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9.8 Frobenius non-classical trinomial curves
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Abstract

Using a geometric interpretation of the Frobenius classicality of a curve with respect to the Veronese morphism, we

were able to identify the Frobenius non-classical trinomial curves with respect to the morphism of lines.

Keywords: Algebraic curves, Frobenius order-sequence, Rational points

Introduction
Stöhr and Voloch [2] presented a bound for the number of rational points on an algebraic curve. To obtain their

result, they studied the Frobenius order sequence of the curve associated to a projective embedding (see Definition

2). We say that a curve is Frobenius-classical if this sequence (of finite length n) is composed by the first n natural

numbers, and the curve is called Frobenius non-classical otherwise.

We want to bound the number of rational points of trinomial curves using the Stöhr-Voloch theory. For that, we

first need to find a suitable projective embedding and determine whether these curves are Frobenius classical or

non-classical with respect to it. Theorems 4 and 5 are examples of what we obtained on this matter.

Main results
We will denote by X an irreducible non-singular algebraic curve defined over an algebraically closed field k

of prime characteristic p and f : X 7→ Pn a projective embedding given in coordinates by f = ( f0 : · · · : fn), with

f0, . . . , fn ∈ k(X), the function field of X .

Definition 1. Let t be a separating variable of k(X)/k. We define the i-th Hasse derivative in k[t] as

D
(i)
t

(

∑a jt
j
)

= ∑

(

j

i

)

a jt
j−i

and we extend it naturally to k(X).
Definition 2. The Fq-Frobenius order sequence of the curve X with respect to the embedding f is the smallest

sequence (ν0, . . . ,νn−1) in the lexicographic order such that the determinant

det
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

is not zero in k(X).
When f is the Veronese morphism of degree d, there is a geometric interpretation of the Fq-Frobenius order

sequence as the intersection multiplicity of X with curves of degree up to d. In particular, the Frobenius classicality

(or non-classicality) of a curve can be determined by studying the image of its points under the Fq-Frobenius

morphism. This interpretation was used by several authors, for instance Arakelian and Borges. When d = 1 (the

morphism of lines), Proposition 2.6 in [1] can be restated as the following.

Theorem 3. Let X be a curve such that p ∤ (degX−1). We have X Fq-Frobenius non-classical with respect to

the morphism of lines if, and only if, the image of infinitely many points of X under the Fq-Frobenius morpshim

lies on their tangent lines.
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Using Theorem 3 and the bound provided by Stöhr and Voloch, we studied the Frobenius classicality of

trinomial curves and their number of rational points. The next two results are examples of what we obtained.

Theorem 4. The curve H : Xa +XbY c +Y d = 0, where a,b,c,d > 0,a ≥ d and p ∤ (ac+ bd− ad) is Fph-

Frobenius non-classical with respect to the morphism of lines if, and only if, there exists ℓ such that 3ℓ | h and

H : X (pℓ+1)(ph−1)/(p2ℓ+pℓ+1)+X (ph−1)/(p2ℓ+pℓ+1)Y (pℓ+1)(ph−1)/(p2ℓ+pℓ+1)+Y (ph−1)/(p2ℓ+pℓ+1) = 0.

Theorem 5. Let H : Xa+XbY c+Y d = 0 be a Fq-Frobenius classical curve, ac+bd−ad = pr ·M, gcd(a,d) =
pr1 ·D1, gcd(a−b,c) = pr2 ·D2 and gcd(b,c−d) = pr3 ·D3, where p is the characteristic of Fq. Then, the number

Nq(H ) of Fq-rational points of H satisfies

Nq(H )≤
M−D1−D2−D3+(q+2)max{a,b+ c}

2
.
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