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We consider the one-loop effective action in four-dimensional Euclidean space for a
background chiral field coupled to a spinor field. It proves possible to find an exact
expression for this action if the mass m of the spinor vanishes. If m does not vanish,
one can make a perturbative expansion in powers of the axial field that contributes to
the chiral field, while treating the contribution of the vector field exactly when it is a
constant. The analogous problem in two dimensions is also discussed.
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1. Introduction

Parity violating interactions with a spinor field yield several interesting conse-
quences, among them an anomalous divergence in the axial current'® and the
absence of bound states in a “Coulomb” axial potential.*® In this paper we con-
sider the one-loop effective action for a spinor field in the presence of a constant
background chiral vector field. The analogous situation in which the interaction is

parity conserving is well known.!6-8

2. Effective Action

If a spinor v is in the presence of a background vector field V* and a background
axial field A* in four-dimensional Euclidean space, we have the Lagrangian

L=~ WiPy = WoP) —mt]tp, (1)
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where p = —id and W1 = V £ A are chiral fields. (The notation used is listed in
the Appendix.) The effective action is then given by the one-loop expression

Iy =Indet(pp — Wy P —W_P_ —m). (2)

We now rewrite Eq. (2) as

Ty = [mdet@ — WP, — W_P_) +Indet (1 e W+P:n— W_P_ﬂ (3)

and then expand the second term in Eq. (3) so that

et (1) - ‘“,2 ) @

We now rewrite

1 1 1
P—WoP —W_P_ _ﬁl—%(WJrPJﬂ'W—P—)

Z[ W+P++WP>]

which by the properties of the projection operators Py becomes

&[Gy G
Rk e

»
Similarly, we have for the first term in Eq. (3)

Indet(f — W, Py —W_P_) =tr |Ingp — Z <W+P+ ;I/VP_)

= tr[(In(f — W) Py + (In(p —W_))P-].  (6)
Together, Egs. (3)—(6) show that

I, = tr[(ln]]l+)P+ + (T )P — ?(Mim + P )
i)
FlEerreees) o

where I =p — W
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Electrodynamics in a Background Chiral Field 2881
If we now use the identity
1
tr X = §tr[X +7°X4%], ()

then we see that terms in Eq. (7) with odd powers of m vanish. This reduces
Eq. (7) to

OIS R TS AR
Under “charge conjugation” we find that
C P = WaPy —W_P_ —m)C = [+ WiP_ + W_Pe —m]"  (10)

and so Eq. (2) is symmetric under the replacement W — —W=. (In Ref. 9 the
fact that p*7 = —p* was ignored.)

3. Explicit Evaluation of the Effective Action

Evaluation of I" in Eq. (9) in closed form when m? # 0 involves having to determine
trIn(JLeWlx — m?). If Wy # Wy this is prohibitively difficult, even if Wy = +A.
In this case we must consider

trin[(ff £ A)(# F A) — m?] = trIn[(p" F io" A”)* + 247 £iAN —m?]  (11)

which, though it is well suited for a perturbative expansion in powers of A# 1011
does not lend itself to being evaluated even when A* corresponds to there being a
constant field strength.

However, if m? = 0, or if Eq. (9) were expanded to some finite order in powers of
m?, then one is faced with evaluation of only (A4 +A_) where Ay = tr[InJI3] Py .
In Refs. 1, 6 and 7, it is shown that since ( — V')? = (p* — V#)? — 0" FM (F =
0 A'V) the gamma matrix trace occurring in Ay involves

tre%FWU“"tPi = tr{ cosh K_P, +cosh K P_

t inh K inh K
+ §UMUF“V<SIHK P+ + San +P_) }Pi
- +

= 4cosh K+, (12)

where K3 = %[F“”F“” + Fr F*7]. We thus see that the presence of the chiral
projection operator Py in Eq. (9) serves to eliminate the contribution of cosh K4
as well as sinh K| and sinh K_, leaving only 4 cosh K—.

The background field strength W in the gauge z - W, = 0 can be expanded in
powers of the field strength F 214
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— -1
W =3 e a™ M BT (0). (13)

The first term in Eq. (13) corresponds to a constant background field as discussed
in Refs. 1, 6 and 7; higher contributions are dealt with in Refs. 8, 15-17. Other
special background field configurations have been considered.!-818-20

If m? =0 and W4 = £A, then we have a purely axial coupling and

P = 2 r(n( — AY)Ps + (n(p + AP)P]. (14)

If A% is in the gauge x - A = 0 so that it is expressed in the form of Eq. (13) then
gauge invariance is manifestly preserved since A* is expressed in terms of the field
strength. If we then expand 1"52) with this background field using the Schwinger
expansion as in Refs. 1 and 21, then the three-point function (AAA) vanishes.
However, again computing (AA4A) but with plane wave background axial fields, the
three-point function is consistent with the axial anomaly.' 3

If m? # 0 when Wy = 44 then Eq. (9) reduces to

T, = %tr{[ln(@ + AP —A) = m?) P+ In((ff — A)(F + A) —m?)|P-

+§M@—AP—mW+Am%}. (15)

There does not appear to be a way of evaluating this in closed form when even
At = —%F‘“’x” if m? # 0, though with this background field (AAA) = 0. With a
plane wave background field the axial anomaly can however be recovered?! when
(AAA) is computed by applying the Schwinger expansion® to Eq. (15).

Although it does not appear to be feasible to compute I'y when there is a
constant strength O* A¥ — 9V A* in Eq. (1), we can consider the case in which Ty is
restricted to being linear in the external axial field and the vector field is taken to
be constant. In this case we begin by using Eq. (8) to write

Ly = 5 Indet((§ — ¥~ A1)” —m?]. (16)

Dropping those terms in Eq. (12) that cannot contribute to the contribution to I'y

that are linear in A,, we see that upon letting m? = —m?2,

1 1 B
Iy ~ 3 In det {(p V)2 4+m? - iF“’jo‘“’ + A

+igh <2A”p” + %G“” - 2A“V”) ﬂ , (17)

where F* = QFVY — 9YV#* and GH = OF AY — 0¥V A*. If we now employ operator
regularization to expand I'y in Eq. (17) to the term linear in A,, we need the
equations?!
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1 1d
§lndet(Ho+H1) =———

1 o
tr —— / dtt°~ 1 e~ (HotHu)t
0

2ds|, T(s)
1d 1 o0 _ _ (—t) _
=—c—| —— [ dtt* tr|e ot 4 el
2d301"(s)/0 r[e * 1 ¢ !
—)2 1
4 2) / due” T O e Oy o (18)
0
Upon using Eq. (18), Eq. (17) reduces to
1d 1 > 2 2 1 ppr _pv
~2 = Attt —[(p=V)"+m=—5 F' "]t
YT 2ds 0 1"(3)/0 te i
X [z’Af‘M + o™ <2A)‘pd + %G“ - 2AAV">} 75 (19)
If F* is constant, then by Egs. (A.1) and (A.2) this becomes
Ld| 1 % s o=V)2+m?e
=37 s J, dtt®tre (cosh K_)Py + (cosh K1 )P_
0
sinh K _ sinh K o
+ ( K_ P+ + K+ P_)w g
. [z’Aj\,\ + 0™ <2A>‘po + %GA" - 2Akva>} vs (20)
where w” = 1 F*t and K3 = 2(w*w®® + w**Fw?).
Evaluating the y-matrix traces in Eq. (20) leads to
d j o
= ﬁ/@ dtt® tre_[(p_v)2+m2]t{(coshK_ - coshK+)A_’AA
0
sinh K_  sinh K\ ,, sinh K_  sinh K, \ ,,,
2 — -2
e e
x [2A’\pa + %GM - 2AW°’] } . (21)
When V# = —%F 1 v the result of Schwinger! gives

—p=V)2t .\ _ (/Id ) ) —L(t)
xle y) = exp | ¢ z-V(z) e

X exp (—i(z —y) F-cot(Ft) - (x — y)> (22)
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can be used to compute the functional trace in Eq. (21). (Here we have L(t) =
strIn((Ft)~*sin(Ft)).) In particular, it follows from Eq. (22) that

tre=(P=V)*t g0 — tr/dz<$|e—(P—V)2t|z>i8;<z|Ag|y>

/dx/dy5 28"[( m‘) exp (Z/ym sz(Z)) e~ L®

< exp (=3 =) FcotlFO) - (- 9) ) 4°0)

_Le_L(t) z[V (2) A (x) + 107 AN
T (Ant)? /d [V (x)A% (x) +i0; A™(x)] . (23)

Substitution Egs. (22) and (23) into Eq. (21) leads to

-1 d 1 e 2
N | [ dtt*TZe O™ t/d h K_ — cosh K ;) A##
N T ds . F(s)/o e x4 (cos cosh K) (x)
i sinh K_  sinh K sinh K_  sinh K
_ _G)\a' ¢ _ + F)\cr _ + F*)\cr )
2 K K K. ) K- TR,
(24)
Expanding Eq. (24) to lowest order in FA? results in
1
Ty ~ dtt5~ 2 e m t/d _t2F)\aF*>\UAu,u
: (4 2ds . / 12 ()
- z’tGM(x)F*M]
- / | — A7 F*27 At 4 i(1n ) GNP | (25)
(47)2 m?

Neither term in Eq. (25) would arise from the calculation of one-loop Feynman
diagrams with plane wave external fields. For F},, being a constant field, the first
term in Eq. (25) is a total derivative. When either F or G (or both) are non-constant,
the second term is also a total derivative.

4. The Two-Dimensional Limit

The two-dimensional limit of massive electrodynamics has been considered in
Refs. 22 and 23. If there is an axial coupling between the spinor and an exter-
nal axial field, this leads to the one-loop effective action

Iy = Indet(yf — Ao —m), p=—id. (26)
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However, as y*o3 = €V, this becomes
I'y =Indet(p — Ay ey, —m). (27)

Consequently, if the background field A,, corresponds to a constant field strength
A, =—-L1F, 2" = —Le,,a”, then Eq. (27) reduces to

2 2 T = Indet <¢ - £¢ - m> (28)

which is what would be obtained if there were a parity conserving coupling with an
external vector field V,, = 1 f9,(z*) which corresponds to a pure gauge field. This
effective action should thus be independent of f, which we will show explicitly by
using Schwinger’s technique.’

If now
_ f
I, =p,. — 5%u (29)
then Eq. (28) becomes
1
Iy = Indet?(W + m)(JT — m) = 5 In det(I1* — m?) (30)
upon using the two-dimensional analogue of Eq. (8) and
[I,,I1,] =0. (31)
Regulating 'y using the ¢-function?#?® we have
1d 1 e (oo
Ty=—-—| =—t dit(it)*~t elm -1t 32
2 2dsol"(s)r/0 (i) e (32)

To evaluate the functional trace in Eq. (32), we use the Hamiltonian approach of
Ref. 1, defining

(@(t)]y(0)) = (x|~ |y) (33)
with
H=-1I%. (34)
The equations
OHe)
= = [T (t), H], (35a)
Oz u
iy = [z#(t), H], (35b)
can be integrated to give
I1#(t) = 11*(0) , (36a)
z#(t) = —2I1,(0) . (36D)

Since Eq. (36) is identical to the equations that arise if f = 0, we see that
the effective action in two dimensions for a spinor in the presence of a constant
background axial field is just that of a free field.
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5. Conclusions

We thus see that the one-loop effective action for a spinor in the presence of a
constant background chiral field is closely related to that of considered in Refs. 1,
6-8 provided m? = 0. The case in which m? # 0 in four dimensions has not as yet
been given in closed form. Higher order calculations, or those involving non-constant
background fields are currently being considered, as is that all-orders approach in
the presence of a weak background field.26:27

We note the use of projection operators in conjunction with background gauge
fields in Ref. 28.

Appendix
In four-dimensional Euclidean space we have the conventions

{7t =20, Y] = 200",
[O_H,V7 O,)\a] _ 27;(6;0\0_1/0' o (SMO'O_V)\ + 5u<70,u)\ o 5u>\0,u0) ’
{a_,ul/7 O,)\a'} _ 2(5#)\51/0' _ 6pa'5u)\) _ 26#1/)\0'75 ’

7a7ﬂ7>\ — 50167)\ _ 600\76 + 56)\’7(1 _ eaﬁ)\p,}/pvf)’

1234 — 1 A5 = A28yt tr® =0,
a_,ul/,y5 — e,uu)\cra_)\cr .
1445
Po=-—1, (Pe’=P:, PiPr=0,
Pyt =~4#Pr,  Pyy° =9°Py.

These show that if
AT = (AL NPy + A_(NP_) + (BL(\) Py + B_(\)P)w" o™ | (A1)
then the differential equation

d v gpv BV v
ae)\w o _ wuuauue)\a w
leads to
Ai ZKZQFBi, Bi:Ai (Ai(O)Zl, Bi(O)ZO),

where K3 = 2(w"/w"” £w"w*") and w*" = 1e"*7w>? These have the solution
when A =1
sinh K+

Ay = cosh K, By = Ve
:F

(A.2)

The “charge conjugation” matrix C satisfies C~'4*C = —y#T, C~145C = 7.
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In two-dimensional Minkowski space, we take

00

g :1:_911

and Y =o', ~!' =io? so that

if €' =1=¢y, then y"y" = g — o> and ~ o® = eV, ,

(where o' is a Pauli spin matrix).
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