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Abstract

Modelling real-world networks allows investigating the structure and the dynamics of such networks, which led to signifi-
cant developments in various scientific fields. One of the most used models in these investigations is the Watts-Strogatz,
with a structure composed of high clustering and short path lengths known as small-world networks. This model proposes
an interesting gradient between regular and random networks, but its generating process, which relies on a single rewir-
ing probability parameter, is hard to access and to manipulate. In order to study the mechanics of the Watts-Strogatz
model, the present work proposes a new method based on deep neural networks that could estimate its probability p. To
illustrate its applicability, neuroimaging and phenotypic resting-state fMRI data were used from patients with ADHD and
typical development children, obtained from the ADHD-200 database. The neural network efficiently estimated the prob-
ability parameter, resulting in small-world graphs for functional brain connectivity with a mean+s.e.m. p distribution of
0.804+0.003. Despite no difference was found considering the gender or diagnosis of participants, the generalized linear
model revealed age as a significant predictor of p (mean+s.e.m.: 4.410+£0.877; p<0.001), indicating a great effect of
neurodevelopment on the brain network’s structure. The proposed approach is promising in estimating the probability of
the Watts-Strogatz model, and its application has the potential to improve investigations of network connectivity with a
relatively efficient and simple framework.
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Introduction

Understanding real-world networks is essential in many
Lead ParagraphWe used machine learning principles to train a fields (Jha et al., 2022; Patel et al., 2024; van den Heuvel
network to estimate a generative parameter for small-world network & HulshofT Pol, 2010; Verma et al., 2022). However, study-
models. As such graphs can be used to model brain connectivity, ing their structure can be difficult. For instance, even people
we illustrate the trained neural network usefulness in a database with the same characteristics may have different brain activ-
of functional neuroimage, showing that this method can be easily . d fi . 1 brai ks. Anoth |
applied to provide additional analysis and insights regarding the %ty patterns an. unctional brain netw.or §. Anot er.exe_m.lp ¢
generative process of graph models. is the metabolic networks that can differ between individu-
als in the same group. Because of this variability, networks

can be seen as random graphs, reflecting underlying random
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2019; Ludkin et al., 2018; Mariadassou & Tabouy, 2020).
The deterministic block model assumes completely inde-
pendent connections, while the SBM considers connections
that depend on the group assignments of nodes.

Network models go beyond simple connections between
nodes and capture other structural properties. For example,
some models consider spatial relationships, like the geomet-
ric random graph (Duchemin & De Castro, 2023), while oth-
ers enforce a fixed number of connections per node, such as
the d-regular graph (Huang & Yau, 2023). The Watts—Stro-
gatz (WS) model represents small-world networks (Watts &
Strogatz, 1998), while the Barabasi—Albert model captures
networks with a power-law degree distribution (Barabasi,
1999). The exponential random graph model (ERGM), a
more flexible approach, defines connections based on cho-
sen network statistics and external factors (Chatterjee &
Diaconis, 2013).

Particularly, the Watts-Strogatz model (Watts & Strogatz,
1998) is a vital network science model that explains the
small-world effect in many real-world networks. It shows
how networks can have high clustering (like regular net-
works) and short path lengths (like random networks). This
balance makes it helpful in studying networks such as brain
connections, social relationships, neural systems, and the
Internet. The model helps researchers understand, simulate,
and analyze how these networks form and function.

However, there is no exact formula for estimating the
parameters of the Watts—Strogatz model. Some models, like
ER, SBM, and ERGM, have well-known parameter estima-
tion methods. Although they are essential, these estimators
only work for their specific models, so new estimation tech-
niques must be developed every time a new network model
is proposed. Thus, one of the main challenges in network
analysis is creating a general way to determine the best
model parameters for a given real-world network.

Takahashi et al. (2012) developed a general method to
estimate the parameters of random graph models using the
Kullback—Leibler divergence between graph spectral den-
sities. This method also successfully estimated the param-
eter of the Watts-Strogatz model. Their proposal is based
on the idea that a network’s spectrum is closely related
to its structure (Gera et al., 2018). Later, Siqueira Santos
et al. (2021) proved the consistency of Takahashi et al.’s
parameter estimator using the L1 norm instead of the Kull-
back-Leibler divergence. Nonetheless, this approach is not
algorithmically efficient and exhibits poor scalability in
high-dimensional settings. In contrast, matrix multiplica-
tion — fundamental to neural network architectures such as
the Multilayer Perceptron — offers significantly greater com-
putational efficiency and scalability, particularly due to its
amenability to parallelization on GPUs.
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Therefore, we propose a novel way based on deep neu-
ral networks to estimate the parameters of Watts-Strogatz
random graph models. Directly estimating the rewiring
probability of a small-world network could provide insights
about its generative processes and allow the gathering of
additional data in the many research fields which investi-
gate real-world networks, since the application of a MLP
requires relatively low computational resources. For this
end, we illustrate the performance of our proposal by simu-
lations, and demonstrate its usefulness in actual fMRI data
from the ADHD-200 competition.

Methodology
The Watts-Strogatz Model

The Watts-Strogatz model generates small-world networks
exhibiting high clustering and short average path lengths.
The Watts-Strogatz model starts with a regular ring lattice
and rewires each edge with a given probability p, introduc-
ing randomness while maintaining some structure. Let N
be the number of nodes, K/2 be the number of connected
neighbors each node connects to on each side (K/2 must be
even), and p be the probability of rewiring each edge. First,
create a ring lattice, i.e., place N nodes in a circle and con-
nect each node to its K/2 nearest neighbors on both sides.
Then, for each edge (u, v), with probability p, rewire the
edge, i.e., select a new target node v’ randomly (avoiding
self-loops and duplicate edges) and replace the edge (u, v)
with (u, v’). After rewiring all the edges, a small-world net-
work is obtained.

The Watts-Strogatz network model has some interesting
properties related to the small-world effect seen in many
real-world networks. For example, when p=0, we obtain
a regular ring lattice, i.e., a network with high clustering
and long path lengths. When 0<p<1, we get a small-world
network, i.e., a network with high clustering and short path
lengths. Finally, when p=1, we obtain a random graph, i.e.,
low clustering and short path lengths.

Deep Neural Networks and P Estimation

A neural network is trained on datasets generated from
simulations of the Watts-Strogatz model, specifically, a
Multi-Layer Perceptron (MLP), a neural network model to
tackle a specific predictive task. An MLP is a fundamental
form of neural network composed of typically three lay-
ers of neurons connected through weighted pathways: (1)
an input layer that receives the data — in this case a con-
nective matrix; (2) the hidden layers, which computes and
transforms the data; and (3) an output layer that returns the
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desired prediction (Naskath et al., 2023). The current model
architecturally consists of three densely connected hidden
layers — composed of 50, 20 and 10 neurons, respectively —
with a Rectified Linear Unit (ReLU; Eq. 1) activation func-
tion, culminating in a single neuron output layer that uses
a Scaled Exponential Linear Unit (SeLU; Eq. 2) activation
function to produce the final estimation. The general archi-
tecture of the MLP is represented in Fig. 1.

z,if £ >0
ReLU(z) = {O,if 2 <0 (1)
z,if £ >0
SeLU(x):)\{a e’ —a,if x <0 &

The primary focus of the training is to estimate the param-
eter p, which represents the probability of rewiring each
edge within the model, dictating the randomness or regular-
ity of the network structure. This type of idea of training
on simulations to evaluate numerical quantities of empirical
data (Tobin et al., 2017; Cranmer et al., 2020) has already
been applied to resting-state fMRI functional connectivity
(Cabral-Carvalho et al., 2025). However, the use of a MLP
has not yet been investigated as a possible methodology for
estimating these numerical quantities. The training dataset
comprises 10,000 Watts Strogatz model simulations with
100 nodes, and the test set has 1,000 samples. The training
employs the Adam optimizer for its efficiency in managing
sparse gradients and uses Mean Absolute Error (MAE) as
the loss function. The model was trained over 100 epochs

Fig. 1 Representation of the
designed MLP
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with a learning rate of /=0.001, and it was built with the
Tensorflow and Keras framework.

Illustrative Simulations

Monte Carlo simulations were used to illustrate the proposed
approach’s performance. Since the typical brain parcellation
in fMRI studies involves hundreds of cortical regions, we
simulated graphs with 50, 100 and 200 nodes. The average
number of neighbours was set to 5%, 10%, and 20% of the
respective number of nodes. The Pearson correlation coef-
ficient r is calculated as a precision metric.

ADHD-200 Dataset

In this study, we analyzed resting-state functional magnetic
resonance imaging (fMRI) data sourced from the pub-
licly available ADHD-200 dataset provided by the Neuro
Bureau. This dataset, described comprehensively in Bellec
et al. (2017), consolidates data collected across eight centers
using 1.5 Tesla MRI scanners. Participants were initially
classified into four diagnostic categories: healthy controls,
ADHD combined subtype, ADHD hyperactive-impulsive
subtype, and ADHD inattentive subtype. In addition to neu-
roimaging data, detailed phenotypic information was pro-
vided, including age, gender, handedness, IQ, and specific
ADHD subtype classification.

The data preprocessing was performed using the Athena
pipeline, explicitly designed for resting-state fMRI and
voxel-based morphometry (grey matter) analysis, imple-
mented via AFNI and FSL software tools (Bellec et al.,
2017). The preprocessed data were retrieved from the Con-
nectome website (Www.preprocessed-connectomes-proje
ct.org/adhd200/) and included resting-state BOLD signal

hidden layer
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time courses. The preprocessing steps consisted of discard-
ing the first four volumes to achieve magnetic stabilization,
slice timing correction, head motion correction, spatial
normalization to Montreal Neurological Institute (MNI)
standard space at 4x4x4 mm voxel resolution, temporal
band-pass filtering (0.009-0.08 Hz), and spatial smoothing
with a Gaussian kernel of 6 mm full width at half maxi-
mum (FWHM). Further methodological details, including
site-specific MRI scanner parameters, are thoroughly docu-
mented on the ADHD-200 website (ADHD-200-Webpage,
2011). We included only the initial scan for participants with
multiple scanning sessions and uniformly extracted 140
time points for each subject.

Excluding phenotypic missing data, the sample utilized
for the illustrative application had a total of 525 individuals.
Sex differences in age distribution were examined, and their
mean=standard deviation are described as follows, reveal-
ing similar ages for males (12.19+3.47 years) and females
(12.293+3.818 years). The impact of the ADHD subtype on
age distribution was also assessed, yielding mean ages as
follows: Typically Developing Children, 12.567+3.69 years
years; ADHD-Combined subtype, 11.358+3.4 years years;
ADHD-Hyperactive/Impulsive  subtype, 13.3714+4.533
years; and ADHD-Inattentive subtype, 11.628+2.943 years.

lllustrative Application

For the functional connectivity analysis, matrices were cre-
ated from the ADHD-200 dataset. Those connectivity matri-
ces consisted of a 334 %334 matrix for each subject, with
connectivity indexes considered as present (1) if equal or
greater than 0.2, or absent (0), otherwise. The connectiv-
ity matrices were submitted to the neural network, which
then simulated different matrices with the same N and &
to estimate the probability p for the entry matrix correctly.
Considering these estimated p as dependent variable, a gen-
eralized linear model (GLM) was applied, with site of data
collection, and subject’s gender, age, diagnosis (ADHD(C):
ADHD-Combined subtype; ADHD(H/I): ADHD-Hyperac-
tive/Impulsive subtype; ADHD-I: ADHD-Inattentive sub-
type) and frame displacement (FD) as predictors (Eq. 3). A
significance level of 0.05 was adopted.

Y; = Bo + 1 - gender; + 32 - age;
+835 - ADHD(C); + B4 - ADHD(H/1T); 3)
+835 - ADHD(I); + B¢ - FD; + ¢;
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Results
Simulations

The simulation results are shown in Fig. 2. First, note that
the proposed strategy for p estimation is effective and pro-
vides accurate results in graphs with a scale of 50, 100 and
200 nodes. Moreover, since more information is available,
when the number of nodes N or the number of neighbours
k increases, the quality of the estimate improves, mainly
because variability is reduced.

Application in ADHD-200 Dataset

The artificial neural network designed in this study could
estimate a probability p for all tested connectivity matri-
ces of the ADHD-200 dataset. The general estimated p was
0.804+0.003 (mean+s.e.m.; Fig. 3). Grouping the probabil-
ity p for each participant according to their gender (Fig. 4)
or diagnosis (Fig. 5) shows almost no difference in p distri-
bution among these groups.

Indeed, the generalized linear model found no significant
difference for gender or diagnosis (Table 1). However, a sig-
nificant effect of both subjects’ age and frame displacement
on the p distribution was found, meaning that these vari-
ables may be considered predictors of p.

Discussion

In the present study, functional neuroimaging data from
ADHD patients were used to illustrate the applicability
of a deep neural network in estimating a graph’s rewiring
probability p, a main parameter of the small-world model
proposed by Watts and Strogatz (1998). We found no sig-
nificant result regarding the connectivity matrices’ p when
grouped by patients’ diagnosis or gender. On the other hand,
parameter p was positively correlated to the individual’s
age. Consequently, the connection between functional brain
areas would tend to be less clustered and with shorter path
length as an individual transitions from infancy to adult-
hood. Such comprehension of the network’s generating pro-
cess, and how its rewiring probability affects the network
features, could only be carried out with the estimation of p,
which is the method proposed in this study.

Intense developmental changes in the nervous system
mark childhood and adolescence. Especially during puberty,
synaptic strengthening and pruning processes change the
brain organization and affect cognitive and socioemo-
tional processes (see Vijayakumar et al., 2018). In this line,
by modeling the brain as a small-world network, Zhao et
al. (2015) found that both the path length and clustering
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Table 1 General linear model considering p as dependent variable
Estimate (e-3) p-value
—1.261+£6.564 0.847

Parameter

Gender (male)

Age 4.410+£0.877 <0.001
skksk

Diagnosis (ADHD-Combined) 6.022+8.073  0.456

Diagnosis (ADHD-Hyperactive/ 13.54+21.89 0.536

Impulsive)
Diagnosis (ADHD-Inattentive)
Frame displacement

—4.169+10.42 0.689
—0.003+0.001 0.009

kk

Values are expressed as mean+standard error.

coefficient of the white matter network follow an inverted U
pattern, with a peak at the third decade related to the matura-
tion of these structures. There is, however, a gap in under-
standing the relationship between structural and functional
connectivity, as functional networks present a more com-
plex behavior, quickly changing its organization over time
and being able to act upon indirect structural connections,
for example (Liao et al., 2017).

In this context, Gu et al. (2015) showed that cognitive
systems tend to differentiate along development and estab-
lish their functional roles. Their results indicate a decrease
in global between-system connectivity, but some modules
do the opposite, especially the default mode network and
the sensorimotor system. In this sense, the increase of a
between-system connectivity suggests a diversification of
functions performed by each brain region and would imply
a shortening in the network’s path length. On the other hand,
Smit et al.‘s (2012) results of EEG activity indicate a net-
work’s pattern towards order, as the alpha, beta and theta
frequency bands had an increase in both clustering and path
length over age: they only showed a shift to randomness in
an older age (55+).

It is important to note that all these studies investigated
only the path length and the clustering coefficient, which
are described as functions of the network models’ rewiring
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probability p. By directly accessing p from the functional
connectivity graphs, the methods presented in this study
indicate that these networks’ features variates with age,
which, in turn, can be explained by variations in the model’s
rewiring probability p.

Despite there being no difference found regarding the
estimated p and the ADHD diagnosis, several studies indi-
cate that such disorder profoundly affects the brain con-
nectivity. Beare et al. (2017), through a graph theory-based
approach, found that the white matter network of children
and adolescents diagnosed with ADHD had a higher cluster-
ing coefficient and weighted normalized path length com-
pared to typically developing controls. Differences between
groups’ networks features were also found regarding func-
tional connectivity: Wang et al. (2019), however, found that
both normalized clustering coefficient and path length were
reduced in diagnosed children from the ADHD-200 data-
base. Furthermore, such changes seem to be dependent on
the subtype of ADHD, as the structure of brain networks
for Inattentive and Combined subtypes does not differ from
control or even between these diagnoses (Saad et al., 2021).

Even so, the estimated value and its possible impact
on brain functioning analysis need further investigation,
as their values are limited by the parameters used in the
deep neural network implementation. For example, a fixed
threshold affects the graph’s parameters, changing its struc-
ture according to the connectivity values (Telesford et al.,
2011). Hence, one of the limitations of the present study
is to adequately address the weights of the connections or
even the usage of a gradient of possible thresholds. Future
studies may complement their data collection and network
modelling with the methods proposed in this paper, and help
to address the proper applicability of such an approach in
studying brain connectivity.

Conclusion

The deep neural network proposed in this study could
directly estimate the probability p of a Watts-Strogatz
model. Using a brain functional connectivity database, the
network application could provide new information on the
graph’s structure, pointing to the relevance of neurodevel-
opmental processes in the brain’s functionality. Such an
analysis could be easily implemented in future research,
expanding the knowledge of its applicability and the inves-
tigated graph’s structure. However, some parameters of the
neural network function, such as defining an optimal thresh-
old for connectivity data, still need to be considered when
implementing such a methodology.
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