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ABSTRACT. Many algorithms for solving the problem of finding zeroes of a sum of 
two maximal monotone operators T1 and T2 , have regularized subproblems of the 
kind: 0 E T1(x)+T2{x)+8D(x), where Dis a convex function. We develop an unified 
analysis for existence of solutions of these subproblems, through the introduction of 
the concept of convex regularization, which includes several well-known cases in the 
literature. Finally, we establish conditions, either on D or on the operators, which 
assure solvability of the subproblems. 

l. INTRODUCTION 

Let X be a reflexive real Banach space, with {u, x) written in place of u(x), for x E X 
and u Ex•. Moreover, let J: X ~ x• be the normalized duality mapping, defined by 
the property v E Jx if, and only if, llvll3c• = llxll3c = {v, x) for any x E X, where II · llx 
denotes the norm in the space X. 

A multi-valued mapping T : X =i X• is said to be monotone if 

(u -v,x - y) ~ 0 whenever u E T(x), v E T(y). 

Moreover, it is said to be maximal if its graph is not properly contained in the graph 
of any other monotone mapping. 

Given two maximal monotone operators T1, T2 : X ~ x•, a fundamental problem is 
the one of finding a zero of T1 + T2 , i.e., the ·problem of finding an x E X such that 

(1) 0 E T1(x) + T2(x). 

A wide variety of problems can be regarded as special instances of (1). To name a 
few, linear and convex programming, solving systems of linear equations or inequalities, 
systems of partial differential equations, finding a point in the intersection of two con­
vex sets, monotone complementarity, variational inequalities, and constrained minimax. 
When (1) is a model for a variational inequality problem, then T2 is the normal cone Ne 

Date: May 8th, 2002. 
1991 Mathematica Subject Classification. 90C25, 90C30. 
Key words and phraaes. zeros of sums of maximal monotone operators, Legendre functions, gener-

alized proximal-like algorithms, regularization. 
Research supported by CNPq Grant 301280/94-0(RE) and PRONEX-Optimization. 
Research supported by CNPq Grant 302393/ 85-4(RN) . 
Research supported by PRONEX-Optimization. 

- 1· 



2 REGINA S. BURACHIK, SUSANA SCHEIMBERG, AND PAULO J. S. SILVA 

of a closed convex set C. Several algorithms for solving this problem have subproblems 
of the form 

(2) 0 E T1(x) + Nc(x) + 8D(x), 

where Dis a regularization associated to C [11, 10, 3, 20, 7, 2, 8, 18]. Hence general con­
ditions under which subproblems {2) have solutions are important from the algorithmic 
point of view. 

More generally, our aim is to study the existence of solutions to the following problem: 

(3) 

where D is a regularization. For an example in which T2 is not the normal cone Ne, 
see e.g. [l, Section 3] and [5, Section 3]. 

2. CONVEX REGULARIZATIONS 

We define below the regularizations that will be considered in problem (3). In order 
to do so, we recall a recent generalization of the concept of a Legendre function (15, 
Section 26) well suited for reflexive Banach spaces: 

Definition 2.1. 14, Definition 5.2) We say that a proper con11ex lower semicontinous 
function f: X ➔ (-oo, +oo] is 

( a) essentially smooth, if{) f is both locally bounded and single valued on its domain. 

(b) essentially strictly convex, if 8J-1 is locally bounded on its domain and f is 
strictly convex on every convex sub-set of dom8f. Note that the local bounded­
ness of a1-1 is equivalent to rgeof (= dom8J-1) be open 14, Corollary 2.19) 

(c) Legendre, if it is both essentially smooth and essentially strictly convex. 

We can now introduce the concept of a convex regularization. 

Definition 2.2. Let C be subset of X with nonempty and convex interior. Let D : X -+ 
(-oo, +oo] a proper, convex and lower semi-continuous function. We will say that D is 

a convex regularization associated to C when it satisfies the following conditions: 

(a) intdomD = intC = dom8D, 
(b) D attains its minimum on int C, 
( c) D is a Legendre function. 

Some examples are: 

• X = R" and C = R+· Any cp-divergence [19] with center in y E ~+• 

D(x) = twp (xi)' 
j=l y, 
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is a convex regularization associated to Rt. In particular, the Kullback-Leibler 
relative entropy D(x) = E7=1 (x; log(x;/Yi) +y1 -x1). Another related example 
is the recently introduced family of distances based in an second order homoge­
neous kernels. They are defined as De(x) = de(x, y) = I:i=l yJ0(x;/Y;), where 
0(-) is a function with logarithmic-quadratic behavior 12, Section 2]. The same 
holds for their generalizations presented in l18J. 

• X is a reflexive smooth and rotund space, so that ½llx\12 is a Legendre function. 
Consider Ca subset of X such that intC = {x EX: llxll < l}. The functions 
D1(x) = -Jl - \lxll 2 if llxll ~ 1 and +oo otherwise, and D2(x) = (l- llxll2

)-1 if 
llxll < 1 and +oo otherwise, are convex regularizations associated to C. Actually, 
in 14] it is proved that these are Legendre functions. They achieve their minimum 
at x = 0. We point out that in l12J, the function 1 + D 1(x) is considered as a 
penalty function in the closed unit ball of center zero B. This last work deals 
with the variational inequality problem VIP(T, B) on an uniformly convex and 
uniformly smooth Banach space. 

Another nontrivial and important example is given in Proposition 3.4. 
In view of (3) and condition (a) in Definition 2.2, it will be natural to consider 

C = dom T2• In this case, it should be clear that any solution to (3) must lie in 
dom T1 n int dom T2 • Hence, as our objective is to study the existence of such solutions, 
we will assume throughout this paper that 

(4) domT1 nintdom{T2)-/= 0. 
This assumption also ensures that T1 +T2 is maximal monotone {16, Theorem lJ. Note 
that, by strict convexity of D, if {3) has a zero, it must be unique. 

3. EXISTENCE OF SOLUTIONS FOR SPECIAL CONVEX REGULARIZATIONS 

In this section, we will show some reasonable extra assumptions on the convex regu­
larization D that can ensure the existence of solutions to (3). 

We start by recalling two auxiliary results: 

Lemma 3.1. 114, Lemma 2.lJ Let T be a maximal monotone operator and F C x• 
such that 

(5) Vu E F, 3y E X, sup (v - u, y - z) < oo, 
(z,v)EgphT 

then conv F C rge T and int( conv F) C rge T. 

Lemma 3.2. 18, Lemma 2. 7] Let T, S be monotone operators. Suppose that they satisfy 
the following conditions: 

(1) Sis regular; i.e., Vu E rgeS, y E domS, 

sup (v - u, y - z) < oo, 
(z,v)EgphS 



4 REGINA S. BURACHIK, SUSANA SCHEIMBERG, AND PAULO J. S. SILVA 

(2) dom T n dom S # 0 and rge S = x•; 
(3) T + S is maximal monotone. 

· Then, rge(T + S) = x•. 
Now, it is easy to show a generalization of 17, Theorem 1] and part (2) of 12, Propo­

sition 2]. This is basically 18, Corollary 3.1) presented in a general setting, not limited 
to Bregman distances 18): 

Theorem 3.3. If rge oD = x•, then (3) admit.! an unique solution. 

Proof. Since we assumed that rge 8D = x•, we simply use Lemma 3.2 with S := 8D 
and T := T1 + n, remembering that {JD is regular f5, Example 1), (T1 + T2) + oD is 
maximal monotone 116, Theorem 1) and that assumption (4) holds. D 

Before we state our next result, we show that an important and well-known kind of 
regularization is a convex regularization. 

Proposition 3.4. Let f : X ➔ (-oo, +oo] be a proper closed strictly convex function 
which has C as effective domain. Assume that f is differentiable on int C. For y E int C, 
define 

'D1 (x, y) = f(x) - f(y) - (v' f(y), x - y), for all x EC, 

a Bregman-like distance. Then 'D1(-, y) is a convex regularization associated to C if, 
and only if, f is Legendre. 

Proof. Assume that 'Di(·, y) is a convex regularization associated to C, then by using 
Definition 2.1, we conclude that/ must be Legendre, since 1>1(•, y) and/ differ only by 
an affine term. Conversely, assume that / is Legendre. Since part (c) of Definition 2.1 
trivially holds, we only have to check conditions (a) and (b). Note that, int C = 
intdom/ = dom{)/ = dom8'D1(-,y), where the second equality holds because/ is 
Legendre. Then condition (a) holds. Condition (b) is verified because the minimum of 
'Di(·, y) is attained at y. □ 

Corollary 3.5. Assume that the hypotheaes of Proposition 3.,4 hold. The Bregman-like 
distance 1>1(·, y) is a convex regularization associated to C if 

(a) rge8/ is open, and 
(b) 'Di is boundary coercive f9, Assumption B6). 

Condition ( a) above holds if X is finite dimensional and both conditions are valid when­
ever f is zone coercive [8j. 

Proof. By Proposition 3.4, it is enough to prove that f is Legendre. 
Assume that (a) and (b) hold. Clearly, (a) and the strict convexity off states that 

it is essentially strictly convex. 
Moreover, let {yt} be a sequence in int C converging to some point in the boundary 

of C. As 'Di is boundary coercive we know that for every x E int C 

(Vf(y"),x -y") ➔ -oo. 
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It follows that IIV J(yk)II -+ +oo. Using [4, Theorem 5.6] we conclude that / is essen­
tially smooth. 

Let us prove the last assertion. Assume that X is finite dimensional and / is strictly 
convex. By [15, Theorem 26.3], f* is essentially smooth. Using )15, Theorem 26.1) we 
conclude that rge8/ = dom8f" is open. 

Finally, if f is zone coercive, this means that rge 8 f = x•, which is open. For checking 
(b), we show first that dom8f = intC. Otherwise there would be two points, one in 
the boundary of C and the other int C, sharing a sub-gradient, which would contradict 
the strict convexity of J [4, Lemma 5.l(ii)]. Hence, domof = intC = intdomf and 8/ 
is single valued on its domain. Now, take x E int C and let {yk} be a sequence in int C 
converging toy in the boundary of C. Using [4, Theorem 5.6 (iii) and (v)J, we conclude 
that IIV f (yk)II -+ +oo. Using the Fenchel equality, · 

(V J(y1'), X - yk} = ('v f (yk), x} - r ('v f (l)) - f (y"). 

We observe that/"(·) - (·,x) is coercive, as x E intdom/ [4, Fact 3.1]. Taking limits 
above it follows that 

D 

In the light of the previous lemma and the examples presented in Section 2, the next 
theorem is specially interesting. Actually, it generalizes several results that proved the 
existence of solutions to proximal subproblems in the context of variational inequali­
ties. In particular, we drop the standard requirement of zone coerciveness for Bregman 
distances and replace it by the weaker conditions (a) and (b) from Corollary 3.5 above. 
We highlight that condition (a) is void in finite dimension, and condition (b), bound­
ary coerciveness, is rather natural for interior point methods. The following theorem 
generalizes [11, Theorem 4(i)], [7, Theorems 1 and 2) and [8, Corollary 3.11. Another 
result, not based on Bregman functions, that is extended below is [3, Theorem A.1), 
whose proof inspired our approach. 

Theorem 3.6. Let O E rge(T1 + T2) and, for all y E int dom T2 and all w E <lorn T2, 

(6) sup { ('v D(z) - 'v D(y), w - z)} < oo. 
zEintdomT2 

Then, (3) admits an unique solution. Moreover, if D is finite on dom T2, (6) holds. 

Proof. The proof is divided in four steps: 

(1) rge 8D is an open neighborhood of 0. 
It holds that OE rgeBD, as we assumed that D attains its minimum. More­

over, since Dis essentially strictly convex and Xis a reflexive Banach space, D• 
is essentially smooth. Hence domav• = rge8D is open and non-empty. 
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(2) 0 E int ( rge(T1 + T2) + rge8D). 
Since OE intrge8D, there is an e >: 0 such that B(O,e) C rge8D. Using also 

that OE rge(T1 +n}, we have that B(O,e/2) c rge(T1 +T2) +rge8D. 

(3) 0 E int rge(T1 + T2 + 8D) 
Let us apply Lemma3.l with F == rge(T1 +T2)+rge8D and T = Ti +T2+8D. 
Since dom(T1 + T2 + 8D) = dom T1 n int dom T2, we need to show that 

(7) Vu E rge(T1 + T2) + rge8D, 3y EX, 

sup { (v -u,y- z) I z E domT1 n intdomT2, v E (T1 +T2 + VD)(z)} < co. 

For any u E rge(T1 + T2) + rgeaD, let uo EX•, y E domT1 n domT2 and 
y E int dom 7; be such that 

u = uo + V D(y}, uo E (T1 + T2)(11). 

For z E domT1 n intdomT2 and t1 E (T1 +T2 + VD)(z}, let tJo E (T1 +T2)(z) 
be such that v =Vo+ VD(z). Then, 

(v - u, ti - z} = (Vo+ V D(z) - uo - V D(y), y - z} 

= (vo- Uo,11-z} + (VD(z) -VD(y),y-z} 

:'.5 (VD(z)-VD(ji),y- z}. IT1 +T2 is monotone] 

Taking the supremum for all z E dom T1 n int dom T2 and v E (T1 + T2 +VD) (z) 
above, we conclude that (6) implies (7). 

Therefore Lemma 3.1 states that int conv ( rge(T1 +T2)+rge 8D) C int rge(T1 + 

T2 + 8D). Finally, using Step 2 above, we learn that O E int rge(T1 + T2 + 8D). 
This establishes the first assertion of the thesis. 

(4) Property (6) holds if Dis finite on dom T2 • 

Let w E dom T2 and y, z E int dom T2, then 

(VD(z) -VD(y),w- z} :'.5 D(w)- D(z)- (VD(y),w-z) 

= D(w)- D(z) - (VD(y),w} + (VD(y),z} 

:::; D(w)- D(z) - (VD(y),w} + . 
+ D(z) - D(y) + (VD(y),y) 

= D(w) -D(y) + (VD(y),y-w}, 

where we used the gradient inequality. Since the right-hand side does not depend 
on z, the supremum in {6) is bounded above. 

□ 
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4. EXISTENCE OF SOLUTIONS FOR SPECIAL PROBLEMS 

In this section, we change the extra assumptions on D for the following assumption 
on problem ( 1). 

· (8) h(x) := sup { (v, x - y) I y Edom T2, v E (T1 + T2)(y)} < oo, 
for all x E dom T1 n dom T2. This inequality was studied in {6, Chapter 3) and {7, 
Theorem 2) in the context of variational inequalities in Hilbert spaces. Here we use it 
in the context of reflexive Banach spaces for problem (1). We should stress that (8) 
holds whenever T1 = of for some convex function bounded below and T2 = Ne for 
a nonempty, convex and closed set C. Therefore, the next theorem also extends {20, 
Lemma 3.1), l10, Proposition 4.1] and [18, Lemma 3.2). For other conditions that 
ensure {8) see j6, Proposition 3.lJ. 

Theorem 4.1. Assume that Dis a convex regularization associated to dom T2. If (8) 
holds, then (3) admit., an unique solution. 

Proof. If dom(T1 + T2 + oD) is bounded, then by /13, Theorem 4.1), T1 + T2 + 8D is 
onto, and hence (3) has a solution. Otherwise, let x be the point in intdomT2 where 
D attains its minimum and let o = lh(x)j. As the level sets of D a.re bounded, there 
must be a o > 0 such that 

x EX, llx - xii > o * D(x) - D(x) > a. 
Since dom(T1 + T2 + 8D) is unbounded, there exists x E dom{T1 + T2 + 8D) = 

dom T1 n int dom T2, such that llxll > llxll + o. For such x, take v E (T1 + T1 + 8D)(x), 
which may be written in the form Vo+ VD(x) for some Vo E (T1 + T2)(x). Note that x 
verifies llx - xii > o, hence, 

(v,x - x) = (vo,x -x) + (VD(x),x - x) 
:2: -a+ (VD(x),x- i} 
:2: -a+a= O. 

It follows from [16, Theorem 5(c)J applied to the zeroes of {T1 + T2 + 8D), that (3) has 
a solution. D 
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