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We consider the one-loop effective action in four-dimensional Euclidean space for a
background chiral field coupled to a spinor field. It proves possible to find an exact
expression for this action if the mass m of the spinor vanishes. If m does not vanish,
one can make a perturbative expansion in powers of the axial field that contributes to
the chiral field, while treating the contribution of the vector field exactly when it is a
constant. The analogous problem in two dimensions is also discussed.
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1. Introduction

Parity violating interactions with a spinor field yield several interesting conse-

quences, among them an anomalous divergence in the axial current1–3 and the

absence of bound states in a “Coulomb” axial potential.4,5 In this paper we con-

sider the one-loop effective action for a spinor field in the presence of a constant

background chiral vector field. The analogous situation in which the interaction is

parity conserving is well known.1,6–8

2. Effective Action

If a spinor ψ is in the presence of a background vector field V µ and a background

axial field Aµ in four-dimensional Euclidean space, we have the Lagrangian

L = ψ†[(p/−W/+P+ −W/−P−)−mt]ψ , (1)

§Corresponding author

2879

M
od

. P
hy

s.
 L

et
t. 

A
 2

01
1.

26
:2

87
9-

28
87

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

07
/1

0/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S0217732311037212
mailto:fbrandt@usp.br
mailto:dgmckeo2@uwo.ca
mailto:apatrus@uwo.ca


November 24, 2011 10:0 WSPC/146-MPLA S0217732311037212

2880 F. T. Brandt, D. G. C. McKeon & A. Patrushev

where p = −i∂ and W± = V ± A are chiral fields. (The notation used is listed in

the Appendix.) The effective action is then given by the one-loop expression

Γ4 = ln det(p/−W/+P+ −W/−P− −m) . (2)

We now rewrite Eq. (2) as

Γ4 =

[

ln det(p/ −W/+P+ −W/−P−) + ln det

(

1−
m

p/−W/+P+ −W/−P−

)]

(3)

and then expand the second term in Eq. (3) so that

ln det

(

1−
m

p/−W/+P+ −W/−P−

)

= −tr
∞
∑

n=1

1

n

(

m

p/−W/+P+ −W/−P−

)n

. (4)

We now rewrite

1

p/−W/+P+ −W/−P−

=
1

p/

1

1− 1
p/ (W/+P+ +W/−P−)

=
1

p/

∞
∑

n=0

[

1

p/
(W/+P+ +W/−P−)

]n

which by the properties of the projection operators P± becomes

=
1

p/

∞
∑

n=0

[

(

1

p/
W/+

)n

P+ +

(

1

p/
W/−

)n

P−

]

=
1

p/−W/+
P+ +

1

p/−W/−

P− . (5)

Similarly, we have for the first term in Eq. (3)

ln det(p/−W/+P+ −W/−P−) = tr

[

ln p/−

∞
∑

n=1

1

n

(

1

p/
W/+P+ +

1

p/
W/−P−

)n
]

= tr[(ln(p/−W/+))P+ + (ln(p/−W/−))P−] . (6)

Together, Eqs. (3)–(6) show that

Γ4 = tr

[

(ln Π/+)P+ + (lnΠ/−)P− −
m

1

(

1

Π/+
P+ +

1

Π/−

P−

)

−
m2

2

(

1

Π/−

1

Π/+
P+ +

1

Π/+

1

Π/−

P−

)

−
m3

3

(

1

Π/+

1

Π/−

1

Π/+
P+ +

1

Π/−

1

Π/+

1

Π/−

P−

)

− · · ·

]

, (7)

where Π± ≡ p−W±.
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If we now use the identity

trX =
1

2
tr[X + γ5Xγ5] , (8)

then we see that terms in Eq. (7) with odd powers of m vanish. This reduces

Eq. (7) to

Γ4 =
1

2
tr

{[

ln

(

Π/ 2
+

(

1−
m2

Π/−Π/+

))]

P+ +

[

ln

(

Π/2−

(

1−
m2

Π/+Π/−

))]

P−

}

. (9)

Under “charge conjugation” we find that

C−1(p/−W/+P+ −W/−P− −m)C = [p/+W/+P− +W/−P+ −m]T (10)

and so Eq. (2) is symmetric under the replacement W± → −W∓. (In Ref. 9 the

fact that pµT = −pµ was ignored.)

3. Explicit Evaluation of the Effective Action

Evaluation of Γ in Eq. (9) in closed form when m2 6= 0 involves having to determine

tr ln(Π/±Π/∓ −m2). If W/± 6= W/∓ this is prohibitively difficult, even if W± = ±A.

In this case we must consider

tr ln[(p/±A/ )(p/ ∓A/ )−m2] = tr ln[(pµ ∓ iσµνAν)2 + 2A2 ± iAλ
,λ −m2] (11)

which, though it is well suited for a perturbative expansion in powers of Aµ,10,11

does not lend itself to being evaluated even when Aµ corresponds to there being a

constant field strength.

However, if m2 = 0, or if Eq. (9) were expanded to some finite order in powers of

m2, then one is faced with evaluation of only 1
2 (Λ++Λ−) where Λ± = tr[lnΠ/ 2

±]P±.

In Refs. 1, 6 and 7, it is shown that since (p/− V/ )2 = (pµ − V µ)2 − 1
2σ

µνFµν (F =

∂ ∧ V ) the gamma matrix trace occurring in Λ± involves

tr e
1

2
FµνσµνtP± = tr

{

coshK−P+ + coshK+P−

+
t

2
σµνFµν

(

sinhK−

K−

P+ +
sinhK+

K+
P−

)}

P±

= 4 coshK∓ , (12)

where K2
± = t2

2 [F
µνFµν ± FµνF ∗µν ]. We thus see that the presence of the chiral

projection operator P± in Eq. (9) serves to eliminate the contribution of coshK±

as well as sinhK+ and sinhK−, leaving only 4 coshK∓.

The background field strength W± in the gauge x ·W± = 0 can be expanded in

powers of the field strength F±,
12–14
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Wµ
± =

∞
∑

n=0

−1

n!(n+ 2)
xνxλ1 · · ·xλnFµν,λ1···λn

± (0) . (13)

The first term in Eq. (13) corresponds to a constant background field as discussed

in Refs. 1, 6 and 7; higher contributions are dealt with in Refs. 8, 15–17. Other

special background field configurations have been considered.1,8,18–20

If m2 = 0 and W± = ±A, then we have a purely axial coupling and

Γ
(0)
A =

1

2
tr[(ln(p/−A/ )2)P+ + (ln(p/+ A/ )2)P−] . (14)

If Aµ is in the gauge x · A = 0 so that it is expressed in the form of Eq. (13) then

gauge invariance is manifestly preserved since Aµ is expressed in terms of the field

strength. If we then expand Γ
(0)
A with this background field using the Schwinger

expansion as in Refs. 1 and 21, then the three-point function 〈AAA〉 vanishes.

However, again computing 〈AAA〉 but with plane wave background axial fields, the

three-point function is consistent with the axial anomaly.1–3

If m2 6= 0 when W± = ±A then Eq. (9) reduces to

ΓA =
1

2
tr

{

[ln((p/ +A/ )(p/−A/ )−m2)]P+ + [ln((p/−A/ )(p/ +A/ )−m2)]P−

+
1

2
[ln(p/−A/ )2 − ln(p/ +A/ )2]γ5

}

. (15)

There does not appear to be a way of evaluating this in closed form when even

Aµ = − 1
2F

µνxν if m2 6= 0, though with this background field 〈AAA〉 = 0. With a

plane wave background field the axial anomaly can however be recovered21 when

〈AAA〉 is computed by applying the Schwinger expansion1 to Eq. (15).

Although it does not appear to be feasible to compute Γ4 when there is a

constant strength ∂µAν − ∂νAµ in Eq. (1), we can consider the case in which Γ4 is

restricted to being linear in the external axial field and the vector field is taken to

be constant. In this case we begin by using Eq. (8) to write

Γ4 =
1

2
ln det[(p/− V/ −A/ γ5)2 −m2] . (16)

Dropping those terms in Eq. (12) that cannot contribute to the contribution to Γ4

that are linear in Aµ, we see that upon letting m2 → −m2,

Γ4 ≈
1

2
ln det

[

(p− V )2 +m2 −
1

2
Fµνσµν + iAµ,µγ5

+ iσµν

(

2Aµpν +
i

2
Gµν − 2AµV ν

)

γ5
]

, (17)

where Fµν = ∂µV ν − ∂νV µ and Gµν = ∂µAν − ∂νAµ. If we now employ operator

regularization to expand Γ4 in Eq. (17) to the term linear in Aµ, we need the

equations21
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1

2
ln det(H0 +H1) = −

1

2

d

ds

∣

∣

∣

∣

0

tr
1

Γ(s)

∫ ∞

0

dt ts−1 e−(H0+H1)t

= −
1

2

d

ds

∣

∣

∣

∣

0

1

Γ(s)

∫ ∞

0

dt ts−1 tr

[

e−H0t +
(−t)

1
e−H0tH1

+
(−t)2

2

∫ 1

0

du e−(1−u)H0tH1e
−uH0tH1 + · · ·

]

. (18)

Upon using Eq. (18), Eq. (17) reduces to

Γ4 ≈
1

2

d

ds

∣

∣

∣

∣

0

1

Γ(s)

∫ ∞

0

dt ts tr e−[(p−V )2+m2− 1

2
Fµνσµν ]t

×

[

iAµ
,µ + iσλσ

(

2Aλpσ +
i

2
Gλσ − 2AλV σ

)]

γ5 . (19)

If Fµν is constant, then by Eqs. (A.1) and (A.2) this becomes

=
1

2

d

ds

∣

∣

∣

∣

0

1

Γ(s)

∫ ∞

0

dt ts tr e[(p−V )2+m2]t

[

(coshK−)P+ + (coshK+)P−

+

(

sinhK−

K−

P+ +
sinhK+

K+
P−

)

wµνσµν

]

·

[

iAλ
,λ + iσλσ

(

2Aλpσ +
i

2
Gλσ − 2AλV σ

)]

γ5 , (20)

where wµν = 1
2F

µνt and K2
± = 2(wαβwαβ ± w∗αβwαβ).

Evaluating the γ-matrix traces in Eq. (20) leads to

=
d

ds

∣

∣

∣

∣

0

i

Γ(s)

∫ ∞

0

dt ts tr e−[(p−V )2+m2]t

{

(coshK− − coshK+)A
λ
,λ

+2

[(

sinhK−

K−

−
sinhK+

K+

)

wλσ − 2

(

sinhK−

K−

+
sinhK+

K+

)

w∗λσ

]

×

[

2Aλpσ +
i

2
Gλσ − 2AλV σ

]}

. (21)

When V µ = − 1
2F

µνxν , the result of Schwinger1 gives

〈x|e−(p−V )2t|y〉 =
i

(4πt)2
exp

(

i

∫ x

y

dz · V (z)

)

e−L(t)

× exp

(

−
1

4
(x− y) · F · cot(Ft) · (x− y)

)

(22)
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can be used to compute the functional trace in Eq. (21). (Here we have L(t) =
1
2 tr ln((Ft)

−1 sin(Ft)).) In particular, it follows from Eq. (22) that

tr e−(p−V )2tAλpσ = tr

∫

dz〈x|e−(p−V )2t|z〉i∂σy 〈z|A
σ|y〉

=

∫

dx

∫

dy δ(x− y)i∂σy

[

i

(4πt)2
exp

(

i

∫ x

y

dz V (z)

)

e−L(t)

× exp

(

−
1

4
(x− y) · F · cot(Ft) · (x− y)

)

Aλ(y)

]

=
i

(4πt)2
e−L(t)

∫

dx[V σ(x)Aλ(x) + i∂σxA
λ(x)] . (23)

Substitution Eqs. (22) and (23) into Eq. (21) leads to

Γ4 ≈
−1

(4π)2
d

ds

∣

∣

∣

∣

0

1

Γ(s)

∫ ∞

0

dt ts−2 e−L(t)−m2t

∫

dx

{

(coshK− − coshK+)A
µ,µ(x)

−
i

2
Gλσ(x)t

[(

sinhK−

K−

−
sinhK+

K+

)

Fλσ −

(

sinhK−

K−

+
sinhK+

K+

)

F ∗λσ

]}

.

(24)

Expanding Eq. (24) to lowest order in Fλσ results in

Γ4 ≈
1

(4π)2
d

ds

∣

∣

∣

∣

0

1

Γ(s)

∫ ∞

0

dt ts−2 e−m2t

∫

dx

[

1

2
t2FλσF ∗λσAµ,µ(x)

− itGλσ(x)F ∗λσ

]

=
1

(4π)2

∫

dx

[

1

m2
FλσF ∗λσAµ,µ + i(lnm2)GλσF ∗λσ

]

. (25)

Neither term in Eq. (25) would arise from the calculation of one-loop Feynman

diagrams with plane wave external fields. For Fµν being a constant field, the first

term in Eq. (25) is a total derivative.When either F orG (or both) are non-constant,

the second term is also a total derivative.

4. The Two-Dimensional Limit

The two-dimensional limit of massive electrodynamics has been considered in

Refs. 22 and 23. If there is an axial coupling between the spinor and an exter-

nal axial field, this leads to the one-loop effective action

Γ2 = ln det(p/ −A/σ3 −m) , p ≡ −i∂ . (26)
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However, as γµσ3 = ǫµνγν , this becomes

Γ2 = ln det(p/−Aµǫ
µνγν −m) . (27)

Consequently, if the background field Aµ corresponds to a constant field strength

Aµ = − 1
2Fµνx

ν = − f
2 ǫµνx

ν , then Eq. (27) reduces to

Γ2 = ln det

(

p/−
f

2
x/ −m

)

(28)

which is what would be obtained if there were a parity conserving coupling with an

external vector field Vµ = 1
4f∂µ(x

2) which corresponds to a pure gauge field. This

effective action should thus be independent of f , which we will show explicitly by

using Schwinger’s technique.1

If now

Πµ = pµ −
f

2
xµ , (29)

then Eq. (28) becomes

Γ2 = ln det1/2(Π/ +m)(Π/ −m) =
1

2
ln det(Π2 −m2) (30)

upon using the two-dimensional analogue of Eq. (8) and

[Πµ,Πν ] = 0 . (31)

Regulating Γ2 using the ζ-function24,25 we have

Γ2 = −
1

2

d

ds

∣

∣

∣

∣

0

1

Γ(s)
tr

∫ ∞

0

d it(it)s−1 ei(m
2−Π2)t . (32)

To evaluate the functional trace in Eq. (32), we use the Hamiltonian approach of

Ref. 1, defining

〈x(t)|y(0)〉 = 〈x|e−iHt|y〉 (33)

with

H = −Π2 . (34)

The equations

i
∂Πµ(t)

∂t
= [Πµ(t), H ] , (35a)

i
∂xµ

∂t
= [xµ(t), H ] , (35b)

can be integrated to give

Πµ(t) = Πµ(0) , (36a)

xµ(t) = −2Πµ(0) . (36b)

Since Eq. (36) is identical to the equations that arise if f = 0, we see that

the effective action in two dimensions for a spinor in the presence of a constant

background axial field is just that of a free field.
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5. Conclusions

We thus see that the one-loop effective action for a spinor in the presence of a

constant background chiral field is closely related to that of considered in Refs. 1,

6–8 provided m2 = 0. The case in which m2 6= 0 in four dimensions has not as yet

been given in closed form. Higher order calculations, or those involving non-constant

background fields are currently being considered, as is that all-orders approach in

the presence of a weak background field.26,27

We note the use of projection operators in conjunction with background gauge

fields in Ref. 28.

Appendix

In four-dimensional Euclidean space we have the conventions

{γµ, γν} = 2δµν , [γµ, γν ] = 2iσµν ,

[σµν , σλσ ] = 2i(δµλσνσ − δµσσνλ + δνσσµλ − δνλσµσ) ,

{σµν , σλσ} = 2(δµλδνσ − δµσδνλ)− 2ǫµνλσγ5 ,

γαγβγλ = δαβγλ − δαλγβ + δβλγα − ǫαβλργργ5 ,

ǫ1234 = 1 , γ5 = γ1γ2γ3γ4 , tr γ5 = 0 ,

σµνγ5 = ǫµνλσσλσ .

P± =
1± γ5

2
, (P±)

2 = P± , P±P∓ = 0 ,

P±γ
µ = γµP∓ , P±γ

5 = γ5P± .

These show that if

eλw
µνσµν

= (A+(λ)P+ +A−(λ)P−) + (B+(λ)P+ +B−(λ)P−)w
µνσµν , (A.1)

then the differential equation

d

dλ
eλw

µνσµν

= wµνσµνeλσ
µνwµν

leads to

Ȧ± = K2
∓B± , Ḃ± = A± (A±(0) = 1, B±(0) = 0) ,

whereK2
± = 2(wµνwµν±wµνw∗µν) and w∗µν = 1

2ǫ
µνλσwλσ . These have the solution

when λ = 1

A± = coshK∓ , B± =
sinhK∓

K∓

. (A.2)

The “charge conjugation” matrix C satisfies C−1γµC = −γµT , C−1γ5C = γ5T .
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In two-dimensional Minkowski space, we take

g00 = 1 = −g11 and γ0 = σ1 , γ1 = iσ2 so that

if ǫ01 = 1 = ǫ10 , then γ
µγν = gµν − ǫµνσ3 and γµσ3 = ǫµνγν ,

(where σi is a Pauli spin matrix).
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