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ABSTRACT

We have two purpo his work. The first one

apare the nilpotency of the action of nl(X) on

n z 2) with the one of the acta.on of nl(X) on
Z 2) , when X is a nilpotent space. (nele X means

essa.L cover of x).

The second purpose is to study the theory of

zation of a group in a category C to which n (the

: of the nilpotent groups) is a full sub-category.

As for the first subject we work in the context of

>otent spaces. A suitable reference for a more
l dpnr-rintion of the orooerti.es of a niJ-potent space

l T:l l::l:':.::'.: :; '
Our maia result towards comparison of nilpotenci-es

=heorem 2.12 and the maia point in its proof is the

:ed use of the Serre spectral sequence.

Concernlng tDe seconâ sublject we'd buyyeõt [R.]]

4.R.], chapter l.

In section 3.2 we present a number of resu].ts on

)ca].ization, in the category G of a'l gLuupbr ul: a

: A luX, where A is a fi.cite abelian group and X
group. It turno out that the P ].ocalized (Gp) is

ely described by XPr A and m

ABSTRACT

We have two purposes in this work. The first one

i.s to compare the nilpotency of the action of nl(X) on

v.(x) (nz 2) with the one of the acta.on of nl(X) on
H.(X) (n z 2) , when X is a nilpotent space. (nele X means

the universal cover of X)

The second purpose is to study the theory of

p-].ocalization of a group in a category C to which n (the

category of the nilpotent groups) is a full sub-category

As for the first subject we work in the context of

the niJ-potent spaces. A suitable reference for a more

detailed descai-pti-on of the properti-es of a nilpotent space

might be [H.M.R.], chapter ll

Our maia result towards comparison of nilpotenci.es

i.s the theorem 2.12 and the maia point in its proof is the

reiterated use of the Serre spectral sequence

Concerning the second subject we'd suggest [R.]]

and [H.M.R.], chapter l

In section 3.2 we present a number of resu].ts on

the p-]oca].ization, i.n the category G of âlJ- groupsr of a

group G : A luxo where A is a fi.cite abelian group and X
i-s any group. It turno out that the P-].ocalized (Gp) is

completely described by XPr A and n
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We'd say that the most impor'tant resulta are

proposition 3.2.1 and the theorems 3.2.4, 3.2.7 and 3.2.12

We point out that proposition 3.2.2 plays a

fundamenta[ ro].e i.n the proof of the theorems above

Final.ly, in section 3.3 we present the construction

of the theory of P-localízation i.n the category of the

groups which are extensions of ni.lpotent groups by fmi.te

abelian groups.

As we see it, the ma

theorems 3 . 3 . ll and 3 . 3. 12

eS are gzvenin l +.. }w7 +-h

Our proof follows Talher closely the one presentes

in [H.M.R.], chapter 1, and is bases on the classical

interpretation of the second cohomology group of a group.

[t shou].d be mentioned that proposi-ti.on' ,.. ]. and

3.3.2 play an important role in the proof of the theorem
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INTRODUÇÃO

A teoria de P-localização de espaços simplesmente

s tem se mostrado Úti]. em topo]ogia. Ver [A], [$],

[ z ]

conexo

Em 1975 foi publicado um Livro ([H.M.R.]} que sintet.{

zou uma série de artigos anteriormente publicados tratando

da teoria de P-localização de grupos e espaços ni].potentes.

Ali foi dado um tratamento sistemático ao estudo destes tõ-

r\ l r'q r"t c:

Evi.dentemente o desenvolvimento da teoria de P-l-o

ca].ização suscitou uma série de questões, algumas das quais
tratadas neste traba].ho.

Em [H.M.R.], capítulo 11, hã um resultado afirmando

que um CW complexo conexo X, com v].(X) nilpotente, é um es-

paço nilpotente se e somente se rTI(X) age niJ-potentemente

em H. (X) . Vn32

Surge então, naturalmente, o interesse em se campa'

rar nillí.(X)mn(X) com nil-lil(x)nn(X) (n Z 2) quando xé
nilpotente

O capítul-o ll gravita em torno desta questão, e

queremos crer que seu pri-ncipal resultado seja o teorema
2.12. Este produz desigualdades comparando as grandezas

ci.bacias para n S 7. Acreditamos, da mesma ílorma, que os e-

xemo[os 2.5 e 2.13 tragam a].gume luz à discussão do assunto
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Também em [H.M.R.] nos é apresentada a teoria de

P-].ocalização na categoria dos grupos nilpotentes, a qual é

adequada à construção de uma teoria de P-localização para

espaços niJ-potentes. Entretanto, até então ai.nda era desce
nq q- . ..=. ú=lhhecída a

potente

possa. l l

Paul.o Ríbenboim, em [R.]] , nos apresenta a consta.B

ção de uma teori.a de P-localização na categoria de todos os

grupos.

Em [R.2] aparece uma construção explícita da P-loc.Ê

lização de um grupo finito. Ocorre que excetuado este caso

e a si.tuação em que o grupo é cíclico Infinito, não parece

simp].es a partir de [R.]] determinar explicitamente o P-lo-

calizado de um grupo na categori.a de todos os grupos.

Estas considerações agregadas a uma sugestão do

Prof. Hi]ton nos motivaram a considerar o prob].ema tratado

no capítulo 111, S3.2, qual seja determinar a P-localização,

na categoria de todos os grupos/ de um produto gemi-direto

de um grupo abeliano finito por um grupo qualquer. Os pnB

cipai.s resultados obtidos nesta secção são descritos pelos
teoremas 3.2.4, 3.2.7 e 3.2.12.

Ainda no que concerne à construção apresentada em

[R.]] , não sabemos se este funtor quando restrito à catego-

ria dos grupos ni].potentes produz uma teoria de ]oca].ização

nesta categoria. Mais ainda, em presença desta construção

não vemos, até agora, como determinar certas propri.edades

básicas a respeito dos grupos de homologia de Gp' (Por e-
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xempl-o: Será que H.i(G)---='"> H.i(Gp) p-localiza Hj(G) na cate-

goria de todos os grupos?)

Devido a dificuldades deste jaez fomos ]-evados a teD.

tar uti].azar os métodos apJ-icados em [H.M.R.], cap. Ir pa-

ra mostrar que existe uma teoria de p-localização, que estes:

de a jã existente na categoria dos grupos ni-lpotentesr na CÃ

tegoria dos grupos que são extensão de um grupo nilpotente

por um abeliano finito.

Os frutos deste trabalho são apresentados no cap.

111, S3.3. e a nosso ver os princi-pais resultados são dados
através dos teoremas 3.3.11 e 3.3.12

A secção 3.1 tem por finali.jade apresentar resulta

dos que fundamentam os argumentos usados em 3.2 e 3.3. Nao
obstante. aí aparecem proposições que cremos tenham i.ntere.g

; : n q r- '\ 1 -7 '} ] ]] cb/n
se por si sõ, ta
teorema 3 . 1 . 20 .

Finalmente no capítulo l a linguagem e aerznzçoes

bãsi.cas para o trato dos capítulos seguintes, e um esboço
da construção da teoria de p-localização para espaços nil-pg

tentes que faz uso das especificidades da teoria de P-loca-

].ização na categoria dos grupos nilpotentes.

Gostar51amos de registrar os mais profundos e lince

ros agradecimentos a todas as pessoas que. di-neta ou indit.Ê

Lamente. nos auxi]iaram na e].abonação deste trabalho eí mu}
to artictllaihéhte aos proa:esgares:

e

as px'como //
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gles deste trabalho. Sem suas valiosas sugestões certames!
te os mesmos conferiam uma quantidade mui.to grande de errosr

i.mperfeições e obscuridades.

l)aclbea.g l.Zma GançaZveó, pelo estímulo e ajuda i-mp.â

gáveis ao longo de todos estes anos, peJ-o muito que aprende
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las valiosíssimas sugestões e idéi.as a nõs fornecidas du-
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tar que apesar de nossas diferentes qua].ificações profissi.9
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uma atividade bastante agradável e enri.quecedora sob todos

os aspectos.

Pe,te4 Jokn HZ,CZon , orientador deste trabaJ-ho, que

ao ].ongo dos anos nos sugeriu vários problemas tendo nas hg

ras difíceis comparecido com encorajamento, orientação e ag
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do conhecimento.

Finalmente, gostaríamos de agradecer a AnÍon,{a
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CAPITULO i

Nosso objetivo aqui é estabeJ-ecer a notação e reler
orar as definições e resultados básicos a serem utilizados

nos dois capítulos subsequentes, onde obtemos os resultados

ori.finais do trabalho.

Ao longo de todo o estudo P significa uma famíl-ia

de primos, p' o complementar de P em P (famÍJ-ia de todos os

primos) e P" o conjunto mu].tiplicati-vo determinado por Pr
i.e. o conjunto dos produtos (fi-Ditos) de primos em P

Definição 1:1 - Um grupo G diz-se P-locaJ-

'+-:--:-+(VneP' x) ; geG '---"-' gneG é uma função bijetora

Exemp[o típico de grupo P-]oca]. é

ZiP {n C Q: n € P' .l

ou Ap : A ® Z:p r

se A é um grupo abel-lado

A seguir seja C uma sub-categoria plena da catego

ria dos grupos G

Defi.niç:ão 1.2 Um homomorfismo G '---g-....+ H de grupos

G,H e ICI é um P-localização de G '+-+' H é P-local e
VK e ICI, K P-local e V f C Hom(G,K), 31 f C Hom(H,K)

tq. foe = f).
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G ------!---- K É evi-dente,a partir da defi-ni-ção, que se G---:LHI
/' e

el ,'' e G--:zo H. são P-J-oca].i.zações de G em C, entãoJ!

' i.somorfismo $ : H.l-----"-----» H2 tq . $el : e2

H A P-]oca].i.zação de G numa categoria C é usual-mente

indicada por G e Gp (caso exi.sta)

Em [R.]] Paulo Ribenboim construiu a teori-a de P-ig

calização para categori-a C = G , ie. um funtor

e

l-p: G C IC l p-----'--'' Gp € 1C l

f € Hom(G,H) ----"-' fP € Hom(Gp'Hp)

tq

é comutativo. (.'. e é uma transformação natural do funtor

IG para o funtor l-P)

É interessante notar que este funtor não é excito,

pois sendo P = {3.1 e S3 o grupo das permutaçÕes de um
conjunto com 3 elementos temos que (conforme será mostrado

no capítu].o 111 - S3.2 - teorema 3.2.7 ruIR.2])(S3)p:(0)

.'. a?------' s3--"'--» a2 e levada em a3 ' (0)----'>(0) não exÊ

dali.entamos ainda que a construção efetuada em

[R.]] não nos proporciona uma construção de Gpl onde seja
n . .........= xnn.=an t\Am.hl;\fT+.claro e rmlnar , Pecomo f
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cas de Gu' Entretanto em

Gn para um grupo finito G.

Desta construção conc].uimos também que o funtor LP

construído em [R.]] quando restrito a F (categoria dos gru-

pos fi.Ditos) descreve a teoria de localização nesta catego-

ria, uma vez que G € 1rl ----> Gp c lrl

Por outro lado, para a categoria C = r] = categoria
de loca].ização foi desendos grupos nilpotentes, a teoria

volvida em [H.M.R.] , capítu]-o ]-.

Nesta categoria o funtor localização (que existe!)

comporta-se mais adequadamente no que se refere a sua apli-

cação em topologla algébrica.

Assim é que em n este funtor é excito, ie
G '--Ê"-+Q é uma seq. excita de grupos nilpotentes

--::'» Np»---' Gp 'P Qp é uma seq. excita de grupos nil-

exibe272 ] , S7,[R 0px'oP

oca

N

pólen.Ees

Mais ai.nda, a construção descrita em [H.M.R.] é cal-

que se niJ- G s c, então nil Gp $ c. Em particu].ar. concly:

i.mos que Gp é abeli.ano sempre que G o ê. Na realidade mog.

tra-se (vice [H.M.R.]) que amai"-'g-,-a®l € A®aP P-localiza
À em n. se À é abeliano

Definição 1.3 - f € Hom(G.H) ;

(i) f é P-injetora +--+(f(x) : ] ----+ (]neP'x) tq

tq. x*' = 1)



(ii.) f é P-sobrejetora é--:':+p (VyeH, ] neP'x

tq. yn e Imf).

(iii.) f é P-ísomorfi-smo .+::--+.f ê P-injetora

Gostaríamos ainda de ressaltar duas

f-u]tc]cuHetILQ]b {]u fuiit..at- ]oca].ilação em r] .

[) G ---e--- H um homomorfismo em r], P-toca

.é--+ H é P-].ocal e f é um P-isomorfi.

Teorema Fundamental, pg. 7.l IH.M.R.

2) f,g € Hom(G,H) em n. Então f = g +
Vn nrlmn aonde f é a {ol-localizac'r r-+-'"- \

(vice teorema 1.3.13 de]H.M.R.]).

Esta propriedade é a versão algébric

de Haste que nocontexto topológi.co pode ser CDC

Utilizaremos também a noção de ação

passamos a definir.

Seja T ---!!L----,Aut(A) uma ação de um g

po abel-i-ano A. Pomos r;rA - i'i: A. e supc

I'fA : Fuk consideramos

I'k+lA = 1'k+l = <u(x)a-a eA: xev ; a € 1'to> =TT Ü) w

gerado pelos elementos u(x)a-a).

8

(ii.) f é P-sobrejetora e--:':+p (VyeH, ] neP'x

tq. y'' € imf)

(iii.) f é P-ísomorfi-smo .+::--+.f ê P-injetora e P-sobrejeto-

GostarÍamos ainda de ressaltar duas propriedades

fundamental.s do funtor ]oca].ização em n

1 ) G ----!;-...> H um homomorfismo em r], P-localiza G +-

.é--+ H é P-].ocal e f é um P-isomorfismo. (vice

Teorema Fundamenta[, pg. 7., [H.M.R.].

2) f,g € Hom(G,H) em n. Então f = g .+-+fP gP '
Vp primo (onde f. é a {pl-localização de f).
(vice teorema 1.3.]-3 de]H.M.R.])

Esta propriedade é a versão algébrica do principi.o

de Haste que nocontexto topo]ógi.co pode ser encontrado em [S]

Utilizaremos também a noção de ação ni.lpotente que

passamos a definir

Seja T {o Aut(A) uma ação de um grupo T num gry:

po abel-i-ano A. Pomos rlA - I',i. = A. e supondo definido
I'kA : Fk consideramos

I'k+lA : I'k+l : <u(x)a-a eA: xev ; a € i'5> = (sub-grupoTT Ü.) w

gerado pelos elementos u(x)a-a).
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Éfãcilverque A: I'igi'z)... )Fw)... e

rk é estável sob a ação de u, ou que esta é uma cadeia

descendente de allíl-submódulos de A. (estrutura de

Zltl-módulo de A definida por co)

Definição ]..4 - w é ni].potente com classe de nilpotência

c.e--:+l'c #(0) e rf+l: (0). (SeA= (0) pomos,por

definição, c = 0)

É importante notar aqui que se l(n) representa o
ideal de aunlentação do anel de grupo a]v] segue imediat

mente que r;l+l = ].(v)x.À.

Relembramos aqui-, para uso reiterado

roposi-ções fundamentais no contexto.

a

po steriormente ,

duas P

Proposjçgç? ]:L} - Seja A»--+ G -----'»Q uma extensão, com A abg.

liano, dando origem a uma Q-ação u em A. Então G € 1nl+-+

.e--+ Q C in l e u é nilpotente

Prova (Vice prop 1.4.1 de [H.M.R.] []

proposição 1.6 - Seja A' -+A -FÀ" uma sequência excita de

Q-mõduJ-os com respeito a Q-açÕes m', u e u" respectiva-

mente. Então, u é nil-potente se u' e u" são ni.lpotentes.
Se 0---*A'-----'-A----'A"-----»0 é excita e co é nilpotente então u'

e u" são ni].potentes, e

mãxÍnil u-, ni.l u"} $ nil u $ niJ- u' + ni.l u"

(Vice prof 1.4.3 de [H.M.R. ] ) [=



-é----'>IT fYI p P-lnr:al. Vn 2 1.

Definição ]..7 - Um espaço tipológico X di.z-se P-loc

P-]oca].ização dos espaços nilpotentes.

Passamos agora à descrição (sucinta) da teoPassamos agora à descrição (sucinta) da teoria de

P-]oca].ização dos espaços nilpotentes.

Definição 1.7 - Um espaço tipológico X di.z-se P-local
-é'-'-""+T.(X) é P-]oca]., Vn 2 1

Defi-nação 1.8 - Um espaço topo]õgico X diz-se ni].potente

'+""+v](X) é ni-lpotente e w].(X) age nilpotentemente em
n. (X) , Vn Z 2

Inda.camas por ílH a categori-a cujos objetos são os

CW-complexos nilpotentes com ponto base e os morfismos de

X em Y são as classes de homotopla pontuadas de aplicações

(pontuadas) de X em Y. ([X,Y])

Da mesma forma H7 indica a sub-categori.a plena de
nH cujos objetos são os CW-complexos l-conexos.

Se.ja também C uma categoria de espaços topo].Õgicos

O-conexos com ponto base e tq. Mor(X,Y) = [XIY]

Definição 1.9 - X--9---»V (X,Y € 1CI) P-localiza X .é----+

-$----#(Y é P-local e VZ e ICI, Z P-]oca] +-:+ e+: [Y,ZJ-----+]X,Z]

é bijetora)

Segue imediatamente da definição que (em C) se ]

P-]oca].ização, então e].a é unica.

Em [H.M.R.], capítu]o ]], é descai.ta a construção

do funtor P-localização em H, e em rlH.
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Rememoramos agora os principais passos destas cona

truções.

Eg929p.i.çêg...L:.l.Q - Se j a e

mações são equivalentes :

As seguintes aflr

(i) e P-localiza X (em H7 )

(ii.) e+: vn(X)"----vn(Y) P-localiza rn(X) , Vn 21

(ii-i) e+: Hn(X)---'-Hn(Y) p-localiza Hn(X) ' Vn àl

Prova (Vice [H.M.R.], Teorema ll l.B.) []

Eg19Eosição 1.11 - Seja x---g...+V em rtH . As seguintes agir

mações são equivalentes:

(i) e P-]oca].iza X (em rlH )

(ii)

(vj.dProva

et: nn(X)----'-vn(Y) P-localiza Tn(X) , Vn 3 ].

(iii.) et: Hn(X)---'-Hn(Y) p-J-ocas-iza Hn(X) ' Vn ZI

e [H.M.R.] Teorema 11.3.B) []

Das proposições acima é líci.to concluir que se X ê

um CW-co'nplexo simpJ-esmente conexo e X e Y P-local-iza X

em nt{, então Y é si-mpl-esmente conexo, donde a construção

em nf{ estende a de H,
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Seja agora X um CW-complexo l-conexo de dimensão 2.

Então,

X g VSa = VM(a,2) ,

onde M(A,n) é um espaço de Morre. Sendo i.: Uc---> aP e img

diabo que

] ys' e ;VM@p'2)

tq. e+ P-localiza nn(aS:) , Vn à l DaÍ que

eo@ X-"-->VMeZp/2) P-localiza X em H7

(e também em nH)

Suponhamos agora que nós temos construído

e0: XO YO satisfazendo (iii) da prof. 1.10 se dim X0$n

en2 2.(XO,VOGIU71). esejaXC ln71 comdimX=n+l

Então

tq. c(g) = x ,

onde C(g) é o cone de g e X'' n-esqueleto de X)

Deva.do à proposição 11 ]..3 de [H.M.R.] existe um

diagrama comutativa a menos de homotopia.

x = c(g)

Y = C(h)

e

hVM(Z,n) 0a
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Em virtude da naturalidade da sequência

homologia segue que e satisfaz (iii-) da prop. l

P-localiza X em HI (e .'- em nH )

Suponhamos por fim X e ln7i e dim X

X2 ci X3C ... c Xnc ... cX - {.J Xn
nÉ2

Temos construí.do as P-localizações en e en+l

X" d'' ; Xn+l

{'.'

;(-).: ;

Seja

do cone eln

10, donde e

Observamos que en e en+l podem ser escolhidos de

modo que o diagrama comute efetivamente

Pondo Y = U Y(n) com a topos-agia fraca vem que

Y e IH71 e as funções fn combinadas produzem f: X-----»Y que
satisfaz (iii) da prop. (l.lO) .

Isto compJ-eta a construção da P-locali.zação em H7

Vamos agora relembrar uma caracterização fundamen-

tal dos espaços ni].potentes

Seja X um CW-conexo e ... -' Xn ---'-..... -'X2 -»XI

K(ITI (X) ,].) sua decomposição de Postni-kov.

P

Definição ]..12 - Dizemos que a decomposição de Postnikov

admite um no estágio n +:->Pn pode
ser fatorada como um produto de vibrações.
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Xn
q.

Y c:'---'"'-Y c - l---'' Xn-].

onde a fibra de qi é um expaço K(Gi'n) e qi é i.nduzida por

uma aplicação gi: Yi----+K{Girn+l) r l S i S C.

Teorema 1.13 - Seja X um CW complexo conexo. Então xé

nilpotente +-+ a decomposição de Postnikov de X admi-te um
refinamento principal no estágio n, Vn 2 1.

Prova.(Vice Teorema i1.2.9 dele.M.R.]).[:]

Para encerrar, consideremos

e. Então uma aplicação

K ( G , 1 ) '--g-''K ( Gp ' l )

tq. e+: G ---">Gp p-]oca]iza G em T] l é um p-local-ização de X
r)H por (ii) da prop. l.ll

Seja agora X € 1nnl tq. v:i(x) : 0, j > n , para
algum n. Então o refinamento principal de seu sistema de
Postni.kov é finito.

potent

K(G,l) onde G é ni..L

Vamos agora argumentar pol indução na a].Lura(h) de.g

te refinamento

Se h = 1 então X = K(G.l). Suponhamos pois que

temos K(G,n)---'X-----'X' uma fibração principal- onde G é abe-

liano (mesmo se n=1) e suponhamos também construída

e- : X-----'-Y' satisfazendo (ii)

Como K(G,n)----'X--.-->X- é induza.da nõs podemos pensar

-----x' ----+K(G, n+l) como uma fi.oração.Xein
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Devido à prop. 11.3.4 de [H.M.R.] 3 um diagrama co
mutativo

X K(G,n+l)

Este pr grama (também comutativo) em nH

X

Y

e

x'

Y'

g K(G,n+l)

K(Gprn+l)

é#'

h

onde Y é a fibra de h. (Y C IratÍI devido ao Teor. 11.2.2

de [H.M.R.])

Deva.do à natural.idade da sequência de homotopiar

que e' e e" satisfazem (ii) da prop. ].]-l, e ao corolário
1.2.6 de [H.M.R.] segue que e satisfaz (i-i) de .]:.=.ll e

P-]oca]]za X em T] H.

Finalmente seja X € jrlHI cujo refinament

da decomposição de Postnikov é infinita. Temos

principal-0

g l
].i.m X .-> i-lil

onde Q é uma equivalência fraca de homotopla

)duz 0 dãa
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] um di.agrama comutativa em nH onde cada ei bati.s
faz (ii) de l.ll

q

lim Yi---"'' . . - --"-'"Yi ----'=---'Yi-Í--' . . ;'----YI

1::
x : ---=+

ei-l

Í:-:'' ' ' ' '
lim x . -.---> . . . --->l

llm n o.iL== 'i 'i

Podemos também supor que hi é vibração Vi

Da construção é imediato que {Yili é um refi.nam.
principal de um Sistema de Postnikov, donde vem que .g=.}a

satisfaz (ii) de [.1].

Sendo Y uma real-ização geométrica (CW) de .}.ig Vi '

segue quem X---S--+v tq. o diagrama

é comutativo a menos de homotopi-a.

Logo e também satisfaz (ii) de ].]]. pois 0 e 0

são equiva].ências fracas de homotopia.

[sto conc].ui a construção dl) funtor P-local-ização

o0o



CÀPfvuto ll

Neste capitulo vamos estabelecer alguns resultados

ndo ni-llíl(X)rn(X) e ni-l-ITI(x)nn(X)' onde X repõe'

senta o recobrimento uni.versam de um CW complexo conexo X.

Conforme o exposto depreende-se que a técnica utilizada se

mente fruta.fica quando n é pequeno (z n$6 ou nS7). Em

aJ-duns casos apresentamos exemplos para mostrar que as des.i

qual.danes não podem ser melhoradas.

Inici.amos com alguns resultados concernentes a espã

ços de Eilenberg-McLane a serem utilizados posteriormente

A prova da primeira proposição é bem conhecida. Não obstam:
te decidimos reapresentâ-la aqui, devido ao uso reiterado

que faremos da mesma no que segue

Seja T {'' -'Aut(A) uma ação de um grupo ll num grupo
abeli.anó A.

Lembramos que u induz uma ação un de T em Hn(K(A,m))
(m 2 1, fixado) Vn à 0 definida por:

compara

(VX c li) 311fx] €1K(A.m),+ ; K(A.m),+] tq. fx+ :w(x)

(Para maiores deta]hes vice [W], pg. 100 e pg. 225). Pomos

con ( x ) x+ Hn(K(A.m)) -------- Hn(K(A,m) )
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Proposição 2.1 u nílpotente --+ Un nilpotente; Vn à 0

Prova. Argumentamos por indução sobre c = nil u = nillíA.

Se c=1-, então segue da definição que Un é tri.vi.al donde nil

potente.

Para c > 1 consi.devamos I': # (0) e a fi-bração

K(I',m) K(A,m)

K (A/ r , m)

Associada a esta fi.bração existe uma sequência espectra]. (de

Serre) na qual temos :

2.E
'rrS H,..(K(A/ I' ,m) ;H.(K(I' ,m)) )

(Aqui a homologia é com coefi-cientes tri.viam.s, uma vez que

se m à 2, então a base é si-mp]esmente conexo e se m=]. temos

H,(A/I';Hq(1')) e A/I' age trivialmente em r, donde A/I' age

trivialmente em n.(r))

Com isto podemos invocar o teore

universais para obter a sequência exala.

Hr(K(A/I',m))®Hs(K(I',m)) »-----,Er ';--'»Tor(Hr.l (K(A/I',m)) ,Hs(K(I',m)) )

Devido à hipótese de indução,ao gema ].] de [H] e à

proposição 1.4.3, pg. 35 de [H.M.R.l segue que IT age nilpo-

tentemer!te em E:... ,. .r,s

Novamente a ap].icação rei.gerada da prop. 1.4.3, pg.

35, de [H.M.R.] garante que T age nil-potentemente em Er s e

daí em H.(K(A,m) ) . []

cóeficiéntesdosma

2
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Lema 2.2 - ni.]-liHn(K(A,m)) $ .>1 niJ-vEn-j,j (segundo a notação

utilizada na prova da prof. 2.1).(mZ l)

Prova. Ê sabido que a sequência espectral da prof. anterior

é composta por lr'módulos (ações i.nduzidas por u) E;,s e os
diferenciais d:l . são homomorfismos de v-módulos. Agora,

2

dr+2,s-l
.2

2

Er+2.s-l' g-'Er-2,s+l

e

2ker dr,s
2

i-m dr+2,s-l

3
E r,s

DaÍ temos a sequência excita de v-módulos

2- -. ....'.'. .'.. .2 ....'. ..'.3

0-'-->im dr+2.s-l ker dr,'i-----+Er.s '»0

Segue da prop 1.4.3 de [fi.M.R.] que

3
nil E

T I'r S
2

d $
rrS

2ni]. E
IT I'r S

É agora imediato, por indução, que

nilrE:l s $ ni.lvE s Vk Z 2

nilTTEr,s $ niJ-tEr s' Final-mente,Em particu].ar ,

brando que

EO,«C FI,.-lC
{

'l,--l

lem

C Fn,0 : Hn(K(A,m) ) ,

'=,.
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considerando a sequência exala de v-mõdu].os

Fi.l,n-z+.L i/n-z Ei,n-i

ando seguidamente a prop. 1.4.3 de [H.M.R

nil nn(K(A,m)) $ j>jOnil

3 - Suponhamos nil.A = nil u = c 2 2 e m à 2

] seguee

C

2
4>

!vi.al HO (K (A,m) )
<' C/ '0 X

n 2

>l ni- ]. EáE n-j.j j=o
[3

Teóréma 2

Então,

(i) nil7rHn(K(A,m))$c ,se0$n<2m

(ii) nil7íHn(K(A,m)) $ J=JJ:5EI)- , se n = 2m ou n : 2m+l

(ii-i) nil.nHn(K(A,m))Éc' , se n=2m+2 e m23

(iv) ni.l.n,(K(A,2)) $ >1 i.!j3:1.L:c(c+l)(c+2)
" o :jê1 2

(v) nillíHn(K(A,m)) $ 2c -c , se n= 2m+3 e

(vi.) nil7rn9(K(p',3)) É j>ll 2 :c (ca-gc-4)

(vii) nilvH7(K(A,2)) É jlli i' i ={ (c'+3c-l)

Prova: Temos En-j,j : Hn.j(K(A/I',m);Hj(K(I',m))) ;

.'. En,0 ;Hn(K(A/I',m)) e EO,n ;Hn(K(I';m)) (isomorfis-
mos de v-módulos)

(i.) supondo n < 2m vem:

A ..Á.: . .. : .L+{
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Se l$ n < m , então nn(K(A,m)) : 0 .'. niJ-rHn(K(A,m)):0$c

Se n=m, então, por defi.nação e isomorfismo de Hurewi.cz,temos

= n donde nllliHm(K(A.m)) : c $ c

Podemos supor então que m < n < 2m. Seja j tq.

0 < "i < n,

0 < j < m --+ Hj(K(I',m)) : 0 --:» En.j j

m $ j < n -::» 0 < n-j < m .'. Hn-j(K(A/I'.m)) - 0--+En-j,j

Segue do lema anterior (2.2) que

2 .-.' .' .'.'... 2

ilrHn(K(A.m)) $ niltE0,n + nilTEn,0

$ 1 + nil.n. (K (A/ I';m) )

pois T age trivialmente em r

Obtemos pois, por i.adução sobre c que

2

2

niJ-vHn(K (A,m) ) S

2

(i.i) Novamente. 0 < j < m -:-+ En-j,j
2

m < j < n = 2m --:» 0 < n-j < m .'. En-j,j

C

e

m.m ; Hm(K(A/I'.m) ® Hm(K(I',m)) ; A/I' ® I'

Invocamos aqui. a desigua]dade (1.3) de [[i.R.S.] para afia

mar que ni-l.E. . $ nil.A/I' = c-l. .'. Usando o lema 2.2
f

nilvH2m(K(A.m)) S l+(c-l)+nilrH2m(K(A/F,m) )
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segue .'. por indução que

ni[lrH2m(K(A,m)) $ c +(c-].) +...+ 1 = J;ll.{$+1)

Z

Para n = 2m+l, temos novamente E...4 ..; = 0 , se

0 < :1 < m ou m+l < :j < n=2m+l-

Também, E. ... = 0, poi-s H.

(m 2 2) e

Em+l,m ; Tor(Hm(K(A/I',m) ; Hm(I',m)) = Tor(A/I',I')

Da prova do ].ema ].]. de [H] depreende-se fácil.mente

nilvTor(A,B) É(nillrA)(nilvB) donde

ni]..E... . $ ni]..A/I' = c-l

Temos então que

nilwH2m+l(K(A,m)) $ 1+(c-l) + ni-l7ín2m+l(K(A/I',m))

donde por indução

nil.H9..K.(K(A

/

2 (Hurewicz)(K ( I' ,m) )+].r

#

c+(c 1)+ +].,m)) <.

que

c (c+l)
2

(iii) Suponhamos agora m Z 3 e n : 2m+2.

0 < j < m ou m+2 < j < n = 2m+2 --+ En-j,j

Em+].,m+l : 0 (Hm+l(K(I',m)) -: 0)

2

Em+2,m = Hm+2(K(A/I'rm)) ® Hm(K(I',m))

(pois Hm+l(K(A/i',m) : 0) .'. Em+2,m ; Hm+2(K(A/I',m)) ® I'



23

Em,m+2 ; A/r 8 Hm+2(K(F,m)); .'. niltEm,m+2 $ nilvA/r - c-l

Também, levando em conta que m 3 3 (.'. m+2 < 2m) e usando

(i) deste teorema vem:

nil-.KEm+2,m $ nilltHm+2(K(à/I'.m)) $ c-l (ni.lvA/I' = c-l)

nil-.nn2m+2(K(A.m)) S l+(c-l)+(c-l) + ni-lvH2m+2(K(A/I'.m))

(2c-l) + nil.H9..b7(K(A/F.m))

DaÍ vem por indução que

nilvH2m+2(K(A,m)) $(2c-1) +(2(c-1)-1)+.-+ 3+1-

>[ (2j-z) : }]1+(2c-])] : c []
]

(iv) No caso m=2 e n=2m+2 = 6. usando os mesmos cálculos

que em (iii-) temos :

2

nil.nE4,2 $ ni-lTTH4(K(A/1' .2)) $ ---2

2

nil-liE2,4 S c-l

1+ (c-l)

c(c+l)
2

DaÍ vem por indução que

(K(A.,2)) $ >1 j--(j.;l:.}.L

1) c (ii) )(por

e

<(K (A, 2) )

!)

(C-1lc
+

T

ni-llí H6 (K (A/F , 2 ) )

(K (A/r , 2) )

[]



(v) Agora m 2 4 e n:2m+3.

E2m+3-j,j 0 se 0 < j < m

ou m+3 < j < 2m+3, ou j : m+l (pois Hm+l(K(I',m)) :0)

Em,m+3 ; A/I' ® Hm+3(K(I',m))

Em+l,m+2 Tor(A/F,Hm+2(K(I',m) )

Hm+3(K(A/I',m)) ® I' »---' Em+3,m Tor(Hm+2(K(A/I',m)) ,I')

Usando o lema 2.2 obtemos:

niJ-líH2m+3(K(A,m)) S ] + ni].rH2m+3(K(A/F,m)) + nil7rA/I'

+ ni.l7íA/I' + nilvHm+3{K(A/I',m)) +

+ ni-]. H +2 (K(A/F,m) ) . . . (+)

ando em conta que m Z 4 e (i) vem:

nílvH2m+3(K(A,m)) $ (4c-3) + nilvH2m+3(K(A/I',m)) S

$(4c-3)+14(c-1)-3] +...+(4.2-3)+nil7rH2m+3(K(A/Fu'm))
indução. Logo,

nillTH2m+3(K(A,m)) É .>li(4j-3)

rivialmente em A/r 2 )
W

nil .H.. . . (K (A,m) ) $ (2c-l) c

24

+

Lev

poz:

C

(pois tage7
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(vi) Se m=3 e n = 2m+3 = 9 temos (usando (+) do item ante-

.r.i.o.r}

(K (A , 3 ) ) $ ni]. H 9T

E 6T

H
9T

(K (P./1', 3) ) + (2c-J-) +

(K(A/i',3)) + nil H.x(K(A/1'.3))$

(K(A./1',3)) + (2c-l-) + -Li;:il.}g +

+ c-l

devido aos i.tens (ii) e (i)

(K(A.3)) $ S;!:L;.g=:.l (K (A/r. 3) ) ,

donde

(K(A,3)) $ >1 ]i!:l.--3:i-:l (por indução)
l]

(vii) Finalmente suponhamos m=2 e n = 2m+3

Oevido a ('v) do item (v) temos :

nil.nH7(K(A,2)) $ (2c-l) + nil-vH7(K(A/1',2)) +

(K(A/1',2)) + nil-rH4(K(A/1'.2))$

Ê (2c-l} + ni.l H7 (K(A/1'.2) ) +

revi.do ao item (ii)

nil.nH7(K(A.2)) $(c:+c-l)+nilTrn7(K(A/1'.2)) .

donde por indução vem:

(K(A,2) ) $ }1 (j'+j-i)
C

l]
[]



Exemplo 2.4 - Seja Hi-"--ÉEbAut(Za©Z) dada por u(1) (i/o) : (l/l

u(1) (o,1) = (0,1), ou seja, a matriz M associ-ada ao automor-

fl iuu u(1) é dada por

X = K(ZZOZZ , 2) = K(ZZ ,2) x K(ZZ ,2)

Denotamos, como semprer un: Z:'' AUt(HnlX)) a ação lnQuzlãi
por u. Para calcul-ar a çlãisse de iillpu-Ladeia de uD (pal'a a].

duns valores de n) ]embramos que n+jK(u/z)) ii]x2] : ãlgebr.

poli.nome.al graduada dividida com um gerador de grau 2 (x2).

(lé. x2i'x2j )':2(Ítj))'

Outrossim, segue da definição que un é compatível

com a estrutura mu].tip].icativa em Hn(X) .

Devido ao teorema de Hurewicz segue que u2 : u / ie.
lembrando que

n2(x) ;]no(K(z,2)) 8 n2(K(zz ,2))] o

© [n2 (K (zz, 2) 8 no (K (2z, 2) ]

(FÕrmu].a de Künneth) segue

H fl) ív H 1} = x. ® l
2 ' '' '''2 ' '' ''2 ' '

r.\.í]\ f] R x.\ = ] ® x. + x. ® l.
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Exemplo 214= - Seja U ----'111.,paul(a©Z) dada por u(1) (1,0) : (1,].)
u(1) (o,1) = (0,1), ou seja, a matriz M associ-ada ao automor-

fismo u(1) é dada por

Temos (M-l.)
2

0 donde w é nilpotente e nilu 2. Seja

X = K(ZZOZZ , 2) = K(ZZ ,2) x K(ZZ ,2)

Denotamos, como sempre. Un: a -------, Aut(Hn(X)) a ação induzida

por u. Para ca]cu].ar a classe de nilpotênci-a de Un (para al-

guns valores de n) lembramos que H+(K(a,2)) = D]x2] : ãlgebra
poli.nome.al graduada dividida com um gerador de grau 2 (x2)

(ié. x2i'x2j = (Z:j)x2(Ítj))

Outrossim, segue da definição que un é compatível
com a estrutura mu].tip].icativa em H.(X)

Devido ao teorema de Hurewicz segue que u2 : u / ze
lembrando que

n2(x) ;]no(K(z,2)) 8 n2(K(zz ,2))] o

© [n. (K (zz, 2) 8 n. (K (2z, 2) ]

(FÕrmu].a de Künneth) segue

ca2(1) (x2 ® 1) : x2 ® l

e u2(1) (1 ® x2) : l ® x2 + x2 ® l

({1 8 x2'x2 ® 1.1 é uma base do E-módulo livre H2{X))
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Em H4(x) sabemos que {] ® x4' x2 ® x2' x4 ® ]-}

base.(onde x4 é o gerador de H4(K(a,2))). Agora,

2u4(]-)(]- ® x4) : u4(1) (1 ® 2x4) : w4(1) ((1 ® x2)(l ® x2))

[u2(1) (1 ® x2) ] [u2(1) (1 ® x2) ]

(l ® x2 + x2 ® 1)(1 8 x2 + x2 ®

l ® 2x4 + 2x2 © x2 + 2x4 ® l

(pela compati.bilidade de un com a estrutura multa.pJ-icativa)

m2(1)(1 8 x2) - l ® x2 + x2 ® x2 + x2 ® l

u4(1)(x2 Q x2) - u4(1)((x2 B 1)(1 ® x2))

['u2(]-)(x2 ® ])]]u2(1)(1 ® x2)

(x2 ® 1) (1 ® x2 + x2 ® l)

x. ® x. + 2x. ® !

e uma

b

1 )

T ambém .

u4(1) [ (x2 ® l) (x2 ® l)]

2x4 ® l

u4(1) (x4 ® 1) : x4 ® l

associada a u,(1) ass

2u4 (1) (x4
®

baseciciada aSendo M,.l a matriz
considerada temos:

2 ( 2+]. )
2

M4

DaÍ que(M4-13)
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Da mesma forma sendo {].®x6' x2®x4r x4®X2í X6®l}

base de H6(X) {Künneth). obtemos:

3u6(1)(18x6) - u6(1)(1®x2x4) : co2(1)(]'8x2)u4(1)(1®x4)

(l®x2+x2®1)(18x4+x2®x2+x4®l') :

l®3x 6+x2®x 4+x 2®2x 4+ 2x 4®x 2+x 4®x 2 + 3x 68]'

3(].®x6+x28x4+x4®x2+x6®l).

u6(1)(x2®x4) ; u2(1)(x281)w4(1)(1®x4)

(x2®l) (l®x4+x2®x2+x4®l)

x2®x4+2x4®x2+3x6®l

n6(1) (x4®x2) : (x4®l) (l®x2+x281) : x4®x2+3x6®l

3co6(]-)(x6®l) - (x2®l)(x4®1) : 3x6®l

l l o o

1 2 1 0

Este exemplo pode ser generalizado.

q

l]

uma

M6

DaÍ/ (M6-14) donde nilu, n

Exemplo 2.5 Seja ZZ --"---.àut(ZZ ® ... ® ZZ)

C
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l o o

l l l

! l l

0

0
tq

Onde M é a matriz associada a u(1) relativamente à base ca

nõnica. Desta forma (M-lc)C = 0, donde nilco = c. Se:ja

X. ; K( aC,2) = .K( Z:.2) x.-.. x K( a.2)
c-vozes

{ü : zz ------*A,ut n (x )"n n c

e

a ação induzida por u (Xc a K(a,2} x Xc-l)

cãlcu].os similares aos do exemplo anterior mostram

que

nilUH4 (Xc) ; nil-u4

(por Indução sobre c). e

c (c+l)
2 posto de n4(xc)

nilun6(xc) : nilw6 : .illl = posto de n6(xc)

(Note que por Künneth. posto n6(xc) : j.>10Posto n2i(xc-l)
f- l

1 * k-i) -- S;($:U- -. >1 :l-(4.!:U- U'r i-'d'ção)

(Mostra-se que as matei.zes M4(c) e M6(c)

C

3

C

j;l

são tri.angulares por indução sobre c) []

Este exempl-o (2.5) mostra que as desigual.danes obt.{

das em (ii) (n=4 e m=2) e em (iv) são as mel-bares possa'

veia.
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Proposi.çõg Zt.g Suponhamos nilu ni.l A = c 2 2T Então,

(i) .nilrH2(A) $ C(C+l)

(ií) ni-l7rH3(A) $ :c.j2;c(c+1l(2c+l)

Prova: Utilizamos a sequência espectral de Lyndon-Hoschild

-Serre associada à sequênci-a excita I'>--F A----» AA' onde

I' = 1'= # (0). Temos Er s : nr(A/I';ns(F)) com coefici.entes
trivi.ais.

2

2 2 : : :2

(i) E2.0;H2(A/F) ; E0,2;H2(1') e EI,l;A/1'81'

De sorte que

ni.]. H2(A) S l+(c-l) + nilvH2(A/F)

devido ao lema 2.2 e a desigualdade (1. 3) de [H.R. S. ]

Novamente por indução obtemos

nil7rH2(A) $ C+(C-l) +... +l = J;=(c+l)

(ii) E3,0 ; H3(A/r) ; E0,3 ; H3(1') ; EI,2;A/I' ® H2(1') e

H2 (A/I') ® I'»--FE2, ]."'-------Tor(A/I' , F)

é exala. Logo/

ni[TTH3(À) É [ + ni]vH3(A/F)+(c-])+(c-])+ni]. n2(A/]')

S 2c-]+(c-].) +ni].liH3(A/r) (devido ao caso an-

teri-or) : c;+nillíH3 (A/I')

2

2
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por indução vem: ni].uH3(A) $ jcijz : g" []

Doravante, i.ndicaremos por X um CW-complexo conexo,

X seu revestimento universal, u = ul(X) e lln : Tn(X)

Usaremos também a decomposição de Postnikov de X e

sua dual denominada decomposição de Cartas-Serre-Whitehead

denotadas respectivamente por:

(Post.ni.kov)
+

+

K ( T m ' m ) c-"-'Xm

,,,*m-l
l

X2'K ( T 2 . 2 )

+

(Dual)

e

T'--:'
e

e

g(2): X

X

K ( vm- l ' m- 2)C-'-'-X'.'(m)

X
X

Lembramos aqui o lema 1.2.18 e a observação 2.19 de

[H.M.R.] que mostram que lr age niJ-potentemente em lín

Vn, 2 $ n $ k 'i:::-:p T age nilpotentemente em Hn(X) . Vn.
2 $ n $ k

Nosso objetivo agora é obter resultados comparando
3n .= 1.A&.An n: n nclasses



32

Supomos a partir de agora que T age nilpotentemente

em r., Vn à 2. Com respeito às decomposições acima vamos

provar 2 lemas para uso posterior

Lerá ;2; í 7 (i) nilvnm+l(Xm) S nilvnm+l(Xm-l)

(ii) nilTTHm+2(gm) É nilvHm+2(Xm-l) + ni-lvHm+2(K(Vm(X) ,m))

+ ni-]w [v2 (x) ® rm(X) ]

(iii)

(iv)

nilvHm+3(Xm) $ nillínm+3(Xm-l) + niJ-.ríHm+3(K(vm(X) ,m)) +

+ nilv [n3(Xm-].)®rm(x)]+nil7rTor( ü2(X) ,rm(X) )

nilTTHm+4(Xm) $ nil.üHm+4(Xm-l) + nil-vHm+4(K(vm(X) ) ,m)+
+ ni].tw2(X) ® Hm+2(K(7rm(X),m)) +

+ nillín4 (Xm-].) ® rm(X) +

+ nilvTor(H3(Xm-l),lím(X)) , Vm Z 3.

Piava Consi.detemos a vibração (m 2 3)

(X) ,m) C ; XK (lí

Temos ( seq espectral de Serre)

Er s : Hs(Xm-l'Hs(K(7ím(X) ,m) )

(coef. triviais pois Xm-l é l-conexo) . Exatamente como no
lema 2 . 2 temos

nilwHn(Xm) É jljOnilTEn-j,j '
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EO,m+l ; Hm+l(K(vm'm)) : 0 ; Em+1,0 ; nm+l(Xm-l)

EI,m : 0 e Em+l-j,j : 0 se 0 < j < m.

nil7ínm+l(Xm) $ ni.lvH +l(Rm-l) V m Z 3

EO,m+2 = Hm+2(K(nm'm)) ; Em+2,0 ; Hm+2(Xm-l)

EI,m+l : 0 : Em+2-j,j se 0 < j < m

E2,m= H2(Xm-].) Olrm = v2® vm(m-l à 2)

nilrHm+2(Xm) $ nilrHm+2(Xm-l) + nilvHm+2(K(nm'm)
8 rrm

Z

EO,m+3 ; Hm+3(K(rm'm)) ; Em+3,0 ; Hm+3(Xm-l) ;

EI,m+2: 0:Em+3-j,j ' se 0 < j <m ; E2,m+l

3,m Tor(v2(X) ,rm) ée n3 (Xm)
v-mÕd.

nil-TTHm+3(gm) $ nilvHm+3(Xm-l) + nillrHm+3(K(vm'm) )

+ nillr(l{3(Xm) ® rm)+nilvTor(t2' nm)

EO,m+4 = Hm+4(K(Trm'm)) ; Em+4.0 =Hm+4(Xm-l) ;

2 2 2
E. ..=0=E...: d ,se 0<j<m,EI..Lt

deexcita
};Tor (T2 (X

® Vm' E3

+

/rf

(i)

( j. i )

(iii)

(iv)
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H4(Xm-l) ® vm»" E4,m Tor(H3(Xm-l),vm) exala

E2,m+2 ; v2 8 Hm+2(K(nm'm))
Lagar

nilvHm+4(Xm) S nilvnm+4(Xm-l)+nilvnm+4(K(vm'm)) +

+ nilVrr2 8 Hm+2 (K(lím'm) ) +
+ nil7rn4(Xm-].) ® wm + nilvTor(n3(Xm-l)

Corolário 2.8 - (i) ni.].lrH5(X3) $ ni-lvH5(K(lí2,2)) +

+ nilvH5(K(w3,3)) + nil.K7r2 ® w3 '

(i.i) nilvH6(X3) $ nil-.üH6(K(7r2.2)) anil.nH6(K(v3,.3))+

+ nilíTor(v2'lr3)

(ii.i) nil.KH7(X3) É nilvH7(K(v2,2)) +ni-lvH7(K(v3,3))+
+ nilv 7r2 ® H5(K(v3'3)) +

+ ni-lTTH4 (K (V2,2) ) ® z3

(ív) nil7rH6(X4) $ nilTTH6(K(lí4'4)) anil,KH6(K(v3'3))+

+ ni].TTH6(K(7i2'2)) +nilvP2 8 lí4 +

+ ni-lTTTor(Tr2' ü3)

(v) Hnil T (X4) $ nilTTH7(K(w2'?))+nilv117(K(v3'3))+

+ nil,#7(K(v4'4)) + ni.lwH3(X) 8 v4 +

+ nilvTor(lí2'lr4) + nilvv2 ® H5(K(v3'3))+

+ nilvH4 (K (7r2r 2) ) ® t3
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( v j. ) $ nil7TH7Hni]. 7U

H+ nj.]. 7T

(x.) (K( rr2'2)) + ni.]. H7(K(lí3'3)) +

(K(v4'4))+ niJ-tH7(K( n5'5)) +

+ nil7rTr2 ® v5 + nilvr4 ® H3(X) +

+ nil Tor(r2'Tr4) + nilnv2 ® H5(K(lr3'3)) +

® H4 (K(lí2' 2) )

) + ni.]. n 7'f !

B+ ni].
7n

Prova. (i) Basta observar que g2 : K(lr2'2) e aplicar (1)
do lema 2.7

(i l) Basta notar que H3(K( n2'2)
].ema 2.7.

Sai de(iv) dol-ema 2.7 e H3(K(v2'2)) - 0

2.7 e (ii) destedo

usar (iii) do

(iii)

(iv) Basta juntar (ii.)
corolário (2.8)

(v) Devemos juntar (ii.i) do lema 2.7 e (iii) deste
corolário (2.8)

(vi) Devemos juntar (il) do lema 2.7 e (v) deste
corolãri.o (2.8)

Lema 2.9 - (i) nilxHm+](X(m)) $ nilITnm+](X(m-].)) +

+ ni-lTTHm+l(K(lrm-l,m-2)) + nilvH3(X(m-l)) ® vm-l +

+ nilxTor(H2(X(m-].) 'lím-].) , v m à 3.

( j..- ) niJ-v Hm+2 (X (m) S nillíHm+2 (X(m-].) ) +

+ nillíHm+2 (K(xm-].,m-2) ) +
+ nil.nH2(R(m-l)) ® Hm(K(vm-l'm'2)) +

+ nilTTH4(R(m-l) ) ® lím-l +

+ nillíTor(H3(X(m-l))'vm-l) , V mZ3.
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Prova: Consi.detemos a fibração

(x) ,m-2) c---.'' l (m)

X (m-l)

Se;rre associaespectral desequencza

E. . = lí.(X,. .. ,H.(K(v...,m-2))
f

nilTTHn(X(m)) S j>jOnilTEn-j,j

(i) EO,m+] ; Hm+](K(vm-]'m-2)) ; Em+].,0 ; nm+l(X(m-l))

Em+].-j,j - 0 , se 0 < j < m-2 ; E2,m-l ' 0 ' EI

n. 2
(+)

e

H3(X(m-].)) ® vm-].»"'E3,m-2 Tor(H2(X(m-l)) ; vm-l)

e exala

Apli-canso (+) vem o resultado.

(ii) EO,m+2 = Hm+2(K(Trm-l'm-2)) ; Em+2,0 ; Hm+2(X(m-l))
2 .' 2

EI,m+l : 0 : Em+2-j,j se 0 < j < m-2 ; E3,m-l

H4 (X(m-l) ) ® wm-l»"''E4,m-2"'''*Tor(H3(R(m-l)) , lrm-l)

exa
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E2,m = H2(X(m-l)) 8 Hm(K(wm-l'm-2)

Aplicando (t) vem (ii) []

Corolário 2.10 - (i) nil,KH4(X(3)) $ nillíH4(R) +

+ niJ-vH4(K(v2'l))+ niJ-vH3(X) 8 v2 + nilvTor(n2(g);v2)

(ii.) ni].vH5(X(3)) $ nillíH5(g) + nil7rH5(K(v2'l)) +

+ nII.FH2(X) ® H3(T2'I) + nj-ITH4(X) ® T2 +

+ nilTTTor(H3 (X) rlr2)

(ii.i) nil,rrH5(X(4)) $ nil-vn5(X(3))+ niJ-vH5(K( ü3'2)) +

(iv) Se m Z 5, então temos:

nilvnm+l(X(m) ) $ nilvHm+l(X(m-l)) +..nillíHm+l(K(vm-l'm-2))

(v) nilrH6(X(4)) s nil n6(X(3)) + nilvH6(K(v3'2)) +

+ nilvn4(X(3)) ® v3 + nilvTor(v3'v3)

(vi) nil-líH7(X(5)) $ nilvH7(X(4)) + nilrH7(K( K4'3)) +

® T.

(vii.) Se m Z 6, enter :

nilTTHm+2(X(m) ) S niJ-vHm+2(X(m-l) ) + nilvHm+2(Km-l'm'2)
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Prova: Para (i) e (ii.) é só ].embrar que X(2)

Para (iíi.) ]-embramos que n2(X(3)) : 0 e

H3 (X(3)) = Tr3 (X) .

Para (iv), n3(R(m-l)) : 0 : H2(R(m-l)) se m à 5

Para(v) H2(X(m-l)) : 0 eH3(X(3)) :v3'
Oa mesma forma obtemos (vi) e (víi) []

Lema 2.11 - (i) nil7rlim(X) S nilTrlrm(X) + niJ-.KHm(Xm-l) ;

m 2 3

(i i) ni.l7rnm(X(m-l)) + nilrnm(K(vm-l'm-2)) +

(X(m-l)) ® lím-l ' V m 2 3.

Prova: (i) Seja K(Tm,m)

Xm-l

a ílibração obtida pela decomposição de Postni.kov

0,m ; vm ; Em,0 ; nm(Xm-l)

4
E . .

m-] , ]

e

se 0< j <m

Lembrando que

Hm(Xm) = HmlX)

nil n (X)m ' ' nil7r Hm (Xm- l )
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Consideremos a vibração dual (da de Postnikov)

K ( vm- l ' m- 2 )

X (m- l )

Temos

EO,m ; Hm(K(Wm-l'm-2))

Em,0 ; Hm(X(m-l))

2

EI,.-l Em-j,:j se 0 < j < m-2 ;

E2.m-2 ; H2(g(m-l)) ® Vm-l

(Observemos que E2,m-2 ' 0 ; se m 2 4 e

E2,1 ' H2(g) ® v2 = 7í2 ® v2 ' se m:3). Lembrando que

ITm(X) ; nm(X(m) ) (nurewicz)

segue:

niJ-vvm(X) : niJ-.ríHm(X(m)) $ ni-llíHm(X(m-l)) +

+ ni-llínm(K ( nm-].,m-2)

(X(m-l) ) © vm-l []

Teorema 2.12 - Na conde.ção de que T age nilpotentemente em
$ 7 tehÓS;!

(i) (X) SI nilxv3 (X) $ ni.lvH3 (R) +

(X) ® H2 (X) + niltH3 (H2 (X) )
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(íi) É ni.lvH4(R) + nilvH4(K(lr3'2)) +

+ nj-ITH4(K(T2'I)) + nIITH3(X) ® H2(X) +

+ nil.nTor (H2 (X) ,H2 (R) )

(iii) HTH
4n4T4T

H
5T

(x) (X) + nillíH4 (K(lr2' 2) )

( j. v )

(v)

(X) $ nilvn5(X) + nilvv2®v3+ nillíH5(K(v2'2))+

+ nilvH5 (K(7r3'3) )

nilrH6(X) S nilvv6(X) + nillív2®v4+ nillíH6(K(v2'2))+

+ nillÍH6(K(r3'3))+ ni-lTrH6(K( K4'4))

( v j. ) (X) $ ni.].lrr7(x) + nilvTr2®v5 + nillíw4®H3(X) +

+ nil7íTor(r2'lí4) + nillrr3®li4(K(n2'2)) +

+ nilTrv2®H5(K(r3'3)) + nlllrH7(K(Tr2'2)) +

+ nil7rH7(K(v3'3)) + nillíH7(K(v4'4)) +

+ nillíH7 (K(7í5' 5) )

Prova: Para obter (i) lembramos que H3(X2) : H3(K(v2'2)):0,
aplicamos (i) do Lema 2.11 e (ii) do ].ema 2.11 recordando

que X(2) : X'

(i.i.) é resultado da utilização de (ii) lema 2.11 e (i.)
coro[ãri.o 2.].0. Para obter (iíi) usamos o ].ema 2.11 (i) e

o ].ema 2.7 (i). Para obter (iv) usamos o lema 2..-1 (i),

lema 2.7(i) e o corolãri.o 2.8(i).

(v) é consequênci.a do lema 2.11(i), lema 2.7(i),e

do corolário 2.8 (iv). [:]
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Observaçgg: As desigual-danes para niJ-rvn e nil-nHm(X) tornam

-se bastante complicadas, para n > 4 e m > 7

Na verdade para n:4 e m:7 elas já não são tão sim-

nforme atestam (ii) e (vi) do teorema anteriorpies co

Exemplo 2.13 - Seja X um CW compelx'

vl(X) : Z ; Tr2(X) :a ©a ©

L--4 '

© a (c cópias) ,

conexo

xi(X) : C) ; i> 2 e a ação de vl(X) em v2(X) é dada porM
como no exemp ]-o 2 . 5 .

Neste caso X = K(nc,2) e vimos no exempl-os 2.5 que

líl (X) lr2(x) ' c
e

rl(x)n4(x) : S:(5=i..!-L

Como Va(X) : 0. segue que a desigualdade (ii-i) obtida no
teorema 2.12 é uma igual-jade neste caso.

Observemos também que este exemplo produz uma sl

tuação na quala desigualdade (v) é em verdade uma igualdade!

o0o





CAPÍTULO lll

S3.].. - Nesta secção vamos estabeJ-ecer alguns resul-Lados gg.
tais referentes a grupos P-locais, fatoração de a-

ções e algumas proposições ]-iradas a cohomologia de

grupos.

E;lgEgg=4:.gão 31.. 1 - Consideremos EI/

onde P é uma família de primos e Ei--ibp K homomorfismo

grupos Nestas condições, se E-Ê}PK é o pula-pack da fama

]-ia {c:ill$i$t ' então E é P-local

locais,PrEt/K grupos

de

Prova: Sabemos que

E = { (xl' ,xt) € EI Et: cj. (Xj.) cj (xj) Vi,j}

(x. . . . - ,x+..) - x-i temos E

Fixemos HeP'x . Consideremos x = (xl'...,xt); y: (yl'....yt)}

x,yeE e suponhamos xn=yn. Desta forma vi-, x:l = y:l. DaÍ,

xi:yi' uma vez que Ej. é P-local Vi. Logos x:y. Por outro

cal). Logo, sendo x = (x].,....xt) segue y = x*'. Lembrando

que ci(xj.)n= tj.(yi) = Cj(yj)= C:](xj)n e K éP-local se-
gue Vi,j; ci(xi) : c:-l(x-l) donde xeE.

O argumento acima mostra que E é P-l-ocal- [=
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proPosiggg 3.1.2 - P-famíli.a de primos; Y-grupo P-local; F

-grupo finito; Y-gi->P homomorfismo de grupos. Então, VYCY;
O(4)(y) ) = DePx 0U $(y)=1.

Prova: Seja yeY e suponhamos que 3 qeP' tq. qjo(+(y))
Pondo o(@(y))=q.k e considerando z:yK, segue o(4)(z)):q. Dg:

do que qeP'r vem que Vr > 0, 3zrCY tq. Z: =Z (Y é P-local).

Assim que, @(zr)qr ; @(z) # l e (>(zr)qr+l = $(z)q=l

'. o(@(z.)) : qr+l, V r > 0. Em particular,{@(zr)eF: r>0)cF

e é infini.to, contra a hi.põtese de F ser fi.Dito. []

Coro[ãrio 3.]..3. - Nas condições da proposição anterior,

l @(y) lcpx, o que equi.vale a dizer que (>(Y) é um P-sub-grupo
(fi.nato) de torção de F.

Prova: De fato, se ]qCP'r qjlq)(V)l, então ]yeY tq. o($(y))

qeP'.

Observação 3.i.4 - A proposição 7.1 (Pg. 106) de [R.2] nos

mostra que um grupo fmi-to F é P-local .é--+ F é um P-grupo de

torção (i.é. q é primo e ql IPI --'+' qeP)

Na próxima proposição X--'-"Sb XP pode respresentar a P-
-].ocali.zação em G ou em TI .

e

proposição 3.1.5 - Sejam X,N grupos onde Aut(N) é finito, e
x---SL Aut (N) uma ação de X em N

Então ] ! coP ação que torna o diagrama comutativa
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X w : Aut(N)

é---+:u(X} é um P-sub-grupo de torção de Aut(N) . Mais ainda,

nas condições da proposição temos uP(XP) : u(X)

Prova: (---->) Se 3uPr então pelo coroa. 3.1.3. temos que

uP(XP) é um P-sub-grupo de torção de Aut(N)

Dai u(x) : tope0(x) c mP(xP) é P-sub-grupo de torção
de A,ut(N)

xp

( 'é-) a) Suponhamos Inicial-mente que e0: X -> XP é a P-lo-
ca].i.zação em G. Devido ã observação 3.1.4. u(X) é um grupo

(finito) P-local-. Logo da definição de locali.zação 3 ! hom

=P' xP '' u.(X) tq. upe0 ; u onde X -jg' u(X) é tal que

i: u(X} 'C"pAut(N) , então i8 = u. Sejam wP ' i.oãp ' 'upe0

Seja â3p: XP '> Aut(N) outra ação tq. üpe0 : u'

Seja ul;: XP '' ãp(xp) tq.

ku; = ÜP' Devido ao coro].âri.o
3.1.3 e à observação 3.1.4.

ãp(xp) é P-local e (jap)eO :

- :ia : upe0"+' ]ÜP P por un.{

ci.dado.

l

P) A'ã(xX -' u(X)
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Assim que VzeXPr

: iiDP(z) : uP(z)

kou;(z) : u;(z) : j8p(z)

DaÍ vem a uni.cidade de coP

Fi.nalmente, vimos acima que uP(XP) aP(XP) : u(X) []

b) Se X--"--gxo é a P-local.em n , então a prova e a mesma

lembrando-se que neste caso u(x) é nilpotente (pois X o é)

e .'. calo como acima.

Na prova da unicidade õ(XP) é P-local e nilootente

e

Consideremos a seguir uma extenção

A é um grupo abeli.ano

Temos pois, associada a esta extensão, a ação
u: x --Aut(A) dada por p(u(x)a) = gp(a)g'l, onde t(g)

Fixemos uma famíli.a de primos P e n€1N. Para cada

xeX podemos defina-r o homomorfi.smo:

On(x) : IA + u(x) + .-. + u(xn'l) e End(A)

onde

A respeito deste endomorfismo podemos enunciar o

Lema 3.1.6 -(vgeG);(Vaca);(VneW) vale:

( li(a)g)n = P( On( c(g))a)gn

Prova: Por indução s/n. n=1 é trivi.a].

Supondo a fõrm. verd. p/k-]. temos
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(p (a)g)k (p(a)g)k'l(p(a)g) = p(Qk-l(c:(g))a)(gk-lp(a))g

p(Ok-l (c(g)) a)[gk-lP(a)g'(k'l) gk

p( Ok- 1( E:(g) ) a) }l( u( E:(g) k'] ) a) gk

p(Ok-l(c(g))a + u(c(g)k'l)a)gk . p(Ok(c(g))a)gk

P' l

(Lembramos aqui que: 0k(c(g))a = Ok-l(c(g))a+ u(c(g)'' ')a ,

por defi-feição)

Estamos agora aptos a provar a

?1929g.j:gão 3. 1 .7 - Seja A»b-G--"''»x uma extensão onde A é
abeliano e u a ação associada à extensão. Seja P uma fam.}

].ia de pri-mos e consideremos as 3 afirmações amai.xo:

(i) G ê P-local

(ii) x é P.-].ocal

(i.ii)(VeX)(VneP'') ; On(x)eAut(A)

Então, quaisquer duas implicam a terceira

Prova: (i) + (ii) ---> (iii)

Seja xeX; neP'x . Suponhamos On(x)a
E(g) = x. Então pelo lema anterior vem

Seja geG

tq

( }i (a) g) n P (On (x) a) qn p(0)gn = gn

Dai, p(a)g = g, pois n6P'x e G é p-local

0.(x) é monomorfismo.

Logo p(a) 1 ,
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Por outro,].ado da.do beA. Afi.amamos que ]g'eG tq.

g'n = p(b)gneG; uma vez que G é P-local

DaÍ, c(g')n = c(p(b)gn) = E:(g)n --+ E:(g') = E:(g)(x é

P-]oca], .'. ]! aeA tq. g' : p(a)g. Logo, Lt(b)gn = g'n

(p(a)g)n = }J(On(e(g))a)gn pelo Lema anterior

Levando em conta que p é injetora vem

On(E (g) )a = b .'. On(X) € Aut (A)

que

[]

(iii) + (i) --+ (ij.)

Sejam x,y € X e nEP'x e suponhamos xn = yn

E:(g) ; y = E:(g') E:(gn) = xn = yn E:(g'n) .'. 3 ! aeA

tq. gn = p(a)g'n. Agora por hipótese ]! beA tq.

On(E:(g'))b = a .'. gn: P(On(E:(g')b)g'n =(p(b)g')n

IJ(b)g' (G é P-l-ocal)

x = E(g) = c(p(b)g') = E:(g')

Por outro lado, seja yeX.

c:(gl = E:(hn) = c(h)n (G é P-local) p -local []

(ií) + (iii) -'--+ (i) Fi.xemos neP'x; g,h € G.

gn=hn -+ E (g)n = E (h)n -+ E: (g)

pois X é P-local.

(]!aeA) tq g = u(a)h .'. hn

E: (h)

n
g (p (a)h)n p (0. (c (h) ) a) hn

DaÍ,
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o.(c(h))a: 0--+a=0(porhipótese). .'. g=p(0)h:h

Por outro ].ado, geG. (]xeX) tq. C(g) = xn (X é P-J-oca].)

E:(g) = xn = c(h)n = E(hn) .'. (31aeA) tq. g = p(a)hn

Como On(E:(h)) é bi:jetora segue que 3 ! beA tq. a = On(c(h))b

g = p(0.(c(h))b)hn =(p(b)h)n revi-do ao lema 3.1.6. Mo.g

tramou pois que g € G -»gneG é bijetora. [.:]

Proposi-çq:Q 311=8 - P-íiamília de primos; A»l-» G--'-»X exten

são onde A é um grupo abeliano finito. Nestas condições,

se G e P-].oca]., ou A e x sao P-locais, então

On(X) € Aut(A), VxeX, VDeP'x.

Prova: (].) G é P-local

vi.sto que A é finito basta provar que On(x} é injeto-
ra VneP'x, VxeX

Fixados RCP'x e xeX, seja a eA e suponhamos que

0.(x)a : 0. Seja gCG tq. E:(g) = x. Pe]o Lema 3.]..6. temos

(U (a)g)n = P (Qn(x)a)gn = gn

Como G é P-].oral segue p(a)g = g .'. [=

(11)

f

A e X são P-local.s.

Novamente basta que On(X) seja injetora, pois A é fi
nato. Fixamos neF 'x e xeX. Seja aeA e suponhamos que

Q.(x)a ; 0. Desta forma

(u(x)n-]n)a =]u(x)-]a.]o0.(x)a

Por outro lado

.'. LO (x) na
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X -]2-- Aut (A) ; o (w (x) ) mePx ou m=l

deva-do à prop. 3.1.2. .'.

Agora m:l ou mePx e neP'x .'. mdc(mrn)

m
u (x)

l

+.

(]r,sea) tq. rm + sn = 1. Logo

co (x) a [w (x)m] ro [u (x) n]s a a

0 0.(x)a : a+a+.. .+a = na ---4'' a = 0 (pois A é P--local)

.'. 0.(X) eAUt(A) , VDGP'x ; VXeXE]

Corolãri.o 3.1.9 - P-família de primos; A>"--11-» G ---"5=» X exten-

são onde A é um grupo abeliano finito. Nestas condições tÊ

mos A é P-]oca] e X é p-].ocas. é--+ G é P-local

Prova: (----+) A e X p-].ocais --> 0.(x) € Aut(A) V neP'x,

Vxex , pela prop. anterior. Logo G é P-l-ocal pela prop.
! 73

('é é P-local, então On(X) € Aut(A), Vn C p'* ,
vx € x. .'. xé P-local pelaprop. 3.1.7

Mais ainda, em particular,

x=lex --+ 0.(1) : (multipli-cação por n) € Aut(A)
V neP'x .'. A é P-local.

Consideremos agora uma extensão N »--l!-) G.:-::;» X onde N

é uma grupo fmi.to.

Seja X----ÉL»Aut(N) dada por p(u(x)a) : a(x)U(a)a(x)'l e co=

sideremos 0.(x) : N -' N função defi-ni.da por:

a
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8n(x):lN'u(x)'...'w(xn'l) ; V x C X , V n CW

Vamos descrever as propriedades análogas às anterig

res neste contexto ligeriramente diferente

Lema 3.1.10 -(VnCn+),(vxeX) vale

(}l (a) a(x)}n = P (On(x)a) a(x)

Piava: (i.adução sobre n); n=1 é trivial. Além disto,

(p(a}.o(x))k =(p(a)o(x»k'l(p(a)a(x)) :

p(Ok-l(x)a) a(x)k'lp(a) a(x) '(k'l) a(x)k

p(É)k-l(x)a)p(u(x)k'la)a(x)k = p(0k(x)a)a(x)k ,

uma vez que usamos a hipótese de indução na 2a igualdade e

que

0k(x)a : [(3k-l(x)a] [u(xK)a]

[]na;última.

proposição 3.1.11 - Sejam P uma família de primosr

N»""-L- G --+..............<x uma extensão que ci.nde e u a ação

por a.
a

definida

Consi.detemos

(i) G é p-].ocas.

(ii) x é P-locaJ-

(ij-i)(VxeX)(VneP'x); On(X) é uma bijeção de N.

R'.+-aa nta aalpr t ç $mnl$cam a térceirá.

amai:xoafirmaçõesas

F
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Prova: {iii) + (i)

x € X;

ado, x,'b c (h)) ;l0 j

/

--+ ( ii) . Fi.xemos neP ' x

E (g) = E (hn) = c: (h)n

X; xn = yn ---+ x = E:(g€Poz: Quer

então

C(gn) = xn = yn = E:(hn) .'. 31aeN tq. gn = ula)hn

p(a')o(y) , poi-s a sequência cinde e E(h)

gn = p(a)(p(a')a(y))n = p(a)p(On(y)a')a(y)n

p(a(On(y)a')a(y)n = p(On(y)b)cl(y)n ,

pois On(y) é sobrejetora.

'. gn : (P (b) a(y) )n ,

pelo gema 3.1.].0.; donde g = p(b)a(y). DaÍ,

x = c: (g) = E: (p(b)a(y)) = y

Mãs

[]

ii); -:--> (zzx). Fzxemos x8x e nep

Seja b,a € N e suponhamos On(x)a : On(x)b . Desta

l x

forma

(p(a)a(x))n = p(0.(x)a)a(x)n = p(0.(x)b)a(x)n =(p(b)a(x))n
f

p (a) a (x) = p (b)a (x) ; donde

Também, beN; p(b)a(x)n = gn jã que G é P-local

pea)a(y) poi.s a sequência cinde e

a(x)n = E(gn) = a(y)n .'. x=y. .'. g = p(a)a(x)

.'.p(b)a(x)n=(H(a)a(x))n=p(On(x)a)a(x)n --+ b = On(x)aE]
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(j.i) + (iii) ----+ (i-). Fixemos neP'x

Sejam g,h € G e suponhamos gn = hn. Temos

p (a)a (x) e h = p (b)a (y)

c (g)n = E,(h) n = yn , donde x

(On(x)a)a(x)n = gn = hn = p(Qn(x)b)a(x)n

8n(x)a : On(x)b donde a:b .'. g=h

Por outro lado, geG;

C(g) = xn = cÍa(x)n) ---->31 beA tq.

p(b)a(x)n =p(On(x)a)a(x)n ..'. g =(u(a)a(x))n. [=

proposição 3.3-.!g - P-famÍl-ia de primos; N»'--=-+ G.=::::1 X u]

sequência excita de grupos que cinde, onde N é finito.

Nestas condições, se G é P--local ou N e X sao P-lo-

cais, então(vxe x)(Vne p'x) On(x) é uma bijeçãodeN.

Prova: (1) G é P-local

Fixemos n e p'x e xex. Deva-do a N ser finito bag

rar que 0.(x) é i.njetora

Suponhamos a.b € N e On(x)a ; On(x)b. Então,

(p(a)a(x»n = p(On(x)a)a(x\'l : U(On(x)b)a(x)n =(p(b)a(x))n

p(a)a(x) = p (bla (x) , donde a:b

a

ta

Logo, []
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(11) N e X são P-locais.

Consideremos w(x)C--L---Aut(N) e ã = N 3iu(x)

u(X) é um P-grupo de torção devido ao corolário 3.1.3, Né

um P-grupo de torção devido à observação 3.1.4. Logo, G é

um P-grupo de torção (poisa e G/N ; u(X) o são). Concluí-

mos que G é P-local, novamente pela observação 3.1.4 (Gé í.i
nato)

Considerando a sequência N»-l---' G e usando

a parte (1) desta proposição deduzimos que Vn e p'x,VTen(x)

6n(X) :IN'i(T) ... i(t)n'l = IN' t...Tn-l

é uma bijeção de N. Desta forma, VxeX , Vn € p'x vem:

On(x): IN'co(x)...u(xn'l) = 6n(T)

a

onde T = w(x) € u(X) 0.(x) é bijeção de N [=

Cç?;iç?!ê;i;ç? 311113 - P-famÍli.a de primos; m>"--1=-j.. G :..;.l!,X se

quênci.a excita de grupos que cinde, onde N é fmi.to. Então

G e P al +-+ N e x sao P local.s.

a

Prova: ( ---+ ) Sendo G P-]oca]. segue, devido ã proposi.ção

anteriorque VDeP'x , vxex, que On(X) ébi.jeçãodeN

Da proposição 3.1.11 vem que X é P-local. Mais ain-

da, x=leX; On(1) ébi.jeçãodeN. Mas VaeN

a (u (1) a) . . . (co (ln'l)a) : an

l

8n ( 1) a

N é P-].oral []
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(+-) N e XP-].ocais(comN finito) ---»VnC p'x .

v xex ; 8.(x) é bi:jeção.

Esta condição adjuntada ao fato de que X é p-local-

garante que G é p-]-oca]. peia proposi.ção 3.1.]-1. []

Proposição 3.1.111 - P-famíl-ia de primos; N)"--!-'- G ----»X

uma sequênci.a excita de grupos. Então,

G e X P-].ocais -::--+ N P

Prova: Fixemos n e p'x

a.b e N e a =bn --+ p(a)n = p(b)n --+ p(a) : p(b)

pois G é P-J-ocas

A seguir seja beN. Desde que G é p-l-ocas conclui

Bosque (]gCG) tq. gn=p(b). DaÍ.

a=b

In ; 1 : cp(b) = C(g)':---+'c(g) = 1(XP-l-ocas-).

(3 ! aeN) tq. g - p (a). U (b) = gn = p (a)n = p(an)

.'. b=an [:]

Observação 3.1.15 - Neste ponto salientamos (e é tri.viam)

que todas as conclusões das proposições anteriores permane

cem verdadeiras se substituímos a condição

[(vxex)(V n e p'x)Qn(x) é b]jeção de N]

pela

[(vxex) , (vqep') a.(x) é bijeção de N]
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A partir de agora re]embramos a]guns concei-tos ].iga

dos a cohomologia de gruposr bem como estabelecemos alguns
resu].Lados a serem uti.lizados na S3.3.

Consideremos os grupos X,A,B onde A e B são abelha -

nos, e açÕes x--=-'-Aut(A) e x"'-'='-' Aut(B). Sejam também,

A-"'----' B um homomorfismo de X-mÓdu].os (ie. , a(u(x)a)=0 (x)a(a) )

Relembramos a defi.feição de

~*: nâu; J ' nã w;n
Dada

É[ = [A».ll--* G --E-» x] € U:..(X;A)
então

cl.,Ê] = [B--:!.. Q ---!-'> X]

onde passamos a descrever a construção de Q,v,v. Sejam

M = BJ0oCG ; (G c X 0 Aut(B)) e

H = { (-a(a) ,p(a)) € M: aCA.l .

Então, H 4 M e podemos considerar Q = M/}i e o diagrama

comutativo

Aqui., B (g) = (0,g)H

v(b) = (b,l)H

T [ (b,g)n] = E (g)

Visto isto podemos enunci.ar a próxima proposição
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proposj.ção 3.1.16 - No diagrama

belianos, as linhas exatas e

(ie. a(u(xla) = 0( y(x))a(a)) ,

dadas às extenções)

A > ' ;:-- e-

+
B> ' +

abaixo supomos A e B grupos a'

ct um homomorfismo de X-mõdu].os

onde w e 0 são as ações asso-

Nestas condições, sendo E] = [A»----> G""-'-# X] f

E = [B»--"--' Q""-"--»v] , podemos afi-amar que: ] B : G -' Q ho

morfismo de grupos tornando os diagramas comutativos

'e:::--+' cl*C = Y*( . (gbg.. Se ]6 , então ct é automàticamente um

homomorfismo de módulos)

mo

Prova ( 'e-- ) Suponhamos clJ:t=Y [l . ;

n:(x;A)--a+ n:(X;B)l-- H:(Y;B)

+

E A

B

a

B

V

.'''l'l...l
u l* ,: ::l
'\l.: . l«

----+ Q - }; Y

C
X

B

B
(

Por hipótese, ] homem. de grupos $: K '' L (isomorfismo)

tornando os diagramas comutativos. Seja B=B2oq)oqe Hom(GíQ)

Então é imediato que BP = vcx e YC = líB. []
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(---'-+) Suponhamos agora que 3 uma tal É3 tornando os díg:

gramas comutativos.

Consideremos o diagrama:

A

. J
B

P

v'l

v'
-» Q

------» x

@

B:

X

'É

Ê

X

T '
-------» Y

Definimos inicialmente p por:

(É)Y) G ---e'' O onde

p {b,g) = v (b) E3 (g)

l

Desta forma,

P ( (b,g) (b' ,g' p (b+0 (''r c: (g) ) b ' , gg)

v(b) v(0(''rE:(g)) b ') B(g) B(g ')

v(b)[B(g) v(b') í3 (g) '"] B(g) B(g')

P (b,g) P (b' ,g' ) ,

onde utili.zamos a definição de 0 na 3õ igualdade

'. P é homomorfismo. Mais ainda,

p(-a(a), p(a)) = va(a)'lBp(a) : Bp(a)'lBp(a)

.'. p (n) = {].} .
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] ! p que passa p ao quociente.

3
H
#

j:pr
E

l

] G

B

B

(Bopr = p)

Assim que, Mais ainda,

7rp[(b,g)n] = vp(b,g) = lí(XJ(b)B(g))

YC(g) = yci[(b,g)n] .'. Tri5= Yci

Por defi-feição de pull- -back, ] ! homomorfismo $,

(b: K -' L tq. Trio) = E:i e B , q) ' P

Fina ].me nte ,

Elz(@pi) = ppi = v ' Bzvz e

Tri(q)pi) = :ipi = 0 = Flui ;

Logo, por uni.cidade (na def. de pula--back) segue 4)ui = yi

Segue pois do Lema dos 5 (para grupos) que q) é isg

morfismo, donde cl+ÊI = 'y'vtl []

prqpggi.ç$ç? !:L:17 - No diagrama abaixo as ]-ilhas são se-

quênci-as exatas de gruposr A e B são abe].lados e T e 13 to.=

nam os quadrados comutatlvos .

AP F' +G ' :>>X

Y

Y
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Então 3 homomorfismo cruzado K: X""-+B tq. V geG;

B (g) = VKC (g) T (9)

Prova: g eG; v6(g) = YC(g) = 7rt(g)

B (g) = v(b.) 't (g)

Desta forma fi-ca defi-ni-da G'"'-'E-F B por p(g) = ba

(uma função apenas). Entretanto,

gP(.A) = g'p(A)'é-+g''lg C p(A)'ê-+'jlaeA tq g=p(a)g

DaÍ que, v(bg)T(li(a))T(g') = v(bg)T(g) :

B(b) ; Bp(a)B(g')=\.'cx(a)v(ba')z(g')

Logo, v(bg+a(a)) : v(bg)TP(a) : v(a(a)+bg ),

donde bg : bg

Desta forma, fica bem defina.da uma função K tornando o di.g

grama comutati.vo

!

l

bgeB tq'

( .'.K (X) = P(g) , V geG . tq. E (g)

Asse.m que,

x)

VgeG , B(g) v (b.) T (g) ---+ [.B (g) VKC (g) 't (g)

Além disto, dados g,h € G l

V(bgh)T(gh) = 11(gh) = Í3(g)Í3(h) = V(bg)T(g)V(bh)T(h)

Logo, v(bgh)T(g) : v(bg)'r(g)v(bh)
fn\ = \) ft\ l -r fn\\) ft\ )

= ISlql131nJ = Vt0.J't tgJV\l)l.J'Ltll/.
' 9 ' li

e daÍ vem



v(bgh)

v(bg

x =

v (bg) [l (g) v (bh) T (g) ''L]

v (bg) v ( 0 (yc (g) ) bh) ( 'Y e (g) ) bh)

Desta forma. bgh bg+0(YC(g))bh ' Vg,heG Asse.m que,

Vx,yeX; c (g) ; y=c (h) temos : (por def. de K)

K(Xy) = bgh : bg + 0(Yc:(g))bh

= K(X) + 0('Y(X))K(y)= K(X) +X.K(y),

uma vez que a definição da ação de X em B Õ exatamente
K e um homomorfismo cruzado de X em B.

OoY

[]

CP
XGA

YTa
V

YQB

Proposiçqg }: }!: !g

No diagrama aci-ma, as li-lhas são sequências exatasde gruposr
A e B são abe].canos e os quadrados são comutativos. Seja

K: X -' B um homomorfismo cruzado (X age emB vi-ay) . Nestas

condições a função íi: G -' Q dada por B(g) = VKE:(g)T(g) é

um homomorfi.smo de grupos.

Prova g,h e G; B(gh) VK ( e (g) E: (h) ) T (g) T (h)

V(Ke(g) +E:(g). KC:(hlT(g) T(h) :VKE:(g) v(0(YC(g) ) KE:(h)) T(g) T(h)

Mas, V ( 0 ('YE (g) ) KC (h) ) V ( 0 ( VI (g) ) , KE:(h) )

T (g) VKC (h) T (g) ''

(onde 0 é a ação de Y em B associada à extensão)
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'. B(gh) VKE:(g) [ T(g) VKE(h) T(g) 'l] 'r(g) T(h) B(g) B(h) [:]

Lema 3.1.19 - Seja Q um grupo abel-cano de p'-torção. En-

tão, vq > 0, Hn(Q) é de p'-torção (onde Ha(Q) representa
a homologia do grupo Q com coefi.cientes inteiros e trivial.s)

Piava Suponhamos inicialmente Q finítamente gerado Logo,

é um grupo cícl-ico de p'-torção DaÍ,

",'':, : {T:,: :=::'1 (0); q par; q > 0

Concluímos poisa da fórmulade Kunneth, que

H.(Q) ; soma de cÍc].ices, onde os comandos pertencem ao con
junto

l-ci' . - .,ct l (q > o) .'. nq(Q
) P' 0de torção >para qe

Em geral, Q ; .}iT Qa onde {Qala6A
sub-gr. finitamente gerados de Q.

é a família dos

l,einbrando que

nq(Q) ; .iiêl$i nq(Qcl) , Hq(Qa) é de p'-torção

e :!.l!+m de grupos (abelianos) de p'-torção é de p'--torção se-

gue o resultado []

No próximo teorema trabalhamos com a teoria de loc.g.

].ização na cateori.a n
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Teorema 3.1.20 - Consideremos X um grupo nilpotente e A um

grupo abe].lado P-local. Suponhamos que exista um diagrama

comutativa

X Aut(A)

Nestas conde-çÕes afirmamos que Hnu.(Xp;A) -0 Hn(X;A) é um
i.somorfismo. (en : p-locali-zação de X em n ).

+

(indução sobre c = nil- X)

Se x é abeli-ano podemos considerar as sequências

exatas de grupos abelianos
e:.'0

0 -'- Ker(eO) »-' X '-------'' eO(X) '' 0 ... (1)

(eÓ (x) : eO (x) . VxCX)
e

0 -' eO(X) -'----S!--*XF--- Coker(eO) ' 0 ... (11)

(eR : inclusão)

(1) da origem a uma sequência espectral (de Lyndon-Hoschilg:

-Serre) em cohomologi.a onde EI's = nr(eO(X); Hs(Ker(eC));A))

Notemos que X abeliano -'+ eO(X) age trivialmente

em Ker(eO) . donde a ação de eO(X) em Hs(Ker(eO);A) é trivial

Vs à 0. Mais ainda, x € Ker(eO) '---+ u(x) : upe0(x) :

uP(]-) : l.à ' o que mostra que Ker(eO) age trivialmente em A.
isto nos permite uti].azar o teorema dos coefi-cientes uni-ver-

bais e obter a sequência
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0 -- Ext(Hs-l(Ker(eO)),A) - ns(Ker(eO);A) - nom(Hs(ker(eO);A)"-+ 0

Levando em conta que

Hom(p'torção, P-local) o = Ext(p'-torção, p-local)

e que Hs(Ker(eO)) é de P '-torção devido ao Lema anterior
( 3 . 1 . 19) concluímos que

Es (Ker (en) ;A) (0) , Vs Z l

DaÍ vem que

Er,s #
Hr(en(X) ;A) ; s : 0

(0) ; s > 0

donde a sequência espectral colapso e .'. produz:

(X) ;A)

+e
0n' (e A.)0 (x) ;A) r+ n' (x;A)

Analogamente, considerando a sequência espectral.

associada a ( ll ) temos :

E;' : nr(coker(eO); ns(eO(X);A))

Da mesma forma coker (eO) age trivialmente em eO(X) , jã que

Gp é abeliano. .'. a ação de coker(eO) em Hs(eO(x);A) é tr.L
vial Vs Z 0

Outrossim, A é P-].ocas.---+ Hs(eo) (X) ;A) é p-].ocas
(poi-s neP'x ; A------..-.>A induz

Hs (eO(x) (eO (X) ;A) )

Novamente uti.].i.zango o T dos Coefi.ci.entes Univer

sai.s e lembrando que coker(eO) é de p'-tol'ção---+' Hr(poker(eO))
é abeliano de p'-torção, Vr > 0 (Lema 3.1.19) conclui-mos que
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(0) vr > 0. Temos poi-s

r > 0
Er.s ; 4 . , donde

r = ORs (e (X) ; A.)0

e:'+
Hs(eO(X);A)':b:g- Hs(Xp;A) ; Vs

Do diagrama comutativa
e!

':'*;? : '' '=,'%;"'
'Ó*

nn'(eO (X) ;A)

segue que eã é isomorfismo.

Temos, poi-s, mostrado o passo de i.adução para c ' l

Seja agora X um grupo com nil X = c > 1 e considera.
mos F = 1'cX # {l} . É conheci.do que as sequências abaixo

são exatas e os di-agramas comutativos.

X

rf

x/r

Estas sequências curtas e aplicações dão origem a uma apli-

cação de sequências espectrais. Em particular temos os di.Z

grama comutativa:
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n' (x/ r;n' ( r;A) )

(eÓ ,e8) *
nr((x/ F)P Hs ( r;A)

nr(X/ I')P ; Hs (I'P;A.))
(e8+) +

É importante notar que as sequênci.as curtas são

centrais donde as cohomologi.as consideradas no diagrama ag
tenor são orai-Dali.as. Agora, do diagrama

Aut(A)

eO

xp
PP

I'PI

concluímos que (coPPP) eO

Deva.do ao primeiro passo da indução (como r é abe
].iano} seque

Hs ( I'P ; A)
S

n' (r ;A) ,

donde (e8+) + é isomorfi.smo.

De outra parte/ sendo Hs(I';A) P-local, Vs à 0 e con

si.derando o diagrama comutati.vo
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x/r Aut (Hs (r . A) )

eO
+

(x/r ) p

0

Segue por hipótese de indução (nil X/I' = c-l) que eÓt é
isohõrfismo

Logo (eêpe8)t é isomorfismo EI's =-- Êr,

Desta forma uti.lizando-se a técnica usual- de "pas

sar" pel-a sequênci.a espectral concluímos que

S

Hn(Xp;A)

é i.somoFfisHIO e a prova esta completa por indução []

Fi.nalmente. para encerrar esta secção, vamos consi-

derar a seguinte situação (que voltara a aparecer nas 2 prg

x i.ma s )

P-família de primos; A - p-grupo abeliano finito;

X-grupo; peP; X-------+Aut(A) uma ação de X em A. Suponhamos

l«'*,l : -::..,="-:11;..,'' ;
onde a: > 0 , V i i

PI { q:,...,q.} , PI e {qÊ+l'...rqt}

Denotemos por H : <xeX: o(u (x)) € P:l> : (sub-grupo gerado

peJ-os elementos de X cuja ordem de u(X) pertence a P. ).
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i,ema 3, 1 .21 - H: 4

Prova: Oe fato, xEX e o(u(x)) € Pxa -:--+ O(U(X'l))

= o(u(x)) € P\'i'+' .'. (v h e n). ] xl'.''..,xk € x com

o(m(xi))eP; tq. h=xl'.Kk DaÍ que VyeX, vhen;

yhy'l :(yxly'l)(yx2y'l) -.(yxky'l)eH
uma vez que .

o( u(yxj.y'l» : o(u(xi)) e P; , Vi.

Denotemos por uB : u ln: H (-*x -----* Aut(A)
AA,: v,.i,.:;..,.4 4..;.. . ,.Ài. bÀ:;.,i....{ ,.iq,. ;.b;.:.;À).... i. À;'À,h,--a4 '-nâ

segui-nte.

U

[]

proposição 3.1.22 - 1']. é um alXJ-sub-módulo de A, Vj 21

invari.ante sob u).

Prova: (i.ndução sobre j) I''L

Supondo VxeX; lo (x) I'].' ic r].' Ê , consi-detemos

xex , a € FJ.''L e hCH

H

H
lo (x ) I' j c:

H

Então

uex) (u(h)a-a) = w(xhx'l)co(x)a - u(x)a € i'j. ,

uma vez que xhx' t € H (Lema anterior (3.1.21)) e

m(x)a € 1':,'l por hi.pótese de indução.

H

Cu (x)I'
W HH

e a prova está completa por i-ndução
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A seguir salientamos que sendo A finito, .3 r(mínimo)

que satisfaz à propriedade I':H : I'r+] (.'.I':Hl? I'rH)' ou

'H H n
u = A. Denotamos por i' : I'(n) : i':l., (ou i' : A, se Fw, =A)

Sendo I'(H) um alXl-sub-módulo de A podemos conside-

rar A/I'(H) sub-mõd. quociente. A estrutura do X-módulo é

dada por:

-- Aut(A/I'(n)) onde 8(x) (a+l'(n)) = u(x)a + I'(n)

Podemos considerar al. É imediato que

aln: Rc-"''- X --.- Aut(A/I'(n) )

Lema 3.1:23 - uln é tri-viam.

Prova: Lembrando que I'(H) - I'ru. segue que an é ni-lpotente

.- ::::a. : :-: j; .- -â. : '" /-:
Por outro lado A/I'(H) é um p-grupo finito

Segue pois da proposição 7. pg. 7 de [G] que

=n(n) - =(n) é um p-grupo (finito)

De outra parte sendo h um gerador de H segue heX e

a(u(h)) e Pf. Como o(a(h)) lo(u(h)) (devido à definição de

8) segue o(a(h)) ePxl ou o(a3(h)) ; 1. Mas a(U) é p-gru-

poepeP. ePaPl-©. .'. o(i;(h)J :l. .'. ãi(h) = IA/r '

proposição 3.]..24 - a(X) é um P-sub-grupo de torção de

Aut (A./ r )
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Prova: Devemos que la(x)l € PT

Suponhamos que 3 qep' tq. qljal(x)l
3 yex tq. o(i;(y)) = q. Desta forma teríamos

o(H (y) ) = qx'.m, mdc (m,q) = ].,

o (a3 (y) ) i o (u (y) ) .

A:g s;im

uma vez que

Logo f

o(u(ym)) =qR' e .'. o(a(ym)) = q ,

pois o(8(y)) = q e mdc(m,q) = ]. .'. al(ym) p IA/r
o que é absurdo, devido ao Lema anterior (3.1.23) , jã que

ym € H(pois o(ã(ym)) = qCpãl).[]

corolário 3.1.25 - 31 ação X {ü -,Aut(A/I'), com

w' (XP) : ;(X) , que torna comutativo o di.agrama

À Aut (A/r )
/

/
/ .

,,,, u '
/

/

eO
/

/

xp

p'Fava Consequência direta da proposição 3.1.5 [:

Novamente observados que este corolário é verdades.

ro em ambos os casos quando X ----"-'=--+ xp P-localiza em G
ou em r] quando X é ni-lpotente (da mesma forma que a prop.

3 . 1 . 5)

e
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Proposição 3.1.;g - No diagrama comutativa abas.xo as linhas
são exatas, À e B são p-grupos abelianos finitos.

A

B

a

-.L--- G

.J'.
€l

T

X

Y

Y

Sejam

HA

{qep'

<xex: o(ul (x)) ePI(A) x>

ql l cül (X) l }

<yCy: o(u 2(y)) € PI(B) x>

ql lu2 (Y) l }

r

l

onde P.(A)

HB

{qeP'onde Pa(B)

Nestas condições. V j : ]. a(1': 1 )C: I']

(Em particular a(I'(HA) ) C F(HB) )

Prova: (indução sobre j) ; j=Z é trivial

Seja agora j > 1 e suponhamos a(I'Z tn. w2lH.
/à. o

Consideremos a €1',,JI ' e x gerador de HA' Desta forma,a € r e
«\l.

r+s

o (u . (x) ) nePI(A)xc= ptx.

Suponhamos

o(u9(y (x))) : r.s onde lePx ou

S ep.(B)x(= p-x ou s=].. Assimsendo,
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nl : o(ul(xs)) lo(wt(x)) ; n € Plx(A)

ou nl € PI(A)x. .'.u2(Y(xs))rcl(a) : cl

u.( Y(xs))nla(a) : a(u.(xs)nla) : a(a)

(pois nl : ordem de ul(xs)). Mas

ICPx e nl e p'x ou nl : l

Logo, u2( y(xs))a(a) : a(a)

Agora mdc(r,s) = 1 +-+ 3 k, lea tq kr + is

'.u2(y(x))a(a) : u2(Y(x)r)kou2( y(x) s) la(a) : co2( Y(x)r)k a(a)

Mas, o(u2(Y(x)r) : S C PI(B)x ou s=1. DaÍ que y(xr) e HB

Logo Y(xr)k € HB. Decorre do exposto que

a(ul(x)a-a) : u2( y(x))cl(a) - a(a)

w2( y(x)r)ka(a)-a(a) € r32lnn '

umavezque y(xr)keHB e a(a) e r: t por indução,

(a) esegue

mdc(r,nl)

n
]

S a)(xl

V x gerador de HA' Mais ainda, se xlPx2 € HA são tais

que Va € A, a(u].(x])a-a) e a(u].(x2)a-a) € i'Z2lnn ' então

a(ul(xlx2)a-a) : a(tol(xl)oul(x2)a +

u. {x:} ã} + Ot {u. {x.) a--a)
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Mas, ul(x2)a C I'JlIHa(prop. 3.1.22)

a (ul (xl) ul (x2) a) ul (x2) a)

e

a (ul(x2)a-a) c r: l B

Segue, pois, por indução que Vh € H, Va € A ,

CL(ul(h)a'a) € i':2lnBdonde

"'''::l'.' c 'lZ:l B
o que conc].ui â prova

$ 3.2. - Neste parágrafo vamos apresentar construções ex-

plíci.tas para a localização de um grupo G, onde G é o prodp.

to semi-direto de um grupo abeliano fmi-to A por um grupo X

Esta construção depende fundamental.mente de A de xp e da a-

ção de X em A. Sa].tentamos que a teori.a de localização

consi.gerada aqui é a defina-da na categoria dos grupos.

Inici.amos a secção com um resuJ-todo geral

!roposiçgQ 11.?:]. - Seja P uma família de primos e pCP'

Consideremos uma sequência exala de grupos N»b G+»X onde

N é um P-grupo.
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Então, sendo X-"-b XP' afirmamos que e0oE: P-laca
].iza G.

e

Prova
caZ

homomorfismo de grupos onde K é P-ig

N)- P >G E ;lX

K .e-- -- -- -
$

C

xp

Dado aeN, ] r 2 0 tq aP = ].

@p(a)P = $p(aP ) = 1 = ].P e K

r'

DaÍ,
(bp(a) = 1 poi.s K é P-J-oral e p+P

q)P (m) = {i} ]! $': X -> K tq 4)'E: = (>

Levando em conta que K é P-local e a definição de

p-]-oca]ização concluímos que ] ! (>: XP ' K tq. @e0 : @'.

ii (enc) ; q).

Mais ainda, se 4)(e.c) =@= 0(e.c:) , então

(jle0)c : (@e0)c . Daí, 4)eO ; @e0 ' pois E: é sobrejeto
ra, e @ = W por unicidade na definição de p-localização

P-]oca].i.za)

Temos, pois/ provado por definição que e0oc p'loc.g
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Vamos agora provar uma proposição fundamental para

obtenção de nossos principais resultados desta secção.

E.E9E9g.j=Êão 3.2.2 - Seja P uma família de pri.mos; e0: X 'r XP
p-Local.ização de um grupo X. Consideremos X-=-' Aut(K) e

ações em grupos fmi.tos K e Kr e o diagrama
U Aut(R)X P

G

'1
G

eO

cP
Gp '===:-..

'P

No diagrama temo

G : K,.~] X ; G : K ]=lXP r pr:,arp,arErcPraP

são apli-cações usuais, e é a P-locali.zação de Gr N=Kerc:p r

pi é a inclusão de N em Gpr e' é deílinida pel-a restrição
de e a K. lí ê sobrejetora e êlí = e'

Suponhamos ainda que ll(u(x)a) : =(eO(x))lí(a) e

S

U$UalSp

e'(u(x)a) : up(eO(x))e'(a) , VxeX; VaeK

Nestas condições temos

ê (a (z) ã) up(z)ê(a) , VzeXP ' VaeK

Prova ê é P-].ocas. devido ao coral.alto 3.1.13

'. 3 ! (b € Hom(Gp'G) tq. Üe

segue que e ê homomorfi-smo)

ê (pois da hipótese sobre T
- a.

Ê imediato que C4) = E:p '
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@aD = a. .'.4) define @' por restrição. Donde N---X-+ K é tq
pq)- = (bP' e @'e' = v. Vem daÍ que 4)'êv = @'e' = F , e

@'ê = IR

Assim que considerando-se B:ker@' obtemos a sequên-
À:!: .:

cia exala que cinde B»-» N ;::l::=jK.

Lembremos a seguir que devido à proposição 6, pg. 8,

de [R.]] temos:

}

e

xP : jü::0 ] P- ,i(Xp'e0(X) )>

Portanto ê suficiente mostrar que a fórmula é verde

della V z € <1p',j.(Xp'e0(X))> , Vi 2 0. Isto será fei-to
por indução sobre i

i=o; z € <1p-,0(Xp'e0(X))>: eO(X) ''# z : eO(x) ; xeX.

Mas,

ê(8(eO(x))ã) : ê(a(eO(x)) K(a))
= êv (co(x) a) = e' (u(x) a)

: up(eO(x))e'(a) ; up(eO(x))ê(ã)

o que completa a prova para i'0.

Suponhamos a segui-r que ê(8(w)ã) ; up(w)ê(ã) ,

v w € <1p.,i-l(xp'e0(X))> e consideremos

z e l.P- ,i(Xp'e0(X)) IP',l(xP' <lp-,i-l(Xp'e0(X))>)

Segue-se que ] neP'x tq

zn C <lp',i-l(xp'e0(x))> , donde ê(ã(zn)ã) = up(zn)ê(ã)



77

A seguir tomamos m = o(a(zn)). A proposição 3.]..2

stra que m-l ou mePX, de modo que

up(znm)ê(ã) = up(zn)mê(ã)

ê (ã (zn) mã) = ê (ã)

cop(znm) IÕ(X) : iê(R)

Vamos agora mostrar que

onÉiderehosisto C

lõ(K) : 'õ(x)

ái n,,. f çem\ nõ ! fK .-g.>N -::Z---....---> N -gl----.+K)

otemos que

PT(;) ; Pq)'(wp(zm)ê(;) = $(op(zm)p'ê(ã)ap(zm)'l)

Ei(zm)ii$'ê(ã)i3(zm)'l = 8(zm)ii(ã)8(zm)'l

D (i3 (zm) ã) . .'. T = = (zm)

Novamente pel-a prop. 3.1.2, ;(zm) = IK ou o(;(zm}) € PX

Mas. a(zm)n= IR ' Daí que o(a(zm))jn .:. [ = 8(zm) = iR

Por outro lado, lembrando que B)""'"P U.ét=&K cinde pode

armar que up(zm)ê(ã) = bÕ(ãl.); beB e alce

l(ã) : $'(up(zm)ã(ã)) : q)(bê(ãJ.)) : ãi
up (zm)ê (ã) = bê (ã)

Apl-icando-se sucessivamente uP(Zm) a esta expressão
f--n-. : n=..n A nAl\v.n r. \

T P

N

e

mos

/

obtemos f

donde



78

ê (ã) cop(zm)nê(ã) = [(up(zm) n'lb)

-iÕ(ã)

(uP ( zm) b) b] ê (ã)

( zm) b' l): (6 n

(onde Õn(zm)u = u(up(zm)u) ...(up(zm)n'lu)

Desta forma 6n(zm)b'l = 1 = 6n(zm)l

[nvocamos a seguir a prop. 3.]..11 e o fato de que

xP e Gp são P-locais para concluir que 6n(zm) é bijetora.

.'. b=1, o que mostra que uP(z"') l.(X) : iÕ(R) ' De
segue que (3 r, SCa) tq. rm+ snmdc(m,n)

'.uP (z) ê (ã) mP (zn)s owP (zm) rê (ã)

wP (zn)s ê(ã) ê (8 (zn)s ã ê (8 (zn)s o8 (zm) r;)

ê(a (z) ã) , vier. VzelP-, i(Xp'e0 (X)

Levando em conta que up/ u e ê são homomorfismos,

segue que up(z)ê(ã) : ê(8(z)ã) , Vze <1p',i(Xp'e0(X))> e a
prova esta comp].eta. LJ

Doravante. em toda esta secção a menos de menção em

contrãri.o, fixaremos uma família de primos P e peP.

Consideremos uma ação, X'--' Aut(A) , de um grupo X em

um p-grupo abeliano finito A

Suponhamos que lto(x)l

Nestas condições,

to) de torção de Aut(A).

0

e P D {qlr... ,qt}

grupo Q(X) um P-sub-grupo (fini-



ocando a

garanti-r que ]! X$""'-'Aut(A) (com a(XP) : w(X)) que tor-
na comutati.vo o diagrama

X w ---* Aut (A.)
1 /
f'.'' '.-. ./
':' ./

'o l ,.í
}.''. ./ '.n
[ -'. './

'+......;.'

"P

Podemos então considerar G = A ]8xP e

ê:(a,x) C GP"'' ;(a,x) :(a,eO(x)) C e ,

que ê um homomorfismo de grupos devido ao fato de ser comu-

tativa o diagrama aci-ma.

Sabemos também que G é P-local, devido ao corolário

3. 1.9

Desta forma ] ! homomorfismo GE;--l-'"> G que torna comu-

79

podemos3 ! 5}forma , proposi.çaoDesta inv

diagramatã'tive 0

Consideremos a seguir o segui-nte diagrama
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piagçaQP 3.2:l}

êl(a,z) = z ; ii(z):(0,z) ; Íi(a) =(a.l) ;N - kercp

pi =lnclusão;.'. êe=eOt ; ea:ae0 ; ep

Aqui temos : (c: f) e

Analogamente, faP

Assim que, Eíp' = cPp ' o .'. ]! f' € nom(N,A) tq.
Íif' = fp'. Da mesma forma ]! e' eHom(A,N) tq. p'e' = eli

DaÍ, f'e' = ].A' (Em particular, f' é epimorfismo e e' é
monomorfismo ) . Temos poi-s verificado que todos os sub-dia

gramas de 3.2.3 são comutativos

: eOc : cpe .''c:f C:P

Indicando por

aP e B : Ker f' obtemos

cinde (jã que f'e' = IA)

Estamos agora ap
ta secção.

a

toS

Aut(N) ação defi.ninfa por

sequência exata que
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Teorema 3.2.4 - Seja P uma famil-ia de primos e pep. Seja
x---!11--.. Aut(A) uma ação de um grupo X num p-grupo abe].cano

CÉ 4 : (]'ú...

finito A. Suponhamos que in(X)l : ql'...qt' e

p D {q].r.../qt} . Consideremos a única ação a que torna o
diagrama abaixo comutati.vo, G = A ]coX ; G : A ]uXP ;

ê: (a,x)eG '' (a.eO(x)) C G.

'u A.ut(A)

Então, e p-]oca].iza G.

Prova: Mostraremos que f € Hom(Gp'G) inda-cada no diagrama
3 . 2 . 2 é um isomorfismo.

Para isto defina.mos (b: G -> Gp por:

0(a,z) - p'e'(a)ap(z) ; aeA . zeXP

Para mostrarmos que q) é homomorfi-smo observamos

inicialmente que as apl-icações envolvi-das no di.agrada 3.2.3

satisfazem às hipóteses exigidas pela prop. 3.2.2 (no caso

].. = T e e' = ê). de sorte que temos:

e'(i;(z)'a) : up(z)'e'(a) . VACA, VzeXP'

Com isto,

$ ( (a,z) (b,w) @(a-tã(z)b.zw): p'e'(a)p'e'(-u(z)b)ap(zw)

p'e'(a)p'(up(z)e'(b))ap(z)ap(w) :

p ' e '(a)[ap(z) u ' e'(b) aP(z) 'J.] aP(z) aP(w)

$ (a, z) @ (b,w)
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Mais ainda,

[ (q)f) e] (a,x) = 4'; (a,x)

e (p (a) a (x) )

(x) ) : p 'e' (a) aP (eO (x) )

e(a,x). .'. (@f)e = e = 1. e ,
Gp'

,f'

donde q)í = 1. . Também.
Gp

f$ (a,z) : f(p'e' (a) aP(z) )

Íi (a) 8 (z) = (a, z)

fep (a) faP(z) : êpea) 8{z)

Í4) = 1=

Esta, portanto, completa a prova de que $ é inver-

Para encerrar a analise da si.tuação na qual A é um

p-grupo abe]]ano finito supomos agora que ]qcP' e ql lu(x) l

Mai.s precisamente supomos que X----=-» Aut(A) é uma a

ção de um grupo X em um p-grupo abeli.ano finito A (peP) . D.{

gamos que

ql '..qÊ
at

qtlu (x) l

onde

PI {q]., . . . rqÊ} C p' e {qÊ+l/ , qtlc p; (l$1$t)

Consi.detemos I' = r(H) como foi defina.do logo após

a proposi.ção 3.]..22, bem como o diagrama comutati.vo

x u ; Aut(A/r)

considerado pelo corolário 3.1.25
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Definimos G = A ]uX f G' = A/I' lw.XP e fixemos o
diagrama abaixo. onde: p ,}l' , c:, E:',a,a' são as apJ-icações u

duais, T a aplicação quociente, eO a P-local-i.zação de X e

e'(a,x):(a+l',en(x)) :(T(a),en(x))

;=:::==P xA -------!--... E

a :'«}
l},: -'-* GA

Em virtude da definição das ações u e u' decorre que

T é homomorfismo de X-módulos. Isto produz como consequên -

cia o fato de que g.! é homomorfismo.

Outrossim, o coroa-aria 3.1.9 nos mostra que G' é P

local. Desta formal! feHom(GprG') tq. f e = e', onde
G--S-»G. P-].ocaliza G.

Estas considerações nos habilitam a construí.r um dia

grama fundamental no contexto.

Di.aqrama 3.2.5
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No diagrama anterior N = KerEpr }J ê a inclusão e é

i.mediano que E:'f : cp e fap : a'' Logo é possível defi-
nir, por restrição, f e e seguindo imediatamente que foê=v.

Em particu].ar, f é sobrejetora. Pomo,s ainda B = ker f c: N.

A definição de ê será i.ntroduzi-da após o próximo

Lema 3.2.6 - ei.

Prova: Consideremos inicialmente, x um gerador de H (ie.,

xeX e o(u(x)) =mePf) e b:n(x)a-a, ondeaC]'.

Peidos,

(b,x)m = (0m(x)b,xm) ( 0m (x) o ( u (x) - ].A) a , xm)

( ( u (x) m-l.A) a , xm) ( 0 , xm) (0 ,x)m ,

de sorte que e(b,x)m = e(0,x)m.

Conc].uivos que e(b,x) : e(0,x), jã que Gp é P-local
e

m C Pf C: P Logo, e(b,l)e(0,x) = e(b,x) : e(0,x)

p 8(b) = ep (b) = e(b,l) = l e(b) = l

Tomemos a seguir xl'x2 geradores de H e
u(xlx9)a-a onde a€1' . Desta forma,

b : u(xlx2)a-a : co(xl)(u(x2)a) - u(x2)a+ u(x2)a-a ,

donde b:bl+b2 se bl :u(xl)(w(x2a))- u(x2)a e



85

b? = u(x9')apa. Segue pois do argumento inici-al que

e(b,]-) ; e(bl+b2'l) : e(bl'l)e(b2'l) : I'l : l

Lembrando que VheH, ] xlr.''rxk geradores de H tq

xl '..xl,. obtemos imediatamente (por indução s/k) que

e(b,l) = 1 { é:::-:->;(b) = 1) onde b : u(h)a-a. a€1'

Mostramos asse.m que Vb gel'ado!: de I':+l : FrH; ; 'H

ê(i') = {1} o que encerra a prova. []temos ê(b) = l

Fi.ca desta forma defina-do por passagem ao quociente

õ € Hom(A/I' ,N) . (i.e; êo lr = ê)

Comodecorrênciaobtemos (Eê)v = ]1; = lr , donde

fê - IA/F o que mostra que a sequência excita

B»+ N -==::13+A/i' cinde

Estamos agora aptos a obter o segundo resultado fu=

damental deste parágrafo.

e

Teorema 3.2:7 - Seja P uma família de primos e p

Seja X w Aut(A) uma ação de um grupo X num p-qru'

po abeJ-lado finito A. Suponhamos que

lu(X) 1 = qll...qÊZ...qtt

€P

(z s t)

e

P]. : {ql' . . . .qR,} C P'

Sendo G = A ] X ; G' = A/I'G = A. ],..X

{qz+l'e

ee
'PU

rqt} C P.

G -» G' dada por
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e' (a,x) (T(a),en(x)) , afirmamos que e' P-localiza G

Prova: É suficiente mostrar que f: G. -> G' descrita no

diagrama 3.2.5 é um i.somorfismo. Para i.sto vamos exibir
sua Inversa.

Seja 4): G' -- Gp definida por $(a,z) = }iê(ã)'ap(z)

Para mostrarmos que (b € Hom(G' ,Gp) observemos i.ní-
cia[mente que as ap]icações envo].vidas no diagrama 3.2.5 s.ê

tisfazem às hipóteses exi.gldas na proposição 3.2.2. uma vez

que é i-mediato que lr é homom. de X-módulos e

ê(u(x)a) : up(en(x));(a) VAGA, VxeX

A citada proposição nos capacita a afirmar que

ê ( u(z) ã) wn (z) ê (ã) , vãeA/r e VzCXP

Desta forma temos

$(5, z) (B,w) ) $ (ã+a ( z ) b, zw) iiõ (;) iiõ ( a( z ) É) a .( z ) a. (w)

iiê(a) ti(uP(z) ê(Ê)) aP(z) ap(w)

iiõ(i) [aP(z) iiõ(Ê) ap(z) 'l] ap(z) aP(w)

@ (ã, z) @ (b,w)

Além disto,

[ (4)f) e] (a,x) q)e' (a,x) : 4) (r (a) ,en (x) )

Íiê(7r(a))ape0(x) : e(p(a)a(x))

e(a,x)
IGp
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Também,

f$(ã,z) - f(Dé(ã).ap(z)):p'Eê(ã)fap(z)

p'(a)a'(z) :(;].z). .'. fq):IGiE]

Para fina].azar esta secção vamos passar à análise

do caso em que A é (apenas) um grupo abeliano finito.

Seja X---2-* Aut(A) uma ação de um grupo X num grupo
abeliano finito A. Suponhamos

B. B,
IAI : pl '''pt

AI a componente pi-pri.mária de A.

É bem conhecido que

i::lAt (A) = 'n'Aut(A.i)

sejaCI

Com isto ficam unicamente determinadas anões

u].,'..,ut por u' onde

X---t-- Aut(Ai)

é dada por ui(x)ai -u(x)ai ; i:l,...,t.

Denotamos por

A ]uX Gi = Ai ]u.x l E: G--»X e Gi

as pro:jeções canõni-cas. É um fato elementar que c é o pu]].

-pack da família {czll$j.$t ' Denotamos por G

projeções naturais, G ;«X e Gj.+'-'-.-..-..« x as cisõesi com

isto lí:a = a: , i=1,...,t

X

aj. ' i.=1,
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Consi.déramos
E

também G }>X 0P pull-pack das flexas

( Gj. )

(E i P XPP

(Notemos que il é epi.morfismo, uma vez que (ci)P é epim. Vi)

Observamos que Vi=1,...,t, (c:j.)po(ai)p : IXn donde da defi

nação de pul].-back, ] ! Õ € Hom(Xp'G) tq.

fj.o 8 : (ai)p vi r

(onde Ti: G -' (Gi)p é a aplicação canónica)

Denotando por Gj.-""-"É'---(Gi)p a P-]-ocas.ização de Gi

observamos que (cj.)p]ei7íi] - eOcivi: eOc , Vi. .'. por de
fínição de pu[[-pack, ] ! f € Hom(G,G) tq. iiiíi = eilíi '
vi = ].,...,t

Agora é õbvi-o que Elí = eOE:. Também é imediato que

fa : 8e0 (por unicidade) e E8 : IXo (donde ê é um produ-
to Bebi-di.Feto)

e

Outrossim, G é P-]oca]. devido à prop. 3.1 1

Mais ainda, Vi,(cj.)Po(líi)P :(ciovi)P : cP
da definição de pula-pack,

] ! q) € nom(Gp'G) tq. Tjo@

Logo/

Em particular, concluímos que ;ii ê epimorfismo, Vi.

(pois (7ii)P o é!). DO fato de que ;if : li(@e) Vi segue,
por unia.jade, que f=q)e
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Também peJ-os argumentos usual.s de unicidade conclu

tRIos que c:$ : cP e q)ap : a

Fi.nalmente, denotamos por
t

kerE ; a>.ker( ci)P

C c-,-ê. Pomos também,em vista de G ser puJ-J--pack, e

N = ker(cp) e P' : Nc--> Gp

As aplicações g,f e .[ definem, respectivamente, por
restrição homomorfismos e: A----»N, f: A -» C

de sorte que

p'; = ep ; P@ = $P'

N -» C ,

e ii} = fP

].ndicamos também por B : kerq)c N e mostraremos a

seguir que e falara-se através de uma aplicação e' : C -> N.

Com estas considerações mostramos que todos os sub

-diagramas do diagrama a segui.r são comutativos.

Diagrama 3 . 2 . 8

X : ker f
Y

J

:./ Í:o+
G

Gp
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Para justificar todas as indicações do diagrama aiB
da necessitamos de 2 lemas .

Lama 3.2.9 F é epimorfismo

Prova. Para cada i=]., ,t temos o di.agrama comutativa

ii
+

(GKer ( c: ) Pll

pi= inclusão e ei é definida por restrição de ei'
3.2.]., o teor. 3.2.4, e o teor. 3.2.7 nos dizem que

i, entãoker(ei)p : (0) ou ker(ci)p ; Ai ou ker(ti)
e e{ = 0 ou identidade ou projeção canónica, sendo

jetora em qquer caso.

Desta forma, cCC +--+EIÜ (c) = 1 -é:::::--+ (Vi:l,...

(c:i)P;ij.P(c) : 1. 'Ê--> vi, liP(c) € ker(ci)p

Da observação anteri-or conc]uimos que Vi, ]

tq Tiitl(c) ; éi(ai) : P;.êi(ai) ; eipi(ai)

Como c: (pl (a])) : 1, V i. segue da defi.nação de pula'

(c é pull-pack de (ci)l$i$t) que 3 geG. tq

Tri (g) = pi (ai) , .Vi

A prop.
fixado

P : Aj./'j.
sobre

,t)

pack

Mas,

l

E:(g) = ti vi (g) = c:iPi (aj.)
. g = P(a), para aeA.

Logo
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Tiip}(a) - Tlfp(a) ; eivi(g) = eipi(ai) : lii;(c) . Vi
Dai

i;ll (a) = Ü (c) , donde ? (a)

seguir lembramos (VAGA) ; (VxCX) se

;:*.-'*;. ' g': '
t

[]

então

f(a,x) :(el(al'x) ... et(at'x))

efinição (pois flf

Desta forma, se a€A al+ +ate
t

Ai '

então

t(a) : fp(a) - f(a.l) -(el(al'l)...-.et(at'l)

(elPI (al) ,.. ,etPt(at))

(êi (al) .. ...ét (at))

Logo, aeK 'é:::'# ?(a) - 0 'é:'+ êi(ai) : 0

vi = 1,...,t '+-+' a] e Kj = ker êj.. Vi

a) K:

(K ; {a : al+...+at € .63.Ai: êi(ai) : 0 , Vi:l,...,t})i:l

Lembramos também que v{ : (a,x) C G '"-------'(aj ,x} € G;

e uma cisão vl: Gj.c'"--"----G defi.ninfa simplesmente por:

i(ai,x) ; (ai'x) (inca-usão) , vaieAj., vxex

/

t

t

V ai,x i'#{.'' l



92

Salientamos que vi éhomomorfismo devido à definição de coí
relata.vamente a u.

Lema 3.2.10 - ejK ; o.

Prova: Uma vez que K = (D Ki ' basta mostrar que ejKz : o/

vi. Fixemos pois .L e consi-detemos o diagrama:

Ker (Ej.) l?-l::-"' (Gj.) P \ j.) P Gp

Oado aeKi, ep(a) : (vi)ppiêi(a) : (vj.)Ppi(0) :1
pois o diagr. é comutativa e aeKÍ = Kerei'

,'.Li-ê(a) = ep(a) = 1, donde ê(a) = 1. []

Este lema nos permite defi.nir e' : C -» N por

e'of=ê. Daíque (@e')E:@ê:?. Logos @e' :lc pois
? é sobrejetora.

Concluímos pois que a sequência exala

cinde.

Relativamente ãs anões Xt;----» Aut(C)

definidas por a e ap temos o próximo lema.

A.ut(N)e xP
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Lema 3 . 2 . 1} ( vxeX) , (VACA) temos

(i)

(ii)
F(u(x)a) : n(en (x) )E (a)

ê(u(x)a) : %.(eO(x) )ê (a)

(i-) Ü?(u(x)a) = f(a(x)p(a)a(x)'l)

: õ(eO(x))DF(a)a(eO(x))'l =

= i](a(en (x) )? (a) ) .

(li) u'ê(u(x)a) = e(a(x)p(a)a(x)'')

: ap(eO (x) ) U'ê(a) ap(eO (x) )

: p' (up(eO (x) )ê (a) )

Prova

[]

Podemos agora mostrar o último resultado fundamental

deste parágrafo.

Teorema 3.2.12 - Seja P uma fami].ia de primos e

x u Aut(A) uma anão de um grupo X num grupo a

nato A. Suponhamos que IAI = pl '''pt' e Ai é a campo'

nente pi-primaria de A. Seja X 'j' Aut(Ai) induzida For

beZiano

Definamos G = A ]uX; Gi: Aj. lu:X; G-:;-»X; Gj---d»X

as proljeções canónicas.

Nestas condições sendo G--"'» xP o pul-l-back da famí-

q" »
Bico G'-"'a-'» G P-localiza G.

Prova: É suficiente mostrar que o homomorfismo $ do di.agzg:
ma 3 . 2 . 8 é um i.somorfismo.
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Para isto definimos G -'-"ilL-+ Gp por:

@(ii(c) 8(z) ) : p'e' (c) a?(z)

(Lembramos aqui. que a seq. exala C»--LL-» G ;;:ãp Xp cinzel don-

de vgeG ]! cec eB! zexP tq. g : p(c)8(z))

O Lema 3.2.11 nos mostra que o di-agrama 3.2.8 gatil

faz às hipóteses da proposição 3.2.2.

Oeste forma temos e' (a(z)c) - un(z)e' (c), VceC,

VzCXp' Logos

@(ii(c)8(z)[i(c')a(z'))= V(ii(c+i](z)c')8(zz'))

p 'e' {c) p 'e'(a(z) c') aP(z) aP(z ')

p 'e'(c)p '(uP(z) e'(c' )) aP(z) ap(z')

p ' e' (c)[aP(z) }l 'e '(c ') ap (z) 'l] aP(z) ap(z ')

@(ii(c)8(z))W(p(c')a(z').'. @ € Hom(e,Gp)

a

Agora,

[ (W@) e] (a,x) W f(a,x) = @ f(p (a)a (x))

'f (Íi? (a) 8e0 (x) )

p'e'(F(a))an(en(x)) : ep(a)ea(x)

e(a,x)

(P(p'e'(c)ap(z)): ii(c)8(z) .'.(bú: IE

prova de que @ 'l : @ . [1]

Também, $@ (Ü (c) a (z) )

Esta, pois/ completa a
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S 3. 3 Nesta secção estabelecemos a teoria de localização

para a categoria dos grupos que são extensão de um

nilpotente por um abeliano finito em uma fam511ia

de primos P. Est teoria foi desenvolvida anterior-

mente para a categoria dos grupos nilpotentes por p

Hilton, G. Mislin e J. Roitberg em [H.M.R.] .

f

Consideremos C a categoria na qual os objetos são

os grupos que são extensão de um grupo nilpotente por um
abeliano finito, e os morfismos são os homomorfismos de gry:

pos.

Traba].hemos inicialmente no sentido de a cada

G € 1 CI associa Gp € 1Ci' fixaria uma famíJ-ia de primos P

Proposição 3.3.1 - Seja A»L2"'G-Ê»X uma sequência exala de

gruposr onde A é abeliano fmi.to e X nllpotente. Considera.
mos u: X----*Aut(A.) a ação associada à extensão e suponhamos

que I',.. : A.

Nestas condições, dados 11 C Hom(GTK) e B)""ib.K---b»Y

onde B ê abeliano finito e Y nilpotente afirmamos que ] ho-

momorfismos a, y tornando comutativa o diagrama abaixo.

2

A

a

-G

.K

B

C

K

X

-Y

Y

'v

Prova: Seja H : KBp(A) < Y. Asse-mque.
clip(uÍx)a-a) = KÍ3(g.}i(a)g'ip(a)'l)
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onde E:(g) = x

K Élp (u (x) a-a) KB(g)KÉ3p(a)KB(g)'J.clip(a)'l C [Y/H],

VxeX , Vaca

KBp (A) : KBp (1',..) (: [Y,H]
2

Logo,

H c [Y,H] c [Y,Y] =1' Y

Supondo (para k à 3) que HC I'k-IY . temos:

2

H c [Y,H] c [y,]'k-ly] :FkY

Segue poisa por indução, que H c=

llp (A) c: kerK = imv

{l} (onde canil Y)

Fi.ca, pois, definida por restrição a € Hom(A,B) tq.

»cz = Bp . Podemos agora definir, por passagem ao quociente

Y e nom(X,Y) tq. yc = K13. []

proposiçêo}.3.2 - (VGe 1C]) ]! U-U(G)a G, Uabeli.â

no finito com G/U niJ-potente satisfazendo à propriedade de

que sendo ç2: G/U----Aut(U) a ação associada à extensão

U »--->G-'-»G/U temos I'o = U.
2

Prova: G € 1CÍ --+ ] extensão A>-Li-»G --'Ê»X onde A é abeliano

finito e X ni.lpotente

Seja w: X----'Aut(A) a anão dada por p(u(x)a) = gp(a)g

onde E:(g) = x. Em virtude de A ser fmi.to podemos concluir

que I'u = A (e daÍ a prova da existência está completa) ou

3 rà 2talquel'r'l2l'r e r:=1':+l

l
#'
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Provámos inicialmente, por indução, que p(i'l:) 4 G.

Uma vez que para k:l ocorre por hipóteses supondo li(I'=j'")aG

temos: xeX, aCrE'l, flxadc heG. Suponhamos que E:(g) =x
e E:(h) = y. Então,

h.p(u(x) a-a)h'' P (u (y) (u (x) a-a) )

t.l ( u (yx) a-u (y) a )

p(w(yx)a-a) p(u(y)a-a)'' € 1'=

k
) 4P (F U

Em parti-calar.
e fmi.to.

P(1') q G: Também. U é abeliano

Mais ainda. considerando-se a sequência excita

A/I'»IJ---»G/u--Ê'-»X , onde pe EI são induzidos por p e c / e

a a ação de X em A/F associ-ada segue que I'k = 1'k/I' donde

i':l = (0) . Concluímos, pois' que G/U ê nilpotente, uma vez
que a e X são nil-potentes

detemos a seguir n: G/U ---'-+ Aut(U) pox'Consi

n(gU)u = g.u.g''

Sendo U - p(1') : P(I'r+l) segue que U gerado por

P (u(x)a-a) ; xeX; aeF . Mas,

}l(ulx)a-a) = gp(a)g'lH(a)'l =]ç2(gU)p(a)]p(a)'l €1':

DaÍ que U e I'(2

Para verificar a unicidade de U suponhamos que

v « G, V abeliano e fmi.to e G/V nilpotente tq i'G/V V : V'

2

2
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Devido à proposição anterior

que tornam comutativa o diagrama

. . t' ..G

! : :« ::

(3 . 3 . 1) j homomorf. cl ,

0'l

Segue pois que a é a inclusão de U em v e cl' é a inclusão

de V em U. .'. U = V. [::]

Seja agora C. a sub-categori.a plena de C definida
de modo que os objetos são os grupos que são extensão de um

nilpotente por um p-grupo abeliano finito (p = pri.mo fixo)

Corolãri.o 3.3.3

].lado finito.
G e l c.l ---; u U(G) ê um p-grupo abe

Prova: De fato, A»ll'->G ---Ê»>x ; A - p-grupo abeJ-cano finito

e U = p(1') 4 p (A) = p-grupo abeliano finito. [:]

Corolário 3.3.4 G € 1C 1 ; G é ni.lpotente +-+U U (G) = {1}

x.b\#vt4+ \ ' / \= AI.L.ú.l./\it...\3alb.çi ""7' üó+ \3/ça rxu«LFltp/ ç: al.i.a.F/ç./

tente. Logof

2 3

U : rn : rQ : rQc+l = { 1 }.

( : ) U {l} --+ G ; G/U ni.lpotente []

corolário 3.3:5 - ] p,q primos, p # q tq.

G € 1CPI /"\ ICql «'-+ G é ni].potente
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Prova: ( '+ lpotente --:+ u = {1} Logo, G € 1CPi

VP pri-mo. (pois {l} é p-grupo Vp)

(':'----+ ) Devido ao coral-ãri.o 3.3.3; U é p-grupo finito e

q-grupo finito. .'. iUI = ]. .'. G é ni.lpotente. []

Passamos a seguir à definição de Gp e ICI para cada

G e ICI. Dado G e ICI fixamos a sequência excita
u»-.-"+G '""'"G/U onde u é o sub-grupo definido na proposição

3.3.2 e u: G/U------'-Aut(V) dada por m(gU)u = g.u.g''

Seja P uma família de primos fixada e consideremos

e0: G/U -"-----+(G/U)e a P-locali-zação de G/U em tl. Fixemos

também p pri-mo e suponhamos inicialmente que G € 1CPI

( !} peP'. Pomos, neste caso, e : e0oc
G "'-L»G/u ---:b- (G/U) p' Temos poi.s:

e
onde

u»

( 0)

+- G

1 :
(G/U)p

» G/U

1'.
(G/U)p

(11) Pep. Aqui- sub-divã(ii.mos em dois casos.
(l ..t (l . (l a...

Suponhamos que lu(G/U) i= ql"...qg,"...qt'

(11)a) P 3 {ql' . qt}
Neste caso u(G/U) é um P-sub-grupo de torção de

Aut(U) e .'. da proposição 3.1.5, ]! ação uP: (G/U)p -' Aut(U)

tq. upoe0 : u'



Lembrando que U é abeli.ano p.local (PeP) segue do teor
et

3.1.20 que Hu ((G/U)p;U)-'-g"-+Hu(G/U;U) ê isomorfismo.

Seja, pois, eP (único) tq. eÕ€1p

A prop. 3.]..16 nos mostra que ] um diagrama comuta-
tivo

f G t' :l> G/U

(G/U) P

(11)b) Suponhamos, finalmente, quem É,, l $Ê$ t tq

P['lq]/...,q]JcP' e {qÊ+].r.'',qtlcP

Nesta si.tuação consideramos

H = <xeG/U: o(u (x))

F (n) ; a : G/u ------, Aut (u/F )

rme jã definíramos ].ogo após o teorema 3.1.20.

Conforme o Coro]ãrio 3.1.25, ] um di-agrama com
vo

G/U " : Aut (U/r)

'' l ,,
(G/U)p

(onde uP é úni.ca).
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Consideremos a seguir o diagrama

Hz (G/U;U)
U

'R +
n- (G/u ; u/ r )

'2

'8

n= ((G/u) p;u/r)

Note-se que lr: U-"---»U/r é a projeção canónica, e novamente

pelo teor. 3.1.20 segue que eâ é isomorfismo.

.'.]! EIP cnmp((G/u)p;u/r) tq. eÕElp : w+(ÊI)

Mais uma vez a prop. 3.1.16 nos mostra que ] um dig

oüutativoCgrama

e U G

P
e p ' U/ I' }"'-'---'-"'-"-'-'> Gp

Ê G/U

(G/U)p
[

Observamos a segui-r que a esta altura temos definido

para cada G € t.bJ ICPI um grupo Gp e U iCPI' Esta definição

éboapoi.s, sega 1CPI/''x ICqlr entãoGC líll. DaíU: l.i},
donde só podem ocorrer os casos (1) ou (11)a) e ambos levam

à construção de Gp : (G/U)p

Em particular observados que esta construção estende
definida em [H.M.R.]

O exemplo seguinte mostra que

icl- p lcpl : o

aquela
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8Zgl112lg }: }: $ - Seja

u : (u I' u2) -'' Aut 8Õ/3 0 ZZ/5) Aut eZ/ 3 ) © Aut U:/5)

definida por ul(1)a : 2a ; u2(1)b = 2b.

Seja G=(a/3 ©a/5) leoa. É imediato que I'u=a/3 ©a/5.
donde G não é nilpotente. Entretanto,

A = Z:/3 0 a/5 »'-----»G -"---»Z:

G € 1C l Mais ainda , p (A.) U (G) , poj.s I'to

Desta forma G # ICnl Vp primor caso contrario U seria um
p-grupo abeli-ano fi-Dito para al-gum p conforme o cor. 3.3.3.

Vamos agora completar a construção de Gp a categoria

[]

(111) SejaGe leis tPICPI' ... ecasou=U(G) nãos
p'grupo,Vp . Entretanto, U = (DUi/ onde Ui é a componen]-l ' '

te pt-primaria de U.

Desta foz'ma

G/U---ly'-' Aut(U) ; 'rT Aut(Uj) e u= (u],...,ut)
]..=l

Devido ã definição de wi e de I'm = U segue I'u = Uj./ Vi

Denotamos por U -'---;!''» U:i a proleção canónica. Sa-

t

hemos que

nu(G/u;u) : l ''-,Tt+).; t nu](G/u;ui)
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e' um isomorfi.smo cuja inversa é defi-ni-da pel-o pula-pack

Indiquemos por C: [U»----+G-'-----»G/ujr €1i : ni+E e

consideremos o diagrama comutativo:

t 2
i:anui(G/u;ui)

e:':*
t

j' l1ln(o )p((G/u)P;Üj.)Élpenup((G/u)P ' Ü)

onde

ê definido pe[os casos anteri-odes((]-) ou(11)a) ou(11)b).)

Também Ü= (DU: e ÊI. (único) é tq.
t

ll

,Tt+) (€1p) : ( (Eii)p) i

(Tíi: ü'"----'"üi projeção canõni.ca) : p ; ©'lPi

construções efetuadas podem ser visualizadas no

t

As

diagrama:
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Di.agrama 3 . 3 . 7

P
»,G/U

P

+'

EIP: U
H

Temos, poisa que E:P é o pula-back das flechas

{ (ti)Pll$1$t ' uma vez que, por definição: ÊIP ; P+ÉI'

A respeito da ap].icação e: G - Gp definida em (1),
(].1) e (111) temos as duas próximas proposições abaixo.

Proposição 3.3:8 e é P-sobrejetora

Prova: No caso (1) e : e0oE: é P-sobrejetora pois eO é
P-sobrejetora e c: é sobrejetora.

Da mesma forma nos casos(11)a),(11)b) ou(111) e

é definida através de um di-agrama onde eo é P-sobrejetora

elU({11)a)); rr((11)b); oup((111)) são sobrejetoras.
[]
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çg;lglãrio 3. 3. 9 - G --=-' Gp-

proposi.ção 3.3.10 - G P-]oca]. --+ e lsomorfismo

Prova: Novamente temos 4 casos a analisar

(]-) G P-].oca]. -::::+p G/U P-]-oca]. (e .'. eO isomorfismo) e
U P-]oca] devido ao coro]ãrio 3.]..9. Mas peP' e U é p-gru'

po abe]iano finito. .'. U = {].} . Logo, E: é isomorfismo

donde e = e0oc também é

(11)a) É i-mediano pois G P-local -:-» G/U P-laca

é isom. Daí F é isomorfi-smo pois iu também é

(11)b) Este caso nos apresenta o diagrama:

G ::; G/U

e eO

Gp :; (G/U)p

antes G P-local --+ G/U P-local donde eO é isomorfismo

Consideremos m: G/U-------' Aut(U). Lembramos que

H = <x € G/U: o(u(x)) € Pl>

local Então,PK/

f

]- , donde
eO

ocas)A quenos ga:an e Pprof
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On(X) = lu'u (x) .u(xn'l) € Aut(U) , VnCP' , Vx € G/U

Assim que, se x é gerador de H segue que 3

tq. [o(x)n = IU'

DaÍ,

]. = u(x)n(u). u'] = Éln(x)((u(x)ulu'l)

(pois U é abeliano)

Como On(x) é injetora segue (u(x)u)u'l = 1 donde

lo(x)u = u Vueu. .'. cole : 0 . Em particular I' = {1}

e uE é trivial) lr = 1.. donde e é ísomorfis

(1].1) G P-local ::-> A e X P-J-ocais (coral-. 3.1.9). Segue

Ai e X P-locais Vi = 1,...,t (pois Ai é sub-grupo finito
de Aj.). .'. Gi é P-local Vi(coro1. 3.1.9). .'. e] é isomor

cismo Vi. Como eO é isomorflsmo segue pi i.somorfismo
VÍ .'. p = a) p4 é isomorfísmo, donde e é isomorfismo

que: encella â prova.
ll

0/ 0

[]

A seguir consideremos o di.agrama comutati.vo

U(G) =U> p }G L G/U

V
u(K) = v> } K

Y
+

K
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Vamos observar que nestas conde.ções 3 homom. indo

zido a: u-------»V onde U,V são explicitados em um dos qug:

trocasos considerados na construção de Gp

De fato, definimos cl como segue abaixo de modo que

r.ama .cometedias0

U

u --

Pu

g -;:v

.% --..,.t

Pv

Se G ou K está nas conde-ções do caso (1) então U = {1} ou
? = {ll} .'. ã = 0. Caso contrario escrevemos U = a) U(p)

p--Pr:lmo
e V = e- V(p} (decomposição nas componentes p-primárias)

Assim que a(U(p))c V(p) e pela proposição 3.1.26

temos ot(rU(P))C I'V(P) (onde aplicamos a propor. 3.1.26 ao
diagrama

P

t (P) u(P) G(p) G/ tJ

a u(P)

((P) K(p)

onde ÉI(p) = v(p)+EI ; z;(P) - r(p)+( ).'. Denotando por

ct(P): u(p) -' V(p) a restrição de a segue que 3 diagr
coüutatãvo
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U(P) a(PL V{P)

111EL a(p) : y..(2L
'u(P) 'v(P)

u(P) v(P)

Defina-mos poi-s; ã = (D a(p)

ObservaçgQ: Salientamos aqui que o caso ll)a) pode ser peB:

gado comcasoparticu].ar de ]])b) onde H = {].} e .'.1' =(0).
Desta forma todos os casos podem ser tratados de uma sÕ vez
no raciocínio acima.

Outrossim, devido às definições a é homem. de módu

los (as ações são todas induzidas)

Teorema 3.3.].1 - Dados, G,K € 1CI e o di.agrada abas.xo, 31

llP € Hom(GplKp) que torna o di-agrada comutativa.

Él:TJ} U }G e nG/U

EIP
t

GP (G/U) P
l

+

I'v
+

KIV
\.'

\

çP:v (K/v)P

Pz:ova A unicidade sai do corolário 3.3.9
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Para a existência observemos que

e+0yp(p Y eO(p : y+PV+( (definição de z;P

PV+cl+ÉI (prop. 3.1.16) - ã+PU+ÉI

ã+eÕejp (defina-ção de EIP) : eOã+Êlp

Ocorre que e8: H ((G/U)p;V)"'----*Hz(G/U;V) é um isomorf
devido ao teor. 3.]-.20.

Lagar a+€1P : yP(P' '' pela prop. 3.1.16

] T C Hom(GprKp} que torna a "face frontal" comutativa.

Desta formais homem. le e eíi tornamo diagr

o comutati.vo

LSln0

abaik

U

V

PVo cx

€ >: G/U

Invócamos agora a p:'

morei.smo cruzado

o: G/U------»© tq. VgCG. eB(g) = {10c(g)Te(g)

Novamente devido ao teor. 3.]-.20 temos que

eÕ: H:((G/U)p;$) '' Bi(G/U);V)

smo. Logo,

que ]garantir3 ! !7 paraOP

e
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3 ! [ Q;,] tq. eÕ [ 0;] [ 0] , ie. , + Ó'V

'V::-X.V Jonde 6.; é um hom. cruzado pri.ncipal. (.'.6.;(x)
v € ? fj.xo)

Agora, definindo (5v: (G/U)p 'v' por

õv(z) : v-z.v segue que (5voe0 : óv

e 0 01e Ó eP 0 0V 0pe0 /

onde OP : OP + âv : homem. cruzado de (G/U)p em V

Assim que,

e É3 ( g) DOpe0 c: ( g) le (g) SOpcpe(g) Te(g) , VgCG

Logo, definindo BP: Gp '' Kp por BP(z) : üOPcP(z)T(z)
segue da prop. 3.1.18 que ESP e Hom(GprKp) e Bpe : eB

Além disto,

KpBp ' (KpilepCp) KpT : YPC:P

e
BP' (;0PcPii) (Ti;) = Tti = ;ã

e a prova esta concluída [=

O teorema acima nos mostra que G r"-''» Gp é um funtor
e .g é uma transformação natural.

T'eorema 3.3.12

C

apli.cação e G --------> G. P-]oca].iza G em
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Prova: Consideremos G.K C jCI com K P-local e

B € Hom(G.K). Devido à prop. 3.3.1 existe um di.agrama co
mutatívo

U(G)
C G/UGU

Ya

K
'v K/vKVu(K)

Usandoo teorema anterior (3.3.11) concJ-uimos que

] ! BP e Hom(GpíKp) tq. Bpe : eÉI'

G ---&------ K

:AI''
Mas K P-].ocas --+' e é isomorfismo . Sej a

A unicidade de B ê! garantida pel-o coral-alto 3.3.9

[]

00o





- ADAMS, J.F.í "The Sphere considerei as an H-space

mod p"r Quart. i'. Ma.th. 12 (1961)r 52-60.

- GONÇALyES, DAC.LBERb l,. , "Nllpotent Àç t..Luiiõ", Uni-

versidade de são Paulo - Instituto de Matemáti-

ca e Estatísti.ca {lyBI)

- HILTON. PETER J.r "On G-Spaces", Bol-. Soc. Bus.

Mat. 7 (1976) , 65-73 .

R.] -- FiILTON. P.r MISLINr G.r R01TBERGr J.r

'Localization of Nilpotent Groups and Spaces"r
Notas de Matemática, Norte Holland Mathematics

Studies 15 ( 1975 ) .

S.] - HiLTON, p., RQ.L'.L'BHRG, -i., slNGER, o., "un (i-üpacesr

Serre Classes, and G-ni.lpotency", Mata. Proc.
Cama. Phil. Soc. (1978), 84, 443-454.

1 - RIBENBOIM, P. -"'Tors]on et ]oca].lzatlon Qe groupes

arbitral.res", Sém. d'A]gêbre Paul Dubrei].,

Pauis, 1977.

Lectures Notei in Mathematics ne 740, 444-456,

Spri.nger Verlag, New York, 1978.

REFERÊNCIAS

[A.]

[G]

ADAMS, J.F.í "The Sphere considerei as an H-space

mod p", Quart. J. Ma.th. ].2 (1961), 52-60.

GONÇALyES, DAC].BERG L. , "Nilpotent Actions", Uni

versidade de são Paulo - Instituto de Matemãti

ca e EstatÍsti.ca (1981)

[n] HILTON, PETER J.r "On G-Spaces", Bol-. Soc. Bus

Mat. 7 (1976) , 65-73 .

[H.M.R.] -- FiILTONr P.r MISLINr G.r R01TBERG. J.,

'Localization of Nilpotent Groups and Spaces"r

Notas de Matemática, Norte Holland Mathematics

Studies 15 ( 197 5 )

[H.R.S.] - HiLTON, P., ROITBERG, J., S.[NGER, D., "On G-,Spaces'r

Serre Classes, and G-ni.lpotency", Mata. Proc

Cama. Phil. Soc. (1978), 84, 443-454.

[R.]] RIBENBOIM. P. -'Torsion et ].ocas.ization de groupes

arbitral.res", Sém. d'A]gêbre Paul Dubrei].,

Pauis, 1977.

Lectures Notei in Mathematics ne 740, 444-456,

Spri.nger Verlag, New York, 1978.



3 14

[R.2] - RIBENBOIM, P. - "Equations in Groups, Wi.th Specia].

Emphasis on Loca].ization and Torci.on" - Preprint.

[s] SULLIVAN, D. - "Geneti.cs of Homotopy Theory and the

Adams Conjecture" - Ann. of Math. - 100 (1974),
l 79

[w]

[ z ]

WHITEHEAD , GEORGE W. - "El-ementa of Homotopy Theory",

Graduate Texto in Mathematics - Springer Verlag

New York - Hei-de].berg - Berlin.

ZABRODSKY, A. - "Homotopy Associativity and Fi-cite

CW Complex". Topology 9 (1970), 121-128.

000




