

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Relatório Técnico

RT-MAC-2002-05

A NOTE ON THE EXISTENCE OF ZEROES OF
CONVEXLY REGULARIZED SUMS OF
MAXIMAL MONOTONE OPERATORS

*REGINA S. BURACHIK, SUZANA SCHEIMBERG, AND
PAULO J. S. SILVA*

maio de 2002

A NOTE ON THE EXISTENCE OF ZEROES OF CONVEXLY REGULARIZED SUMS OF MAXIMAL MONOTONE OPERATORS

REGINA S. BURACHIK, SUSANA SCHEIMBERG, AND PAULO J. S. SILVA

ABSTRACT. Many algorithms for solving the problem of finding zeroes of a sum of two maximal monotone operators T_1 and T_2 , have regularized subproblems of the kind: $0 \in T_1(x) + T_2(x) + \partial D(x)$, where D is a convex function. We develop an unified analysis for existence of solutions of these subproblems, through the introduction of the concept of convex regularization, which includes several well-known cases in the literature. Finally, we establish conditions, either on D or on the operators, which assure solvability of the subproblems.

1. INTRODUCTION

Let X be a reflexive real Banach space, with $\langle u, x \rangle$ written in place of $u(x)$, for $x \in X$ and $u \in X^*$. Moreover, let $J : X \rightrightarrows X^*$ be the normalized duality mapping, defined by the property $v \in Jx$ if, and only if, $\|v\|_{X^*}^2 = \|x\|_X^2 = \langle v, x \rangle$ for any $x \in X$, where $\|\cdot\|_X$ denotes the norm in the space X .

A multi-valued mapping $T : X \rightrightarrows X^*$ is said to be monotone if

$$\langle u - v, x - y \rangle \geq 0 \text{ whenever } u \in T(x), v \in T(y).$$

Moreover, it is said to be maximal if its graph is not properly contained in the graph of any other monotone mapping.

Given two maximal monotone operators $T_1, T_2 : X \rightrightarrows X^*$, a fundamental problem is the one of finding a zero of $T_1 + T_2$, i.e., the problem of finding an $x \in X$ such that

$$(1) \quad 0 \in T_1(x) + T_2(x).$$

A wide variety of problems can be regarded as special instances of (1). To name a few, linear and convex programming, solving systems of linear equations or inequalities, systems of partial differential equations, finding a point in the intersection of two convex sets, monotone complementarity, variational inequalities, and constrained minimax. When (1) is a model for a variational inequality problem, then T_2 is the normal cone N_C

Date: May 8th, 2002.

1991 Mathematics Subject Classification. 90C25, 90C30.

Key words and phrases. zeros of sums of maximal monotone operators, Legendre functions, generalized proximal-like algorithms, regularization.

Research supported by CNPq Grant 301280/94-0(RE) and PRONEX-Optimization.

Research supported by CNPq Grant 302393/85-4(RN).

Research supported by PRONEX-Optimization.

of a closed convex set C . Several algorithms for solving this problem have subproblems of the form

$$(2) \quad 0 \in T_1(x) + N_C(x) + \partial D(x),$$

where D is a regularization associated to C [11, 10, 3, 20, 7, 2, 8, 18]. Hence general conditions under which subproblems (2) have solutions are important from the algorithmic point of view.

More generally, our aim is to study the existence of solutions to the following problem:

$$(3) \quad 0 \in T_1(x) + T_2(x) + \partial D(x),$$

where D is a regularization. For an example in which T_2 is not the normal cone N_C , see e.g. [1, Section 3] and [5, Section 3].

2. CONVEX REGULARIZATIONS

We define below the regularizations that will be considered in problem (3). In order to do so, we recall a recent generalization of the concept of a Legendre function [15, Section 26] well suited for reflexive Banach spaces:

Definition 2.1. [4, Definition 5.2] *We say that a proper convex lower semicontinuous function $f : X \rightarrow (-\infty, +\infty]$ is*

- (a) *essentially smooth, if ∂f is both locally bounded and single valued on its domain.*
- (b) *essentially strictly convex, if ∂f^{-1} is locally bounded on its domain and f is strictly convex on every convex sub-set of $\text{dom } \partial f$. Note that the local boundedness of ∂f^{-1} is equivalent to $\text{rge } \partial f$ ($= \text{dom } \partial f^{-1}$) be open [4, Corollary 2.19]*
- (c) *Legendre, if it is both essentially smooth and essentially strictly convex.*

We can now introduce the concept of a convex regularization.

Definition 2.2. *Let C be subset of X with nonempty and convex interior. Let $D : X \rightarrow (-\infty, +\infty]$ a proper, convex and lower semi-continuous function. We will say that D is a convex regularization associated to C when it satisfies the following conditions:*

- (a) $\text{int dom } D = \text{int } C = \text{dom } \partial D$,
- (b) D attains its minimum on $\text{int } C$,
- (c) D is a Legendre function.

Some examples are:

- $X = \mathbb{R}^n$ and $C = \mathbb{R}_{++}^n$. Any φ -divergence [19] with center in $y \in \mathbb{R}_{++}^n$,

$$D(x) = \sum_{i=1}^n y_i \varphi \left(\frac{x_i}{y_i} \right),$$

is a convex regularization associated to \mathbb{R}_+^n . In particular, the Kullback-Leibler relative entropy $D(x) = \sum_{j=1}^n (x_j \log(x_j/y_j) + y_j - x_j)$. Another related example is the recently introduced family of distances based in an second order homogeneous kernels. They are defined as $D_\theta(x) = d_\theta(x, y) = \sum_{j=1}^n y_j^2 \theta(x_j/y_j)$, where $\theta(\cdot)$ is a function with logarithmic-quadratic behavior [2, Section 2]. The same holds for their generalizations presented in [18].

- X is a reflexive smooth and rotund space, so that $\frac{1}{2}\|x\|^2$ is a Legendre function. Consider C a subset of X such that $\text{int } C = \{x \in X : \|x\| < 1\}$. The functions $D_1(x) = -\sqrt{1 - \|x\|^2}$ if $\|x\| \leq 1$ and $+\infty$ otherwise, and $D_2(x) = (1 - \|x\|^2)^{-1}$ if $\|x\| < 1$ and $+\infty$ otherwise, are convex regularizations associated to C . Actually, in [4] it is proved that these are Legendre functions. They achieve their minimum at $x = 0$. We point out that in [12], the function $1 + D_1(x)$ is considered as a penalty function in the closed unit ball of center zero B . This last work deals with the variational inequality problem $VIP(T, B)$ on an uniformly convex and uniformly smooth Banach space.

Another nontrivial and important example is given in Proposition 3.4.

In view of (3) and condition (a) in Definition 2.2, it will be natural to consider $C = \text{dom } T_2$. In this case, it should be clear that any solution to (3) must lie in $\text{dom } T_1 \cap \text{int dom } T_2$. Hence, as our objective is to study the existence of such solutions, we will assume throughout this paper that

$$(4) \quad \text{dom } T_1 \cap \text{int dom}(T_2) \neq \emptyset.$$

This assumption also ensures that $T_1 + T_2$ is maximal monotone [16, Theorem 1]. Note that, by strict convexity of D , if (3) has a zero, it must be unique.

3. EXISTENCE OF SOLUTIONS FOR SPECIAL CONVEX REGULARIZATIONS

In this section, we will show some reasonable extra assumptions on the convex regularization D that can ensure the existence of solutions to (3).

We start by recalling two auxiliary results:

Lemma 3.1. [14, Lemma 2.1] *Let T be a maximal monotone operator and $F \subset X^*$ such that*

$$(5) \quad \forall u \in F, \exists y \in X, \sup_{(z,v) \in \text{gph } T} \langle v - u, y - z \rangle < \infty,$$

then $\text{conv } F \subset \overline{\text{rge } T}$ and $\text{int}(\text{conv } F) \subset \text{rge } T$.

Lemma 3.2. [8, Lemma 2.7] *Let T, S be monotone operators. Suppose that they satisfy the following conditions:*

- (1) *S is regular; i.e., $\forall u \in \text{rge } S, y \in \text{dom } S$,*

$$\sup_{(z,v) \in \text{gph } S} \langle v - u, y - z \rangle < \infty,$$

(2) $\text{dom } T \cap \text{dom } S \neq \emptyset$ and $\text{rge } S = X^*$;
 (3) $T + S$ is maximal monotone.

Then, $\text{rge}(T + S) = X^*$.

Now, it is easy to show a generalization of [7, Theorem 1] and part (2) of [2, Proposition 2]. This is basically [8, Corollary 3.1] presented in a general setting, not limited to Bregman distances [8]:

Theorem 3.3. *If $\text{rge } \partial D = X^*$, then (3) admits an unique solution.*

Proof. Since we assumed that $\text{rge } \partial D = X^*$, we simply use Lemma 3.2 with $S := \partial D$ and $T := T_1 + T_2$, remembering that ∂D is regular [5, Example 1], $(T_1 + T_2) + \partial D$ is maximal monotone [16, Theorem 1] and that assumption (4) holds. \square

Before we state our next result, we show that an important and well-known kind of regularization is a convex regularization.

Proposition 3.4. *Let $f : X \rightarrow (-\infty, +\infty]$ be a proper closed strictly convex function which has \overline{C} as effective domain. Assume that f is differentiable on $\text{int } C$. For $y \in \text{int } C$, define*

$$\mathcal{D}_f(x, y) = f(x) - f(y) - \langle \nabla f(y), x - y \rangle, \text{ for all } x \in \overline{C},$$

a Bregman-like distance. Then $\mathcal{D}_f(\cdot, y)$ is a convex regularization associated to C if, and only if, f is Legendre.

Proof. Assume that $\mathcal{D}_f(\cdot, y)$ is a convex regularization associated to C , then by using Definition 2.1, we conclude that f must be Legendre, since $\mathcal{D}_f(\cdot, y)$ and f differ only by an affine term. Conversely, assume that f is Legendre. Since part (c) of Definition 2.1 trivially holds, we only have to check conditions (a) and (b). Note that, $\text{int } C = \text{int dom } f = \text{dom } \partial f = \text{dom } \partial \mathcal{D}_f(\cdot, y)$, where the second equality holds because f is Legendre. Then condition (a) holds. Condition (b) is verified because the minimum of $\mathcal{D}_f(\cdot, y)$ is attained at y . \square

Corollary 3.5. *Assume that the hypotheses of Proposition 3.4 hold. The Bregman-like distance $\mathcal{D}_f(\cdot, y)$ is a convex regularization associated to C if*

- (a) $\text{rge } \partial f$ is open, and
- (b) \mathcal{D}_f is boundary coercive [9, Assumption B6].

Condition (a) above holds if X is finite dimensional and both conditions are valid whenever f is zone coercive [8].

Proof. By Proposition 3.4, it is enough to prove that f is Legendre.

Assume that (a) and (b) hold. Clearly, (a) and the strict convexity of f states that it is essentially strictly convex.

Moreover, let $\{y^k\}$ be a sequence in $\text{int } C$ converging to some point in the boundary of \overline{C} . As \mathcal{D}_f is boundary coercive we know that for every $x \in \text{int } C$

$$\langle \nabla f(y^k), x - y^k \rangle \rightarrow -\infty.$$

It follows that $\|\nabla f(y^k)\| \rightarrow +\infty$. Using [4, Theorem 5.6] we conclude that f is essentially smooth.

Let us prove the last assertion. Assume that X is finite dimensional and f is strictly convex. By [15, Theorem 26.3], f^* is essentially smooth. Using [15, Theorem 26.1] we conclude that $\text{rge } \partial f = \text{dom } \partial f^*$ is open.

Finally, if f is zone coercive, this means that $\text{rge } \partial f = X^*$, which is open. For checking (b), we show first that $\text{dom } \partial f = \text{int } C$. Otherwise there would be two points, one in the boundary of \overline{C} and the other in $\text{int } C$, sharing a sub-gradient, which would contradict the strict convexity of f [4, Lemma 5.1(ii)]. Hence, $\text{dom } \partial f = \text{int } C = \text{int } \text{dom } f$ and ∂f is single valued on its domain. Now, take $x \in \text{int } C$ and let $\{y^k\}$ be a sequence in $\text{int } C$ converging to \bar{y} in the boundary of \overline{C} . Using [4, Theorem 5.6 (iii) and (v)], we conclude that $\|\nabla f(y^k)\| \rightarrow +\infty$. Using the Fenchel equality,

$$\langle \nabla f(y^k), x - y^k \rangle = \langle \nabla f(y^k), x \rangle - f^*(\nabla f(y^k)) - f(y^k).$$

We observe that $f^*(\cdot) - \langle \cdot, x \rangle$ is coercive, as $x \in \text{int } \text{dom } f$ [4, Fact 3.1]. Taking limits above it follows that

$$\lim_{k \rightarrow +\infty} \langle \nabla f(x^k), x - y^k \rangle \leq -\infty - f(\bar{y}) = -\infty.$$

□

In the light of the previous lemma and the examples presented in Section 2, the next theorem is specially interesting. Actually, it generalizes several results that proved the existence of solutions to proximal subproblems in the context of variational inequalities. In particular, we drop the standard requirement of zone coerciveness for Bregman distances and replace it by the weaker conditions (a) and (b) from Corollary 3.5 above. We highlight that condition (a) is void in finite dimension, and condition (b), boundary coerciveness, is rather natural for interior point methods. The following theorem generalizes [11, Theorem 4(i)], [7, Theorems 1 and 2] and [8, Corollary 3.1]. Another result, not based on Bregman functions, that is extended below is [3, Theorem A.1], whose proof inspired our approach.

Theorem 3.6. *Let $0 \in \overline{\text{rge}(T_1 + T_2)}$ and, for all $y \in \text{int } \text{dom } T_2$ and all $w \in \text{dom } T_2$,*

$$(6) \quad \sup_{z \in \text{int } \text{dom } T_2} \{ \langle \nabla D(z) - \nabla D(y), w - z \rangle \} < \infty.$$

Then, (3) admits an unique solution. Moreover, if D is finite on $\text{dom } T_2$, (6) holds.

Proof. The proof is divided in four steps:

(1) $\text{rge } \partial D$ is an open neighborhood of 0.

It holds that $0 \in \text{rge } \partial D$, as we assumed that D attains its minimum. Moreover, since D is essentially strictly convex and X is a reflexive Banach space, D^* is essentially smooth. Hence $\text{dom } \partial D^* = \text{rge } \partial D$ is open and non-empty.

$$(2) 0 \in \text{int}(\text{rge}(T_1 + T_2) + \text{rge } \partial D).$$

Since $0 \in \text{int } \text{rge } \partial D$, there is an $\varepsilon > 0$ such that $B(0, \varepsilon) \subset \text{rge } \partial D$. Using also that $0 \in \text{rge}(T_1 + T_2)$, we have that $B(0, \varepsilon/2) \subset \text{rge}(T_1 + T_2) + \text{rge } \partial D$.

$$(3) 0 \in \text{int } \text{rge}(T_1 + T_2 + \partial D)$$

Let us apply Lemma 3.1 with $F \doteq \text{rge}(T_1 + T_2) + \text{rge } \partial D$ and $T \doteq T_1 + T_2 + \partial D$.

Since $\text{dom}(T_1 + T_2 + \partial D) = \text{dom } T_1 \cap \text{int dom } T_2$, we need to show that

$$(7) \forall u \in \text{rge}(T_1 + T_2) + \text{rge } \partial D, \exists y \in X,$$

$$\sup \{ \langle v - u, y - z \rangle \mid z \in \text{dom } T_1 \cap \text{int dom } T_2, v \in (T_1 + T_2 + \nabla D)(z) \} < \infty.$$

For any $u \in \text{rge}(T_1 + T_2) + \text{rge } \partial D$, let $u_0 \in X^*$, $y \in \text{dom } T_1 \cap \text{dom } T_2$ and $\tilde{y} \in \text{int dom } T_2$ be such that

$$u = u_0 + \nabla D(\tilde{y}), u_0 \in (T_1 + T_2)(y).$$

For $z \in \text{dom } T_1 \cap \text{int dom } T_2$ and $v \in (T_1 + T_2 + \nabla D)(z)$, let $v_0 \in (T_1 + T_2)(z)$ be such that $v = v_0 + \nabla D(z)$. Then,

$$\begin{aligned} \langle v - u, y - z \rangle &= \langle v_0 + \nabla D(z) - u_0 - \nabla D(\tilde{y}), y - z \rangle \\ &= \langle v_0 - u_0, y - z \rangle + \langle \nabla D(z) - \nabla D(\tilde{y}), y - z \rangle \\ &\leq \langle \nabla D(z) - \nabla D(\tilde{y}), y - z \rangle. \quad [T_1 + T_2 \text{ is monotone}] \end{aligned}$$

Taking the supremum for all $z \in \text{dom } T_1 \cap \text{int dom } T_2$ and $v \in (T_1 + T_2 + \nabla D)(z)$ above, we conclude that (6) implies (7).

Therefore Lemma 3.1 states that $\text{int conv}(\text{rge}(T_1 + T_2) + \text{rge } \partial D) \subset \text{int } \text{rge}(T_1 + T_2 + \partial D)$. Finally, using Step 2 above, we learn that $0 \in \text{int } \text{rge}(T_1 + T_2 + \partial D)$. This establishes the first assertion of the thesis.

$$(4) \text{ Property (6) holds if } D \text{ is finite on } \text{dom } T_2.$$

Let $w \in \text{dom } T_2$ and $y, z \in \text{int dom } T_2$, then

$$\begin{aligned} \langle \nabla D(z) - \nabla D(y), w - z \rangle &\leq D(w) - D(z) - \langle \nabla D(y), w - z \rangle \\ &= D(w) - D(z) - \langle \nabla D(y), w \rangle + \langle \nabla D(y), z \rangle \\ &\leq D(w) - D(z) - \langle \nabla D(y), w \rangle + \\ &\quad + D(z) - D(y) + \langle \nabla D(y), y \rangle \\ &= D(w) - D(y) + \langle \nabla D(y), y - w \rangle, \end{aligned}$$

where we used the gradient inequality. Since the right-hand side does not depend on z , the supremum in (6) is bounded above.

□

4. EXISTENCE OF SOLUTIONS FOR SPECIAL PROBLEMS

In this section, we change the extra assumptions on D for the following assumption on problem (1).

$$(8) \quad h(x) := \sup \{ \langle v, x - y \rangle \mid y \in \text{dom } T_2, v \in (T_1 + T_2)(y) \} < \infty,$$

for all $x \in \text{dom } T_1 \cap \text{dom } T_2$. This inequality was studied in [6, Chapter 3] and [7, Theorem 2] in the context of variational inequalities in Hilbert spaces. Here we use it in the context of reflexive Banach spaces for problem (1). We should stress that (8) holds whenever $T_1 = \partial f$ for some convex function bounded below and $T_2 = N_C$ for a nonempty, convex and closed set C . Therefore, the next theorem also extends [20, Lemma 3.1], [10, Proposition 4.1] and [18, Lemma 3.2]. For other conditions that ensure (8) see [6, Proposition 3.1].

Theorem 4.1. *Assume that D is a convex regularization associated to $\text{dom } T_2$. If (8) holds, then (3) admits an unique solution.*

Proof. If $\text{dom}(T_1 + T_2 + \partial D)$ is bounded, then by [13, Theorem 4.1], $T_1 + T_2 + \partial D$ is onto, and hence (3) has a solution. Otherwise, let \bar{x} be the point in $\text{int dom } T_2$ where D attains its minimum and let $\alpha = |h(\bar{x})|$. As the level sets of D are bounded, there must be a $\delta > 0$ such that

$$x \in X, \|x - \bar{x}\| > \delta \Rightarrow D(x) - D(\bar{x}) > \alpha.$$

Since $\text{dom}(T_1 + T_2 + \partial D)$ is unbounded, there exists $x \in \text{dom}(T_1 + T_2 + \partial D) = \text{dom } T_1 \cap \text{int dom } T_2$, such that $\|x\| > \|\bar{x}\| + \delta$. For such x , take $v \in (T_1 + T_2 + \partial D)(x)$, which may be written in the form $v_0 + \nabla D(x)$ for some $v_0 \in (T_1 + T_2)(x)$. Note that x verifies $\|x - \bar{x}\| > \delta$, hence,

$$\begin{aligned} \langle v, x - \bar{x} \rangle &= \langle v_0, x - \bar{x} \rangle + \langle \nabla D(x), x - \bar{x} \rangle \\ &\geq -\alpha + \langle \nabla D(x), x - \bar{x} \rangle \\ &\geq -\alpha + \alpha = 0. \end{aligned}$$

It follows from [16, Theorem 5(c)] applied to the zeroes of $(T_1 + T_2 + \partial D)$, that (3) has a solution. \square

REFERENCES

- [1] A. Auslender and M. Teboulle, Lagrangian duality related multiplier methods for variational inequality problems, *SIAM Journal on Optimization*, 10 (2000), 1097–1115.
- [2] A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, *Computational Optimization and Applications*, 12 (1999), 31–40.
- [3] A. Auslender and M. Haddou, An interior-proximal method for convexly linearly constrained problems and its extension to variational inequalities, *Mathematical Programming*, 71 (1995), 77–100.
- [4] H. H. Bauschke, J. M. Borwein and P. L. Combettes, Essential smoothness, essential strict convexity, and Legendre Functions in Banach spaces, *pre-print*.

- [5] H. Brézis and A. Haraux, Image d'une somme d'opérateurs monotones et applications, *Israel Journal of Mathematics*, 23 (1976), 165–186.
- [6] R. S. Burachik, Generalized Proximal Point Methods for the Variational Inequality Problem, *Ph.D. Thesis*, IMPA, Rio de Janeiro, Brazil, 1995.
- [7] R. S. Burachik and A. N. Iusem, A generalized proximal point algorithm for the variational inequality problem in a Hilbert space, *SIAM Journal on Optimization*, 8 (1998), 197–216.
- [8] R. S. Burachik and S. Scheimberg, A proximal point method for the variational inequality problem in Banach spaces. *SIAM Journal on Control and Optimization*, 39 (2000), 1633–1649.
- [9] A. N. Iusem, Some properties of generalized proximal point methods for quadratic and linear programming, *Journal of Optimization Theory and Applications*, 85 (1995), 593–612.
- [10] A. N. Iusem, B. F. Svaiter and M. Teboulle, Entropy-like proximal methods in convex programming, *Mathematics of Operations Research*, 19 (1994), 790–814.
- [11] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming, *Mathematics of Operations Research*, 18 (1993), 202–226.
- [12] R. G. Otero, Inexact versions of proximal point and cone-constrained augmented Lagrangians in Banach spaces, *Ph.D. Thesis*, IMPA, Rio de Janeiro, Brazil, 2001.
- [13] D. Pascali, S. Sburlan, *Nonlinear Mappings of Monotone type*, Editura Academiei, Bucaresti, Romania, 1978.
- [14] S. Reich, The range of sums of accretive and monotone operators, *Journal of Mathematical Analysis and Applications*, 68 (1979), 310–317.
- [15] R. T. Rockafellar, *Convex Analysis*, Princeton University Press, 1970.
- [16] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, *Transactions of the American Mathematical Society*, 149 (1970), 75–88.
- [17] R. T. Rockafellar, Local boundedness of nonlinear monotone operators, *Michigan Mathematics Journal*, 16 (1969), 397–407.
- [18] P. J. S. Silva, J. Eckstein, C. Humes Jr., Rescaling and stepsize selection in proximal method using generalized distances. *SIAM Journal on Optimization*, 12 (2001), 238–261.
- [19] M. Teboulle, Entropic proximal mappings with applications to nonlinear programming, *Mathematics of Operation Research*, 17 (1992), 670–690.
- [20] M. Teboulle, Convergence of proximal-like algorithms, *SIAM Journal on Optimization*, 7 (1997), 1069–1083.

ENGENHARIA DE SISTEMAS E COMPUTAÇÃO, COPPE-UFRJ, CP 68511, CEP: 21945-970 Rio de Janeiro-RJ, BRAZIL

E-mail address: regi@cos.ufrj.br

ENGENHARIA DE SISTEMAS E COMPUTAÇÃO, COPPE-UFRJ, CP 68511, CEP: 21945-970 Rio de Janeiro-RJ, BRAZIL

E-mail address: susana@cos.ufrj.br

COMPUTER SCIENCE DEPARTMENT, IME-USP, RUA DO MATÃO 1010, CIDADE UNIVERSITÁRIA, CEP: 05508-090 SÃO PAULO-SP, BRAZIL

E-mail address: rsilva@ime.usp.br

RELATÓRIOS TÉCNICOS

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Instituto de Matemática e Estatística da USP

A listagem contendo os relatórios técnicos anteriores a 1998 poderá ser consultada ou solicitada à Secretaria do Departamento, pessoalmente, por carta ou e-mail (mac@ime.usp.br).

Carlos Alberto de Bragança Pereira, Fabio Nakano e Julio Michael Stern
A DYNAMIC SOFTWARE CERTIFICATION AN VERIFICATION PROCEDURE
RT-MAC-9901, março 1999, 21pp.

Carlos E. Ferreira e Dilma M. Silva
BCC DA USP: UM NOVO CURSO PARA OS DESAFIOS DO NOVO MILÊNIO
RT-MAC-9902, abril 1999, 12pp.

Ronaldo Fumio Hashimoto and Junior Barrera
A SIMPLE ALGORITHM FOR DECOMPOSING CONVEX STRUCTURING ELEMENTS
RT-MAC-9903, abril 1999, 24 pp.

Jorge Euler, Maria do Carmo Noronha e Dilma Menezes da Silva
ESTUDO DE CASO: DESEMPENHO DEFICIENTE DO SISTEMA OPERACIONAL LINUX PARA CARGA MISTA DE APLICAÇÕES.
RT-MAC-9904, maio 1999, 27 pp.

Carlos Humes Junior e Paulo José da Silva e Silva
AN INEXACT CLASSICAL PROXIMAL POINT ALGORITHM VIEWED AS DESCENT METHOD IN THE OPTIMIZATION CASE
RT-MAC-9905, maio 1999, pp.

Carlos Humes Junior and Paulo José da Silva e Silva
STRICT CONVEX REGULARIZATIONS, PROXIMAL POINTS AND AUGMENTED LAGRANGIANS
RT-MAC-9906, maio 1999, 21 pp.

Ronaldo Fumio Hashimoto, Junior Barrera, Carlos Eduardo Ferreira
A COMBINATORIAL OPTIMIZATION TECHNIQUE FOR THE SEQUENTIAL DECOMPOSITION OF EROSIONS AND DILATIONS
RT-MAC-9907, maio 1999, 30 pp.

Carlos Humes Junior and Marcelo Queiroz
ON THE PROJECTED PAIRWISE MULTICOMMODITY FLOW POLYHEDRON
RT-MAC-9908, maio 1999, 18 pp.

Carlos Humes Junior and Marcelo Queiroz
TWO HEURISTICS FOR THE CONTINUOUS CAPACITY AND FLOW ASSIGNMENT
GLOBAL OPTIMIZATION
RT-MAC-9909, maio 1999, 32 pp.

Carlos Humes Junior and Paulo José da Silva e Silva
AN INEXACT CLASSICAL PROXIMAL POINT ALGORITHM VIEWED AS A
DESCENT METHOD IN THE OPTIMIZATION CASE
RT-MAC-9910, julho 1999, 13 pp.

Markus Endler and Dilma M. Silva and Kunio Okuda
A RELIABLE CONNECTIONLESS PROTOCOL FOR MOBILE CLIENTS
RT-MAC-9911, setembro 1999, 17 pp.

David Robertson, Fávio S. Corrêa da Silva, Jaume Agustí and Wamberto W. Vasconcelos
A LIGHTWEIGHT CAPABILITY COMMUNICATION MECHANISM
RT-MAC-9912, novembro 1999, 14 pp.

Flávio S. Corrêa da Silva, Jaume Agustí, Roberto Cássio de Araújo and Ana Cristina V. de Melo
KNOWLEDGE SHARING BETWEEN A PROBABILISTIC LOGIC AND BAYESIAN BELIEF NETWORKS
RT-MAC-9913, novembro 1999, 13 pp.

Ronaldo F. Hashimoto, Junior Barrera and Edward R. Dougherty
FINDING SOLUTIONS FOR THE DILATION FACTORIZATION EQUATION
RT-MAC-9914, novembro 1999, 20 pp.

Marcelo Finger and Wanberto Vasconcelos
SHARING RESOURCE-SENSITIVE KNOWLEDGE USING COMBINATOR LOGICS
RT-MAC-2000-01, março 2000, 13pp.

Marcos Alves e Markus Endler
PARTICIONAMENTO TRANSPARENTE DE AMBIENTES VIRTUAIS DISTRIBUÍDOS
RT-MAC-2000-02, abril 2000, 21pp.

Paulo Silva, Marcelo Queiroz and Carlos Humes Junior
A NOTE ON "STABILITY OF CLEARING OPEN LOOP POLICIES IN MANUFACTURING SYSTEMS"
RT-MAC-2000-03, abril 2000, 12 pp.

Carlos Alberto de Bragança Pereira and Julio Michael Stern

FULL BAYESIAN SIGNIFICANCE TEST: THE BEHRENS-FISHER AND COEFFICIENTS OF VARIATION PROBLEMS

RT-MAC-2000-04, agosto 2000, 20 pp.

Telba Zalkind Irony, Marcelo Lauretto, Carlos Alberto de Bragança Pereira and Julio Michael Stern

A WEIBULL WEAROUT TEST: FULL BAYESIAN APPROACH

RT-MAC-2000-05, agosto 2000, 18 pp.

Carlos Alberto de Bragança Pereira and Julio Michael Stern

INTRINSIC REGULARIZATION IN MODEL SELECTION USING THE FULL BAYESIAN SIGNIFICANCE TEST

RT-MAC-2000-06, outubro 2000, 18 pp.

Douglas Moreto and Markus Endler

EVALUATING COMPOSITE EVENTS USING SHARED TREES

RT-MAC-2001-01, janeiro 2001, 26 pp.

Vera Nagamura and Markus Endler

COORDINATING MOBILE AGENTS THROUGH THE BROADCAST CHANNEL

RT-MAC-2001-02, janeiro 2001, 21 pp.

Júlio Michael Stern

THE FULLY BAYESIAN SIGNIFICANCE TEST FOR THE COVARIANCE PROBLEM

RT-MAC-2001-03, fevereiro 2001, 15 pp.

Marcelo Finger and Renata Wassermann

TABLEAUX FOR APPROXIMATE REASONING

RT-MAC-2001-04, março 2001, 22 pp.

Julio Michael Stern

FULL BAYESIAN SIGNIFICANCE TESTS FOR MULTIVARIATE NORMAL STRUCTURE MODELS

RT-MAC-2001-05, junho 2001, 20 pp.

Paulo Sérgio Naddeo Dias Lopes and Hernán Astudillo

VIEWPOINTS IN REQUIREMENTS ENGINEERING

RT-MAC-2001-06, julho 2001, 19 pp.

Fabio Kon

O SOFTWARE ABERTO E A QUESTÃO SOCIAL

RT-MAC-2001-07, setembro 2001, 15 pp.

Isabel Cristina Italiano, João Eduardo Ferreira and Osvaldo Kotaro Takai
ASPECTOS CONCEITUAIS EM DATA WAREHOUSE
RT - MAC-2001-08, setembro 2001, 65 pp.

Marcelo Queiroz , Carlos Humes Junior and Joaquim Júdice
ON FINDING GLOBAL OPTIMA FOR THE HINGE FITTING PROBLEM
RT- MAC -2001-09, novembro 2001, 39 pp.

Marcelo Queiroz , Joaquim Júdice and Carlos Humes Junior
THE SYMMETRIC EIGENVALUE COMPLEMENTARITY PROBLEM
RT- MAC-2001-10, novembro 2001, 33 pp.

Marcelo Finger, and Fernando Antonio Mac Cracken Cesar
BANCO DE DADOS OBSOLESCENTES E UMA PROPOSTA DE IMPLEMENTAÇÃO.
RT- MAC - 2001-11- novembro 2001, 90 pp.

Flávio Soares Correa da Silva
TOWARDS A LOGIC OF PERISHABLE PROPOSITIONS
RT- MAC- 2001-12 - novembro 2001, 15 pp.

Alan M. Durham
**O DESENVOLVIMENTO DE UM INTERPRETADOR ORIENTADO A OBJETOS PARA
ENSINO DE LINGUAGENS**
RT-MAC-2001-13 – dezembro 2001, 21 pp.

Alan M. Durham
A CONNECTIONLESS PROTOCOL FOR MOBILE AGENTS
RT-MAC-2001-14 – dezembro 2001, 12 pp.

Eugenio Akihiro Nassu e Marcelo Finger
O SIGNIFICADO DE "AQUI" EM SISTEMAS TRANSACIONAIS MÓVEIS
RT-MAC-2001-15 – dezembro 2001, 22 pp.

Carlos Humes Junior, Paulo J. S. Silva e Benar F. Svaiter
SOME INEXACT HYBRID PROXIMAL AUGMENTED LAGRANGIAN ALGORITHMS
RT-MAC-2002-01 – Janeiro 2002, 17 pp.

Roberto Speicys Cardoso e Fabio Kon
APLICAÇÃO DE AGENTES MÓVEIS EM AMBIENTES DE COMPUTAÇÃO UBÍQUA.
RT-MAC-2002-02 – Fevereiro 2002, 26 pp.

Julio Stern and Zacks

TESTING THE INDEPENDENCE OF POISSON VARIATES UNDER THE HOLGATE BIVARIATE DISTRIBUTION: THE POWER OF A NEW EVIDENCE TEST.

RT- MAC – 2002-03 – Abril 2002, 18 pp.

E. N. Cáceres, S. W. Song and J. L. Szwarcfiter

A PARALLEL ALGORITHM FOR TRANSITIVE CLOSURE

RT-MAC – 2002-04 – Abril 2002, 11 pp.

Regina S. Burachik, Suzana Scheimberg, and Paulo J. S. Silva

A NOTE ON THE EXISTENCE OF ZEROES OF CONVEXLY REGULARIZED SUMS OF MAXIMAL MONOTONE OPERATORS

RT- MAC 2202-05 – MAIO 2002, 14 pp.