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A NOTE ON THE EXISTENCE OF ZEROES OF CONVEXLY
REGULARIZED SUMS OF MAXIMAL MONOTONE OPERATORS

REGINA S. BURACHIK, SUSANA SCHEIMBERG, AND PAULO J. S. SILVA

ABSTRACT. Many algorithms for solving the problem of finding zeroes of a sum of
two maximal monotone operators T; and T3, have regularized subproblems of the
kind: 0 € Ty (x) + To(z) + 8D(x), where D is a convex function. We develop an unified
analysis for existence of solutions of these subproblems, through the introduction of
the concept of convex regularization, which includes several well-known cases in the
literature. Finally, we establish conditions, either on D or on the operators, which
assure solvability of the subproblems.

1. INTRODUCTION

Let X be a reflexive real Banach space, with (u, z) written in place of u(z), for z € X
and u € X*. Moreover, let J: X =3 X* be the normalized duality mapping, defined by
the property v € Jz if, and only if, ||v||%. = |lz||% = (v,z) for any z € X, where || - || x
denotes the norm in the space X.

A multi-valued mapping T : X =3 X* is said to be monotone if

(u—v,z—y) >0 whenever u € T(z), v & T(y).

Moreover, it is said to be maximal if its graph is not properly contained in the graph
of any other monotone mapping.

Given two maximal monotone operators T}, T : X =3 X*, a fundamental problem is
the one of finding a zero of T} + Ts, i.e., the problem of finding an £ € X such that

(1) 0 € Th(z) + Tr(z).

A wide variety of problems can be regarded as special instances of (1). To name a
few, linear and convex programming, solving systems of linear equations or inequalities,
systems of partial differential equations, finding a point in the intersection of two con-
vex sets, monotone complementarity, variational inequalities, and constrained minimax.
When (1) is a model for a variational inequality problem, then T3 is the normal cone N¢

Date: May 8th, 2002.
1991 Mathematics Subject Classification. 90C25, 90C30.
Key words and phrases. zeros of sums of maximal monotone operators, Legendre functions, gener-
alized proximal-like algorithms, regularization.
Research supported by CNPq Grant 301280/94-0(RE) and PRONEX-Optimization.
Research supported by CNPq Grant 302393/85-4(RN).
Research supported by PRONEX-Optimization.
i



2 REGINA S. BURACHIK, SUSANA SCHEIMBERG, AND PAULO J. S. SILVA

of a closed convex set C. Several algorithms for solving this problem have subproblems
of the form
(2) 0 € Ty(z) + N¢(z) + 9D(z),

where D is a regularization associated to C [11, 10, 3, 20, 7, 2, 8, 18]. Hence general con-
ditions under which subproblems (2) have solutions are important from the algorithmic
point of view.

More generally, our aim is to study the existence of solutions to the following problem:

(3) 0 € Ty(z) + Ta(x) + 3D(z),

where D is a regularization. For an example in which T; is not the normal cone N,
see e.g. [1, Section 3] and [5, Section 3].

2. CONVEX REGULARIZATIONS

We define below the regularizations that will be considered in problem (3). In order
to do so, we recall a recent generalization of the concept of a Legendre function [15,
Section 26] well suited for reflexive Banach spaces:

Definition 2.1. [4, Definition 5.2] We say that a proper convezr lower semicontinous
function f : X — (—o0, +00] 1s
(a) essentially smooth, if 8f is both locally bounded and single valued on its domain.

(b) essentially strictly convex, if f~1 4s locally bounded on its domain and f is
strictly convex on every convex sub-set of domdf. Note that the local bounded-
ness of 0f ! is equivalent to rgedf (= domdf~!) be open |4, Corollary 2.19]

(c) Legendre, if it is both essentially smooth and essentially strictly convez.
We can now introduce the concept of a convex regularization.

Definition 2.2. Let C be subset of X with nonempty and convez interior. Let D : X —
(—o0, +00] a proper, convez and lower semi-continuous function. We will say that D is
@ convex regularization associated to C when it satisfies the following conditions:

(a) intdom D = int C = domdD,

(b) D attains its minimum on intC,

(c) D is a Legendre function.

Some examples are:
e X =R" and C =R}. Any p-divergence [19] with center in y € R},

D(z) = ?;w (),
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is a convex regularization associated to R7}. In particular, the Kullback-Leibler
relative entropy D(z) = Y 7, (z;log(z;/1:) +y; — ;). Another related example
is the recently introduced family of distances based in an second order homoge-
neous kernels. They are defined as Dy(z) = dg(z,y) = =1 Y30(2;3/y;), where
8(-) is a function with logarithmic-quadratic behavior [2, Section 2]. The same
holds for their generalizations presented in [18].

* X is a reflexive smooth and rotund space, so that }||z|| is a Legendre function.
Consider C a subset of X such that int C = {z € X : ||z|| < 1}. The functions
Dy(z) = ~/1 = ||zl|?if lz{| < 1 and +o0 otherwise, and Da(z) = (1—||z||?)-1 if
lz]| < 1and +oo otherwise, are convex regularizations associated to C. Actually,
in [4] it is proved that these are Legendre functions. They achieve their minimum
at £ = 0. We point out that in [12], the function 1 + Dy(z) is considered as a
penalty function in the closed unit ball of center zero B. This last work deals
with the variational inequality problem VIP(T, B) on an uniformly convex and
uniformly smooth Banach space.

Another nontrivial and important example is given in Proposition 3.4.

In view of (3) and condition (a) in Definition 2.2, it will be natural to consider
C = domT:. In this case, it should be clear that any solution to (3) must lie in
domTiN intdom73. Hence, as our objective is to study the existence of such solutions,
we will assume throughout this paper that

(4) dom 7} Nint dom(T3) # 0.

This assumption also ensures that 7; + T3 is maximal monotone [16, Theorem 1]. Note
that, by strict convexity of D, if (3) has a zero, it must be unique.

3. EXISTENCE OF SOLUTIONS FOR SPECIAL CONVEX REGULARIZATIONS

In this section, we will show some reasonable extra assumptions on the convex regu-
larization D that can ensure the existence of solutions to (3).
We start by recalling two auxiliary results:

Lemma 3.1. (14, Lemma 2.1] Let T be a mazimal monotone operator and F C X*
such that

(5) YueF, Jye X, sup {v—u,y—2) < oo,
(z,v)égph T

then conv F C rgeT and int(conv F') C rgeT.

Lemma 3.2. [8, Lemma 2.7] Let T, S be monotone operators. Suppose that they satisfy
the following conditions:

(1) S is regular; i.e., Yu € rge S, y € dom S,

sup (v —u,y— 2) < 00,
(z,v)€gph §
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(2) domT Ndom S # @ and rge S = X*;
(3) T+ S is mazimal monotone.

Then, rge(T + S) = X*.

Now, it is easy to show a generalization of [7, Theorem 1] and part (2) of (2, Propo-
sition 2]. This is basically [8, Corollary 3.1] presented in a general setting, not limited
to Bregman distances [8}:

Theorem 3.3. IfrgedD = X*, then (3) admits an unique solution.

Proof. Since we assumed that rge D = X*, we simply use Lemma 3.2 with § := 8D
and T := T} + T», remembering that 8D is regular [5, Example 1], (T +T>) + 8D is
maximal monotone [16, Theorem 1} and that assumption (4) holds. O

Before we state our next result, we show that an important and well-known kind of
regularization is a convex regularization.

Proposition 3.4. Let f : X = (—o0, +c0] be a proper closed strictly convez function
which has C as effective domain. Assume that f is differentiable onintC. Fory € intC,
define

Dy(x,y) = f(z) ~ f(¥) — (Vi(y),z— ), forallz €C,
a Bregman-like distance. Then D¢(-,y) i3 a conver regularization associated to C if,
and only if, f is Legendre.

Proof. Assume that Dy(-,y) is a convex regularization associated to C, then by using
Definition 2.1, we conclude that f must be Legendre, since Dy(-,y) and f differ only by
an affine term. Conversely, assume that f is Legendre. Since part (c) of Definition 2.1
trivially holds, we only have to check conditions (a) and (b). Note that, intC =
intdom f = domdf = dom8Dy(-,y), where the second equality holds because f is
Legendre. Then condition (a) holds. Condition (b) is verified because the minimum of
Dy(-,y) is attained at y. O

Corollary 3.5. Assume that the hypotheses of Proposition 8.4 hold. The Bregman-like
distance Dy(-,y) i3 a convez regularization associated to C if

(a) rgedf is open, and

(b) Dy is boundary coercive [9, Assumption B6].
Condition (a) above holds if X is finite dimensional and both conditions are valid when-
ever f i3 zone coercive [8].

Proof. By Proposition 3.4, it is enough to prove that f is Legendre.

Assume that (a) and (b) hold. Clearly, (a) and the strict convexity of f states that
it is essentially strictly convex.

Moreover, let {y*} be a sequence in int C converging to some point in the boundary
of C. As Dy is boundary coercive we know that for every = € intC

(V"),z — ¢*) = —o0.
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It follows that ||V f(y*)|| = +oo. Using [4, Theorem 5.6] we conclude that f is essen-
tially smooth.

Let us prove the last assertion. Assume that X is finite dimensional and f is strictly
convex. By [15, Theorem 26.3], f* is essentially smooth. Using [15, Theorem 26.1] we
conclude that rge df = dom df* is open.

Finally, if f is zone coercive, this means that rge 8f = X*, which is open. For checking
(b), we show first that dom@f = int C. Otherwise there would be two points, one in
the boundary of C and the other int C, sharing a sub-gradient, which would contradict
the strict convexity of f [4, Lemma 5.1(ii)]. Hence, domdf = int C = intdom f and 8f
is single valued on its domain. Now, take = € int C and let {¢*} be a sequence in int C
converging to 7 in the boundary of C. Using [4, Theorem 5.6 (iii) and (v)], we conclude
that ||V f(y*)|| - +oc. Using the Fenchel equality,

(Vi) 2 — %) = (VIF),2) - F(VIED) - f(v*)

We observe that f*(-) — (-, ) is coercive, as z € intdom f [4, Fact 3.1]. Taking limits
above it follows that

kETw(Vf(zk), z-y") < —oo— f(H) = -
O

In the light of the previous lemma and the examples presented in Section 2, the next
theorem is specially interesting. Actually, it generalizes several results that proved the
existence of solutions to proximal subproblems in the context of variational inequali-
ties. In particular, we drop the standard requirement of zone coerciveness for Bregman
distances and replace it by the weaker conditions (a) and (b) from Corollary 3.5 above.
We highlight that condition (a) is void in finite dimension, and condition (b), bound-
ary coerciveness, is rather natural for interior point methods. The following theorem
generalizes [11, Theorem 4(i)], {7, Theorems 1 and 2] and [8, Corollary 3.1]. Another
result, not based on Bregman functions, that is extended below is {3, Theorem A.1],
whose proof inspired our approach.

Theorem 3.6. Let 0 € rge(T1 + T5) and, for all y € intdom T3 and all w € dom T3,
(6) sup  {(VD(z) ~ VD(y),w — 2)} < oo.

z€intdom T3

Then, (3) admits an unigue solution. Moreover, if D is finite on dom T3, (6) holds.

Proof. The proof is divided in four steps:

(1) rge @D is an open neighborhood of 0.
It holds that 0 € rge 3D, as we assumed that D attains its minimum. More-
over, since D is essentially strictly convex and X is a reflexive Banach space, D*
is essentially smooth. Hence dom dD* = rge 8D is open and non-empty.
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(2) 0 € int (rge(Ty + T2) + rge8D).
Since 0 € int rge OD, there is an € > 0 such that B(0,¢) C rgedD. Using also
that 0 € rge(T} + T2), we have that B(0,&/2) C rge(Ty + T2) +rge dD.
(3) 0 € intrge(Ty + T> + OD)
Let us apply Lemma 3.1 with F = rge(T1+T3)+rge 0D and T = T1+T>+0D.
Since dom(T} + T2 + 8D) = dom T3 N int dom T2, we need to show that

(7) Vu€rge(Ty +T2) +rgedD, 3y € X,
sup {(v —u,y — 7) | z € domTy N intdom T3, v € (Ty + To + VD)(2)} < 0.

For any u € rge(Ty + T3) + 1gedD, let uo € X*, y € domTy N dom T and
¢ € int dom T3 be such that

U =1uy+ VD(ﬁ), Ug € (T1 +T2)(y).

For 2 € dom T N intdomT; and v € (T + T + VD)(2), let vy € (T1 + T3)(2)
be such that v = v + V.D(2). Then,

(v—uy—z) = (v + VD(2) — 2o — VD(§),y — 2)
= (v — o,y — 2) + (VD(2) — VD(§),y — 2)
< ({VD(z) - VD(§),y - 2). [Ty + T> is monotone]

Taking the supremum for all 2 € dom 73N int dom T, and v € (T1 + T, + VD)(2)
above, we conclude that (6) implies (7).
Therefore Lemma 3.1 states that int conv ( rge(T1+7T2)+1ge dD) C int rge(T1+
T: + D). Finally, using Step 2 above, we learn that 0 € int rge(Ty + T + 8D).
This establishes the first assertion of the thesis.
(4) Property (6) holds if D is finite on dom 7.
Let w € domT; and ¥, z € int dom T, then

(VD(z) - VD(y), w — 2z} < D(w) ~ D(2) — (VD(y), w — 2)
= D(w) — D(z) — {(VD(y), w) + (VD(y), 2)
< D(w) — D(2) — (VD(y), w) +
+ D(z} - D(y) + (VD(y),y)
= D(w) — D(y) + (VD(y),y — w),

where we used the gradient inequality. Since the right-hand side does not depend
on z, the supremum in (6) is bounded above.

O
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4. EXISTENCE OF SOLUTIONS FOR SPECIAL PROBLEMS

In this section, we change the extra assumptions on D for the following assumption
on problem (1). '
(8) h{z) := sup {(v,:c -y) | yedomTs, ve (Th + Tg)(y)} < 00,
for all z € domTy N domTy. This inequality was studied in [6, Chapter 3] and [7,
Theorem 2] in the context of variational inequalities in Hilbert spaces. Here we use it
in the context of reflexive Banach spaces for problem (1). We should stress that (8)
holds whenever T = @f for some convex function bounded below and T» = N for
a nonempty, convex and closed set C. Therefore, the next theorem also extends {20,
Lemma 3.1}, [10, Proposition 4.1] and [18, Lemma 3.2]. For other conditions that
ensure (8) see {6, Proposition 3.1].

Theorem 4.1. Assume that D is a conves regularization associated to domT;. If (8)
holds, then (3) admits an unique solution.

Proof. If dom(T; + T; + OD) is bounded, then by [13, Theorem 4.1}, Ty + T, + 6D is
onto, and hence (3) has a solution. Otherwise, let Z be the point in int dom 7, where
D attains its minimum and let @ = |h(Z)|. As the level sets of D are bounded, there
must be a § > 0 such that

zeX, |lz—3|| > 6 = D(z) - D(F) > .

Since dom(Ty + T: + 3D) is unbounded, there exists z € dom(T} + T; + 8D) =
domTi Nint dom T3, such that ||z|| > ||z]| + 4. For such z, take v € (T} + Ty + 8D)(x),
which may be written in the form vy + VD(z) for some vy € (T} + T3)(z). Note that =
verifies |jz — Z|| > 4, hence,

(‘U,I —J_:) = (‘Uo,$ —3—5> + (VD(IL‘),.’L' - j')
> —a+{(VD(z),z — %)

. > —a+a=0.

It follows from [16, Theorem 5(c)] applied to the zeroes of (T} + T3 + 8D), that (3) has

a solution. O
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