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ABSTRACT

We have two purposes in this work. The first one
is to compare the nilpotency of the action of ﬂl(X) on
ﬂn(X) (n 2 2) with the one of the action of ﬂl(X) on
Hn(i) (n 2 2), when X is a nilpotent space. (Here X means

the universal cover of X).

The second purpose is to study the theory of
p-localization of a group in a category C to which n (the

category of the nilpotent groups) is a full sub-category.

As for the first subject we work in the context of
the nilpotent spaces. A suitable reference for a more
detailed description of the properties of a nilpotent space

might be [H.M.R.], chapter II.

Our main result towards comparison of nilpotencies
is the theorem 2.12 and the main point in its proof is the

reiterated use of the Serre spectral sequence.

Concerning the second subject we'd suggest [R.1]

and [H.M.R.], chapter I.

In section 3.2 we present a number of results on
the P-localization, in the category G of all groups, of a
group G = A ]wX, where A is a finite abelian group and X
is any group. It turns out that the P-localized (GP) is

completely described by XP' A and w .



We'd say that the most important results are

proposition 3.2.1 and the theorems 3.2.4, 3.2.7 and 3.2.12.

We point out that proposition 3.2.2 plays a

fundamental role in the proof of the theorems above.

Finally, in section 3.3 we present the construction
of the theory of P-localization in the category of the
groups which are extensions of nilpotent groups by finite

abelian groups.

As we see it, the main results are given by the

theorems 3.3.11 and 3.3.12.

our proof follows rather closely the one presented
in [H.M.R.], chapter I, and is based on the classical

interpretation of the second cohomology group of a group.

It should be mentioned that proposition- ... 1 and

3.3.2 play an important role in the proof of the theorem

3.3.11. ]
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INTRODUCAO

A teoria de P-localizacdo de espacos simplesmente
conexos tem se mostrado Gtil em topologia. Ver [Al, [S],

[z].

Em 1975 foi publicado um livro ([H.M.R.])que sinteti
zou uma série de artigos anteriormente publicados tratando
da teoria de P-localizacdo de grupos e espacos nilpotentes.
Ali foi dado um tratamento sistemdtico ao estudo destes to-

picos.

Evidentemente o desenvolvimento da teoria de P-lo-
calizacdo suscitou uma série de questdes, algumas das quais

tratadas neste trabalho.

Em [H.M.R.], capitulo II, hd um resultado afirmando
que um CW complexo conexo X, com ﬁl(X) nilpotente, € um es-
pacgo nilpoﬁente se e somente se nl(X) age nilpotentemente

em Hn(X}, v¥nz2.

Surge entao, naturalmente, o interesse em se compa-

. . 5 .
rar nllﬂl(x)ﬂn(X) com nllﬂl(X)Hn(X) (n 2 2) quando X e

nilpotente.

O capitulo II gravita em torno desta guestao, e
gueremos crer que seu principal resultado seja o teorema
2.12. Este produz desigualdades comparando as grandezas
citadas para n £ 7. Acreditamos, da mesma forma, que Os e-

xemplos 2.5 e 2.13 tragam alguma luz a discussao do assunto.



Também em [H.M.R.] nos & apresentada a teoria de
P-localizacdo na categoria dos grupos nilpotentes, a gual &
adequada & construcao de uma teoria de P-localizacao para
espag¢os nilpotentes. Entretanto, até entdo ainda era desco
nhecida a possibilidade de se P-localizar um grupo nado nil-

potente.

Paulo Ribenboim, em [R.1l], nos apresenta a constru
cdo de uma teoria de P-localizacdo na categoria de todos os

grupos.

Em [R.2] aparece uma construcdo explicita da P-loca
lizacdo de um grupo finito. Ocorre que excetuado este caso
e a situacdo em que o grupo & ciclico infinito, nédo parece
simples a partir de [R.1] determinar explicitamente o P-lo-

calizado de um grupo na categoria de todos ©0s grupos.

Estas consideracdes agregadas a uma sugestao do
Prof. Hilton nos motivaram a considerar o problema tratado
no capitulo III, §3.2, qual seja determinar a P-localizacao,
na categoria de todos os grupos, de um produto semi-direto
de um grupo abeliano finito por um grupo qualquer. Os prin
cipais resultados obtidos nesta secgdo sao descritos pelos

teoremas 3.2.4, 3.2.7 e 3.2.12.

Ainda no gue concerne a construcdo apresentada em
[R.1], nd3c sabemos se este funtor gquando restrito a catego-
ria dos grupos nilpotentes produz uma teoria de localizacéo
nesta categoria. Mais ainda, em presenca desta construcao
ndo vemos, até agora, como determinar certas propriedades

basicas a respeito dos grupos de homologia de Gp- (Por e-



€y
xemplo: Sera que Hj(G)———a'Hj(GP) P-localiza Hj(G) na cate-

goria de todos os grupos?).

Devido a dificuldades deste jaez fomos levados a ten
tar utilizar os métodos.aplicados em [H.M.R.], cap. I, pa-
ra mostrar que existe uma teoria de P-localizacao, que esten
de a ja existente na categoria dos grupos nilpotentes, na ca
tegoria dos grupos que sio extensdo de um grupo nilpotente

por um abeliano finito.

Os frutos deste trabalho sdo apresentados no cap.
III, §3.3, e a nosso ver os principais resultados sao dados

através dos teoremas 3.3.11 e 3.3.12.

A seccdo 3.1 tem por finalidade apresentar resulta-
dos gue fundamentam os argumentos usados em 3.2 e 3.3. Nao
obstante, ai aparecem proposicdOes que Cremos tenham interes
se por si sd, tais como as prop. 3.1.5, 3.1.7, 3.1.11 e ©

teorema 3.1.20.

Finalmente no capitulo I a linguagem e definigoes
basicas para o trato dos capitulos seguintes, e um esbogo
da construcao da teoria de P-localizacdo para espagos nilpo
tentes que faz uso das especificidades da teoria de P-loca-

lizacdo na categoria dos grupos nilpotentes.

Gostariamos de registrar os mais profundos e since-
ros agradecimentos a todas as pessoas que, direta ou indirz2
tamente, nos auxiliaram na elaboracdo deste trabalho e, mui

to particularmente aos professores:



Paulo Feareina Leite, pelo estimulo, apoio e pacien

te colaboracdo, principalmente no inicio do trabalho.

Efza Funtado Gomide, igualmente pelo estimulo e a-
poio, bem como pela paciente leitura dos manuscritos em in-
gles deste trabalho. Sem suas valiosas sugestdes certamen
te os mesmos conteriam uma gquantidade muito grande de erros,

imperfeicOes e obscuridades.

Daciberg Lima Goncalves, pelo estimulo e ajuda impa
gaveis ao longo de todos estes anos, pelo muito que aprende
mos em seus seminarios, aulas e conversas particulares, epeg
las valiosissimas sugestdes e idéias a nds fornecidas du-
rante a preparagéo do trabalho. Gostaria ainda de salien -
tar que apesar de nossas diferentes qualificacbes profissio
nais, o Prof. Daciberg soube tornar nosso trabalho conjunto
uma atividade bastante agradavel e enrigquecedora sob todos

os aspectos.

Peten John Hilton, orientador deste trabalho, que
ao longo dos anos nos sugeriu varios problemas tendo nas ho
ras dificeis comparecido com encorajamento, orientacao e am
paro. E igualmente louvavel sua assiduidade no que tange a
opinar sobre o andamento do trabalho sempre que lhe foi da-

do conhecimento.

Finalmente, gostariamos de agradecer a Antonda
Soares pela eficiéncia e dedicacao demonstradas durante a

realizacdo do trabalho (excelente) de datilografia. ]
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CAPITULO I

Nosso objetivo aqui é estabelecer a notacado e relem
brar as definicdes e resultados basicos a serem utilizados
nos dois capitulos subsequentes, onde obtemos 0Os resultados

originais do trabalho.

Ao longo de todo o estudo P significa uma familia
de primos, P' o complementar de P em P (familia de todos os
primos) e P* o conjunto multiplicativo determinado por P,

i.e. o conjunto dos produtos (finitos) de primos em P.

Definicdo 1.1 - Um grupo G diz-se P-local

e (¥nep'*); g€G — g"eG & uma funcdo bijetora.
Exemplo tipico de grupo P-local é

Z,=12€Q: ne P’}

ou A= A%, ,
se A & um grupo abeliano.

A seguir seja (¢ uma sub-categoria plena da catego-

ria dos grupos G.

Definigao 1.2 Um homomorfismo G —— H de grupos

G,H € |c| & um P-localizacdo de G <> H & P-local e
¥ K € |¢|, K P-local e ¥ f € Hom(G,K), 3! f € Hom(H,K)

tg. foe = f).



e
G £ *ﬁK E evidente,a partir da definicao, que se G——£+Hl
e
/:' e G——2+H2 sio P-localizacdes de G em C, entao 3!
T
/ i i . —_— =
l , isomorfismo - ¢: Hl H2 tqg. ¢e1 e2
/
H

A P-localizacdo de G numa categoria C & usualmente

indicada por G-—E—o-GP (caso exista).

Em [R.1] Paulo Ribenboim construiu a teoria de P-lo

calizacdo para categoria C =G , ie. um funtor

Lp: G € |G| — G, € |G |

: £ € Hom(G,H)a—~—>fP e Hom(GP,HP)

tq.
f
G ———— H
fP
Cp > Hp
& comutativo. (.. e & uma transformacdao natural do funtor

l; para o funtor LP).

£ interessante notar que este funtor nao é exato,
pois sendo P = {3} e S5 © grupo das permutacOes de um
conjunto com 3 elementos temos que (conforme sera mostrado

no capitulo III - §3.2 - teorema 3.2.7 ou [R.2]) (S3)P=(O).

S Zy S, »Z, e levada em Zy—> (0)—»(0) nao exa

ta.
Salientamos ainda que a construcao efetuada em
[R.1] ndo nos proporciona uma construgdo de GP, onde seja

claro como determinar, por exemplo, propriedades homologi-



cas de GP' Entretanto em [R.2], §7, prop. 7.2 o autor exibe

GP para um grupo finito G.

Desta construcdo concluimos também que o funtor Lp
construido em [R.1] quando restrito a F {categoria dos gru-
pos finitos) descreve a teoria de localizacdo nesta catego-

ria, uma vez que G € |[F| == G, € | F|.

Por outro lado, para a categoria C =1 = categoria
dos grupos nilpotentes, a teoria de localizacdao foi desen-

volvida em [H.M.R.], capitulo I.

Nesta categoria o funtor localizacdo (que existel!l)
comporta-se mais adequadamente no gue se refere a sua apli-
cacio em topologia algébrica.

Assim & que em N este funtor é exato, ie.

N G . »Q & uma seqg. exata de grupos nilpotentes

N> > G +Q é uma seqg. exata de grupos nil-
P

potentes.

Mais ainda, a construcdo descrita em [H.M.R.] é tal
que se nil G £ ¢, entdo nil GP < c. Em particular, conclu
imos que Gy, & abeliano sempre que G o &. Na realidade mos
tra-se (vide [H.M.R.]) que a€h —= a®l € ARZ, P-localiza

A em 1, se A & abeliano.

Definicdo 1.3 - £ € Hom(G,H);

(i) £ & p-injetora «—— (£(x) = 1 —> (In€P'™) tq.

tqg. x" = 1).



(ii) f & P-sobrejetora <— (¥y€H, 3 nep'”

tg. yn € imf).

(iii) f é pP-isomorfismo «—=f & P-injetora e P-sobrejeto-

ra. D

Gostariamos ainda de ressaltar duas propriedades

fundamentais do funtor localizacao em n.

1) G-—£—>H um homomorfismo em n, P-localiza G <
&> H é P-local e f & um P-isomorfismo. (vide
Teorema Fundamental, pg. 7., [H.M.R.].

2) f,g € Hom(G,H) em n. Entdo f = g &= f

=4g

p p’
¥p primo (onde fp é a {p}-localizacao de f).

(vide teorema I.3.13 de [H.M.R.]).

Esta propriedade & a versdo algébrica do principio

de Hasse gque nocontexto topologico pode ser encontradoem [S]

Utilizaremos também a nocdo de acao nilpotente que
passamos a definir.

Seja 7 —2— Aut(A) uma acdo de um grupo T num gru

po abeliano A. Pomos F%A = Fg = A. e supondo definido

PkA = Fk consideramos
m w

T A = Fw = <p({x)a-a €A: x€r ; a € T§> = (sub-grupo

gerado pelos elementos w(x)a-a).



faci = T1 2 ces ky L. e
E facil ver que A Tw > TwD RN

que fi é estiavel sob a acdo de w, ou que esta & uma cadeia
descendente de % [n]-submddulos de A. (estrutura de

%Z [r]1-mddulo de A definida por w).

Definicio 1.4 - w & nilpotente com classe de nilpoténcia
C'@=%>Ti)¢ (0) e F§+l = (0). (se A = (0) pomos, por

definicao, ¢ = 0).

E importante notar aqui que se I(m) representa o
ideal de aumentacdo do anel de grupo Z[n] segue imediata-

= I(ﬂ)l.A.

mente gque P$+1

Relembramos aqui, para uso reiterado posteriormente,

duas proposicoes fundamentais no contexto.

Proposicao 1.5 - Seja A— G-—»Q uma extensao, com A abe

liano, dando origem a uma Q-acdo w em A. Entdo G € In]¢=¢

«~—= 0 € |n| e w é nilpotente.

Prova: (Vide prop. I.4.1 de [H.M.R.] ]

Proposicdo 1.6 - Seja A' + A - A" uma seguéncia exata de

0-médulos com respeito a Q-acdes w', w e w" respectiva-
mente. Entdo, w & nilpotente se w' e w" sdo nilpotentes.
Se 0—A'—A-—A"—0 & exata e w € nilpotente entdo w'

e w" sdo nilpotentes, e
max{nil o', nil 0"} £ nil w £ nil w' + nil w".

Prova: (Vide prop. I.4.3 de [H.M.R.]). ]
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Passamos agora a descrigdo (sucinta) da teoria de

P-localizacdao dos espagos nilpotentes.

Definicdo 1.7 - Um espaco topoldogico X diz-se P-local &

1 (X) é P-local, ¥n 2 1.

Definicdo 1.8 - Um espaco topoldogico X diz-se nilpotente

@===>w1(x) € nilpotente e ﬂl(x) age nilpotentemente em

v

T (X) , ¥n 2 2.

Indicamos por NH a categoria cujos objetos sdo os
CW-complexos nilpotentes com ponto base e os morfismos de
X em Y sdo as classes de homotopia pontuadas de aplicacdes

(pontuadas) de X em Y. ([X,Y]).

Da mesma forma HI indica a sub-categoria plena de

n{ cujos objetos sao os CW-complexos l-conexos.

Seja também C uma categoria de espacos topologicos

O-conexos com ponto base e tg. Mor(X,Y) = [X,Y].
Definiclo 1.9 - X——Y (X,Y € |C|) P-localiza X <—=

&> (Y & P-local e ¥z € ]Cl, 7 P-local &« e*: [Y,z2]—[X,2]

& bijetora).

Segue imediatamente da definicdo que (em () se 3

P-localizacao, entdo ela & unica.

Em [H.M.R.], capitulo II, & descrita a construcao

do funtor P-localizacao em H7 e em nH.
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Rememoramos agora os principais passos destas cons-

trucgoes.

Proposicdo 1.10 - Seja e: X—Y em H7. As seguintes afir-

macoes sao equivalentes:

(1) e P-localiza X (em HI)’

(ii) e,: nnlx)wwwnn(Y) P-localiza ﬂn(X) , ¥n 2 1.

(1ii) e,: Hn(X)——+Hn(Y) P-localiza Hn(X) , ¥n 2 1.
prova: (Vide [H.M.R.], Teorema II. 1.B.). ]

Proposicao 1.11 - Seja X—=»Y em nH . As seguintes afir-

macoes sdo equivalentes:

(i) e P-localiza X (em nH).

(1i) e,: ﬂn(x)——+ﬂn(Y) P-localiza ﬂn(X) , ¥n 2 1

(1iii) e,: Hn(X)——+Hn(Y) P-localiza HD(X) , ¥n 2 1

prova: (Vide [H.M.R.] Teorema II.3.B}. ]

Das proposicdes acima & licito concluir que se X &
. e .
um CW-complexo simplesmente conexo e X—Y P-localiza X
em nH{, entdo Y € simplesmente conexo, donde a construcao

em n{ estende a de HI'
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Seja agora X um CW-complexo l-conexo de dimensao 2.
Entéo,

¢

X gSz = XM(Z,Z),

onde M(A,n) & um espaco de Moore. Sendo i: ZS— Z, & ime

diato que
e
2
3 XS -——*+XM&ZP,2)

tg. e, P-localiza H (yS?) , ¥n z 1. Dai que

eod: X—~+XMQZP,2) P-localiza X em H7

(e .. também em n#H).

Suponhamos agora gque nds temos construido

eyt Xd——¢YO satisfazendo (iii) da prop. 1.10 se dim XO§ n

o
o)
%

2. (X4,¥, € |H;]). e sejaxe [#;] com dim X = n+1.

Entao

3 q: gsn~—+xn tq. Cl(g) = X ,
onde C(g) & o cone de g e X" = n-esqueleto de X).

Devido & proposicao II 1.3 de [H.M.R.] existe um

diagrama comutativo a menos de homotopia.
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Em virtude da naturalidade da sequéncia do cone em
homologia segue que e satisfaz (iii) da prop. 1.10, donde e

P-localiza X em H7 (e .. em nH).

Suponhamos por fim X € |[H,| e dim X = = .

Seja X2€ X3¢ ... €xPc ... cx =1 x"

Temos construido as P-localizacgoes el e e
+
Xn C: xn 1

n n+1
e e

yme o y(ntl)

n n+l .
Observamos que € e € podem ser escolhidos de

modo que o diagrama comute efetivamente.

Pondo Y = %g Y(n)

com a topologia fraca vem que
Y € {H]{ e as funcdes f° combinadas produzem f: X—Y que

satisfaz (iii) da prop. (1.10).
Isto completa a construcao da P-localizacao em H].

Vamos agora relembrar uma caracterizacdo fundamen-

tal dos espacos nilpotentes.
. Pp
Seja X um CW-cOnexo e ... - Xn-——+". +X2 +Xl =

= K(wl(x),l) sua decomposicao de Postnikov.

Definicdo 1.12 - Dizemos que a decomposicdo de Postnikov

admite um refinamento principal no estagio n <P, pode

ser fatorada como um produto de fibracbes.
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9 9
X = Yé~ﬁ~»Yc_1—~*...-—+Y1———*YO = X

n n-1

onde a fibra de q; &€ um expaco K(Gi,n) e g € induzida por

uma aplicacao g;¢ Yi—~>K(Gi,n+l) , lg i g c.

Teorema 1.13 - Seja X um CW complexo conexo. Entdo X &
nilpotente &> a decomposicdo de Postnikov de X admite um

refinamento principal no estagio n, ¥n 2 1.

prova. (Vide Teorema II.2.9 de [H.M.R.]). ]

Para encerrar, consideremos X = K(G,1) onde G & nil

potente. Entao uma aplicacao

K (G,1)—K(Gp, 1)
tg. e,: G-—-—+GP p-localiza G em 1N, € um P-localizacao de X

nH por (ii) da prop. 1l.1l.

Seja agora X € |nH| tq. ﬂj(X) =0, j >n , para
algum n. Entdo o refinamento principal de seu sistema de

Postnikov & finito.

Vamos agora argumentar por inducao na altura(h) des

te refinamento.

Se h = 1 entdo X = K(G,1). Suponhamos pois que
temos K(G,n)—X—X' uma fibracdo principal onde G & abe-
liano (mesmo se n=1) e suponhamos também construida

e': X'—Y' satisfazendo (ii).

Como K(G,n)—X—X' & induzida nds podemos pensar

em X—X'-K(G,n+l) como uma fibracao.
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Devido & prop. II.3.4 de [H.M.R.] 3 um diagrama co-

mutativo

X S X! d ~K(G,n+1)
e! e
h

Y'—————————+K(GP,n+1)

Este produz o diagrama (também comutativo) em nH.

X »X! g ~+K(G,n+1)
e e! e!l
' h ‘

onde Y & a fibra de h. (Y € |[n#H| devido ao Teor. II.2.2

de [H.M.R.]).

Devido & naturalidade da seguéncia de homotopia,
que e' e e" satisfazem (ii) da prop. 1.11, e ao corolario
1.2.6 de [H.M.R.] segue que e satisfaz (ii) de 1.1l e

.. P-localiza X em nH.

Finalmente seja X € |nH| cujo refinamento principal

da decomposi¢do de Postnikov é infinita. Temos

llmx — . e w —‘}X ~_’*+X « v .

/

onde § é uma equivaléncia fraca de homotopia.
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J um diagrama comutativo em nH onde cada e, satis-

faz {(ii) de 1.11.

g.
. i
lim Xi-+...-—+Xi-~——+Xi_I—~+... — X,
iim e, e, e 1 e,
by
llm Yi—">-0-""‘-">Yi %Yi_l > e e ¥ 7Yl

Podemos também supor que h, é fibracao vi.

Da construcao & imediato que {Yi}i & um refinam.
principal de um Sistema de Postnikov, donde vem que lim e

satisfaz (ii) de 1.11.

Sendo Y uma realizacdo geométrica (CW) de lim Y, o

segue que 3 X —S—y tqg. o diagrama

—_—1im X,

X )
‘e lim e.
= i

1

v 8

—s1lim Y,
= i
& comutativo a menos de homotopia.

Logo e também satisfaz (ii) de 1.11 pois 6 e 6'

sdo equivaléncias fracas de homotopia.

Isto conclui a construcdo éo funtor P-localizacéo

em NH . D

o000



CAPITULO II

Neste capitulo vamos estabelecer alguns resultados

comparando nil m (X) e nil (X)Hn(x)’ onde & repre-
1(X) 1

senta O recobrimento universal de um CW complexo conexo X.

Conforme o exposto depreende-se que a técnica utilizada so-
mente frutifica quando n €& pequeno (= n.§6 ou ns7). Em
alguns casos apresentamos exemplos para mostrar que as desi

yualdades nao podem ser melhoradas.

Iniciamos com alguns resultados concernentes a espa
cos de Eilenberg-McLane a serem utilizados posteriormente.
A prova da primeira proposicdo é bem conhecida. Nao obstan
te decidimos reapresentd-la aqui, devido ao uso reiterado

que faremos da mesma no que segue.

Seja 7 Y ,aut(A) uma acdo de um grupo T hum grupo

abeliano A.
Lembramos que w induz uma acao Wy de 1. em Hn(K(A,m))
(m 2 1, fixado) ¥n 2 0 definida por:
(¥vx € ) 3! (fx} € [K(A,m),* ; K{(a,m),*] tg. fx* = un{x).

(Para maiores detalhes vide [W], pg. 100 e pg. 225). Pomos

wn(x) = fX*: Hn(K(A,m))-—~—+Hn(K(A,m)).
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‘Proposigéo 2.1 - w nilpotente == wp nilpotente; ¥n 2z 0.

Prova. Argumentamos por inducdo sobre ¢ = nilw = nilﬂA.
Se c=1, entdo seqgue da definicao que W & trivial donde nil-
potente.

Para ¢ > 1 consideramos I = Fi #z (0) e a fibracao

K(r,m) &———— K(A,m)

|

K(A/T,m)

Associada a esta fibracdo existe uma sequéncia espectral (de

Serre) na qual temos:
2
E_ . = H (K(&/T,m);H_(K(T,m)))

(Aqui a homologia & com coeficientes triviais, uma vez due
se m 2 2, entdo a base & simplesmente conexa e se m=1 temos

Hr(A/T;Hs(P)) e A/T age trivialmente em T, donde A/T age
trivialmente em HS(F)):
Com isto podemos invocar o teorema dos coeficientes

universais para obter a sequéncia exata.

H_ (K(A/T,m))@H, (K (I ,m)) »—E_ ——=Tor (H__; (K(&/T,m)) By (K(T,m)))

’

Devido a hipdtese de inducdo, ao lema 1.1 de [H] e a
proposicdo I.4.3, pg. 35 de [H.M.R.! segue que 7 age nilpo-

2
tentemente em E .

Novamente a aplicacdo reiterada da prop. I1.4.3, pg.

35, de [H.M.R.] garante que 71 age nilpotentemente em E? s ©

L

dai em H_(K(a,m)). ]
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n 2
Lema 2.2 - nllﬂHn(K(A,m)) < jéonllﬂEn'JrJ (segundo a notacgao

utilizada na prova da prop. 2.1). (mz 1).

Prova. E sabido gque a sequéncia espectral da prop. anterior

- - - . . k
é composta por n-mbddulos (acOes induzidas por w) Er g © °S
¥

. s k ~ . -
diferenciais dr g Sao homomorfismos de m-modulos. Agora,
¥

2 2
E2 dr+2,s~-1\E2 drjs;E2
r+2,s-1 r,s r-2,s+1
e

2
3 ker d

_ r,s

Er g = 3 .
, .
im dr+2,s-—l

Dai temos a sequéncia exata de 7-modulos

: 2 2 3
0—rim dp 5 gop—ker dp gEB, g0

Segue da prop. I.4.3 de [H.M.R.] que

3 2 2
nil E € nil ker 4@ < nil E .
T r,s T r,s Tr,s

£ agora imediado, por indugado, gque

2
nil EX < nil E vk 2 2.
T r,s T Xr,s
. . o . 2 .
< —
Em particular , nllﬂEr,s < nllnEr,s' Finalmente, lem
brando gque
fe ]
EO’nc Fl,n—lc CFn,O = Hn{K(A,m)) '
| |



-20-

considerando a sequéncia exata de 7n-mddulos

Fi—l,n-—1+1 Fi,n—i

e usando seguidamente a prop. I1.4.3 de

1

[H

n

’n_i

.M.R.] segue

n o ‘ 2
nil H_(K(A,m)) < .z nil B, 4 & #£ nil B 5 5 ]
3=0 J=0
Teorema 2.3 - Suponhamos nilﬂA =nilw=c2 2 emz2 2.
Entdo,
(i) nilﬂHn(K(A,m)) £ c , se 0 £ n< 2m
. . c{c+1) - =
{ii) nllﬂHn(K(A,m)) < 5 , sen =2mou n = 2m+l
2
(ii) nilﬂHn(K{A,m)} £ c , s n =2m+¥2 e m 2 3
o
(iv) nil H, (K(A,2)) £ ) Jj(j#1) _clc+l) (c+2)
T 6 L =
3=1 2 6
2
(v) nilﬂHn(K(A,m)) < 2c -c, sen =2mt3 e m 4
. $ j2+45j-4 _ ¢
(vi) nil_H,(R(A,3)) £ ) = = (c2-9c-4)
T 9 5=1 2 6
< c
(vii) nil H.(K(A,2)) £ ) 32+j-1 = % (c2+3c-1)
7 j=1 3
2
Prova: Temos E_j 4 = Hn_j(K(A/T,m);Hj(K(F;m))) ;

= H_(K(&/T,m)) e E.

. E2
** 7n,0 0,n

mos de 7 -modulos).

(i) supondo n < 2m vem:

= Hn(K(F;m)) (isomorfis-

Se n = 0, entao Wy é trivial e nilﬁHo(K(A,m)) =1¢< c
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Se 1 £n <m , entdo Hn(K(A,m}) = -0 nilﬂHn(K(A,m})==0 <c

Se n=m, entdo, por definicdo e isomorfismo de Hurewicz,temos

w, = w donde nilﬂHm(K(A,m)) = ¢Cc £ C.

Podemos supor entdao que m < n < 2m. Seja j tqg.
0 < J < n.

2
< 9 < => H.(K(T, =0 = E__ . . =20
0 <3 =<m 5 (RAT,m)) n-3j,j

. . . — 2 —
m<j<n== 0<n-j<m.. Hn_j(K(A/F,m)) = 0=a%En_jlj—-O

Segue do lema anterior (2.2) que

2 2
nil E + nil E
m0,n T n,0

A

nilﬁHn(K(A,m))

A

1+ nilﬂHn(K(A/T;m})

pois m age trivialmente em T.

Obtemos pois, por indugdo sobre c que

nil“Hn(K(A,m)) < c

2

(ii) Novamente, 0 < jJ < m = En-j,j =0 e
< 3 2 0 ] . E. 0
< = —— < n=-3 < P < e =
m J n m n-j m n-3, 3
e
2
Em,m = Hm(K(A/F,m) ® Hm(K(F,m)) = A/T ®T

Invocamos aqui a desigualdade (1.3) de [H.R.S.] para afir-

mar que nil E_ < nil A/T = c-1. .. Usando o lema 2.2
T m,m i

vems:

nilﬂHZm{K(A,m)) < 1+(c~1)+nilﬂH2m(K(A/F,m))
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segue .’. por inducao que

. = ~ c{ctl)
nllﬂHZm(K(A,m)) < ¢ +{c-1) 4.+ 1 = —

A

2

Para n = 2m+l, temos novamente En~j 3 =0 , se
¥

0 < j<m ou m+l < j < n=2m+l.

- 2 .
Tambem, E 0 (Hurewicz).

m,m+1 = 0, pois Hm+1(K(F,m))

mz 2) e

2
Em+1,m = Tor(Hm(K(A/P,m); Hm(r,m)) ¢ Tor(A/T,T).

Da prova do lema 1.1 de [H] depreende-se‘fécilmente

que nilﬂTor(A,B)é (niiHA)(nilﬂB) donde
kS 2 < > —
nllﬂEm+l,m < nllﬂA/F = c-1.

Temos entao que

nil H (K(A,m)) £ 1l+(c-1) + nilﬂH (K(A/T,m))

7 2m+1 2m+1

donde por inducao

. _ _ c(c+l)
nil H, o (K(A,m)) S ct(c-1)+..+l = = . ]
(iii) Suponhamos agora m 2 3 e n = 2m+2.
0 <j<m ou m+2 < j < n = 2m+2 = E2 . . =0
n-=3J,]

2

m+1l,m+1 =0 (H

E (R(T',m)) - 0)

m+1

2

Em+2,m

= Hm+2(K(A/F,m)) ® H_(K(I',ym))

2

(pois Hm+1(K(A/T,m) = 0) .. Em+2,m ¥ Hm+2(K(A/F,m)) ® T.
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2

Em,m+2

a 2 3 — -
= A/ T 8 Hm+2(K(T,m)); .. nllﬁEm,m+2 < nllﬂA/F = c~1

Também, levando em conta que m 2 3 (.. m+2 < 2m) e usando

{i} deste teorema vem:

- 2 * 3 — —
nllﬂEm+2,m < n11ﬂHm+2(K{A/T,m)) < c-1 (nllﬂA/r = ¢c-1).
f.nilﬂH2m+2(K(A,m)) < 1+{(c~-1)+(c-1}) + n11ﬂH2m+2(K(A/r,m)) =

]

(2c-1) + nilﬂH2m+2(K(A/T;m))

Dai vem por inducgdo que:

A

nil _H 2(K(A,m)) (2c=1) + (2(c-1)-1) +..+ 3+1 =

T 2m+
= ) (23-1) = S[1+(2c-1)] = ¢ ]
j=1
(iv) No caso m=2 e n=2m+2 = 6, usando os mesmos calculos
que em (iii) temos:
. 2 . {(c-1)c -
< ACTLIC
nllﬂE4'2 < nllﬂH4(K(A/F,2)) = 5 (por (ii)).
hl 2 <
e ni nE2,4 s c-1
Sonil B (K(A,2)) S 1+(e-1) + AS5HCw nin wo®a/r,2)) =
_ c{c+1} .
= = + nlleG(K(A/F,Z)).

Dai vem por indugdo que:

A
o~
F;
=
]

nilﬂHG(K(A,Z))
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(v) Agora m 2 4 e n=2m+3.

2

E2m+3-j,j =0 se 0 < 3J<m

ou m+3 < j < 2m+3, ou Jj = m+l (pois H (K{I',m)) =0).

m+1
2
Ep,me3 = A/T 8 Hy s (K(T,m)
2
Em+1,m+2 = Tor(A/F,Hm+2(K(F,m))

2

Hm+3(K(A/T,m)) ® I'>— Em+3,m

TOI{(HHH‘Z (K (A/Flm) ) IF)

Usando o lema 2.2 obtemos:

nllWH2m+3(K(A,m))

IA

1 + nllnH2m+3(K(A/F,m)) + nllﬂA/F +

+ nil A/T + nil H_ o (K(A/T,m)) +

+ nilﬂHm+2(K(A/F,m)) e (%)

Levando em conta que m 4 e (i) vem:

v

IA

nil H (K{(A,m)) £ (4c-3) + nilWH

T 2m+3 (K(A/T,m)) £

2m+3

< (4c=3)+[4(c-1)=-3] +...+ (4.2-3)+nilﬂH (K(A/Ti,m))

2m+3

por inducgao. Logo,

n11ﬂH2m+3(K(A,m))

A

C
¥ (43-3)
i=1

(pois m age trivialmente em A/T;).

7aN

S.nil Hy oo (K(A,m) s (2c-1)c ]
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(vi) Se m=3 e n = 2m+3 = 9 temos (usando (*) do item ante-

rior):

A

nilﬂHg(K(A,B}) nilﬂHg(K(A/F,3)) + (2c-1) +

+ nilﬂH6(K(A/T,3)) + nil HS(K(A/F,3))§

(c~1)c
2

A

nilﬂﬂg(K(A/T,3)) + (2c-1) + +

+ c=1

devido aos itens (ii) e (i).

. c2+5c-4 .
nllﬂHg(K(A,3)) < —s + nllﬂHg(K(A/F,3)) R
donde
. S j2459-4 . -
nllﬂHg(K(A,B)} ) 5 (por inducao)

I
~J
.

(vii) Finalmente suponhamos m=2 e n = 2m+3

Devido a (*) do item (v} temos:

nil“H7(K(A,2))

A

(2c-1) + nilﬁH7(K(A/F,2)) +

+ nilﬂHS(K(A/F,Z)) + nilﬂH4(K(A/F,2))§

IA

(2c-1) + nilﬂH7(K(A/F,2)) +

(c-1})c (c-1)c
p) T3

4

devido ao item (ii).
J.nilWH7(K(A,2)) < (c2+c—1)+nilﬂH7(K(A/F,2)) ;

donde por inducdc vem:

A

C
L (32+3-1) . ]

nllﬂH7(K(A,2)) )

J
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Exemplo 2.4 - Seja 7z —%%> Aut (Z82% dada por w(l)(1,0) = (1,1)

w(l)(0,1) = (0,1), ou seja, a matriz M associada ao automor-

fismo w(l) & dada por

X 2 - ¥ 3 3
Temos (M—Iz) 0 donde w & nilpotente e nilw = 2. Seja

X

1

K(Zzo®Z,2) ~ K(Z ,2) x K(Z ,2)

Denotamos, como sempre, W_: Z-—~—>Aut(Hn(X)) a acao induzida

n
por w. Para calcular a classe de nilpoténcia de Wy (para al-
guns valores de n) lembramos que H, (K(Z,2)) = D[xz] = algebra

polinomial graduada dividida com um gerador de grau 2 (XZ).

- Lo it
{ie. Xos x2j { i )XZ(ijj))'
Outrossim, segue da definigdo que W é compativel

com a estrutura multiplicativa em Hn(X).

-

Devido ao teorema de Hurewicz segue que w, = W , ie.

lembrando que

Hy(X) = [H,(K(2,2)) & H,(K(z ,2))] ©

® [H,(K(Z,2) 8 Hj(K(Z,2)]

(Formula de Kiinneth) segue

® 1

wz(l)(x2 ® 1) X,

e wz(l)(l ® xz) =18 x, + X

2 8 1.

2

({1 ® X,1%X, 1} & uma base do Z-mddulo livre HZ(X))'
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Em H4(X) sabemos que {1 ® Xp1 Xy & Xor Xy ® 1} e uma

base. (onde x, & o gerador de H4(K(E,2})). Agora,

2w4“J(1 ® x4) = w4(1)(l ® 2x4) = w4(1)((1 ® xz)(l Q@ xz)) =

[0, (1) (1 & x,) ][, (1) (1 8 x,)] =

(1 ® X, +x, ®1)(1l ® x, + x, ® 1) =

2

2 2 2

1 ® 2%, + 2%x. ® %X, +2x, 8 1

4 2 2 4

(pela compatibilidade de w, com a estrutura multiplicativa).

.Zcﬁ(l)(l & x2) =1 @ X, + X, e X, + X, ® 1

Também,

il
1l

[0, (1) (x, ® 1)1 w,y(1) (1 ® x,)] =

(x, ® 1)(1 ® x, + x, ® 1} =

2 2 2

® x, + 2x, 8 1 .

=X 2 4

2

I

Finalmente, 2w4(1}(x4 ® 1) w4(1)[(x2 ® 1)(x2 ® 1)] =

i

2x4 ® 1.

oo m4(1)(x4 ® 1) = X, ® 1

.. Sendo M4 a matriz associada a w4(1) associada a base

considerada temos:

1 0 0
M4 = 1 1
1 1
. - . 2(2+1
..(M4—I3) = 0. Dal que nllw4 = 3 = ( 5 )
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Da mesma forma sendo {1®x6, X, 8K, X,0K,, x6®1} uma

base de HG(X) {Kfinneth) , obtemos:

I

3w6(1)(l@x6) ws(l)(l®x2x4) = wz(l)(lﬁxz)w4(1)(l®x4) =

(1ex +X.,8x

g R B% X

+x2®l)(1®x ®1l) =

2 4

1@3x6+x2®x4+x2@2x4+2x4®x2+x4®x2+3x6®1 =

3{10xX +X..0% ,+X ,0%

Il

+x6®l).

6 72774 74772

ws{l)(x2®x4) wz(l)(xzel)w4(l)(l®x4) =

+X..8X

(x2®1)(l®x +x481) =

4 72772

x2®x4+2x4@x2+3x68l

ws(l)(x4®x2) = (x4®1)(1®x +x281) = X ®x.+3x,.81

2 4772 6

3w6(1)(x6®1) = (x2®1)(x4®1) = 3x6®l

1 3 3 1
\ J

2 4(§+1)
= 0, donde nilw, = 4 = ] 5=

- L
Dai, (M6—I4)

Este exemplo pode ser generalizado.

Exemplo 2.5 - Seja Z —Aut(Z © ... ® Z)
{ J

c~vezes
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jd BO 0Bt
Pt 200001t

jot @000 O

fdnoenon

J

Onde M é a matriz associada a w(l) relativamente a base ca~-

nonica. Desta forma (M—ic)c = 0, donde nilw = C. Seja

X =k (®m,2) ¥~ K(Z,2) x .. x K(Z,2)
c L )

c-vezes

Wy Z ——Aut Hn(XC}

a acao induzida por w (XC s K(Z#Z,2) x Xc—l)'

Calculos similares aos do exemplo anterior mostram
que

. L _ c(c+l) _
nl%ZH4(XC)-—nllw4 = > = posto de H4(Xc).

(por inducao sobre c}, e

c L
. . L j(i+1)  _
nil H (X)) nilwg jzl 5 posto de H(X.)

H~1w

(Note gue por Kfinneth, posto H6(XC) =

N posto HZi(Xc—l) =

0
ji%i;l (por inducao) =

c-1
=1 + (c-1) + Ei%:ll +
j=1

1i%ill). (Mostra-se que as matrizes Mé(c) e Mé(c)

|
10

j=1

sdo triangulares por indugao sobre c). ]
Este exemplo (2.5) mostra que as desigualdades obti

das em (ii) (n=4 e m=2) e em (iv) sdo as melhores possi-

veis.
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Proposicdo 2.6 - Suponhamos nilw = nilﬂA = ¢ 2 2. Entao,
. ] c{c+1)
(1) ‘nllﬂHZ(A) < 5

(ii) nilﬂH3(A)

7Y

c
.,_clc+l) (2c+1)
5% 6

Prova: Utilizamos a sequéncia espectral de Lyndon-Hoschild-
~-Serre associada a sequéncia exata I'>»=A-—»Af onde
2
o = (0). Temos Er,s = Hr(A/T;HS(F)) com coeficientes

triviais.

n
o
o
=
e
0
=
N
n
i
~
e
®
i

s 2 5 A 2
(l) Ez’o = Hz(A/T) 7 E0,2 =

De sorte que
nllﬂHz(A) < 1+(c-1) + nilﬂHz(A/F)

devido ao lema 2.2 e a desigualdade (1.3) de [H.R.S.].

Novamente por inducao obtemos

. _ _ cf(c+l)
nllﬂHz(A) < C+(C’1)+n.. +; = =
. EZ N 2 - 2 -
(ii) 3,0 ° H3(A/F) ; E0,3 = H3(F) ; E1,2=:A/F ® HZ(T) e
2
HZ(A/F) e Pr—»Ez 1————»Tor(A/F,F)
14

& exata. Logo,

nilﬂH3(A) <1+ nilﬂH3(A/F)+(c-1)+(c—l)+nil HZ(A/T)

A

2
2c-1+(c-1) +nile3(A/F)(devido ao caso an-

terior) = c2+nilﬂH3(A/T).

i



-31~

.

.. por inducdo vem: nilﬂH3(A)

. 1) (2c+1
132=C(C+ )éc-}-) D

i
I ~100

]
Doravante, indicaremos por X um CW-complexo conexo,

% seu revestimento universal, 7T = ﬂl(X) e m = ﬂn(X).

Usaremos também a decomposicao de Postnikov de X e
sua dual denominada decomposicao de Cartan~Serre-Whitehead

denotadas respectivamente por:

(Pos;nikov) (Dual)

'3 ®

R
K(ﬂm,m)i—+2m

v el

Q oo

]
E
>
N

T m-1 K(ﬂm_

/
\,

(m)

2=K(ﬂ2,2)

* A DY GO 8w Ll
Mimmmmmrmm Qe e ad— DA

Lembramos agqui o lema I.2.18 e a observacdo 2.19 de
[H.M.R.] que mostram gue T age nilpotentemente em 7,
¥n, 2 £ n £ k = 1 age nilpotentemente em Hn(X), ¥n,

2

A
[[7a%

n k.

Nosso objetivo agora €& obter resultados comparando

tais classes de nilpoténcias.
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Supomos a partir de agora que T age nilpotentemente

em T ¥n 2 2. Com respeito as decomposicbes acima vamos

nl

provar 2 lemas para usoO posterior.

Lema 2.7 - (i) nil Hm+1(xm) < nil_H (% )

i 7T m+l  Tm=1

(ii) nil H (%) < nil H (& _4) + nil Ho o (K(m (X),m)

+ nilﬂ[nz(x) ® ﬂm(x)]

(iii) nilﬁHm+3(Xm) < nilﬂHm+3(Xm_1

+ nilﬂ[H3(Xm_l)®nm(X)]+nilﬂTor(ﬂ2(x),ﬂm(X))

) o+ nilﬂHm+3(K(nm(X),m» +

{74

(iv) nil H (Xm)

T m+4 nilﬂHm+4(Xm—l) * nilem+4(K(ﬂm“(X)‘))mj+

+ nllﬂﬂz(X) ® Hm+2
+ nilﬂH4(Xm_1) 8 m (X) +

(K{m_(X),m)) +

+ nilﬂTor(HB(Xm_l),ﬂm(X)) , ¥m 2z 3.
Prova: Consideremos a fibracao (m 2 3)

K(nm(X),m)C;—+ g

Temos (seq. espectral de Serre)

2
E, s = Ho(X_, Hg (K (X),m))
(coef. triviais pois Xm-l &€ l-conexo). Exatamente como no

lema 2.2 temos

. 2
OnllﬁEn—j,j

v
o

;, ¥ on

| &1

nllan(Xm) <
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2

(1) E0,m+1 =

2 2
E = (0 e E

J. nil Hm+l(x ) £

i

(ii)

2 2

E =0 =E

H (X _.)

m=-1 9

5

A

LC.onil Hm+2(2 )

n

(iii) (K(n

E0,m+3 m+3

2 - = 2
Efifggp = 0n="E

2
e H3(Xm) ® nmrwéE

m-mod.

o nilﬂHm+3(Xm) <

Hm+l(K(nm

m+1-

Z(K(ﬂm

m+2-

m+3-

nil H

,m))=0;E

2 ~
m+1,0

=0 se 0< j< m

33

nil H ¥Ymz 3

mom+1

(gm—l)

2

) Bryo,o ®

se 0 < 3j<m

33

m T

m 2 2) .

® T (m=-1 2
m

nllﬂHm+2(xm—l

nil n., & 7_.
T 2 m

2
s

2
m)) Em+3,0 =

, se 0 < j <

33

3,m

= m+3(X ) + nllﬂH

m+1

Hm+2(xm—1

}oo+ nllﬂHm+

m+3

(xm—l)

)

5 (R(T_,m))+

-»Tor(ﬂ2(x),ﬂm) é exata de

(R(r_,m))+

+ nllﬂ(HB(xm) ® ﬂm)+nllﬂT0r(ﬂ2,ﬂm).

) By e HL RO
2 _ _ 2
By me3 T 0% Bpyg-

2
M)y

, se 0 <

33

Brva,0 = Huea Bpog

3 < m, E

|

3,m+1 - O
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2 .
H4(Xm_1) ® ﬂm*“*E4 m—%*Tor(H3(Xm_l),ﬂm) exata

14

2

E2,m+2 =Ty ® Hm+2(K(“m’m))
Logo,
nilﬂHm+4(Xm) < nilWHm+4(Xm_1)+nilﬂﬁm+4(K(nm,m)) +
+ nil 7, 3 H o (K(m ,m)) +
+ nil H, (R _4) & 7 + nilﬁTor(HB(Xm_l),nm)
]

Corolario 2.8 - (i) nll“HS(X3) < nllﬁHS(K(ﬂz’g)) +

+ nilﬂHS(K(ﬂ3,3)) + nllnﬂz B ﬂ3 .

(ii) nilﬂH6(X3) nilﬂHs(K(ﬂz'Z))-+nilﬂH6(K(ﬂ3'§))+

+ nilﬂTor(nz,HB)

74

(iii) nilWH7(X3) nilﬂH7(K(ﬂ2’2))-+nilﬂH7(K(ﬂ3'3))+
+nil 7, 8 Hg(K(mg,3)) +

+ nllﬂH4(K(ﬂ2'2)) ® ﬂ3

(iv) nilﬂHs(X4) < nilﬂHe(K(ﬂ4,4))-+nilﬂH6(K{ﬂ3,3))+
+ nilﬂHG(K(ﬂz,Z))‘+nilﬂn2 ? Ty +

+ nilﬂTor(nz,n3)

WA

(v) nilﬂH7(X4) nilﬂH7(K(ﬂ2;2))f+ni1“H7(K(“3,3))+
+ nilﬂH7(K(ﬂ4,4)) + nilnH3(X) M,
+ nilﬂTor(nz,n4) + nilﬂnz ® HS(K(W3,3))+

+ nilﬂH4(K(n2,2)) ® Ty



(vi)

Prova.

do lema

(i)

(iii)

(iv)

(v)

(vi)

Lema 2.9 = (i) nilﬂH

(is)

172N

nilﬂH7(25) nilﬂH7(K(w2,2)) + nilﬂH7(K(n3,3)) +

+ nilﬂH7(K(n4,4)) + nilﬂﬂ7(K(n5,5)) +

+ nilﬂn2 ® my + nil m, @ HB(X) +

+ nilﬂTOI(ﬂz,ﬂ4) + nil“ﬂ2 ® HS(K(W3,3)) +

+ nil ® H4(K(ﬁ2,2))

™ "3
(i) Basta observar gue 22 = K(ﬂ2,2) e aplicar (i)

2.7'

Basta notar gque H3(K(w2,2}) =0 e usar (iii) do
lema 2.7.

Sai de (iv) do lema 2.7 e H3(K(ﬂ2,2)) = 0

Basta juntar (ii) do lema 2.7 e (ii) deste

corolario (2.8}

Devemos juntar (iii) do lema 2.7 e (iii) deste

corolario (2.8)

Devemos juntar (ii) do lema 2.7 e (v) deste

corolario (2.8).

m+1(x(m)) = nilTer+1(x(m—l)) +

+ nil H (K(m
m

i m=2)) + nil By(& 4)) O 7 +

-1 m-1

+ nilﬂTor(Hz(X ¥m2 3.

(m—l)’ﬂm—l)'

nil H

T m+2(x(m)) nil H (%

T m+2
+ nil H
i

A

(m-1)) *
mt2 KTy _qem=2)) +

+ nilnHz(x(m-l)) 8 Hm(K(“m-l'm'z)) +

+ nilﬂH4(X )) ® 7 +

{m=-1 m=-1

+ nllﬂTor(H3(x(m—l))'“m—l) , ¥om23.
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Prova: Consideremos a fibracao

K, _q(X),m-2) ——%

l(m)

X (m-1)

Na sequéncia espectral de Serre associada temos:

2
EL g = Hr(X(m_l),HS(K(ﬂm_l,m—Z))
e
n 2
l . X
nllﬁHn(X(m)) < -zonllnEn-j,j cee (%)
j.—.
. 2 2 2
(1) By, m+1 = Hpep (Klmp_qom=2)) 5 Eppy o o= B (R gy)
EZ _ . 2 2 _ _ 2
n+l-3,3 0, se 0 <3 <m2; EZ,m—l =0 = El,m
e
2
Hy (R (1)) ® Mo B3 oo >Tor (Hy (R _qy) 5 Ty _q)
e exata.
Aplicando (*) vem o resultado.
. 2 ) 2 B %
(11) By me2 = Hpep Rlmp_gom=2)) 5 Bpoy g = Hoyn (Ripy)
2 _ 2 .
Bymi1 = 0% Bpypog,y S€ 0 <3 <m25 By g =
2
Hy (R (poq)) @ Tpoy” By o Tor (Hy (R 1)) r T q)

exata
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2
E

2,m = HZ(X

(me1)) © Hp(K(m,_q,m=2)

Aplicando (*) vem (ii) ]

Corolario 2.10 = (i) nllﬂH4(X nllﬂH4(X) +

(3)) =

+ nilﬂH4(K(ﬂ2,l)) + nilﬂH3(X) Q¥ T, + nil“Tor(Hz(X);wz)

(11) nilﬂH5(2(3)) nil“HS(X) + nilﬂHS(K(ﬂz,l)) +

IN

+

nllﬂHZ(X) ® H3(n2,l) + nllﬂH4(X) ® Ty +

+ nilﬂTor(H3(X),ﬂ2)

(1ii) nilﬂH5(2(4))§ nilﬂHS(X(3))+ nilnHS(K(ﬂ3,2)) +

+ nllﬂﬂ3 ® T3

(iv) Sem 2 5, entdo temos:

(R(m _;,m-2))

T m+l

nilﬂHm+l(X(m)) s nil“Hm+1(X

(m—l)) +ﬂnil H

(v) nilﬂH6(2(4)) <-nil H6(X(3)) + nilFH6(K(n3,2)) +
+ nilﬂH4(X(3)) e T3 + nilnTor(n3,n3)
{vi) nilﬂH7(X(5)) < nilnH7(X(4)) + nilﬁH7(K(ﬂ4,3)) +

+ nllﬂﬁ4 e L

(vii) Sem 2 6, entac:

nilﬂHm+2{X(m)) < nilﬂHm+2(g(m—l)) + nil“Hm+2(Km_1,m—2))
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Prova: Para (i) e (ii) €& sO lembrar que X(z) = X.

Para (iii) lembramos gque HZ(X(3)) =0 e

Hy(R(3) = m3(X).

Para (iv), HB(X(m-lﬂ =50 = HZ(X(mrl)) se m 2 5.

Para (v) HZ(X(m—l)) =0 e H3(X(3)) = Ts.

Da mesma forma obtemos (vi) e (vii)

Lema 2.11 - (i) nil H (8) < nil 7 (X) + nil H (R _.) ;

mz2 3
(ii) nil m s nilem(x(m-l)) + nil H (K(m _,,m=-2)) +
+ nilﬂHz(X(m_l)) & T _1 s ¥mz2 3.
Prova: (i) Seja K(m_ m) C——+Xm
Xm-—l

a fibracao obtida pela decomposicao de Postnikov.

EO,m = Mp 7 Em,O = Hm(xm—l)
e
2 — >
m-3,3 - 0 se 0 <3 <m
Lembrando que
H (X)) = H TX)

vem:

Soonil H (X) s nil 7+ nil H (R _,).
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(ii} Consideremos a fibracido dual (da de Postnikov)
K('ﬂ'm_lim-z) ’X(m)
x(m—l)
Temos:
2
Egom = Hm(K(ﬂm_lfm-Z))
* = H (%
Em,O = Hm( (mvl})
2 _ 2 .
El,m—l =0 = -3, se 0 < j<m2 ;
2 = H, (X
By me2 = HoE(qog)) @ Ty

2
(Observemos que EZ,m—Z =0 ; semz 4 e
2
EZ,l = Hz(X) ® m, = m, & 1, , se m=3). Lembrando gque

ﬂm(X) = Hm(x(m)) (Hurewicz)
segue:
nllﬂﬂm(X) = nllﬂHm(x(m)) < nllnHm(X(m_l)) +
+

Teorema 2.12 -

nilﬂH3(X)

nllﬂHm(K(ﬂm_l,m—Z)

nil Hy (% poq)) © 7 [l

m-1

Na condicdo de que T age nilpotentemente em

temos:

A

nilﬂﬁB(X) s nilﬂH3(X) +

+

nilﬂHz(X) ® HZ(X) + nilﬂH3(H2(X))
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WA

(ii) nilﬂﬂ4 nilﬂH4(X) + nilﬂH4(K(ﬂ3,2)) +
+ nil,"H4(K(TT2,1)) + nilnHB(X) ] H?_(X) +

+ nilﬂTor(Hz(X),HZ(X))

A

(iii) nilﬂH4(X) nilﬂn4(X) + nilﬂH4(K(ﬂ2,2))

(iv) nilﬂHS(X) < nilﬂﬂ5(x) + nilﬂﬂ2®ﬂ3+ nilﬂHS(K(ﬂz,Z))+
+ nilﬂH5(K(n3,3))

(v) nilﬂHG(X) < nilwﬂs(X) + nilﬂﬂ2®n4+ nilnHG(K(nz,Z))+
+ nilﬂHG(K(ﬂ3,3)) + nilﬂHG(K(ﬂ4,4))

(vi) nilﬂH7(X) < nilﬂﬂ7(X) + nil“ﬂ2®ﬂ5 + nilﬂﬂ4®H3(X) +

+ nilﬂTor(wz,ﬂ4) + nllﬂﬂ3®H4(K(ﬂ2,2)) +

+ nilﬂﬂ2®H5(K(n3,3)) + nilﬂH7(K(ﬂ2,2)) +
+ nilﬂH7(K(ﬂ3,3)) + nilﬂH7(K(w4,4)) +

+ nilﬂH7(K(w5,5))

Prova: Para obter (i) lembramos que HB(XZ) = H3(K(ﬂ2,2))=0,
aplicamos (i) do lema 2.11 e (ii) do lema 2.11 recordando

gue X(Z) = X.

(ii) é resultado da utilizacdo de (ii) lema 2.11 e (i)
corolario 2.10. Para obter (iii) usamos o lema 2.11 (i) e
o lema 2.7 {(i). Para obter (iv) usamos o lema 2.:il (1),

lema 2.7 (i) e o corolario 2.8 (i).

(v) é consequéncia do lema 2.11 (i), lema 2.7 (1), e

do corolario 2.8 (iv). []
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Observacao: As desigualdades para nilﬂﬂn erﬁlnﬁmﬁﬂ tornam-

-se bastante complicadas, para n > 4 e m > 7.

Na verdade para n=4 e m=7 elas j& nao sdao tao sim-

ples conforme atestam (ii) e (vi) do teorema anterior.

Exemplo 2.13 - Seja X um CW compelxo conexo tg.

ﬂl(X) = % ; ﬂz(x) =% O%Z & ... 87 (c copias) ,

xi(X) =0 ; i>» 2 e a acao de ﬂl(X) em ﬂz(X) é dada por M

como no exemplo 2.5.

Neste caso X = K(zS,2) e vimos no exemplos 2.5 que

i = i - clc+l)
nll“l(x)ﬂz(x) = C e nllﬂl(X)H4(X) = 5
Como ﬂ4(X) = 0, segue que a desigualdade (iii) obtida no

teorema 2.12 & uma igualdade neste caso.

Observemos também que este exemplo produz uma si-

tuacdo na qual a desigualdade (V) é em verdade uma igualdade!

o0o






CAPITULO III

§3.1. - Nesta seccgdo vamos estabelecer alguns resultados ge
rais referentes a grupds P-locais, fatoracdo de a-
c¢Ses e algumas proposicgOes ligadas a cohomologia de

grupos.

Proposicdo 3.1.1 - Consideremos El""'Et’K grupos P-locais,

€.
- P . i :
onde P & uma familia de primos e Ei——*K homomorfismo de

grupos. Nestas condigbes, se E-%>K & o pull-back da fami -
entdo E é P-local.

i‘1sist !

Prova: ©Sabemos que

E = {(Xl,...,xt) € E; X ... X% E, : ei(xi) = ej(xj), ¥i,j}

t

sendo nj(xl,...,xt) = xj temos € = €.T.; Wi.

Fixemos n€P'* . Consideremos x = (xl,...,xt); y==(yy"qytn
n_.n . n n ,
X,YEE e suponhamos x =y . Desta forma ¥i, X, = ¥y Dai,

X;=y,, uma vez que Ei é P-local ¥i. Logo, x=y. Por outro

lado, y = (yl,...,yt) € E ; ¥i (BxiGEi) tqg. x? =Yy (EiP—lg

cal). Logo, sendo x = (xl,...,xt) segue y = x". Lembrando
n _ - _ n = o _

que ei(xi) = si(yi) = ej(yj} = sj(xj) e K é P-local se

gue Vi, J; ei(xi) = sj(xj) donde X€E.

0 argumento acima mostra que E & P-local ]
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Proposicio 3.1.2 - P-familia de primos; Y-grupo P-local;F-

-grupo finito; YJK>F homomorfismo de grupos. Entao, Vy€Y;

o(¢ly)) = n€P* ou ¢(y)=1.

Prova: Seja YE€Y e suponhamos gue 3 g€P' tqg. glo(ely)).

Pondo o(¢(y))=g.k e considerando z=yk, segue o(¢(z))=g. Da
r -

do que g€P', vem que ¥r > 0, 3z €Y tq. z§’=z (Y & pP=local).

1
Assim que, ¢(z )9 = ¢(z) =1 e ¢(zr)qr+ = ¢(z)%=1.

Soool((z)) = gf*l, ¥ r > 0. Em particular,{¢(z )€F: r>0}cF
e & infinito, contra a hipbtese de F ser finito. ]
Corolario 3.1.3. - Nas condic¢bes da proposicdo anterior,

| $(¥) |€P%, o que equivale a dizer que ¢(¥) & um P-sub-grupo

(finito) de torcao de F.

Prova: De fato, se 3q€p', q||¢(¥)]|, entdo Jy€Y tg. o(dly)) =

= quﬁ

Observacdo 3.1.4 - A proposicao 7.1 (pg. 106) de [R.2] nos

mostra que um grupo finito F & P-local <= F & um P-grupo de

torcdo (i.é. g é primo e g||F| = q€P).

e
Na proxima proposicao X——"'Q'*XP pode respresentar a P-

-localizacdo em G ou em n.

Proposicdo 3.1.5 - Sejam X,N grupos onde Aut(N) é finito, e

X—2 Aut (N) uma ac3o de X em N.

Entao 3! wp acdo gue torna o diagrama comutativo
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X > Aut (N}
e, G
Xp
=00 (X) € um P-sub-grupo de torcdo de Aut(N). Mais ainda,

nas condicdes da proposicao temos wP(X = w(X).

p)

Prova: (=) Se 3w entdo pelo corol. 3.1.3. temos qgue

PI
mP(XP) & um P-sub-grupo de torcdo de Aut(N).
pai w(X) = wpe,(X) € wp(Xy) é P-sub-grupo de torcio

de Aut{N}.

( ==} a) Suponhamos inicialmente que €4t X > Xy &€ a P-lo-
calizacdo em G. Devido & observacdo 3.1.4. w(X) € um grupo
(finito) P-local. Logo da definicao de localizacdo 3! hom.

- - ) -
wP: XP > w‘x) tg. wPeO = w onde X—/w(X) e tal que

1 . C—P 3 i 0 = 3 = 1 o * =
i wi(X) Aut (N}, entao iw w. Sejam Wy iowy, ..wPeO w,
Seja wp: X, 7 AuF(N} outra acao tq. wpe, = w.
i
® 5><”*j——7"~*17\¢ Seja w!: X_ > ®_(X,) tq.
X*w(X)ﬁ——J—-——frw(XP)C———»Aut(N) P P PP
kwl = &P’ Devido ao coroléario

3.1.3 e a observacao 3.1.4,
wP(XP) € P-local e (3wP)e0 =

= 1 '
“p€0 “p por uni

cidade.
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I

Assim que Vz€Xp, &P(z) kowé(z) = wif{z) = jaP(Z) = 5P(Z) =

~

= imP(Z) = mP(Z) . Wp

wp |- Dai vem a unicidade de Wp e

Finalmente, vimos acima que wP(XP) = GP(XP) = w(x)[:]

e
b) Se X——QXP & a P-local.em N , entdo a prova € a mesma
lembrando-se que neste caso w(X) & nilpotente (pois X o é)

e .. 35P como acima.

Na prova da unicidade &(XP) é P-local e nilpotente

X = nilpot.)
( P P

Consideremos a seguir uma extencao ArE>G-E»+X onde

A & um grupo abeliano.

Temos pois, associada a esta extensdo, a agao

w: X - Aut(A) dada por M(w(x)a) = gu(a)g_l, onde €{g) = X.

Fixemos uma familia de primos P e n€N. Para cada

x€X podemos definir o homomorfismo:

B (x) = 1, + w(x) + ... + w(x™ 1) e End(n).

A respeito deste endomorfismo podemos enunciar o

Lema 3.1.6 - (¥g€G); (¥a€h); (¥neN) vale:

(ua)g)® = u(o_(e(g)alg”

Prova: Por inducdo s/n. n=1 & trivial.

Supondo a form. verd. p/k-1 temos:
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(w(a) g ¥

- (k-1) k _

u(o, _; (e(g))a) [¢° Tulalg

- (o, (g a)ue(e(@  hargt =

= (o, _j(e(ga + w(e(@  Ha)g"

(@) ¥ utarg) = ule,_; (elga) (@ uta)g

u(0, (€(g))a)g”.

(Lembramos aqui que: Gk(e(g))a = ek_l(g(g))a + w(e(g)k‘l)a )

por definicao).

Estamos agora aptos a provar a

. e * E ~
Proposicao 3.1.7 - Seja A>B>G-—a+x uma extensao onde A

&

abeliano e w a acio associada & extensdo. Seja P uma fami

lia de primos e consideremos as 3 afirmacOes abaixo:

(1) G & P-local
(ii) X & P-local

(iii) (WE€X) (¥n€P'*); en(x)eAut(A).

Entdo, quaisquer duas implicam a terceira.
Prova: (1) + (ii) = (iii).

Seja x€X; n€p'* . Suponhamos 6 (x}a = 0.

+q. e(g) = x. Entdo pelo lema anterior vem:
(b(@ @)™ = u(e (x)alg” = uidlg =g .

pai, wul(a)g = g, pois n€P'* e G & p-local. Logo

S.ooa= 0. .ﬁen(x) é monomorfismo.

Seja g€G

u(a)

1,
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Por outro lado dado b€A. Afirmamos gque 3g'€G tqg.

g'nt = u(b)gneG; uma vez que G & P-local.

(01}

Dai, €(g')P = e(u(b)gh) = e(g)? —> e(g') = elg) (X
p-local, .. 3! a€A tqg. g' = u(a)g. Logo, u(b)gn = g'nh =

= (u(a)g)n = u(en(e(g))a)gn pelo Lema anterior.

Levando em conta que p € injetora vem que
8 (e(g))a =Db .. 6 (x) € Aut(r). .
(iii) + (i) = (ii)
n

Sejam x,y € X e n€P'* e suponhamos " =y

x = e(g); vy = elg') ... e(gn) = x" = yn = g(g'D) . 3! a€A

tg. gn = u(a)g'®. Agora por hipotese 3! bEA tq.

6 (elg' )b =a . g" = w8 (e(g)b)g'® = (ub)lg")?®
pai g = ulb)g' (G & P-local).
x = e(g) = e(p(b)g') = elg') =y .

Por outro lado, seja ye€X.

y = e(g) = £(a™) = ()™ (G & P-local) .. X & p-locall |

(ii) + (iii) == (i). Fixemos n€P'*; g,h € G.

g7=h" = e(g)" = e(M)® = e(g) = e(h)
pois X & P-local.

S.(3laen) tg g = u(a)h .. = gt = (v(a)yp) ™ = u(en(e(h))a)hn

Dai,
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en{e(h))a = 0=>a =0 (por hipotese). .. g = u(0)h = h
Por outro lado, g€G, (Ix€X) tg. elg) = x? (X & P-local)
Soelg) = xP = em)® = en™ . @rlaen) tg. g = u(a)h”.
Como Gn(e{h)) & bijetora segue que 3! bEA tg. a = Gn(e(h))b
Soog o= p(en(e(h))b)hn = (u(b)h)n devido ao lema 3.1.6. Mos

tramos pois que g € G + g €G & bijetora. ]

. -~ Fod - * . E
Proposicdo 3.1.8 - P-familia de primos; Ahng-+>X exten-

sio onde A & um grupo abeliano finito. Nestas condigles,
se G é P-local, ou A e X sdo P-locais, entao

0, (x) € Aut(a), vxex, vnep'*,

Prova: (I) G & P-local.

Visto que A & finito basta provar que en(x) & injeto-

ra ¥nep'*, ¥xeX.

Fixados n€P™ e x€X, seja a €A e suponhamos que
en(x)a = (0. Seja g€G tg. e(g) = x. Pelo lema 3.1.6. temos:

n
g

(u(a)g)™ = u(e (x)a)g"

Como G & P-local segue yuyfa)g =g .. a = 0. ]

(I1) A e X sao P-locais.

Novamente basta que en(x) seja injetora, pois A é fi-
nito. Fixemos n€F'* e x€X. Seja a€A e suponhamos que

en(x)a = 0. Desta forma

0. .. w(x)na =" a.

L]

(w(x)n—lA}a = [w(x)-1,]06 (x)a

Por outro lado,
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x—25 aut(a); olw(x)) = meP* ou m=1.
devido & prop. 3.1.2. .. Ww(x) .a = a.

Agora m=1 ou m€P* e n€P'* .. mdc(m,n) = 1.

. (3r,s€zZ) tg. rm + sn = 1. Logo

wix)a = [wx)™Tolw(x)®1%a = a
S.0 =8 (x)a = atat...+a = na —>a = 0 (pois A & P-local)
~. 6 (x) € Aut(a) , ¥ ne€P'* ; ¥ x€X ]
Corolario 3.1.9 - P-familia de primos; AP G —S» X exten-

sio onde A é um grupo abeliano finito. Nestas condicdes te

mos A é P-local e X & p-local & G & P-local

Prova: (==>) A e X P-locais =s>9n(x) € Aut(A) ¥ nep'%,
¥xeX , pela prop. anterior. Logo G & P-local pela prop.

3.1.7.

(=) Se G é P-local, entao en(x) € Aut(A), ¥n € P'* ,

¥ x € X. .. X é& p-local pela prop. 3.1.7.
Mais ainda, em particular,

x=1€X =%>en(l) = (multiplicacao por n) € Aut(Aa)

¥ neEP'* [, A & P-local.

Consideremos agora uma extensao N>—J£>G;:ii>x onde N
& uma grupo finito.
. W -
Seja X—— Aut(N) dada por pup(wi{x)a) = o(x)u(a)o(x)‘l e con

sideremos 6 (x): N > N funcdo definida por:
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n—l)

6 (x) = Losw(x) oL rwix s ¥Vx €X , ¥n €N,

N

vVamos descrever as propriedades analogas as anterio

res neste contexto ligeriramente diferente.

Lema 3.1.10 - (Vn@]ﬂ*), (¥x€X) vale:

(M(a)o(x)? = (o (x)a)o(x)" .
Prova: (induc8o sobre n); n=1 & trivial. Além disto,

(n(a).oxN¥ = (M@ o u@om) =

=(k=1) ) K =

= u(ek_l(x)a)G(X)k-lu(a)O(X)
- u(e_ mavee )o@ = ue maom®

uma vez gue usamos a hipdtese de inducdo na 2@ igualdade e

gue
= k
6, (x)a = [0, _, (x)al[w(x")a]
na Gltima. ]
Proposicdo 3.1.11 - Sejam P uma familia de primos,
N >—ts G +__E<X uma extensdo que cinde e w a acado definida
o

por o.

Consideremos as afirmacOes abaixo:
(i) G é p-local
(ii) X & P-local
(1ii) (¥xX€X) (¥ne€P'X); Gn(x) é uma bijecao de N.

Entdo, quaisquer duas implicam a terceira.
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Prova: (iii) + (i) === (ii). Fixemos neP'Xx .

x €X; x=c¢e(g) =et™ =em™.

Por outro lado, x,;y € X; " = yn == x = g{g); vy = e{h)

entdo

e(gn) = x" = yn e(hn) J. 3 taeN  tqg. gn = u(a)hn

Mas, h = p(a')o(y) , pois a sequéncia cinde e ¢e(h) =y.

P = uta) (u@) oy = w@ue (y)a)oly)” =

Q
L]

ua(e_(y)a)o(y)® = u(e (ybloly)™

sobrejetora.

My

pois en(y)
gt um®on®,
pelo lema 3.1.10.; donde g = u(b)o(y). Dai,

x = e(g) = e(u(doly)) = y. [

(i) + (ii) === (iii). Fixemos x€X e nep'x .,

Seja b,a € N e suponhamos en(x)a = en(x)b . Desta

forma

(u(@)o(x)™ = u(e (x)a)o(x)™ = u(e_ (x)b)o(x)” = (u(b)o(x))"

Dai,
p(a)o(x) = p(b)o(x) ; donde a=b.

Também, beN; p(b)o(x)™ = g” 33 que G é P-local.

g = pufa)o(y) pois a sequéncia cinde e ..

]

ax)® = e(g™ = oy)® o ox=y. .. g = pla)o(x)

Sou(b)o(x) = (u(a) o (x)) "= (6 (x)a)o(x)? — b = 6 (x)a[]
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(ii) + (iii) =—> (i). Fixemos n€P'*.

Sejam g,h € G e suponhamos gn = h. Temos

g = u(a)o(x) e h =u(b)oly)
Sooxt o= e(g)n = e(h)n = yn ,donde X =Y .

n

1

e u(en(X)a)O(X)n =g ht = u(en(X)b)O(X)n.

]

oo en(x)a en(x)b donde a=b .. g=h .

Por outro lado, g€G;

n

e{g) = x eéo(x)n) =31 h€A tqg.

g=ubo™=yue _®aox® . sog= w@ox) [

. .l a R €
Proposicdo 3.1.12 - P-familia de primos; N*—E*CZ*—@+X uma

o
sequéncia exata de grupos que cinde, onde N & finito.

Nestas condicdes, se G é P-local ou N e X sao p-lo-

cais, entdo (¥x € X) (¥n € P'X) en(x) é uma bijecdo de N.

Prova: (I} G é& P-local

Fixemos n € P'X e x€X. Devido a N ser finito bas

ta mostrar que Gn(x) & injetora.

Suponhamos a,b € N e Gn(x)a = Gn(x)b. Entao,

(W(a)o (x)™ = u(e_(x)a)o(x}? = u(e (x)b)o(x)™ = (u(b)o(x))"

Logo, uf{a)o(x) = u(b)o(x) , donde a=b ]
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(II) N e X sao P-locais.
Consideremos  w(X) &% Aut(N) e G =N ljpm.

w(X) & um P-grupo de torcao devido ao coroléario 3.1.3, N é
um P-grupo de torcdo devido & observacdo 3.1.4. Logo, G é
um P-grupo de torcgdo (poisN e G/N = w(X) o sdo). Conclui-

mos que G é P-local, novamente pela observacido 3.1.4 (Eééfi

nito).
. - : }—l - E
Considerando a sequencia N» G w{X) e usando
0

a parte (I) desta proposicdo deduzimos que ¥n € P'%,¥1€u (X)

§_(1) =1g-i(1) ... i)™t = 1N.f...'cn'1

€ uma bijecdo de N. Desta forma, ¥X€X , ¥n € P'X vem:

_ n-1, _ =
b, (x)= lN.w(x)...w(x ) =0, (1)
onde 1T = Ww(x) € w(X). S. 8,(x) & bijecdo de N. ]
. S : . ! €
Corolario 3.1.13 P-familia de primos; N» G - > X  se
guéncia exata de grupos que cinde, onde N & finito. Entao

G & P-local «> N e X sao P-locais.

Prova: ( ==>) Sendo G P-local segue, devido a proposicao

anterior que ¥n € P'X , ¥x € X, que 6 (x) € bijecao de N.

Da proposicdo 3.1.11 vem que X & P-local. Mais ain-
da, X = 1€X; en(l) € bijecdo de N. Mas ¥a € N ,

6 (1)a = alw(l)a)... (1™ ha) = a" .

. N & P-local ]



(== ) N e X P-locais (com N finito) —= ¥ n € p'x

¥ XEX ; en(x) & bijecao.

Esta condic3o adjuntada ao fato de que X & P-local

garante que G & P-local pela proposicao 3.1.11. ]

. o . U £
Proposicao 3.1.14 - P-familia de primos; N > G X
uma sequéncia exata de grupos. Entado,

G e X P-locais=—> N P-~local.
Prova: = Fixemos n € p'x,

a,b €N e a'=p® = p(a)” = L) = u(a) = ulb)

pois G & P-local .. a=b.

A seguir seja bEN. Desde que G & p-local conclui-

n u{b). Dai,

L

mos que (Jg€G) tg. g

1" = 1 = eu(b) = e(g)” = e(qg)

1 (X P-local).

S.(3Y aeN) tg. g = u(a). .o u(b) gt = u(a)" = p(ah)

S b=a" ]

Observacdo 3.1.15 - Neste ponto salientamos (e é trivial)

que todas as conclusOes das proposigOes anteriores permane-

cem verdadeiras se substituimos a condicéao
[(¥x€X) (¥ n e.P'X)en(x) € bijecdo de N]

pela

[ (¥x€X) , (¥g€P') Sq(x) é bijecdo de N].
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A partir de agora relembramos alguns conceitos liga-
dos a cohomologia de grupos, bem como estabelecemos alguns

resultados a serem utilizados na §3.3.

Consideremos os grupos X,A,B onde A e B sao abelia -
- W ) . .
nos, e acoes X —=Aut(A) e X = Aut(B). Sejam tambem,

A-—g—*B um homomorfismo de X-mddulos f{(ie., oa(w(x)a)=06(x)a(a)).

Relembramos a definicdo de

2 2
O, Hw(X;A) > He(X;B)

Dada
£ = [At—G—>X] € H (X;a)
entao
0, = [B—> Q —» X]
onde passamos a descrever a construcao de Q,v,T. Sejam
M = Bly .G ;(G-—f¥*><-—9* Aut(B)) e

H = {(-0(a),u(a)) € M: a€al .

Entdo, H 4 M e podemos considerar Q = M/H e o diagrama

A y—2=H G £ X
comutativo: a l JB H
v T
B » Q > X
Agui, B(g) = (0,9)H

v(b) = (b,1)H

m[(b,g)H] = e(g).

Visto isto podemos enunciar a proxima proposicgao.



Proposicdo 3.1.16 - No diagrama abaixo supomos A € B grupos a-

as linhas exatas e o um homomorfismo de X-modulos

6(y(x))a(a)), onde w e 6 sdo as acdOes asso-

X
I
Y

[A— G~ X] ;

belianos,
(ie. a{w{x)a) =

ciadas as extencoes).

™

> F G
%
S

A
al
B

Nestas condicdes, sendo & =
» Y], podemos afirmar que: 38 : G » Q homo-

L = [B* Q
morfismo de grupos tornando os diagramas comutativos
e o,f = Y*{ . (Obs. Se 38 , entio o & automaticamente um

homomorfismo de modulos).

-e

*
Prova: (< ) Suponhamos o, E=Y T .

2 u‘k 2 Y* 2
H® (X;A) —— H" (X;B)e— H(Y;B)

u
£: A G ¥
l'
a {8
M u ‘ €
a Lt B> L+ X L X
B ¢
(R
vy T
Y*g: B 5> L L L X
t
i
\ | B2 Y
Vv 5’ k3 Y
B% Q - » Y

Por hipdtese, 3 homom. de grupos ¢: K + L (isomorfismo)
Seja 8=620¢>o;31€ Hom (G, Q) .

O

tornando os diagramas comutativos.

Entdo é imediato que Bu = Vo e Ye = TR,
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(=) Suponhamos agora que 3 uma tal B tornando os dia

gramas comutativos.

Consideremos o diagrama:

A ,G > X
/
o ! B
B» -+, - K » X
|O”
f
Bl” ]
v, 1Y T
By L X
e
\"l
Vv yj B2 T M
B> S Q > Y

Definamos inicialmente p por:

B Giey) ¢ —°> 0 onde,

p(b,g) = v(b)B(g)

Desta forma,

p((b,g) (b',g")) p(b+6 (vye(g))b',gg) =

v(b)v(6(ye(g))b')B(g)B(g') =

v(b) [B(g)Vv(b')B(g) " t18(g)B(g")=

p(b,g)p(b',9"),
onde utilizamos a definicdo de 6 na 32 igualdade.

-

S« P & homomorfismo. Mais ainda,

o(-oa), wa)) = va(a) 1Bu(a) = Bu(a) 1Bu(a) = 1

Joop(H) = {1} .
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S. 3! p gue passa p ao quociente,

B]eYEG 3
pr (fopr = p)
P
Bl G
6ye
Assim que, 0B, =B e DPu, = V. Mais ainda,

mp(b,g) = m(v(b)B(g)) =

mp [ (b,g) H]

ve(g) = vye,[(b,g)H] .. mp = Ye, .

.

.. Por definicido de pull.-back, 3! homomorfismo ¢,
¢: K - L tqg. T, =€, e B, =p .

Finalmente,
B, (du,) = pu; = Vv = BV, e

Ty (du,) = €4, = 0 =TV,
Logo, por unicidade (na def. de pull-back) segue ¢u; = Vv,.

Segue pois do Lema dos 5 (para grupos) que ¢ & iso

morfismo, donde o, = Y*( []

Proposicido 3.1.17 - No diagrama abaixo as linhas sdo se-

gquéncias exatas de grupos, A e B s3o abelianos e T e B tor

nam os guadrados comutativos.
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Entd3o 3 homomorfismo cruzado «: X— B tg. ¥ g€G;

B(g) = vke(g)tlg).

Prova: g €G; 7mB(g) = ve(g) = 71(g) .. 3! bgeB tg.

Blg) = v(b_)1(9).
g
Desta forma fica definida G——B*‘B por plg) = bg .
(uma funcdo apenas). Entretanto,

gu(a) = g'u(a)e=>g'~lg e p(p)je=>3la€r tg g=ula)g'.
Dai que, v(bg)r(u(a))T(g') = V(bg)r(g) =
= B(b) = Bv(a)B(gﬁsvu(a)v(bg,)T(g').
Logo, v(bg+a(a)) = v(bg)ru{a) = v(a(a)+bq;) ;
donde b =D
Desta forma, fica bem definida uma funcdo « tornando o dia

grama comutativo

p

G—B (S.k(x) = plg),¥ g€G, tg. elg) = x)

Id
£ K .
l// Assim que,

¥geG , B(g) = v(bg)f(g)===>18(g) = vke(g) 1(g) |

Além disto, dados g,h € G ,

v(bgh)T(gh) = B(gh) = B(g)B(h) = v(bg)T(g)v(bh)T(h).

Logo, v(bgh)T(g) = v(bg)T(g)v(bh)

e dai vem:



N

S

1

vibgy) = vibg) [t(g)viby)tlg) 7] =
= V(bg)V(G(YE(g))bh) = V(bg+9(Y€(g))bh)-
Desta forma, bgh = bg+6(y£~:(g))bh ; ¥g,h€G. Assim gue,

¥x,y€X; x = €(g); y=t(h) temos: (por def. de K}

K(xy) = bgh = iog + 9(Y€(g))bh =

= K(x) + 0(y(x))k(y) = k(x) +x.x(y),

uma vez que a definicdo da acdo de X em B é exatamente Boy.

.. Kk & um homomorfismo cruzado de X em B. ]
u €

A »— G » X
v i
B Q Y

33
3

Proposicao 3.1.18 -

Y

No diagrama acima, as linhas sdo sequéncias exatasde grupos,
A e B sdo abelianos e os quadrados sdo comutativos. Seja
k: X - B um homomorfismo cruzado (X age emBviaY). Nestas
condicbes a funcdo B: G * Q dada por B(g) = vke(g)t(g) &

um homomorfismo de grupos.
Prova: g,h € G; B{(gh) = vk(e{g)e(h))t(g)t(h) =
= v(Ke (g)+€(g). ke(h)T (g) T (h) =vke{g)v(O(ve(g))keih))T(g)T(h).

Mas, v(B(ye(g))ke(h))

v(8(mt(g)).xke(h)) =

1

T(g) vke (h) T(g) "~

(onde 6 & a acdo de Y em B associada a extensao).
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~.8(gh) = vke(g) [1(g) vee(h) T(g) "1l t(g) T(h) = B(g) B(h) [

Lema 3.1.19 - Seja Q um grupo abeliano de P'~-torcado. En-

t3o, ¥g > 0, Hq(Q) & de P'-torcao (onde Hq(Q) representa

a homologia do grupo Q com coeficientes inteiros e triviais).
Prova: Suponhamos inicialmente Q finitamente gerado. Logo,
t
0=&c, ;
i=1

onde C, & um grupo ciclico de P'-~torcao. Dai,

C; i g impar

(0); g par; g > 0 .

Concluimos pois, da formulade Kunneth, gque

Hq(Q) =z soma de ciclicos, onde os somandos pertencem ao con-
junto
{Cl"”’ct} (@ > 0) .. Hq(Qé é de P'-torgdo para q > 0.

Em geral, Q = linp Q, onde {Qa}aeA é a familia dos
ael
sub~-gr. finitamente gerados de Q.

Lembrando que

H = lim H H é de P'-torcgao
q(Q) ae% q(Qa) ’ q(Qa) ¢
e lim de gruvos - (abelianos) de P'-torcao € de P'-torcao se-
gue o resultado ]

No proximo teorema trabalhamos com a teoria de loca

lizacdo na cateoria n .
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Teorema 3.1.20 - Consideremos X um grupo nilpotente e A um

grupo abeliano P-local. Suponhamos que exista um diagrama

comutativo

w
X ——— Aut(A)

e*
Nestas condicdes afirmamos que HZ (XP;A)--9» HZ(X;A) é um
P

isomorfismo. (e0 = p-localizacdo de X em n }.

Prova: {(inducdo sobre ¢ = nil X}.

Se X é abeliano podemos considerar as sequéncias
exatas de grupos abelianos

0

0 - Ker(eo) r*'X'————ﬂ+eO(X) >0 ... (I)

(86(x) = eo(x) , V¥x€EX).

e!l
0 - eo(x)~——gﬁ—X§—+ Coker(eo) > 0 ... (II)

(ea = inclusao).

(I) da origem a uma sequéncia espectral (de Lyndon-Hoschild

r,s

-Serre) em cohomologia onde E2 = Hr(eo(x); HS(Ker(eD);A)).

Notemos que X abeliano = eO(X) age trivialmente
em Ker(eo), donde a acao de eO(X) em HS(Ker(eO};A) é trivial

¥s 2 0. Mais ainda, x € Ker(e0)===% wix) = wPeO(X) =

wP(l) = lA , O que mostra qgue Ker(eo) age trivialmente em A.
Isto nos permite utilizar o teorema dos coeficientes univer-

sais e obter a seguéncia
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s
0~ Ext(Hs_l(Ker(eo)),A) + H (Ker(ey);A) ~ Hom(HS(ker(eo),A)w%>0
Levando em conta que
Hom(P'torcdo, P-local) = 0 = Ext(p'-torcao, p-local)

e gue HS(Ker(eO» &€ de P'-torcdo devido ao Lema anterior

(3.1.19) concluimos que

Hs(Ker(eo);A) = (0) , ¥s 2 1.
Dai vem gque
r _
I,S { H (eo(x)rA) 7 s = 0
E = 7
{(0) ;s >0

donde a sequéncia espectral colapsa e .. produz:

el*
B (e, (X)) — 2> H' (X;A)

Analogamente, considerando a sequéncia espectral

associada a (I1) temos:

gX/® = g¥ (coker(eo); Hs(eo(x);A)).

Da mesma forma coker-(eo)age trivialmente em eO(X), ja que
Gp & abeliano. .. a acao de coker(eo) em Hs(eo(x);A) é tri

vial ¥s. 2 0.

-

OQutrossim, A & P-local —> Hs(eo)(x);A) e P-local
.n
(pois n€P'* ; A——A  induz
s (R s
Novamente utilizando o T dos Coeficientes Univer -
sais e lembrando que coker(eo) é de P'-torgdo — Hr(coker(eo))

é abeliano de P'-torcao, ¥r > 0 (Lema 3.1.19) concluimos gque
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EX'S = (0) W¥r > 0. Temos pois
{(m; r>o0

HS(eO(X};A) i r=0

, donde

eh*

HS(eO(X);A)<=—=——Q———-——= H® (X,5B) 5 ¥s .

Do diagrama comutativo

e*
P (X;A) ——3—— H® (X_:A)
W wP P

H (24 (X) ;A)

segue gque ea & isomorfismo.

Temos, pois, mostrado o passo de inducdo para c = 1.

Seja agora X um grupo com nil X = c > 1 e considere
mos I = T°x = {1} . £ conhecido que as sequéncias abaixo

sio exatas e os diagramas comutativos.

T > X -+ X/T

" ¥
L5 = J=b
Fﬁf XP »(X/T)P

Estas sequéncias curtas e aplicacdes ddo origem a uma apli-
cacdo de sequéncias espectrais. Em particular temos os dia

grama comutativo:
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Erés = HY (X/T;HS (T;A))

= r - S -
(g el BY(X/T)p 5 H°(T5R))

(eg*)*

r,s

v o r 3 S »
ES'S = B (/D) 5 BS(Tp5)

E importante notar gue as sequéncias curtas sao
centrais donde as cohomologias consideradas no diagrama an
terior sdo ordinadrias. Agora, do diagrama

u w
I »——— X ———— Aut(Aa)

concluimos que (wPuP)ea = W

Devido ao primeiro passo da inducdo (como T & abe-
liano) segue
ehx

1S (rp58) —— 8% (I';a),

donde (eg*), € isomorfismo.

De outra parte, sendo HS(F;A) P-local, ¥s2 0 e con

siderando o diagrama comutativo
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0
X/T ————— Aut (H°(T,A))

e

¥
(x/F)P

0

Segue por hipdtese de inducdo (nil X/T = c-1) que eé* é
isomorfismo.

r,s = =Xr,s

oAy % A A :
Logo (eO,eO) é isomorfismo B2 > E2

Desta forma utilizando-se a técnica usual de "pas-

sar" pela sequéncia espectral concluimos que
n

H (XP;A}““—“+ H

& isomorfismo e a prova estd completa por inducao. ]

Finalmente, para encerrar esta seccdo, vamos consi-

derar a seguinte situacdo (gue voltard a aparecer nas 2 pro

ximas) :

P-familia de primos; A - p-grupo abeliano finito;

W ~
X-grupo; pe€P; X —— Aut (A) uma acao de X em A. Suponhamos

que o, o, o o
L 4+1 t
000 | = q-eeayteiTe et
onde oy > 0, v i ;
P1={ql,...,q9v} ; PpAP =8 e {q -G} e P
Denotemos por H = <x€X: ofw (X)) € P> = (sub-grupo gerado

1
pelos elementos de X cuja ordem de w(X) pertence a P;).
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Lema 3.1.21 - H4 X .

Prova: De fato, x€X e o(w(x)) € P§===% o(w(x‘1» =
= o(w(x)) € ﬁi¢=¢ . (¥ h € H) 3 le'i?'&kve X com”

o(w(xi))epi tqg. h=x1”x Dail que Vy€X, V¥he€H;

k
-1 -1, - -
yhy = (yxly )(yxzy 1)...(yxky l}GH
uma vez que 21 ~
olwlyx;y ")) = olw(x;)) € P} , Wi.
w
Denotemos por w, = | : HX — Aut(a).

Com respeito a esta restricdo temos a proposigao

seguinte.
Proposicao 3.1.22 - Ti & um Z[X]-sub-mbddulo de A, ¥j
. H
(ie, T2 é invariante sob w).
W
H
Prova: (inducao sobre j) Ti = A.
H

Supondo ¥x€X; w(X)Fj_1C F3—1, consideremos
Wy Wy

x€x , a e 171 ¢ hen.
“g

Entao
w(x) (w(h)a-a) = wixhx Hw(x)a - v(x)a er)
H
uma vez que xhx ! € H (Lema anterior (3.1.21)) e

wix)a € Fg-l por hipbotese de inducédo.
H

Swx)rd e 1)
Yy Wy

e a prova esta completa por inducédo.
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A seguir salientamos que sendo A finito, 3 r(minimo)

que satisfaz & propriedade FZ = FZ+1 (.

r=-1 r
. T I}, ou
H H Yy 2 “y

2 _ ~ _ r L 2 _
Fw = A. Denotamos por T = I'(H) = Fw (ou T = A, se TwH-A).

H H
Sendo T(H) um Z[X]-sub-mddulo de A podemos conside-

rar A/T(H) sub-mdéd. quociente. A estrutura do X-mbédulo &

aada por:

5: X » Aut(A/T(H)) onde w(x) (a+T(H)) = wix)a + T(H).

Podemos considerar w| £ imediato que

H‘

Wy = 5|H: HE— X — Aut (A/T (H)) .

Lema 3.1.23 - |y & trivial.

Prova: Lembrando que I'(H) = Fiﬂ segue que QH € nilpotente

. - . H. c
com nilw, = r-1 Ja que rd =71J /T .
H Wiy Wy Wy

Por outro lado A/T(H) & um p-grupo finito.

Segue pois da proposicdo 7, pg. 7 de [G] que

GH(H) = »(H) & um p-grupo (finito).

De outra parte sendo h um gerador de H segue h€X e

o(w(h)) € P]. Como o(®(h)) |o(w(h)) (devido a definicdo de
5) segue o(B(h)) €PY ou o(&(h)) = 1. Mas G(H) & p-gru-
po € pEP. e P A Pl = @¢. . o(w(h)) = 1. J. wth) = 1A/F ’

VheH. ]

Proposicdo 3.1.24 - ®(X) & um P-sub-grupo de torcao de

Aut (A/T).
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Prova: Devemos que |w(X)| € P¥

Suponhamos que 3 g€P' tqg. ql{&(x)}. Assim

3 yex tg. of{wly)) = g. Desta forma teriamos

ofwly)) = qg.m, mdc (m,q) = 1,
uma vez que o(w(y)) |olwly)).
Logo,

olw(y™) =g~ e o o@y™) =q,

pois o(wly)) = g e mdc(m,gq) =1 .. &(y") = Lap
o que é absurdo, devido ao Lema anterior (3.1.23), ja que

v™ € H (pois o(d(y™)) = qui). ]

¥
— % ., Aut(A/T), com

Corolario 3.1.25 - 3! acao XP

w'(xp) = p(X), gue torna comutativo o diagrama

X —2 s Aut(A/T)

/
,
7
7/
e, P
/
/
v o/
Xp
Prova: Consequéncia direta da proposicdo 3.1.5. ]

Ncvamente observamos que este ¢orolario €& verdadei-

e
0 .
ro em ambos os casos quando X-—-—-———-)-XP P-localiza em G

ou em n quando X & nilpotente (da mesma forma que a prop.

3.1.5).
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Proposicado 3.1.26 - No diagrama comutativo abaixo as linhas

sio exatas, A e B sdo p-grupos abelianos finitos.

AP g & %
v i
By Qs Y
Sejam
Hy = <x€X: 0(w;(x)) epl(A)x> ,
onde P, (A) = {q€P': qt}wl(x){}
Hy = <y€Y: ofw 4(y)) ePl(B)X> .
onde P, (B) = {g€EP"': qllwz(Y)l}
Nestas condicbes, ¥ j 21 a(Tj ‘ ) < Fj ‘ .
“1 Hy “2'H,

(Em particular a(T(HA))cz F(HB)).

Prova: {(inducdo sobre j) j=1 & trivial.

~e

Seja agora j > 1 e suponhamos a(T3_1 )CZTJ_1
wy | Wy |
1'H 2 HB

Consideremos a eI’J_l e x gerador. de HA' Desta forma,

5a

owy(x)) = nePl(A)xc: p'x.

Suponhamos
o(wz(y(x))) = r.s onde re€P* ou r = 1;

s € Pl(B)Xcz P'* ou s=1. Assim sendo,
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n, = o(wl(xs))[o(wl(x)) = n € P/(A)

segue n=1 ou ny € Pl(A)x. I.wz(y(xs))ra(a) = qgfa) e
n n
Laga) = a(w, (x®) ta) = «(a)

w, (Y(x%))
{(pois n, = ordem de wl(xs)). Mas

reP* e n, € P'* ou n, = 1.5 mdc(r,nl) = 1.

1

Logo, wz(y(xs))a(a) = oa(a).
Agora mdc(r,s) = 1. <« 3 k, €Z tg kr + s = 1.

ey (y () a(@) = wy (v (0 ) Kouy (v (0 %) Yaa) = w, (v (0 ) * ata).

Mas, olu,(y(x)T) = s € Pl(B)X ou s=1. Dai que y(x") € Hy.

Logo y(xr)k € Hy. Decorre do exposto que

a(wl(x)a—a) = wz(y(X))a(a) - af(a) =

v, (y () ) ¥a(a)-a(a) € 1)

r’
2 1Hp
r.k j-1 . ~
uma vez que y(x7) € HB e ofa) € Fw i por inducao,
2'H
B
¥ x gerador de HA‘ Mais ainda, se xl,x2 e HA sao tais

- - J =
que ¥a € A, u(wl(xl)a a) e d(wl(xz)a a) € Fw , entao

l
2ln,

u’(wl (xlxz)a-a) a(wl (xl) Ou'\l (xz)a +

Wy (xz)a) + Oﬂ(w1 (xz)a-—a).
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J=-1
Mas, wl(xz)a € Fw

l
18,

(prop. 3.1.22)

. = J
~-@(wl(xl)w1(x2)a) wl(xz)a) € rwziﬁ

B
e
- 3
a(wl(xz)a a) € PMZJH
B
Segue, pois, por inducao que ¥h € H, ¥a € A ,
o(w, (h)a-a) € T]
wyly
B
donde
OC(I‘(:E) l )< I‘i l ’
1 HA 2 HB
o que conclui a prova. []
§ 3.2. - Neste paragrafo vamos apresentar construgoes ex-

plicitas para a localizacdo de um grupo G, onde G & o produ
to semi-direto de um grupo abeliano finito A por um grupo X.
Esta construcdo depende fundamentalmente de A de XP e da a-
cdo de X em A. Salientamos que a teoria de localizagao

considerada aqui € a definida na categoria dos grupos.

Iniciamos & seccgdo com um resultado geral.

Proposicdo 3.2.1 - Seja P uma familia de primos e p€P'.

. ~ u €
Consideremos uma sequéncia exata de grupos N—— G-—»X onde

N & um P-grupo.
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e

~ 0 ;
Entdo, sendo X— X, afirmamos gue e, 0e P-loca-
P 0

liza G.

¢

Prova: Seja G > K um homomorfismo de grupos onde K & P-lo

cal.

N » e —+ G > X
/I
1/
/
¢ // e0
4
¥
K ¢--=--- XP

Dado a€N, 3 r 2 0 tg aP = 1.

r r
Soou@P = eu@P) =1=1F e x.
¢pufa) = 1 pois K & P-local e p¢P .

Jooou(N) = {1} .. 31 ¢': X > K tg ¢'e = ¢.

Levando em conta que K & P-local e a definigdo de

pP-localizacdo concluimos que 3! ¢: XP - K tqg. 5e0 = ¢'.

. ¢(eoe) =.¢.

Mais ainda, se 5(eoe) =¢ = W(ece) , entao
(5e0)e = (veyle . Dai, 5e0 = ye, , pois ¢ & sobrejeto-
ra, e ¢ =y por unicidade na definic3o de P-localizacao

(X----->XP P-localiza).

Temos, pois, provado por definigao gque e,0¢€ P-loca

liza G. []
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Vamos agora provar uma proposigao fundamental para

obtencio de nossos principais resultados desta seccéao.

Proposicdo 3.2.2 - Seja P uma familia de primos; ej: X > X;

- . W
P-localizacdo de um grupo X. Consideremos X—+aut {K) e

w = - L = .
X§—~+Aut(K) acdes em grupos finitos K e K, e o diagrama

No diagrama temos:
G = ij X ; 6G=K ]=X, , U,€,0,U,0,€,€,,0
sdo aplicacdes usuais, e é a P-localizacao de G, N=Kere,

' & a inclusdo de N em GP’ e' é definida pela restricao

i

de e a K, T & sobrejetora e €T e'.

Suponhamos ainda que T7(w(x)a) = B(eo(x))ﬂ(a) e

e'(wix)a) = wp(eo(x))e'(a) , V¥XEX; Va€ek.
Nestas condicOes temos

g(w(z)a) = wP(z)é(S) , ¥2EXy Ya€eK .

Prova: G & P-local devido ao corolario 3.1.13.

S.o30 ¢ € Hom(GP,é) tg. ¢e = e (pois da hipdtese sobre 7

segue que e & homomorfismo). £ imediato que €9 = €o €
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1
$0, = O. . ¢ define ¢' por restricao. Donde N—EL»K é tqg.
Ho' = ou' e ¢'e' = W, Vem dai que ¢'émn = ¢'e' = T , e
. [ 24 . —
S tle 1K .

Assim que considerando-se B=ker¢' obtemos a sequén-

' -
cia exata que cinde B Nt;%sz .
é

Lembremos a seguir que devido a proposigao 6, pg. 8,

de [R.1] temos:
X, = LJ<I X X))
P—l-::o P',i( Pieo( ))
Portanto & suficiente mostrar que a férmula €& verda

deira ¥ z € <I i(XP,eO(X))> , ¥i 2 0. 1Isto sera feito
14

Pi

por inducao sobre 1i.

i=0; z € <IP‘,O(XP'eO(X))> = eO(X)=é Zo= eo(x); x€eX.

Mas,

é(JJ(eo(x))'é) &(uley(x))m(a)) =
= én(w(x)a) = e'{w(x)a) =

= wpley(x))e’ (a) = wyle)(x))E().

o gue completa a prova para i=0.

Suponhamos a seguir que g(w(w)a) = wP(w)é(E) ,

< .
¥ w € IP.’i_l(XP,eO(X))> e consideremos

Segue-se que 3 n€P'* tg
2" e <1 (X,,eq(X))> donde &(3(z™3a) = w,(zME(3)
P, i-1'"P"70 ! P :
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A seguir tomamos m = O(B(zn)). A proposigdo 3.1.2

nos mostra que m=1 ou mEP*, de modo gue:

(z"™) & (a)

W = wP(zn)mé(a) =
= &(w(zM™Ma) = &(a).
s nm . —
Vamos agora mostrar que wP(zm) 3R~ lé(ﬁ) . Para
isto consideremos
n
= wy(27) .
= gtou, (M08 3 (K-S E——n R .
Notemos gue
Tt(E) = B0y (ZMEGE) = ¢ (9 (ZMu'EEo, (2N =
= 5 (2™ 835 (ZM T = FEMTEGTEM T =
= 1@®@EMa. ST o= 0™ .
Novamente pela prop. 3.1.2, &(z™) = 1z ou o(x(2™) € px.
Mas, w(zH)" = lz . Dpai que o(@(zM)|n Gt = a(2" = 1z -

§
Por outro lado, lembrando que B> Ne&xK cinde pode-
é

mos afirmar que wP(zm)é(E) = bé(El); bEB e Elei .
53 = 1(8) = ¢'(wp(2)8(a)) = ¢(bE(a)) = a; ,
donde wp(zm)é(a) = bé(a).

. . m ~
Aplicando-se sucessivamente wP(Z ) a esta expressao

obtemos, (por inducdo sobre n):
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8(a) = wy(zM7&(a) = {(wP(zm>n'1b)...<wP(zm>b)b1é(£) =

= (3_(zMv Hta@)
n
(onde §n(zm)u = uij(zm)u)...(wP(zm)n—lu).

Desta forma 'én(zm)b_1 =] = @n(zm)l.

Invocamos a seguir a prop. 3.1.11 e o fato de que

X, e Gp sao P-locais para concluir que én(zm) é bijetora.

. = m = 1o -
s. b=1, o que mostra que,wP(z ) 2(®) le(K) . De
mdc(m,n) = 1 segue que (Jr,s€zZ) tg. rm+sn = 1.
. ~ n.s My Ye = _
..wP(z)e(a) = wP(z ) owP(z y-e(a) =
wp (258 (3) = E(m(zM%a = e (2MH%on(z2™Ta) =

= &(b(z)a), vaek, VZGIP,’i(XP,'eO(X} ).

Levando em conta que w w e €& sao homomorfismos,

P’
segue que wP(z)é(E) = &(n(z)a) , vz€ <Ip‘,i(XP'eO(X))> e a

prova estad completa. ]

Doravante, em toda esta seccao a menos de mengao em

contrario, fixaremos uma familia de primos P e pe€EP.

- w
Consideremos uma acao, X— Aut(A), de um grupo X em

um p-grupo abeliano finito A.

*1 %t
Suponhamos que |w(X)| = Q.- qy e P> {qru.,qt}.

Nestas condigdes, o grupo w(X) um P-sub-grupo (fini-

to) de torcao de Aut(A).
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Desta forma, invocando a proposicao 3.1.5, podemos

garantir que 3! Xég"*Aut(A) {com &(XP) = u (X)) que tor-

na comutativo o diagrama

Podemos entdo considerar G = A j&xp e

e: (a,x) € G e(a,x) = (a,eqy(x)) € G ,

gue é um homomorfismo de grupos devido ao fato de ser comu-

tativo o diagrama acima.

Sabemos também que G & P-local, devido ao corolario
3.1.9.
£

Desta forma 3! homomorfismo Gﬁ——-+§ gue torna comu-

tativo o diagrama
G
el
&

Consideremos a sequir o seguinte diagrama:

— ¢ .3
f
P
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Diagrama 3.2.3

€(a,z) =z ; 0(z) = (0,2) ; H(a) = (a,1) ; N = kerey
u' = inclusdo; .. ce = eyE i eqg = dey i ey = H.
i : -é = fe = = g =
Agui temos: (ef)e €e eOE EPe et €p-
Analogamente, fOP =0,
Assim que, efu' = EPU' =0 .. 3! £f' € Hom(N,A) tqg.
uf' = fu'. Da mesma forma 3! e' €Hom(A,N) tg. u'e' = ey .
Dai, f'e' = lA. (Em particular, f' & epimorfismo e e' &
monomorfismo ). Temos pois verificado que todos os sub-dia

gramas de 3.2.3 sao comutativos.

w
Indicando por XP—~—£——+Aut(N) a acao definida por

= ' S £!
OP e B = Ker f' obtemos a sequencia exata BHN-——;—?A que
cinde (ja que f'e' = lA).

Estamos agora aptos a provar o primeiro teorema des-

ta seccgao.



-8 1=

Teorema 3.2.4 - Seja P uma familia de primos e p€P. Seja

x—2 s Aut(a) uma acdo de um grupo X num p-grupo abeliano

“1 %
finito A. Suponhamos que |w(X)| = q;"-..q e
P :>{q1,...,qt} . Consideremos a unica acdo w que torna o

diagrama abaixo comutativo, G = A ij P G =2a] X, i
3: (a,x)€G > (a,eq(x)) € G.

X ——2 s Aut (2)

o
el

Ent3o, e P-localiza G.

Prova: Mostraremos que f € Hom(GP,E) indicada no diagrama

3.2.2 & um isomorfismo.
Para isto definimos ¢: G G, por:
d(a,z) = u'e'(a)cP(z) ;  a€a , zexp.

Para mostrarmos que ¢ €& homomorfismo observamos
inicialmente que as aplicac¢bes envolvidas no diagrama 3.2.3
satisfazem &s hipdteses exigidas pela prop. 3.2.2 (no caso

1= T e "e' = 8), de sorte gue temos:

e' (w(z)a) = wP(zye'(a) , Va€A, V¥z€Xp.

Com isto,

¢((a,z) (b,w}) ¢ (a+w(z)b,zw) = u'e'(a)u'e'(m(Z)b)UP(zw) =

u'e‘(a}u'(wP(z)e'(b))oP(z)oP(w) =

u‘e'(a)[OP(Z)u'e'(b)OP(Z)—1]OP(z)oP(w) =

¢(alz)¢(b,w) .
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Mais ainda,

[}

[(¢f)el (a,x) de(a,x) = ¢(a,eo(x))‘= g'e'(a)op(eqfx)) =

= e(p(a)o(x)) = e(a,x). .. (¢fle = e = lGe ,
P
donde ¢f = 1G . Também,
P
fo(a,z) = f(u'e'(a)o,(z)) = feu(a)fop(z) = enf{a)o(z) =
= l(a)o(z) = (a,z) S, fe=1

a -
Esta, portanto, completa a prova de que ¢ € inver-

sa de f. (]

Para encerrar a analise da situacdo na qual A & um

p-grupo abeliano finito supomos agora que 3g€P' e gl |w(X)].

. . w -
Mais precisamente supomos gue X—— Aut(A) €& uma a-
cdo de um grupo X em um p-grupo abeliano finito A (p€P). Di

gamos que
a o a
1 £ t
[w(x)]| = = SREERY: PR

onde

P, = {ql,...,qz}c P' e {q“l,...,qt}c P; (1505t)

Consideremos I = T'{(H) como foi definido logo apds

a proposicao 3.1.22, bem como o diagrama comutativo

X —-——-—-‘5——» Aut (A/T)

0 w!
¥
XP

considerado pelo corolario 3.1.25.
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Definamos G = A lﬂX , G' = A/T jw,xp e fixemos o
diagrama abaixo, onde: u,u',¢e,€',0,0' sao as aplicacles u-

suais, T a aplicacdo guociente, e, a P-localizacao de X e

e'(a,x) = (a+T,e0(X)) = (W(a},eO(X))

M £

A G T X
e]

T e! eo

1 i

A/T> b i G‘«———E-u“x

- P

Em virtude da definicdo das acdes w e w' decorre que
7 & homomorfismo de X-médulos. Isto produz como consequén -

cia o fato de que e' & homomorfismo.

Outrossim, o corolario 3.1.9 nos mostra que G' &P~

e', onde

-local. Desta forma 3! fGBom(GP,G') tg. f e

G—S—>GP P-localiza G.

Estas considerac¢Oes nos habilitam a construir um dia

grama fundamental no contexto.

Diagrama 3.2.5 -
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No diagrama anterior N = Kereg, I & a inclusdo e &

imediato que ¢'f = e fop = o'. Logo é possivel defi-

€p

nir, por restricio, f e e seguindo imediatamente gque Foe=T.

Em particular, f & sobrejetora. Pomgcs ainda B = ker I & N.

A definicdo de & serad introduzida apds o proximo

lema.

Lema 3.2.6 - é|T = 0.

Prova: Consideremos inicialmente, x um gerador de H (ie.,

x€X e ofw(x)) =mé€&P) e b= w{x)a-a, onde a€r.
Temos,
(b,x)™ = (8_(x)b,x™) = (8 (x)o(w(x)=1)a,x") =
= ((w)™1)a,x" = (0,x1) = (0,x)",

de sorte que e(b,x)m =~e(0,x)m.

Concluimos que e(b,x) = e(0,x), ja que G, é P-local

m € PE c P'Y Logo, elb,1)e(0,x) = e(b,x) = e(0,x).

S.ute(b) = eu(b) = el(b,1) = 1. .. e(b) = 1.
Tomemos a seguir Xq1Xy geradores de H e
b = w(xlxz)a—a onde a€l’ . Desta forma,
b = w(x;x,)a-a = w(xl)(w(xz)a) - w(xz)a+-w(xz)a—a '

donde b = b;+b, se by = w(xl)(w(xza» - wix,)a e



b2 = w(xzaaﬁa. Seqgue pois do argumento inicial que
e(b,1) = e(bl+b2,1) = e(bl,l)e(bz,l) = 1.1 = 1.

Lembrando que ¥h€H, 3 xl,...,xk geradores de H tqg.

h = XqoeeXy obtemos imediatamente (por inducao s/k)} que
e(b,1) = 1 { «—=e(b) = 1) onde b = w(h)a-a, a€rl.
Mostramos assim que ¥b gerador de pTtl oo ¥ o7
w w
H H
temos e(b) = 1. .. e(r) = {1} o gue encerra a prova. ]

Fica desta forma definido por passagem ao quociente

& € Hom(A/T ,N). (ie; &om= e).

Como decorréncia obtemos (E&)m = fe = 1, donde
fé = 1A/F 0 que mostra que a sequéncia exata
£ .
B> N———pA/l' cinde.
é

Estamos agora aptos a obter o segundo resultado fun

damental deste paragrafo.

Teorema 3.2.7 - Seja P uma familia de primos e p€P.

. W ~
Seja X——Aut(A) uma acao de um grupo X num p-gru-
po abeliano finito A. Suponhamos gque
a a o

R % t
lwx)] = R PRl PR (2 < t)

Pl o= {qll...'ql}c P‘ e {q2+1'-o-,qt}c Po

Sendo G = A | X ; G' =A/T jw‘xP e e': G-+ G' dada por
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e'la,x) = (ﬂ(a),eo(x)) , afirmamos que e' P-localiza G.

Prova: E suficiente mostrar que f£f: GP + G' descrita no

diagrama 3.2.5 & um isomorfismo. Para isto vamos exibir

sua inversa.
Seja ¢: G' - GP definida por ¢(a,z) = ﬁé(a)OP(z).

Para mostrarmos que ¢ € Hom(G',GP) observemos ini-
cialmente que as aplicacbes envolvidas no diagrama 3.2.5 sa
tisfazem &s hipoteses exigidas na proposigao 3.2.2, uma vez

que €& imediato que m & homom. de X-mddulos e
e(w(x)a) = wy(ej(x))e(a) Va€A, Vxex.

A citada proposicao nos capacita a afirmar que
&(®(z)a) = wP(z)é(S) , VaeA/T e VzEX,,.

Desta forma temos:

9(a,z) (b,w)) = ¢(a+i(z)b,zw) = L8(a)ué(w(z)b)oy(z)o,(w) =
= & (a)ii(wy(z)&(b))oy(z)op(w) =
= 18(3) [0, (2) T8 (B) oy (2) Moy (2)op (W) =

= ¢(a,z)¢(b,w).

Além disto,

[(¢f) el (a,x) e’ (a,x) = ¢(ﬂ(a),eo(X))

= ﬁé(ﬂ(a))opeo(x) = e(p(a)o(x)) =

= ef{a,x). e o £ = 1 .
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Também,

£¢(3a,2z) = £(i&(a),0 (2))=u"EE(a) fop(2) =

u'(a)o'(z) = (&,2). . £ = 1., ]

Para finalizar esta seccdo vamos passar a analise

do caso em que A & (apenas) um grupo abeliano finito.
Seja X—=s Aut(A) uma acdo de um grupo X num grupo

abeliano finito A. Suponhamos

f1 b

|al = Py ---Py
e seja Ai a componente pi-priméria de A.

E bem conhecido gue

n

t £
A= @A, e But(n) TT Aut(ay)
i=1 i=1

Com isto ficam unicamente determinadas acoes
Wyreeerly por w, onde

Xx—1, aut (a;)

é dada por wi(x)ai = w(X)ai ;o i=l,...,t.

Denotamos por

€.
G=aQXx,6 =2 ], X, €:6—»X e G —— X
1

as projecdes candnicas. E um fato elementar que € € o pull-

T .
i
Denotamos por G —————~>Gi as

0.
s . i .
proje¢des naturais, G <X e G+ X as cilsoes; com

ist °

A

~-back da familia {gi}l

N

Q

isto T,0 =04 i=1l,...,t.
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Consideramos também §-E~»XP o pull-back das flexas

(G. ) ~—————X

i’Pp P 1gist

(Notemos que € & epimorfismo, uma vez que (g;), é epim. ¥i).

Observamos que ¥i=l,...,t, (ei)Po(oi)P = IXP donde da defi-

nicdo de pull-back, 3! G € Hom(XP,a) tqg.

T.00= (0.
1 ( l)P

(onde %i: G +~(Gy)p é a aplicacgdo candnica).

e,
Denotando por Gi----—-l——-*(Gi)P a P-localizacdo de Gi

observamos gque (ei)P[eiﬂi] = e,e Ty = ege , ¥i. .. por de-
finicio de pull-back, 3! f € Hom(G,G) tg. n.f = egms
Vi = l,-l.’t.

Agora & Obvio que ¢ef = epe . Também €& imediato que

fo = Ge, (por unicidade) e €6 = 1, (donde G & um produ-
P

to semi-direto).

Outrossim, G & P-local devido a prop. 3.1.1.

Mais ainda, ¥i, (ei)Po(ﬂi)P = (EiOﬂi)P = €p - Logo,

da definicao de pull-back,

31 ¢ € Hom(GP,c';) tg. T,00 = (7).

Em particular, concluimos que %i & epimorfismo, ¥i.

(pois (m o é!). Do fato de que ﬁif = %i(¢e) ¥i segue,

ilp

por unicidade, que f=¢e.
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Também pelos argumentos usuais de unicidade conclu-

imos que €¢ = €

p e ¢0P = 0,

n

t
Finalmente, denotamos por C = kere & ker(ei)P
i=1

em vista de G ser pull-back, e i: C%G. Pomos também,
N = ker(EP) e pt: N—G_ .

As aplicacoOes e,f e ¢ definem, respectivamente, por
restricio homomorfismos e: A—N, f: A > C e ¢: N > C,
de sorte que:

u'e = ey ; up = ou' e uf = fu .

Indicamos também por B = kerd « N e mostraremos a

seguir que e fatora-se através de uma aplicacdo e': C ~ N.

Com estas consideracOes mostramos que todos os sub-

-diagramas do diagrama a seguir sdo comutativos.

Diagrama 3.2.8

K=ker¥
N
) u
A Y G £ —5>
Q\\Qi\ﬁ Gz;///A
o F A
i
£ £ e e
0 0
/ u € v € v
—— -+ G g— === w-oPX
/ _6 Qigégiék P
T ¥ \
&o. Q
¢ AGdp 7
(4 2 /
€
P
y! > Gz — ¢
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Para justificar todas as indicacdes do diagrama ain

da necessitamos de 2 lemas.

Lema 3.2.9 - f & epimorfismo.

Prova. Para cada i=1,...,t temos o diagrama comutativo

ol
o
0]

i i 0

¥ ¥
(ei)P

Hi
Ker(€i)ﬁ—————a{Gi)P—~———~a»XP

wio= inclusao e éi & definida por restricao de e;. Aprop.
3.2.1, o teor. 3.2.4, e o teor. 3.2.7 nos dizem que fixado
i, entaoker(e;), = (0) ou ker(e;)p = A; ou ker(e)p = A /Ty
e éi = 0 ou identidade ou projecdo canbnica, sendo .. sobre
jetora em gguer caso.

Desta forma, c€C «—=¢p(c) = 1 & (¥i=l,...,t) ;
(Ei)Pﬂiu(C) = 1. <« vi, mulc) € ker(e;)p-

Da observacio anterior concluimos que ¥i, 3 aieAi

T. U = e = L =

tqg ﬂip(c) ei(ai) piei(ai) eipi(ai).
Como ei(ui(ai)) = 1, ¥ i segue da definicdo de pull-back

(¢ & pull-back de ) que 3 g€G. tq.

(€)1 <5<

ﬂl(g) = Ul(al) I_:Vi‘

Mas, - o =
€E(g) = Eiﬂi(g) = siui(ai) = 1.

.

. g = H(a), para a€A.

Logo,
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i i
Dai
if(a) = U(c) , donde f(a) = c. ]
A seguir lembramos (¥a€A); (¥x€X) se
t
a = ajt...tag € g?ZH_,
_ i=1
entao

f(a,x) = (el(al,x) e et(at,x))

por definicdo (pois T.f = e.T.).

i i i
t
Desta forma, se a€A e a = a1+...+at € A. ,
i=1 *
entao
E(a) = fu(a) = £(a,1) = {ejla;,),...re (@ 1)) =

Ul

‘(elul(al)""’etut(at)) =
(ej(ap)se-- replag)).

Logo, a€K <= f(a) = 0 = éi(ai) =0,

¥i=1,...,t <> a, € K, = ker e;, ¥i.

t
8 SlKi
t -
(K = {a =a;+...+a, € ff&Ai: e;(a;) =0, ¥i=l,...,th.

Lembramos também que M, (a,x) € G'—~—9(ai,x) € G;

admite uma cisao vy GiC———+G definida simplesmente por:

Vi(ai,x) = (ai,x) (inclusao) , VaieAi, ¥xex .
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Salientamos que vy é homomorfismo devido a definicao de wg

relativamente a w.

Lema 3.2.10 - é‘K = 0.
t —
Prova: Uma vez que K = EBI%', basta mostrar que e K = 0,
i=1 i
¥i. Fixemos pois i e consideremos o diagrama:
C
e, e; e
Ker(Ei)ﬁ—~i——+(Gi)§*—-——*GP
Hi vidp
= e = 4 =
Dado aeKi, eu {a) (vi)Puiei(a) (vi)Pui(O) 1
pois o diagr. & comutativo e a€K; = Keréi.
S.u'e(a) = eu(a) = 1, donde e(a) = 1. N
Este lema nos permite definir e': C » N por
e'of = e. Dai que (¢e')Ef = ge = £. Logo, ¢Je' = 1, pois
f & sobrejetora.
Concluimos pois que a sequéncia exata B>—+N-—J£+*C
e!‘
cinde.
. - - w Wp
Relativamente as agoes XP——* Aut(C) e XP————*Aut(N)

definidas por 0 e 0, temos o proximo lema.

P
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Lema 3.2.11 - (¥x€X), (¥a€h) temos:

(1) f(wi(x)a)

bleg(x)) E(a)

i

(ii) e(w(x)a)

wp ey (x))ela)

£(o(x)p(a) olx) ™) =

Prova: (i) nf(wix)a)

Sleq (x))iE(a) Gleg(x)) H =

ﬁ(cTa(eo(x))'f'(a)).

i

e(o(x)ula)ox)™l) =

(ii) n'e(w(x)a)
= oP(eO(x))u’é(a)Op(eo(X)) =
= ' (wpley (x))E(a)) ]

Podemos agora mostrar o Gltimo resultado fundamental

deste paragrafo.

Teorema 3.2.12 - Seja P uma familia de primos e

X —2—> pAut (A) uma acdo de um grupo X num grupo abeliano fi-
. 1 By p
nito A. Suponhamos que |A] = p; ---P, € A; & a compo-

nente pi-priméria de A. Seja X-——£-+Aut(Ai) induzida por

w‘
Definamos G = A ] X; G; = A,

as projecdes canodnicas.

. - - €
Nestas condigcoes serdo G—> X
(e;)p

p © pull-back da fami-
lia (Gi)P————}-—-—-‘»XP ; i=1,...,t, entdo o homomorfismo cand
nico G——G p-localiza G.

Prova: E suficiente mostrar que o homomorfismo ¢ do diagra

ma 3.2.8 & um isomorfismo.
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Para isto definimos @-—m~+GP por:

Ylulc)o(z)) = u'e'(c)oy(z).

(Lembramos aguil que a seqg. exata C>—£~*Gm;§z+xp cinde, don-
o

de ¥g€G 3! c€C e 3! z€X, tq. g = ulc)olz)).

O Lema 3.2.11 nos mostra que o diagrama 3.2.8 satis
faz as hipdteses da proposicdo 3.2.2.
Desta forma temos e'{w(z)c) = wP(z)e'(c), Yced,

vZexP. Logo,

Y(a(c)o(z)h(c")o(z')) = V(ulctw(z)c')o(zz')) =

u'e’(c)u'e'(5(2)0')0P(Z)GP(Z') =

u‘e'(C)u'(wP(Z)e‘(C‘))OP(Z)OP(Z’) =

= u‘e'(C)[OP(Z)u'e'(C')OP(Z)-l]OP(Z)OP(Z’) =

V(u(c)o(z))v (u(c")o(z") SV € Hom(é,GP).

Agora,

vf(a,x) = pf(u(a)o(x)) =

[(vo)el (a,x)

W(ﬁf(a)aeoix)) =

]

w'e'(E(a))ogley(x)) = eu(a)eo(x) =

e(a,x) .. V¢ = lG

Também, ¢V (u(c)o(z)) = ¢(u'e’(c)oy(z)) = H(c)o(z) . ¢¥ =1g.

Esta, pois, completa a prova de gque ¢>—1 =y . []
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§ 3.3. Nesta seccao estabelecemos a teoria de localizacgao
para a categoria dos grupos que s3o extensao de um
nilpotente por um abeliano finito em uma familia ‘
de primos P. Est teoria foi desenvolvida anterior-

mente para a categoria dos grupos nilpotentes por P.

Hilton, G. Mislin e J. Roitberg em [H.M.R.].

Consideremos C a categoria na qual os objetos sao
os grupos que sdo extensdo de um grupo nilpotente por um
abeliano finito, e os morfismos s3o os homomorfismos de gru

poS.

Trabalhamos inicialmente no sentido de a cada

G € |c| associa G, € |c|, fixada uma familia de primos P.

Proposicdo 3.3.1 - Seja ArEsG £»X uma sequéncia exata de

grupos, onde A & abeliano finito e X nilpotente. Considere
mos . X—Aut (A) a acdo associada a extens@o e suponhamos

que I' = A.

£ 8 £

Nestas condicdes, dados B € Hom(G,K) e BrsK —rY
onde B & abeliano finito e Y nilpotente afirmamos que 3 ho-

momorfismos o,y tornando comutativo o diagrama abaixo.

A B -G £ »X

lu B Y

Br—r —K ey
Prova: Seja H = «Bu(A) < Y. Assim que,

1

Bu(wix)a-a) = kBlg.u(a)g tu(a)™h)
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onde el{g) = x

1

B (g)kBu(a)kB(g) keu(a)~t € [Y,H],

J.kBulw(x)a-a)

¥xeX , ¥a€A.

LJ.H = kBu(A) = Ksu(f:) < [y,H].
Logo,
He [Y,H < [Y,Y] =T Y.

k—lY

Supondo (para k 2 3) gque He T , temos:
He [v,H] © [v,r%ty) =r¥y.
c+l

Segue pois, por inducdo, que He= T~ "Y = {1} (onde c=nilY).

S Bu(A) e kerk = imv .

Fica, pois, definida por restricado o € Hom(A,B) tqg.

vo = Bu . Podemos agora definir, por passagem ao quociente
Yy € Hom(X,Y) tg. ye = «B. ]
Proposicdo 3.3.2 - (¥G € |C|) 3! U = U(G) @ G, U abelia

no finito com G/U nilpotente satisfazendo a propriedade de
que sendo §: G/U—Aut(U) a acdo associada a extensao

2
U r—>G—>G/U temos FQ = 1.

Prova: G € |¢|] = 3 extensdo A»¥+G —»X onde A é abeliano

finito e X nilpotente.

Seja w: X—>Aut(A) a acdo dada por p{w(x)a) = gu(a)g—l,
onde £€{g) = x. Em virtude de A ser finito podemos concluir

2 - . -
gue Tw = A (e dai a prova da existéncia esta completa) ou

N r-1 r r _ pr+l
3 r 2 2 tal que Fw 2 Fw e Pw Fm .
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Provemos inicialmente, por inducdo, que U(Tz)'ﬂ G.

Uma vez que para k=1 ocorre por hipotese, supondo u(Ft-l

temos: XE€X, aeri'l, fixado h€G. Suponhamos que e(g) = X

}a G

e e(h) = y. Entéao,

h.u(w(x)a-aL)h“1

{wy) (wix)a-a)) =

p(wlyx)a-wlyla) =

i

L (yx) a-a) ulw(y)a-a) "t € ri
. k
R u(I’w) 4 G

Em particular, U = p(T) 9 G: Também, U & abeliano

e finito.

Mais ainda, considerando-se a sequéncia exata
n E - — -~ . 3
A/FriL+G/U-—~»X , onde pe ¢ sao induzidos por U e £, e

W a acdo de X em A/ associada segue que Fg =

r¥/T donde
TE = (0). Concluimos, pois, que G/U & nilpotente, uma vez

que W e X sdo nilpotentes.
Consideremos a seguir Q: G/U—— Aut(U) dada por:

Q{gU)u = g.u.g_l

r+l)

Sendo U = u(l) = u(Fw segue que U gerado por

plw(x)a-a) ; x€X; a€l . Mas,

1 1

Jlwixiama) = gulalg tu(a) Tt = [a(guta)lu(a) T erg

2
Dali que U< T, .

Para verificar a unicidade de U suponhamos que

2
VvV @ G, V abeliano e finito e G/V nilpotente tq TG/V vV = V.
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Devido a proposigao anterior (3.3.1) 3 homomorf.o ,
o' que tornam comutativo o diagrama
i

U>———-————-g—-->G

u} o
i

Vr—7>FV g

Segue pois que o & a inclusdo de U em V e o' & a incluséo

de V em U. S U=V, ]
Seja agora Cp a sub-categoria plena de (C definida
de modo que os objetos sao o0s grupos gque sido extensdo de um

nilpotente por um p-grupo abeliano finito (p = primo fixo).

Corolario 3.3.3 - G € [Cp[===> U = U(G) & um p-grupo abe-

liano finito.

Prova: De fato, A>r—G —5-Xx ; A - p-grupo abeliano finito

e U=u(l')9 u(a) = p-grupo abeliano finito. []

Corolario 3.3.4 - G € |C| ; G & nilpotente «=U = U(G)= {1}
Prova: ( =) G nilpotente = Q: G/U-——Aut(U) & nilpo-
tente. Logo,

U=Tg =Ty =... =15 = (1}
(=) U= {1} = G = G/U nilpotente. ]

Corolario 3.3.5 - 3 p,q primos, p #= q tg.

G € ]Cp] N ]qu <= G é nilpotente.
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Prova: ( =) G nilpotente = U = {1} Logo, G € le{

vp primo. (pois {1} & p-grupo ¥p).

(—> ) Devido ao corolario 3.3.3; U & p-grupo finito e

g-grupo finito. .. |U| =1 .. G & nilpotente. Ol

Passamos a seguir a definicdo de G, € |C| para cada
G € |c|. Dado G € |C| fixamos a seguéncia exata
y—G —=»G/U onde U & o sub-grupo definido na proposigdo

3.3.2 e W: G/U-—*Aut(V) dada por w(gU)u = g.u.g_l.

Seja P uma familia de primos fixada e consideremos

eyt G/U-—————-—*(G/U)e a P-localizacdo de G/U em n. Fixemos

l.

também p primo e suponhamos inicialmente que G € |C

P
(I) peEP'. Pomos, neste caso, e = eooe onde
e
6= G/U 0 (G/U)P. Temos pois:
U» — G » G/U
sl el ey,
U = (0)>—~—~—~—+(G/U)P = (G/U)P
(IT) pEP. Agqui sub-dividimos em dois casos.
o o o
Suponhamos que |w(G/U)| = qll...qz'q’...qtt .

(IT)a) P> {ql... ,qt}.

Neste caso w(G/U) & um P-sub-grupo de torcao de
Aut (U) e .. da proposicdo 3.1.5, 3! acao wp? (G/U)P -+ Aut (U)

tqg. wpoeny = We.
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Lembrando que U & abeliano P-local (p€P) segue do teor.
e*
2 2 - :
3.1.20 gue Hm ((G/U)P;U)——Q-+Hw(G/U;U) e isomorfismo.

P
Seja, pois, £, (Gnico) tq. ejép = E-

A prop. 3.1.16 nos mostra que 3 um diagrama comuta-

tivo
: U » b .G & G/U
sl
Ep:  U>» ¥ b P »(G/U) 5

(II)b) Suponhamos, finalmente, que 3 £, 1 £2< t tqg.

a— i
P, = {ql""’qg} < P e {q“_l,...fqt} c P.
Nesta situacao consideramos

H = <x€G/U: o(w(x)) € P;> ;
' = T(H) ; w: G/U-—> Aut(U/I)

conforme ja definiramos logo apds o teorema 3.1.20.

Conforme o Corolario 3.1.25, 3 um diagrama comutati

vo
G/U —2— & Aut(U/T)
A
yd
eO // Wp
yd
7
(G/U)P
(onde w. & unica).

P
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Consideremos a seguir o diagrama:

2 Mk 2 .
HM(G/U;U)——————~—+ HaﬁG/U,U/T)

n

*
€0

2
Hw((G/U)P;U/T)
P
Note-se que m: U—»U/T & a projecao candnica, e novamente

pelo teor. 3.1.20 segue que 86 & isomorfismo.

.31 € GH:P((G/U)P;U/F) tq. epfp = Ty (E).

Mais uma vez a prop. 3.1.16 nos mostra gque I um dia

grama comutativo

£:  Ugr—-= G £ G/U
™ 1e eo
1 \ €
Ep: U/T3 Gp P (G/U)

Observamos a seguir gque a esta altura temos definido

ara cada G € J u rupo G, € J . Esta definicgao
P 5 le,| um grupo Gp 5 leyl a de ¢

& boa pois, se G € [cp]I\ [cq], entdo G € |n]. Dai u = {1},

donde sd podem ocorrer os casos (I) ou (I1)a) e ambos levam

3 construcgao de GP = (G/U)P.

Em particular observanios que esta construcao estende

aquela definida em [H.M.R.].
0 exemplo seguinte mostra que

leivig legl =0 .
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Exemplo 3.3.6 - Seja

w = (wl,wz):ZZ > Aut@/3 ©Z/5) = Aut@/3) & Aut{&/5)

definida por wl(l)a =-2a ; wz(l)b = 2b.

) . ) 2
seja G=(Z/3 ®%/5) |,Z. E imediato que I =2z/3 @ 2z/5

donde G nao €& nilpotente. Entretanto,

A =7/3 &R/5>r—>G—>7 .
2
.. G € |c|]. Mais ainda, u(A) = U(G), pois r, = A.

Desta forma G ¢ ]Cpl ¥p primo, caso contrario U seria um

p-grupo abeliano finito para algum p conforme o cor. 3.3.3.

L]

Vamos agora completar a construcgao de GP a categoria

(III) seja G € |c| » tpllcpl. Neste caso U = U(G) nado é
t

p-grupo,¥p . Entretanto, U = @ U,, onde U; ¢é a componen-
i=1

te pi—priméria de U.

Desta forma

e

t
G/U—"> Aut(U) = T[] Aut(U,) e w= (w,...,0.) .
i=1 * t

- . 3 ~ 2 2 K
Devido a definicao de w;, e de Fw = U segue Fm = Ui’ ¥i.
i
T

i L~ ~_
Denotamos por U ———> Ui a projecao canonica. = Sa-

bemos que

(ﬂl*,...,wt*)

2 t 2
H,(G/U;U) g H, (G/U;U;)

1

~
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¢ um isomorfismo cuja inversa é definida pelo pull-back.
Indiquemos por &= [U——G—>>G/U], £, = ﬂi*g e
consideremos o diagrama comutativo:

(TagreeerTyy)
£eH’ (G/U;U) 1* £

t 2
(E5) € @Hw (G/U;U,)

i=1 %i
t
P D o«
i=1
> ((6/u),, D) (Tywr oo T ((£.)2) éé 2 ((6/U) ;)
£_€H G/U 0 _ S ((E. e@H G/U) ;0.
P wp P’ = i'pP'1i o1 (mi)P P'Vi
onde y e
N i i .
E,: Uy Gy » G/U
Di ei— e0
(E.): U 1’“--——EL""'*(G\) *E—iz“B»(G/U)
ilpt Vi i'p P

& definido pelos casos anteriores ((I) ou (II)a)

t
Também U = @Ui e £
i=1

ou (II)b).).
p (Gnico) é tg.

(T wreeerTee) (Ep)

((Ei)P)i
(Wi: U

U, projecdo candnica)

LY

t
p = @pl.
i=1

As construcdes efetuadas podem ser visualizadas no
diagrama:
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Diagrama 3.3.7

£ :U> > G »_G/U
1
I e - 4//;Gi €4
O¥ e,
Ly 1
- v € v

oy
g

CiI <
k' 4
(D]
v
/

/

/ |
/ [}
/ o |
e
|
‘ |
- )
i

NI B
m |
" ¥
(]
~
e}
av}

N
Temos, pois, gque €p &€ o pull-back das flechas

{(gi)P}léiét , uma vez que, por definicao: EP = p,E.

A respeito da aplicagao e: G *’GP definida em (I),

(IT) e (III) temos as duas proximas proposicdes abaixo.

Proposicdo 3.3.8 - e & P-sobrejetora.

Prova: No caso (I) e = e,0€ €& P-sobrejetora pois e e

P-sobrejetora e € & sobrejetora.

Da mesma forma nos casos (II)a), (II)b) ou (III) e
é definida através de um diagrama onde e, & P-sobrejetora

ely ((ID)a)); ™ ((II)b); oup ((III)) sao sobrejetoras.

UJ



Corolario 3.3.9 - G > Gp »K , K P-local. Entao,

g
fe = ge=>f = g. ]
Proposicdo 3.3.10 - G P-local = e isomorfismo.

Prova: Novamente temos 4 casos a analisar

(1) G P-local == G/U P-local (e .. e, isomorfismo)} e

0
U P-local devido ao corolario 3.1.9. Mas p€P' e U & p-gru-
po abeliano finito. .. U = {1} . Logo, € & isomorfismo,
donde e = e,0¢€ também é&.

(IT)a) £ imediato pois G P-local = G/U P-local, donde ey

é isom. Dail e & isomorfismo pois 1. também é.

(II)b) Este caso nos apresenta o diagrama:

U —————s G ——» G/U

U/T» G '(G/U)P

Como antes G P-local = G/U P-local donde eo é isomorfismo.

Consideremos w: G/U—— Aut(U}. Lembramos que

H=<x € G/U: o(u(x)) € P;>

A prop. 3.1.8 nos garante (pois G & P-local) que
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en(x) =1U.w(x)...w(xn-l) € Aut{u) , VneP‘x, ¥x € G/U

Assim que, se X & gerador de H segue que 3 neP;c.P'x

tqg. wix)? = 1U‘

Dai,

1= w0 @eu™ =6 (x) ((wx)apu™h

(pois U & abeliano).

1

Como 6 (x) & injetora segue (w(x)u)u’ = 1 donde
wlx)u = u WVuel. .. w g=20 . Em particular T = {1}
(r =1t e w, €& trivial). ..7m =1 donde e & isomorfis-
Wiy H 8}

mo.

(I11) G P-local = A e X P-locais (corol. 3.1.9). Segue

A, e X P-locais ¥i = 1,...,t (pois A, é sub-grupo finito

de A;). .. G; € P-local ¥i (corol. 3.1.9). .. e, € isomor-
fismo ¥i. Como ey é isomorfismo segue < isomorfismo

t
Vi . p = Py e isomorfismo, donde g & isomorfismo, o

i=]1

gue encerra a prova. ]

A seguir consideremos o diagrama comutativo

U(G) = U» H G
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Vamos observar gque nestas condicbes 3 homom. indu
zido o: U——V onde U,V sdo explicitados em um dos qua

trocasos considerados na construcgao de GP‘

De fato, definimos & como segue abaixo de modo que

o diagrama comute.

g —mm™mmV
JDU lpv
TR
Se G ou K esta nas condicdes do caso (I) entdo U= {1} ou
T ={I}) .. & = 0. Caso contrario escrevemos U = & U(p)
P-primo
e V =€ V(p) (decomposicdo nas componentes p-primarias).

1%
Assim que o(U(p)) < V(p) e pela proposicao 3.1.26

temos o })C I‘V(p) (onde aplicamos a propos. 3.1.26 ao

FU(p
diagrama

£(p): U(p)»—— G(p)—> G/U

“lup)

z(p): V(p)—— K(p) — > K/V

onde E(p) = T(pP), & i rip) = 1(pP),2 }.°. Denotando por
alp): Ulp) + V(p) a restricdo de o segue que 3 diagr.

comutativo
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u(p) —2BL, y(p)

U(p) a(p) . Vip)

TU(p) FV(p)

= Vi(p)

U(p)

Definimos pois; a

@ alp).
P

Observacdo: Salientamos aqui que o caso II)a) pode ser pen

sado com caso particular de II)b) onde H = {1} e ..T =(0).
Desta forma todos os casos podem ser tratados de uma sO vez

no raciocinio acima.

Outrossim, devido as definicdes a €& homom. de mddu-

los ‘(as acgdoes sao todas induzidas).

Teorema 3.3.11 - Dados, G,K € |C]| e o diagrama abaixo, 3!

BP € Hom(GP,KP) gue torna o diagrama comutativo.

£:77 > H s G- € » G/U
' :
o} [}
U | e e
| : 0
o - | €
gP:G>f L ! > Gy, P f ;)(G/U)P
! i
t 1
a ' B Y
v v v " '}
LV ermm e e e — - = — 3 K --mmmm e - - 2» K[V YP
\ \
\ \
\ \e
Py \\0
Y' Vv \ KP \ y
- -, S 17 &
EP.Vr 7 :\P ‘»(K/V)P

Prova: A unicidade sai do corolario 3.3.9.
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Para a existéncia observemos que

e* YETp = Y*ehlp = Y*oyxl (definicdo de CP)=DVQ*§ =

tp

pyx@xE (pProp. 3.1.16) = dxpyxb =

= * inic3a = %y
a*eogP (definicao de gP) eoa*gp .

i 2 - 2 —-—
Ocorre gque eS: H ((G/U)P;V)———>H (G/U;V) & um isomorfismo
devido ao teor. 3.1.20.

Logo, &*ip = ¥§lpe - pela prop. 3.1.16

3 1 € Hom(GP,KP} gue torna a "face frontal" comutativa.

Desta forma os homom. T1e e eB tornam o diagr.

abaixo comutativo.

QVOOL eOY

—
1
~
o
0
™
s

v P

<1

A\
L

=

(K/V) p
Invocamos agora a prop. 3.1.17 para garantir que 3 um homo-
morfismo cruzado
8: G/U—V  tg. VgEG. eB(g) = voelg)telqg).
Novamente devido ao teor. 3.1.20 temos que

ex: H' ((G/U) ,;7) B (G/U) ;V)

*
0

é isomorfismo. Logo,
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ER [Gé] tqg. eg{eé] =-[8], de., B = 06loe. + 6&

onde 5; € um hom. cruzado principal. {J.ﬁéix) = Vv-X.V ,

v eV fixo).

Agora, definindo 4 : (G/0), V por

R - U
év(z) = v-z.V segue que évoeO 6V .
® a— ] —
— 1 - X7
onde GP = GP + dv = homom. cruzado de (G/U)P em V.

Assim que,
eB(g) = VePeoe(g)Te(g) = ﬁepepe(g)ie(g) , ¥Yg€eG.

Logo, definindo BP: GP———+ KP por BP(z) = vePeP(z)T(z)

segue da prop. 3.1.18 que BP € Hom(GP,KP) e BPe = eB .

Além disto,

“pBp = (KpVopep)  (kpT) = kp1 = ype,
e —. — —— — - —
BpH = (vOpepw) (th) = 1 = va
e a prova estad concluida. ]

O teorema acima nos mostra que G P-7GP € um funtor

e e & uma transformacdo natural.

Teorema 3.3.12 = A aplicacao e: G-——-~>GP P-localiza G em

C .
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pProva: Consideremos G,K € |C| com K P-local e

g € Hom(G,K). Devido a prop. 3.3.1 existe um diagrama co-
mutativo
U(G) = U»r—E— G E . G/U
ul B Y
U(K) = V> = K K K/V

Usando o teorema anterior (3.3.11) concluimos que

ER BP € Hom(GP,KP) tq. Bpe = ef.

B

..___._..__._....._.__—-)»K
7
7
e

B/ ~
/ = €4
/

s
Vd Bp
G, —————-> K

P P

Mas K P-local => e & isomorfismo. Seja
B ==¢e "0B .. Be = B.

A unicidade de B & garantida pelo corolario 3.3.9.

[

o000
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[H.M.R.]
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