then Bis an AdK-invariant inner product on p and 
dim t is at most one. 

We want to show that t = 0. It is enough to show that [t, p] = 0, as AdK 
must be effective on p (because p modulo t generates 9/t and and AdK is 
effective on g/t). We apply the Jacobi identity to get 

[t, (p, p)] C [[t, P], P] C [p, p). 

But [t, (p, p)] C t because t is an ideal of I). Thus [t, (p, p]] = 0 and I) is 
abelian. Using Jacobi again, 

[Ip, p], [t, pl] C [t, [Ip, p], pl] C [t, l)j + [t, p] C p. 

If, to the contrary, [t, p] '# 0, then [t, p) = p as adt is skew-symmetric on p. 
Thus (Ip, p], p] C p and so the endomorphism s of g which is + 1 on '1 and 
-1 on p is an automorphism. Therefore it descends to an automorphism <1 
of the corresponding simply-connected group G. Let k be the connected 
subgroup of G fort. Now G/ k is a simply-connected sub-symmetric space 
( the sub-symmetry at the base-point is conjugation with u) which covers M, 
hence it is M. But we assumed M not to be sub-symmetric. contradiction. 
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The subspace p of g and the inner product Bon p induced by 9ro do not 

depend on x0 since G acts on M preserving 1J and g. Finally, dim G = 3 

and M is simply-connected, so the action is simple transitive. D 

Conversely, given a three-dimensional Lie algebra g, a subspace p of 

codimension one such that g = [p, p) + p a.nd an inner product B on p, 
we ca.n construct a. simply-connected three-dimensional sub-homogeneous 

space by taking the simply-connected Lie group G with Lie algebra g and 

the G-inva.riant distribution 1J and metric g determined by p and B, re­

spectively. Note that a sufficient (but not necessary) condition for G to be 

sub-symmetric is that [(p, pJ, p) C p. 
Now we take up the classification of three-dimensional simply-connected 

sub-homogeneous spaces. According to Proposition 3.1 it is enough to clas­

sify the three-dimensional simply-connected Lie groups equipped with a left. 

invariant sub-Riemannian structure (G, V,g). Consider the associated alge­

braic data (g, p, B) as above. Let { X 1, X 2 } be an orthonormal basis of p and 

let Y = (Xi, X 2). We may assume that pis not ady-inva.riant, for otherwise 

the space is sub-symmetric and these spaces have already been classified. 

Consider the matrix of ady : p - g relative to {Xi, X 2 , Y}; 

(8) 

The Jacobi identity in g is equivalent to the following relations: 

(9) 
{ 

au+ an = 0 

a13a21 - a23a11 = 0 
013a22 - 073G12 = 0 

If we take a different basis {i\, X2, Y = (X1 , .¥2]} for g and the change of 

basis is given by the matrix 

0 ) 0 I 

det N 
NE 0(2), 

then A is transformed to A= (det N)N AM- 1• 

Observe that a~3 + a~3 I- 0 since p is not ady-invariant. Therefore, 

relations (9) imply that the minor ( au a 12 
) is singular. Now the same 

a21 a22 
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relations yield that ady Ip is singular and so there is an orthonormal basis 
of p such that 

A=(~~~). 
Hence the normal forms for A are: 

FIRST CASE: 

( ~ ~ ~), b > 0. 

In this case the transformation 

maps g onto the direct product of the two-dimensional non-abelian Lie al­
gebra spanned by Y', x: (i.e., [Y',X;J = Y') and the one-dimensional Lie 
algebra spanned by Xi; and it maps p onto the subspace spanned by the 
orthonormal vectors bX; and ¼(X2 - Y'). Denote with t 0(b) the corre­
sponding simply-connected (solvable) group. We shall see below that this 
sub-homogeneous space is isometric to a. sub-symmetric space whose under­
lying group is s'£;i ~ SU(l,l). 

SECOND CASE: 

In this case the transformation 

{ 
x~ = 1•1

1,nX1 
x; = X2 
Y' = l•I~,. y 

maps g onto the semidirect product of the one-dimensional Lie algebra 
spanned by x; with the two dimensional abelian Lie algebra spanned by 
VI d Y' 1 . h VI • VI }" ..,., ( ) ~-, • Y' .~ 2 an reat1ve tote .~ 1-action: .·~,,... , r ,_ -sgn a -~ 2 - j;jiT> ; 
and it maps p onto the subspace spanned by the orthonormal vec.tors lal 112 Xf 
and x;. Denote with E+(b') (resp., ~-(b')), b' = b/la1''2 > 0, the corre­
sponding simply-connected (solvable) group if a> 0 (resp .. a< 0). Observe 
that these families of solvable groups generalize the groups S0(2) 1><1 R.2 and 
S0(1, 1) 1>c2 JR.2. 
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The adapted connection 

In this subsection we shall compute the adapted connection and its asso­

ciated invariants for a three-dimensional Lie group equipped with a left­

invariant sub-lliemannian structure (G, V,g). According to earlier results, 

this includes all three dimensional sub-homogeneous manifolds ( of sub-sym­

metric and non-sub-symmetric type). 
Let g be the Lie algebra of G, p = V1 and B = g1• Then g = [p,pJ + p. 

Consider the normalized contact (left-invariant) I-form 6 on G and the (left­

invariant) characteristic vector field {. Choose a positive orthonormal basis 

{X1,X2 } of p and let Y = [X1,X2J. Note that the Lie algebra structure of 

g is completely determined by the linear map ady : p -+ 9. Let A as in (8) 

be its matrix relative to the basis {X1,X2, Y}. We can express the adapted 

connection in terms of the entries of A: 

{ :::: -~(Y - a2aX1 + a13X2)i 

T(X1,X2) :::: -Y + a23X1 - a1aX2; 

~ ( au ~) (r) = 2 . 
2 ~ B22 I 2 

Vx,X1 = -a2aX2i 

Vx,X2 = -a1aX1i 

Vx,X2 = a2aX,; 

Vx,X1 = a1aX2; 

Vx,Y = -a;3X2 - a13a23X1i 

Vx,Y = a~3X1 + a13az3.\"2; 

VyX1 = [~(a12 - a2i) - (ai3 + ai3)]X2; 

V1•X2 = [ i 2 2 l . 
2(021 - a12) + (a13 + a 23) -~ 1-

14 



• 

The invariants are then: 

K = ~(a12 - a2i) - (a~3 + a~); 

To = ~ J 4af1 +(au+ 421)2; 

Wi = 
32(2+2)+22+22 au 413 423 412°13 a,,a23. 

8 ' 
W2 = EW,; 

f = 1 (K Wl) 
-2 r0 + 2rJ · 

The complete classification is summarized in Table 1. In the first column 
we list representatives G for the three-dimensional groups which are sub­
homogeneous; in the second column we describe the Lie algebra structure of 
g: there is a basis { x;, x;} of p such that Y' = (Xl, x;] and A' is the matrix 
of adv•lp relative to the basis {Xt, x;, Y'}; in the third column we give the 
matrix of inner products B' = ( < x;, XJ > )i the remaining columns list the 
invariants: r0 , K, W1 and W2• 

It is easy to compute that the invariants for the space :E0( b) a.re K = -b2 , 

r0 = W1 = W2 = 0, namely, exactly the same as the ones for space ( 4; b2, b2) 

in Table 1. Hence, these spaces are isometric as sub-Rlemannian manifolds 
by Theorem 1.2. In particular, we get 

Remark 3.1 There are left-invariant Riemannian metrics on R cross the 
affine group of Ill and on the universal covering of S L(2, !It) which turn them 
into isometric, but not isomorphic, Lie groups. 

Spaces (1) through (6) in Table 1 are the sub-symmetric spaces. By 
looking at the invariants in Table 1 and applying Theorem L.2 we conclude 
that spaces (7) and (8) are (the only) sub-homogeneous spaces which are 
not sub-symmetric. 

4 Homogeneous CR manifolds 

A CR manifold is a triple (M, V, J) where M is a smooth manifold, Vis a 
smooth distribution on M and J is a smoothly varying complex structure 
defined on V. 

We shall always assume that dim M = 3 and the CR structure is non­
degenerate, i.e. Vis a contact distribution on M . 

15 



typej G A' B' I To i 

(1) H3 

(2a) 

0 -1 0 ! 0 
(Ja) Poin4 I O O O 

I O 1 
) ! 

(4ad) SU(l,l) O -l O ! ~ } a~d 

1 0 0 , 0 d 

(6ad) SU(2) 

(8ab) L(b) 

0 1 -b 
0 0 0 

1 0 -1 b 
I o o o 

I ¾ 0 l 
0 1 

K 

0 

!. 
2 

_ill 
2 

ill 
2 

• 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

Table 1: Three-dimensional sub-homogeneous spaces: {X:,x;, Y' = 
{X:,xm is a basis of the Lie algebra of G, {X:,xn is a basis of the dis­

tribution and A' is the matrix of ad1,, restricted to the distribution; B' is 

the matrix of the inner product on the distribution; To, K, W1 and W2 are 

invariants; a, b and d are positive parameters; we may assume a ~ d for 

types (4) and (6). 
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In TM ®C we have 'V®C o::: T1,0$To,1 where T1,0 and T0,1 are respectively 
the i and -i eigenvalues of J. In particular, T1,0 = T0,1• Conversely, a 
complex line bundle L C TM ® C such that L :# L determines a sub bundle 
V C TM with a complex structure on it. The non-degeneracy condition 
is equivalent to[(,(] being everywhere transversal to L $ L for a nowhere­
vanishing section ( of L. 

A CR manifold (M, 'D, J) is homogeneous if its group of CR automor­
phisms (i.e. diffeomorphisms v, : M - M such that ,t,.('D) = 'D and 
v,.J = Jt/,.), acts transitively on M. A CR manifold (M, 'D, J) is locally ho­
mogeneous if the universal covering CR manifold ( M, V, i) is homogeneous 
( this is stronger than requiring that any two points in M have CR-isomorphic 
neighborhoods). A CR manifold locally isomorphic to S3 (equipped with its 
natural CR structure inherited from C2

) is called spherical. A locally ho­
mogeneous, non-degenerate CR manifold which is not spherical is called 
aspherical. 

There is a classical equivalence between complex structures and oriented 
conformal Riemannian structures on 2-dimensional manifolds. In analogy 
with that equivalence, there is an equivalence between non-degenerate CR 
structures (M, 'D, J) and conformal sub-Riemannian (or sub-conformal, for 
short) structures (M, 'D, (g]) on a 3-dimensional manifold M, where (g] is 
the conformal class of a sub-Riemannian metric g on 'D. Namely, giving the 
endomorphism J on 'D is the same as giving a ninety-degree rotation on V 
(see [9] for further developments in this direction). 

Proposition 4.1 Under the above equivalence, a non-degenerate CR struc­
ture on a 3-d!mensional manifold is homogeneous if and only if there is a 
homogeneous sub-Riemannian metric in the conformal class of the corTe­
sponding sub-conformal structure. 

Proof. We have to show that given a homogeneous sub-conformal struc­
ture (M, V, [g]), there is a sub-Riemannian metric g in the class (g] such 
that (M, V,g) is a homogeneous sub-Riemannian manifold. Now it turns 
out that all non-degenerate, homogeneous 3-dimensional CR manifolds are 
isomorphic to Lie groups with left-invariant CR structures on them ([4, 5]). 
Therefore we know that there is a. Lie group G of sub-conformal transfor­
mations acting simply transitively on M, so if we take the mf'tric g at the 
base-point of M and translate it to a G-inva.riant sub-Riernannian metric 
g on M, then we get a homogeneous sub-Riemannian manifold (Al, 'D,g) 
such that g is in the sub-conformal class [g] because G acts on M by sub­
conformal transformations relative to [g]. D 
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For a sub-conformal structure (M, V, (g)) there is an invariant C which is 

equivalent to Cartan's CR invariant ((4, 51) under the equivalence between 

sub-conformal structures and CR-structures in dimension 3, and so it van­

ishes precisely when the CR structure is spherical. In the homogeneous case 

C can be expressed in terms of the invariants To, K, W1 of the associated 

homogeneous sub-Riemannian structure (M, V,g) a.s follows: 

C = ◄To + fr)" ~ To r i 
{ 

3K w2 'f J. 0 

0 1f To= 0. 

In order to get C, we recall the parallelism obtained by Cartan for a.spher­

ical CR structures. This means that there exists a canonical sub-Riemannian 
metric in the sub-conformal class defined by an aspherical CR structure. Use 

Webster's embedding of the pseudo-Hermitian connection into the Cartan 

connf'ction for a CR structure (see [15) and its correction in [2]) to write C 
in terms of the sub-Riemannian data. Details will appear elsewhere. 

Proposition 4.1 implies that our classification of simply-connected 3-

dimensional sub-homogeneous manifolds (see Section 3) is a refinement of 
Cartan 's classification of simply-connected, homogeneous, non-degenerate 

3-dimensional CR manifolds ([4, 5}; see also [3, 61). So we now construct 

all the simply-connected, homogeneous, non-degenerate 3-dimensional CR 
manifolds from our Table 1. The notation is taken from there. 

Type (1) 

The Heisenberg group H3 has a unique CR structure given by the complex 
line bundle L C T H 3 ® tC spanned by x; + iX;. The structure is spherical. 

Type (2a) 

For each a > 0, the universal covering of the Euclidean proper motion -----group, Eu4, has a CR structure given by the complex line bundle spanned 

by ._rax; + iX;. As it turns out, this CR structure is isomorphic to the 
one corresponding to x; + iX; under the map x; ,.... x;, x; ,-. *x;, -Y' ,-. j:l". So Euc; gets a unique CR structure. It is a.spherical. 

Type (3a) 

Similarly to type ( 2a ), the Poincare orthochronological proper group Poin4 
has a unique CR structure given by x; + iX; which is a.spherical. 
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"' 

Type (6ad) 

The sphere S3 ~ SU(2) has a one-parameter family of CR structures given 
by the complex line bundle < Jax; + i./dX2 >=< x; + i.,x, >, where 
., = vcfTa E {O, 1). The structure is spherical if and only if., = 1. 

Types (4ad) and (5ad) - ----The group SL(2,lll) ~ SU(l, 1) has two distinct one-parameter families of 
CR structures. In order to describe them, let x:, X2, Y' be a basis of its Lie 
algebra such that [X;,x,J = Y', [X2, Y') = x;, (X2, Y'] = x:. Then they 
are given by the complex line bundles < x; + isX; > and < Y' + isX; > 
for s E (0, lj. In each case, the value s = 1 correspond to a spherical 
CR structure on the group {and the other values correspond to a.spherical 
strctures). Note that the former spherical CR structure comes from a sub­
torsionless sub-Riemannian structure on the group, but not the latter one. 

Type (8ab) 

For each b > 0, the group E_(b) has a unique CR structure given by < 
x; + iX2 >. It can be checked to be a.spherical. 

Type (7ab) 

The group E+C b) has a unique CR structure given by < x: + iX2 >. It 
can be checked to be spherical for b = 3/../2 and a.spherical otherwise (in 
fact, C = 3/2 - 62 /3). The spherical case is exactly the universal covering 
of the CR structure on D = {(z, w) E C 2 

: ;lw = jzj2, ;}z > O} with group 
of CR automorphisms isomorphic to R t>c1 R.2 and t E R acting on R2 by 
t(x,y) = (e'z,e21 y). 

5 Sub-orthogonal involutive Lie algebras 

In this section we assume dim M = 4 and we construct a linear object asso­
ciated to a four-dimensional sub-symmetric space: its sub-OIL algebra. We 
also show how to recover a four-dimensional sub-symmetric space from an 
abstract sub-OIL algebra. The construction can be substantially general­
ized, see e.g. [13, 7, 8), but we do not pursue this matter here since we have 
no use for it. 
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-
Proposition 5.1 ((131} Let (M4, v3,g) be a simply-connected sub-symmetric 

space of dimension four. Then: 

a. there is a connected, simply-connected Lie group G of sub-Riemannian 

isometries of M which acts simply transitively on M ,· 

b. there is an involution a of the Lie algebra g of G such that g = (p, p] +p 

is the decomposition of g into the ±1-eigenspaces of a, where p cor­

responds to 1) zo under the identification of G with M for a chosen 

base-point .r0 , and p doea not depend on the chosen .r0 ; 

c. the inner product B induced on p b11 the identification of p with v •• 
does not depend on the chosen .r0 • 

Proof Let G' he the Lie group of all suh-lliemannian isometries of M, 
choose .r0 E M, let K be the isotropy subgroup at z0 , and let T/J E K be 

the sub-symmetry at .r0 • Let g' and t denote the respective Lie algebras 

of G' and K and let g' = ~ + p be the decomposition of g' into the ±1-

eigenspaces of the involution a' = Ad• of g'. Then M is represented a.a 

the coset space G' / K. K is a compact subgroup of G', since G' is a group 

of lliemannian isometries relative to the canonical extended Riema.nnia.n 

metric on M. For any k E K, Adi factors through a. linear map on 9/t, and 

because K is compact we can find a complementary AdK-invariant space m. 

Now ir. identifies m with the tangent space Tz0 M and is easily seen to be 

an equivalence between the AdK•action on m and the K-action on T.
0
M. 

Define Po to be the inverse image of Vro in m under ir •• Then Po C p because · 

t/i. Iv = -1. t contains no nonzero ideal of g because AdK is effective on 
•• 

m (because K is effective on Tr0 M). In fact, AdK is effective on Po a.s Po 
modulo t generates 9/t by the odd-contact condition. Let X E t and Y E p0 • 

Then (X - a'X, YJ E Po, so 

-[X - s'X, Y] = .,'[X- s'X, Y] = (s'X- X,s'Y] = [X - s'X,Y] 

and so adx-,• x [p0J = 0. But the centralizer of Po in t is zero since AdK is 

effective on p0 • Thus we have X - .,, X = 0 and t C ~- Now ~ = t + [p0 ,p0 J 

and P = Po· Since 9 = [p, p) + p is a subalgebra, it defines a connected 

subgroup G of G'. Let us show that dim G = dim g = 4. It is enough to 

prove that dim(p, p] = 1. ln fact, decompose p = Pn EB ker 0 where Pn is 

a 2-dimensional space and 0 : p x p ~ ~/t is the skew-symmetric bilinear 

form 0(A, B) = [A. BJ mod t. Then the Jacobi identity gives 

(10) [[t, P,.], ker 0] c [[t, ker 0], Pnl + ([ker e, Pnl, t). 
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Now adt is effective and skew-symmetric on p, so [t, Pnl = Pn, dim t ~ 1 and 
(t,ker0] = 0. Since (ker8,Pnl Ct, (10) implies that [Pn,ker0] = 0, and so 
dim(p,p] = 1. Lets= a'lo• The subspace p of g and the inner product Bon 
p induced by g.,

0 
do not depend on x0 since G' acts on M preserving 'D and 

g. Finally, dim G = 4 and M is simply-connected, so the action is simply 
transitive. 0 

To a four-dimensional sub-symmetric space (M, V,g) we have now as­
sociated a triple (g, p, B) where g is a four-dimensional Lie algebra, p is a 
three-dimensional subspace of g such that g = [p, p) + p, [(p, p], p] C p and B 
is an inner product on p. The triple is called the sub-orthogonal involutive 
Lie (sub-OIL) algebro of (M, V,g). 

An abstract sub-orthogonal involutive Lie algebra is defined to be a triple 
(9, p, B) with the properties in the above paragraph. Given an abstract sub­
OIL algebra (g, p, B) we can construct a simply-connected sub-symmetric 
space as follows. Let G be the simply-connected group with Lie algebra 
g. Then g = [p, p] + p so that p translates to a G-invariant odd-contact 
distribution 'D on G such that V1 = p, and B translates to a G-invariant 
metric g on V such that g1 = B. The involutive automorphism., of O which 
is +l on [p,p) and is -1 on p induces an automorphism t/J of G. t/J is an 
isometry of G and ,JJ. = .,, so t/J fixes 1 and induces -1 on V 1• Thus t/J is the 
sub-symmetry at 1 and gipg- 1 is the sub-symmetry at g. We have proved 
that G is sub-symmetric. In other words, 

Proposition 5.2 Let (g,p, B) be an abstract sub-OIL algebra. Let (G, V,g) 
be the simply-connected sub-symmetric space of dimension four constructed 
above from (g, p, B). Then (g, p, B) is the sub-OIL algebra associated to 
(G, V,g) . 

6 The classification of 4-dimensional sub-sy1nmetric 
spaces 

Let ( G, V, g) be a simply-connected sub-symmetric space of dimension 4 
and odd-contact distribution and consider its associated sub-OIL algebra 
(9, p, B). Then dim 9 = 4, dim p = 3, 9 = [p, p] + p, [[p, p], p] c p and B is an 
inner product on p. The Levi form Con 'D induces a skew-symmetric bilinear 
form 0 on p which is exactly the bracket of vectors on p, i.e. 0(X, Y) = 
[X,Y]. 
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Choose a positive orthonormal basis {Xi,X2, X3} ofp such th~t X:s spans 

the kernel of 0. Then X3 centralizes X1 and X2 and the characteristic field 

e = -½(X1,X2) E (p,p). Let Y = (Xi,X2) and consider the matrix of 

adv : p-+ p relative to the basis {X1,X2,X:s}: 

Now the Jacobi identity is equivalent to the last row of A being zero (i.e., 

X3 central in g) and A being traceless. If we take a different basis for p 

given by X = MX for 

( 11) N E 0(2), ~ = ±1, 

then A is transformed to A= (det N)M AM-1
• Next we classify the (unori­

ented) isomorphism classes of (9, p, B); let p,. be the subspace of p generated 

by X 1 and X2 : 

P,. is ady-invariant 

Then a 13 = a23 = 0 and g is the direct product of a three-dimensional 

Lie algebra generated by Y, X 1 , X 2 with the one-dimensional Lie algebra 

generated by X3 • We distinguish three cases. 

advlp_ is null 

In this case the matrix A is null and 9 is the sub-OIL algebra of H 3 x JR. 

adylp_ is singular and non-null 

In this case there is an orthonormal basis of p such that the matrix A has 

the form 

( 
0 a O) 
0 0 0 , a-/ 0. 
0 0 0 
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The transformation 

X' 1 
1 1a1112x, 

X' 2 = X2 
X' 3 = X3 

Y' 1 
= 1a1112y 

is an isomorphism onto the sub-OIL algebra of 

{ £;;f x Ill if a > 0; 
Poin4 x JR if a < 0 

spanned by x;, x;, x;, Y' = [X;, x;] and distribution spanned by the X;'s. 
The matrix of ady, relative to {x;,x;,x~} is 

( 

0 sgn(a) 0 ) 
0 0 0 . 
0 0 0 

and the matrix of the inner product on the distribution relative to the same 
basis is 

( 
,!, 0 0) 
0 l 0 
0 0 1 

adylp_ is non-singular 

In this case there is an orthonormal basis of p such that the matrix A has 
the form 

( 
0 a O) 
d O O , 
0 0 0 

a,d;iO. 

The transformation 

X' 1 
1 

lal1/2X1 

x; 1 
ldl1/2X2 

X' 3 = X3 

Y' 1 
ladj112 y 
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is an isomorphism onto the sub-OIL algebra. of 

{
--SU(l, 1) x R 

SU{l,1)' x JR 
SU(2) x R 

if a< 0, d > O; 

if ad> O; 
if a> O, d < O. 

The matrix of ady, is 

( 
0 sgn(a) 0) 

sgn(d) 0 1 . 
0 0 0 

and the matrix of the inner product on the distribution is 

( 

1!1 0 0 ) 
0 J¼i O • 
0 0 1 

-- -Note the following isomorphisms; SU(l, 1) x R ~ U(l, 1) and U{l, 1) is the -- -full sub-Riernanni~ornetry group of the subtorsionless SL 2 1R. ~ SU(l, 1) 

and SU(2) x JR~ U(2) and U(2) is the full sub-Riemannian isometry group 

of the subtorsionless S3 ~ SU(2). 

Remark 6.1 The sub-symmetric spaces constructed above are exactly the 

ones that we get by ta.king the direct product of a three-dimensional sub­

symmetric space with lit. 

l'n is not ady-invariant and ady IJ),. is singular 

Then there is an orthonormal ha.sis of p such that the matrix A has the form 

( 

0 a b) 
0 0 0 , 
0 0 0 

Hence the normal forms for A a.re: 
FIRST CASE: 

( 

0 0 
0 0 
0 0 

a E lll, b / 0. 
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In this case the transformation 

{ 

x; = 
x~ = 
x~ = 
Y' = 

is an isomorphism onto the sub-OIL algebra of the Engel group E4 • Here 
the matrix of ady, is 

(H ~I) 
and the matrix of the inner product on the distribution is 

( 

1 0 0 ) 
0 1 0 
0 0 b2 

SECOND CASE: 

( 

0 a b) 
0 0 0 , 
0 0 0 

a-/- 0, b > 0. 

In this case the transformation 

r = 1a1111•X1 

X' = X' • t 
2 • 2 + ;• 3 

X' = Xa 3 

Y' lal~'• y 

is an isomorphism onto the sub-OIL algebra of 

{-----£u4xR ifa>0; 
Poin4 x JR if a < 0. 

Here the matrix of the inner product on the distribution is 

10•• ~ .. •1) +;. 
! .. 
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Pn is not ady-invariant and ady Ip" is nonsingular 

Let ,r : p -+ Pn be the orthogonal projection. We consider two cases sepa­
rately. 

11' o ady is singular 

[n this case there is an orthonormal basis of p such that the matrix A hu 

the form 

( 

O a b) 
0 0 C , 

0 0 0 
a,ci: 0, bE R 

Hence the normal forms are: 

a b) 
0 C , 

0 0 
a ;i 0, C > 0, 

The transformation 

is an isomorphism onto a sub-OIL algebra spanned by Xf, x;, X~, Y' = 
[x;,x;] and distribution spanned by the X;'s. Here the matrix of ady, is 

( 

0 sgn(a) 0 ) 
0 0 1 
0 0 0 

and the matrix of the inner product on the distribution is 

( 

~ 0 0 ) 
O 1•1 1''(1 ~) 1•1~1

• l 
e + a 1 el J 1111 

o 1•1;'4 ! 1 
el 2 • 

The corresponding groups are the universal coverings of the semidirect prod-
ucts 

{ 
SO(2) 1><1 H 3 if a > 0; 
SO(l,l)1><1H3 ifa<0. 
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Note that these groups are respectively isomorphic to the full sub-Riemannian 
isometry group of H 3 , and to the full sub-Lorentzian isometry group of H3 

(i.e. we replace the definite metric on the distribution by an indefinite one). 

r o ady is non-singular 

In this case there is an orthonormal basis of 4) such that the matrix A has 
the form 

( 

0 a b) 
d O c , 
0 0 0 

a,d# 0, 

Hence the normal forms are: 

( 

0 a b) 
d O c , 

0 0 0 

The transformation 

{ 

x~ = 1•1~n(X, + ~X3) 
x; = 1.,1~12 (X2 + ~X3) 
x; = X3 

Y' = 1.4,12 Y 

is an isomorphism onto the sub-OIL algebra of 

{ 

~ if a < 0, d > O; 
U(l, 1)' if ad> O; 

U(2) if a > 0, d < 0. 

b,c ~ o. 

Here the matrix of the inner product on the distribution is 

J C ) l•l'h ;;; 
I t , .. ,.,.; . 
1 
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The adapted connection 

Next we compute the adapted connection and its associated invariants in 
each of the above examples. We get: 

{ 

T(X,,X2) 

(r) 

VxX, 

v,x, 

v,x, 

v,x3 

R(X.X3 ) 

= 

= 

= 

= 
= 
= 

= 
= 

1 
--Y· 2 I 

-Y; 

J ( •u 
~ ~) 2 ~-- !.U±.!.u a22 

2 ~ 
2 I 

.!.u. 0 2 2 
VxX2 = VxX, = 0 for XE p; 
1 1 

4(a21 - a12)X2 - 2a13X3; 

1 1 ia12 -a,i)Xi - 2a23X3; 

1 
4(a13X1 + a23X2); 

R(X,{) = 0 for XE 9; 

{ 

X1 1-+ l(a21 - a,2)X2 - a13X3, 
X2 1-+ l(-a21 + a12)X1 - a23X3, 
X3 ..... 2a13X1 + ½a23X2; 

1 = - < R(X1,X2)X1,X2 >= 2(an - a:n). 

We organize the classification in Table 2. In the first column we list 
representatives G for the four-dimensional groups which are sub-symmetric; 
in the second column we describe the Lie algebra structure of g: there is a 
basis {X~ 1 X2,X3} ofp such that X3 is central, Y' = (X~,x;J and A' is the 
matrix of ady, relative to that basis; in the last column we give the matrix 
of inner products B' = ( < x:, XJ > ). 

The full group of isometries 

Finally we compute the full group of isometries for each of these spaces. It 
suffices to find the group K of all isometries that preserve the identity, since 
these together with G generate all isometries. To do this, we need to find 
all orthogonal transformations of (p, B) which extend to automorphisms of 
g. If we identify the transformation with the 3 x 3 matrix M ( cf. ( 11) ), we 
rPquire (det N)M AM- 1 = A for M to extend (via }' ...... (det N)Y) to an 
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typ I G A' B' 
0 0 0 1 0 0 

(1) H 3 X JR 0 0 0 0 1 0 
0 0 0 0 0 1 ) 
0 1 0 l 0 0 -- • (2ab) Eu4xR 0 0 0 0 1 •• ! + ;s • 0 0 0 0 ! 1 ) 

" T Q -1 0 ! 0 0 ' 
Poin4 x R • 1 •• (3ab) 0 0 0 0 _! + ;s • 0 0 0 j 0 _! l n 

u -1 n ( ¼(! + f,) 
I •• ' . ) - -(e1d)11> ad ;.;ra;; 

(4abcd) U(l,1) 0 I be 1(1 + ~) I 6 
- (a4)11> ~ ., ... -d'7i • 

0 I • I t 1 ;;rr.;; -JiTi ;; 

(! 1 n ( !(1+ ~) r:-Ar-n'· ' , ) -- (e14) 44 ;r7i4 
(5abcd) U(l, 1)' 0 I be 

~{1 + ~) I t 
(adj•/• -4 d'7ia 

0 I C I • 1 ;rr,;; JiTi ;; 

( ~· 1 n ( ¼(t+ f,) 
I •• I • ) - - (a4)'f• o4 -.i7i, 

(6abcd) U(2) 0 I tc 1(1 + ~) I t 
- (a4)11> e4 ' ... 41)> e 

0 I C I t 1 -;;,,. d. "Jin; 
0 0 -1 ' ' I 0 0 

(7d) £4 0 0 0 0 1 0 I 
0 0 0 0 0 rfl 

0 1 0 I l 0 0 ' ---- • 
(8abd) S0(2)1><1 H3 0 0 1 I 0 ... ,.(1 ~) • I I ., + •• ... ,,.,,], 

0 0 O J 0 • l ~ 

0 -1 0 \ ' l 0 0 \ 

• 
(9abd) S0(1,1)1><1 H3 0 0 1 0 11'"(1 ~) • ' + •• - .. ,.,.,. 

0 0 0 0 • 1 - ;;,,.;frTi 

Ta.hie 2: Four-dimensional sub-symmetric spaces: {X;, x;, X~, Y' = 
[X; , xm is a. ha.sis of the Lie algebra. of G, {X1,X~,XH is a. ha.sis of the 
distribution such that X3 is central and A' is the matrix of ady, restricted to 
the distribution; B' is the matrix of the inner product on the distribution; 
a, b, c, d a.re para.meters such that a, d > 0 and b, c 2:: O; we may assume 
a~ d for types (4) and (6). 
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automorphism of g. A simple computation shows that K is discrete, except 
in the cases (1), (4 : a, 0, 0, a) and (6: a, 0, 0,a), where any M of the form 

N E 0(2), € = ±1, 

is allowed. 
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