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Abstract

Cure fraction models are useful to model lifetime data with long-term survivors. Ve propose a flexible four-parameter
cure rate survival model called the log-sinh Cauchy promotion time model for predicting breast carcinoma survival in
women who underwent mastectomy. The model can estimate simultaneously the effects of the explanatory variables on
the timing acceleration/deceleration of a given event, the surviving fraction, the heterogeneity, and the possible existence
of bimodality in the data. In order to examine the performance of the proposed model, simulations are presented to
verify the robust aspects of this flexible class against outlying and influential observations. Furthermore, we determine
some diagnostic measures and the one-step approximations of the estimates in the case-deletion model. The new model
was implemented in the generalized additive model for location, scale and shape package of the R software, which is
presented throughout the paper by way of a brief tutorial on its use. The potential of the new regression model to
accurately predict breast carcinoma mortality is illustrated using a real data set.
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I Introduction

Breast cancer, as the name indicates, affects the breasts, which are glands formed by lobes, in turn divided into
smaller structures called lobules and ducts. It is the most common malignant tumor among women and the one
that causes the most deaths. For example, according to statistics, Brazil had about 576,000 new cases of cancer in
2014-2015, of which over 57,000 were breast cancer. Breast cancer is relatively rare before the age of 35, but above
this age, its incidence rises rapidly. However, it is important to remember that not all tumors of the breast are
malignant, and that breast cancer can also occur in men, although at a much lower rate. The majority of nodules
(or lumps) detected in the breast are benign, but this can only be confirmed through medical tests. Tumors of this
size are too small to detect by palpation but are visible in mammograms. Therefore, it is fundamental for all
women to be examined by mammography once a year as of the age of 40 years. Breast cancer—and cancer in
general—does not have a single cause. Its development is a function of a series of risk factors, some of them
modifiable and others not. When diagnosed and treated in the early stage (when the nodule is smaller than 1 cm in
diameter), the chances of curing breast cancer are up to 95%. On the other hand, with the advancement of
pharmaceutical research, development of new drugs, the chances of a cure as well as the survival times are
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increasing, requiring a flexible statistical distribution to model such facts. In this study, we address the log-sinh
Cauchy promotion time model assuming that part of the population is cured.

Models to accommodate a cured fraction have been widely developed. Models for survival analysis typically
assume that all units under study are susceptible to the event and will eventually experience this event if the follow-
up is sufficiently long. However, there are situations for which a fraction of individuals is not expected to
experience the event of interest; that is, those individuals are cured or insusceptible. Perhaps, the most popular
type of cure rate models is the mixture models (MMs) pioneered by Berkson and Gage,' Boag® and Farewell.’
MDMs allow simultaneously estimating whether the event of interest occurs, which is called incidence, and when it
occurs, given that it occurs, which is called latency. The disadvantage of the MMs is that they do not have a
biological interpretation. As an alternative to the MMs, Yakovlev and Tsodikov* introduced the promotion time
cure model, based on a biological context. The main difference between the MMs and promotion time cure models
is that in the MMs, the unknown number of causes of the event of interest is assumed to be a binary random
variable on {0, 1}, and in the promotion time cure modeling, this number follows a Poisson distribution. In a
biological context, the idea behind these assumptions lies within a latent competing cause structure, in the sense
that the event of interest can be the death of a patient or a tumor recurrence, which can happen due to unknown
competing causes. If there is no death or tumor recurrence, the patient can be considered cured.

To introduce the promotion time cure models,* we consider that M ~ Poisson() represents the number of cases
for the breast cancer and Z; denotes the time until the cancer becomes detectable for the ith individual. Given M,
the random variables Z,, for i=1,..., M, are assumed to be independent and identically distributed with a
common distribution function F(z) =1 — S(z) that does not depend on M. The time until the cancer being
detected corresponds to the shortest among the M promotion times. Thus, the delay to detectability may be
represented by the random variable 7= {minZ;,0 <i< M}, where P(Zy =1)=1. The resulting survival
function for the entire population is

Sp(1) = exp[—TF(1)] (D

where S,(7) is the unconditional survival function of ¢ for the entire population. Note that when ¢ — oo,
Sy(t) — e " =p, where 0 <p <1 denotes the cured proportion. The probability density function (pdf)
corresponding to the survival function ((equation (1)) is given by

Jp(0) =t/ (1) exp[—TF(1)] 2)

Note that equation (2) is an improper function, since S,(¢) is not a proper survival function. These latent
competing causes M can be assigned to metastasis-component tumor cells left active after an initial treatment.’
Latent variables represent a theoretical issue and are not observable, so they cannot be measured directly.
However, they can be measured by other variables. Genes with low and high expression are significant factors
in the lifetime of patients with breast cancer, which may cause lifetimes with bimodal densities.® Due to this fact,
flexible statistical models are needed to predict as well as correctly identify explanatory variables that may
influence the lifetimes of patients diagnosed with breast cancer. In this sense, for modeling a lifetime 7> 0, the
log-sinh Cauchy (LSC) distribution’ was introduced to accommodate various shapes of skewness, kurtosis and bi-
modality. The LSC pdf can be expressed as

; osh <710g(2 — M)
Jpen = fo V2 sinh? (10g(1) - '“) +1 v
o

where 1 € R and o > 0 are the location and scale parameters, respectively, and v > 0 is the symmetry parameter,
which characterizes the bi-modality of the distribution. The advantage of the LSC distribution is that it
accommodates various shapes of the skewness, kurtosis and bi-modality and can be used as an alternative to
mixture distributions in modeling bimodal data. The cumulative distribution function (cdf) corresponding to
equation (3) is given by

F(t; w,o,v) = % + %arctan |:v sinh (M>] 4)

o
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A standard assumption in regression analysis with censored data is homogeneity of the error variances.
Violation of this assumption can have adverse consequences for the efficiency of estimators, so it is important
to check for heteroscedasticity whenever it is considered a possibility. In this paper, we propose a general class of
regression models with cure fraction, where mean, dispersion, bi-modality and cure fraction parameters vary
across observations through regression structures.

The assessment of robustness of the parameter estimates in statistical models has more recently been
an important concern. For example, Ortega et al.® investigated local influence in generalized log-gamma
regression models with cure fraction, Silva et al.” adapted global and local influence methods in log-Burr XII
regression models with censored data and Hashimoto et al.'® proposed the log-Burr XII regression model for
grouped survival data. The influence diagnostic is an important step in the analysis of a data set as it provides an
indication of bad model fitting or of influential observations. The case deletion measures, which consist of studying
the impact on the parameter estimates after dropping individual observations, are probably the most employed
technique to detect influential observations. We develop a similar methodology to detect influential subjects in the
new regression model with long-term survivors.

On the other hand, many researchers have introduced new models in computational packages for ease of use by
other researchers. The COM-Poisson cure rate model'' was introduced in the generalized additive model for
location, scale and shape (GAMLSS)'? package of the R software,'? considering that the number of competing
causes of the event of interest follows the Conway—Maxwell-Poisson distribution; some long-term survival models
were implemented by taking the Weibull as the parent distribution®; the standard mixture Weibull model with a
frailty term was also introduced in the GAMLSS package,'* incorporating heterogeneity of two subpopulations to
the event of interest. We set the new model in the GAMLSS package, for which the introduction and all
instructions for using are discussed in the following sections.

The paper is organized as follows. In Section 2, we propose the log-sinh Cauchy promotion time (LSCp)
model by defining the density, cumulative and survival and hazard functions and discuss inferential issues.
In Section 3, we introduce the log-sinh Cauchy promotion time regression model, where the parameters can be
modeled as function of explanatory variables using the GAMLSS framework. We also discuss inferential issues in
this section. Strategies to select the best model, residual analysis, goodness of fit and global influence measure are
addressed in Section 4. Section 5 contains methods for generating random values and two Monte Carlo
simulations on the finite sample behavior of the maximum likelihood estimates (MLEs). Application to breast
cancer data is presented in Section 6 to illustrate the flexibility of the new regression model. Finally, we offer some
conclusions in Section 7.

2 The LSCp model

Based on the LSC distribution, we define the LSCp model by inserting equations (3) and (4) in equation (2).
The pdf and survival function of the LSCp model are given by

V) cosh(w) T T .
. i S S _Z_ 2 arete h
Jo(ts 0,0, 1) pr— sinhz(w) " 1exp[ > narctdn [v sin (w)]} ®)
and
T T .
Sp(t; b, 0,0, 7) = exp{ 5~ ;arctan [v smh(w)]} (6)

respectively, where w = log(%, u € R and o > 0 are the location and scale parameters, respectively, v > 0 is the
symmetry parameter, characterizing the bimodality of the distribution, and t > 0 is the cure rate parameter.
A random variable having density (equation (5)) is denoted by T ~ LSCp(u,o,v,t). We can omit the
dependence on the parameters to simplify notation, for example, S,(t) = S,(; 1,0, v, 7).

The survival function for non-cured individuals and the hazard rate function (hrf) of the LSCp model are given,
respectively, by

xp{— % — Zarctan [v sinh(w)]} — exp(—7)

S(t; n,o,v,7) = ¢ (7

1 —exp(—1)
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and

v cosh(w)

h,(t; w,o0,v,7) = -
(0 e ) tom 2 sinh?(w) + 1

(®)

Note that the /£,(r) is multiplicative in 7 and f{¢); thus, it has the proportional hazard structure. The
identifiability between the parameters in cure fraction and those in the time failure distribution for the cure
model have been discussed in literature.'”>'” The cure model in equation (1) is identifiable if F(.) is a
parametric model.'”

source (¢ ‘https://goo.gl/gx3t66 <)
library(gamlss.cens) ;library(gamlss)
dLSCp(t,mu,sigma,nu,tau)#pdf

pLSCp(t,mu, sigma,nu,tau)#cdf=1-S(t)
hLSCp(t,mu,sigma,nu,tau)#hrf

The functions (5), (6) and (8) are implemented in the R software and can be easily accessed by following the
steps in the box displayed above. Plots of the LSCp survival and hazard functions for selected parameter values are
displayed in Figures 1 and 2, respectively. Figure 1 reveals clearly the bi-modality and symmetric effects caused by
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Figure 2. The LSCp hrffor (a) © = 1.5, v = 0.1, t = 2 and different values of o; (b) x = 2, 0 = 0.2, v = 1.5 and different values of v.
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the parameters o and v, respectively. Further, Figure 2 indicates that the hrf of 7 has decreasing, unimodal and
bimodal shapes.

Note that the parameters u, o and v describe location, scale and skewness, for the failure times. For larger
values of p, survival times are larger and consequently the average of the failure time is larger. For larger values of
o, variability is larger and consequently the rate of acceleration (of the survival curves) is larger resulting in a
higher hazard rate. Low values of v indicating bimodality is more likely.

3 Regression models

In practical applications, the lifetimes of patients are affected by explanatory variables like age, tumor size, lymph
node status and others. They can affect the probability of an individual being healed, so these variables need to be
added in the statistical models to obtain better estimates as well as individual interpretations for such variables.
Recently, a new cure rate survival regression model was proposed for predicting breast carcinoma survival in
women who underwent mastectomy, modeling the probability of cure using explanatory variables.'® Similarly, the
generalized log-gamma regression model with cure fraction® was introduced to model the cured proportion with
explanatory variables. The problem to model only the parameters relative to the cured proportion is that the
explanatory variables also affect the lifetime of patients considered uncured, and therefore, it should be used to
model the other parameters of the model. As an alternative to regression models cited above, the systematic part of
the GAMLSS' can be expanded to allow not only the cure rate parameter but all parameters of the conditional
distribution of 7T to be modeled as parametric functions of the explanatory variables.

3.1 Definition

Let T~ LSCp(t; 0), where 07 = (i, 0, v, 7) denotes the vector of parameters of the pdf ((equation (5)). Consider
independent observations #;’s conditional on the parameter vector 0; (for i = 1,2, ..., n) having pdf £,(; 0;), where
07 = (u”, 67, v7,77) is a vector of parameters related to the response variable. We can define the elements of the
vector 6 using four appropriate link functions as

p=g1(X1B)), o6=gXpy), v=2gi(X383), 7=giXup,) ©)

where gi(-), for k = 1,2,3,4, denote the injective and twice continuously differentiable monotonic link functions,
B = (Boks Biks - - - » By k)T is a parameter vector of length (my + 1), m; denotes the number of explanatory variables
related to the kth parameter and Xj; is a known model matrix of order n x (m; + 1). The total number
of parameters to be estimated is given by m = m; + my + m3 + my +4 and the choice of parameters to be
modeled by explanatory variables is discussed in Section 4. For the following sections, we shall consider the
identity link function for g;(-) and the logarithmic link function for gi(-) (k=2, 3, 4).

3.2 Inference

Consider a sample of n-independent observations ¢,...,f,. Let ¢; denote the censoring time, y; = min{¢;, ¢;} and
8; = I(t; < ¢;), where §; =1 if ¢; is a time-to-event and §; = 0 if it is right censored. From n observations,
explanatory variables and censoring indicators (yi, 81, Xk1), - - > (Vs 8ns Xin), the log-likelihood function under

non-informative censoring for the parameter vector § = (ﬁ]T, ﬁzT , ,B3T , [34T, )T takes the form

1(0) = Z {log(r) + log(v) — log(o;) — log( y;) + log cosh(w;) — log[1 + v? sinh*(w;)]}
ieF

11 "
_ Z Z Ti{2 + - arctan([v; sinh(w,)]}

ieF ieC

where y; = [log(t;) — nil/o;, F and C denote the sets of individuals for which ¢; is the log-lifetime or log-censoring
and the vector of parameters are defined in equation (9) by specifying appropriate link functions for gi(-), i.e.,
wi = Por + Buixi + -+ + Bt Xim, -

The numerical maximization of the log-likelihood function (equation (10)) can be easily performed in the
GAMLSS package in R. The advantage of this package is that we can use different maximization methods.
Note that for censored observations, the additional package gamlss.cens is required to determine numerically
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the observed information of the likelihood function referring to the censored observations. The maximization
algorithm adopted in the presence of censored data is the RS procedure.'*!'? This method is also available in the
documentation of the GAMLSS package. For a specific data set, the likelihood potentially has multiple local
maxima. This is investigated using different starting values and has generally not been found to be a problem in the
data set analyzed, possibly due to the relatively large sample sizes used.

mli=gamlss (Surv(T,D)~x1+x2,
sigma.formula =~x1+x2,
nu.formula=~x1+4x2,
tau.formula=~x1+x2,
family=cens(‘LSCp’))

Here, we present an example of how to maximize the likelihood (equation (10)) in the R software. For the steps
that will be presented below, consider the codes presented above. Let T be a response variable as well the failure
indicator D. Now, consider the model m1 where the explanatory variables X; and X, are used to model all
parameters in equation (9). The results of the fitted model are accessed using summary(m1). Note that for a
null model (disregarding regression variables), the results obtained using this script still consider the regression
structure ((equation (9)), e.g., T = exp(Bos). The fit of the LSCp model gives the vector of estimated cured
proportion

P=expl—exp(XsBy)], 0<Pp<1 (11)

where X4f4 can be accessed using mi$tau. fv.
The asymptotic distribution of (0 — 0) is N,,(0, 1(0)""), where 1(0) is the expected information matrix. This

asymptotic behavior holds if 7(0) is replaced by L(@), i.e., the observed information matrix evaluated at 0 given by

L(@) =— g;la((fr) |- The multivariate normal N,,(0, L(’é)*l) distribution can be used to construct approximate
confidence intervals for the individual parameters.

Besides estimation of the model parameters, hypothesis tests can be investigated. Let 6 = (67, 02T ', where 0,
and 0, are disjoint subsets of 0. Consider the test of the null hypothesis H : ; = 60y, against H, : 6, # 60y, where
0, is a specified vector. Let 0 be the restricted MLE of 0 obtained under Ho. The likelihood ratio (LR) statistic to
test Hy is given by A =2[¢ (5) — ¢ (5)]. Under H, and some regularity conditions, the LR statistic converges in

distribution to a chi-square distribution with dim(6;) degrees of freedom.

An important consideration in the statistical analysis in the regression models is the assumption that all
observations have equal variances. The non-compliance with this assumption affects the efficiency of the
estimates of the parameters, so it is important to develop tests to determine the presence or absence of such
homogeneity. Note that in healing models, there is heterogeneity in the data because of three subpopulations: one
formed by the failure data, another for censored data and one formed by the cured individuals. In particular, we
now consider the test for homogeneity of variance for the LSCp regression model with cure fraction based on the
LR statistic. Following equations (5) and (6), we generalize the scale parameter o by o;, where the parameter o; can
be modeled by o; = g2(x5B,), where xp is a vector of explanatory variable values. We assume that there exists a
unique value o, then o; = 0y and the Y,’s have constant variance. Hence, the LR statistic for the homogeneity of

scalar parameter can be expressed by Hy : 0; = oy against H, : o; # oy, which is given by A = 2[¢ (B\l,ﬁz, ﬁ;,
ﬁ;) —E(,El,ao,ﬂ,ﬂ:)], where ﬁl, ﬁé and BZ are the restricted MLEs of B, f; and B,, respectively, obtained
from the maximization of equation (10) under Hj : 0; = 0y. Analogously, we can perform the same tests of

hypotheses for the parameters un, va and zn.

4 Model selection

Here, we consider the model selection process in four steps. The first step consists in choosing the best distribution
to represent the lifetime and cure proportion. After, in the second step, we present a method to select the
explanatory variables to fit each parameter of the selected model. The model assumptions are investigated in
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the third step. Finally, in the fourth step, we study the sensitivity of the chosen model with the existence of
influential observations.

4.1 Select the distribution

AIC(m1)
BIC(m1)
deviance(ml)

In the first stage, the Akaike Information criterion (AIC), Bayesian Information criterion (BIC) and global
deviance (GD) criteria are used to assess different fitted models. The GD, AIC and BIC criteria are defined by
GD = -2[(0), AIC = GD + 2k and BIC = GD + log(n)k, respectively, where /() is the total log-likelihood
function, n represents the sample size and k& denotes the number of fitted parameters. The model with the
smallest values for these criteria is then selected. The codes to access these statistics are presented above.

4.2 Selecting explanatory variables

For the LSCp GAMLSS regression, the selection of the terms for all parameters is performed using a stepwise AIC
procedure.?” There are many different strategies that could be applied for selection of the terms used to model the
four parameters un, 6, vn and tn. Let x be the selection of all terms available for consideration, where x contains
the linear terms. Then, for all terms in x and for fixed distribution and link functions, the strategy consists of two
steps. In the first step, we adopt a forward selection procedure to select an appropriate model for un, with en, vn
and zn fitted as constants. After that, repeat the same procedure to select the model for en, v and tn, respectively,
using the models already obtained in the previous steps as constants. For the second step, we perform a backward
selection procedure to choose an appropriate model for vn, with un, en and zn fitted as constants and repeat this
procedure for en and un, respectively. At the end of the steps described above, the final model may contain
different subsets from x for un, en, vun and zn.

ml=gamlss (Surv(T,D)~1,family=cens(‘LSCp’))
m2=stepGAICA1l.A(m1,scope=1list(lower=~1,
upper=~x1+x2+x3))

An easy way to reproduce the steps mentioned above is using the stepGAICA1l.A function implemented in
GAMLSS package. The first step consists of fitting a null model m1 (without regression structure) considering the
lifetime 7 variable as well as the failure indicator D. Next, consider the second model m2, in which all parameters
can be modeled by the explanatory variables indicated in the upper command. An example is shown in the codes
presented above, which has three explanatory variables, X, X, and X3. At the end, the final model m2 may contain
different subsets from x for u, o, v and t.

4.3 Diagnostics

In order to study departures from the error assumption and the presence of outlying observations, we can use the
diagnostic tools in the GAMLSS package. The first technique consists of the normalized randomized quantile
residuals,?’ which are given by 7; = ®~!(%;), where ®~!(-) is the quantile function (qf) of the standard normal
variate and u; = F(1;0;). For censored response variables, u is defined as a random value from a uniform
distribution on the interval [1 — S(;|6;), 1].

plot(density (m2$residuals))
qqnorm(m2$residuals)

gqqline (m2$residuals,col=2)
wp (m2)

Although the quantile residuals are widely used in literature, it is not possible to identify specifically failures to
fit the mean, variance, skewness and kurtosis existing in the variable responses. As an alternative, we can use the
Worm Plots (WP).?> These plots of the residuals were introduced in order to identify regions (intervals) of an
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explanatory variable within which the model does not fit adequately the data. This is a diagnostic tool for checking
the residuals for different ranges of one or two explanatory variables. The idea consists to fit cubic models to each
of the detrended QQ plots with the resulting constant, linear, quadratic and cubic coefficients, thus indicating
differences between the empirical and model residual mean, variance, skewness and kurtosis, respectively, within
the range in the QQ plot. The interpretations of the shapes of the WP are: a vertical shift, a slope, a parabola or a
S shape, thus indicating a misfit in the mean, variance, skewness and excess kurtosis of the residuals, respectively.
Let m2 the final model selected. Using the commands presented in the box, we can easily access the residuals
discussed before.

4.4 Global influence

Since regression models are sensitive to the underlying model assumptions, performing a sensitivity analysis is
strongly advisable. This idea was used to motivate the assessment of influence analysis,”> suggesting that more
confidence can be put in a model, which is relatively stable under small modifications. The best known
perturbation schemes are based on case-deletion,* in which the effects or perturbations of completely removing
cases from the analysis are studied.

In the following, a quantity with subscript ““(—i)* refers to the original quantity with the i th case deleted. For
model (9), the log-likelihood function ((equation (10)) for 0 is denoted by /(6). Let 5{_0 = (’ﬁ(T_l.),E(T_[),’\?(T_i), ?(T_i)>
be the MLEs of u, &, v and 7 obtained from /(6_;). To assess the influence of the i th case on the MLE 5, the idea
is to compare the difference between 5(-:’) and 0. If deletion of a case seriously influences the estimates, more
attention should be given to that case. Hence, if 5(_[) is far from 5, then the 7 th case is regarded as an influential

observation. A popular measure of the difference between 5(_,-) and 5, called log-likelihood distance, is given by
LD(0) = 2[1@) - 1(’(5(_,~)>]

Note that for the GAMLSS, all parameters can be modeled by explanatory variables, so the log-likelihood can
potentially have multiple local maxima. We suggest to use the MLE 9 as initial vector to obtain the MLE 5(_,). An

example of how to calculate LD;(6) using the GAMLSS package is given in supplemental material.

5 Simulation study

In this section, we report a Monte Carlo simulation study assessing the finite sample behavior of the MLEs of the
parameters for different sample sizes, cured percentages and percentage of censored in the failure times. Note that
cured percentages represent the percentage of individuals who are considered cured and the censored failure time
percentages represent the percentages of individuals who for some reason did not remain until the end of the study.
The cured percentage is denoted by p as shown in equation (11) and the censored failure times percentage is
denoted by .

We can simulate LSCp random variables using the qf, which is obtained by inverting F(f) = 1 — S(¢) = u, where
S(t) represents the survival function for non-censored observations (equation (7)). The qf of 7'~ LSCp(t, u, o,
v, T) IS given by

1
T = Q(u) = exp (u +o arcsinh{;tan[n(k(u, 7) — 0.5)]}) (12)
where k(u,7) = —log[(u — 1)(e~* — 1)]. Equation (12) can be used for simulating random variables by fixing
u, o, v, Tand setting u as a uniform random variable in the (0, 1) interval.
rLSCp(n,mu,sigma,nu,tau)
To generate the cured proportion, we adopt the following strategy. Let n be the total sample size, composed by

the sample of the cured individuals C, with size n. = ne™", and by the sample of the observed times 7, with size
n; = n — n.. Now, we generate n, observations using (12) and, for generate n, cured observations, we consider that
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C ~ Umax(T),2 x sd(T)], where sd(T) represents the standard deviation of the generated time sample.
The samples can be easily generated in R using the codes presented above. Censored failure times can be set by
selecting random values in 7" generated samples.

Here, we consider that the lifetimes 7 are composed by the lifetimes of two groups, g and g, where
T g ~ LSCP(IM =150, =031 =017y = 2) and T g> ~ LSCp(/Lz =250,=02,1,=051,= 1) For
each group, samples of size n, =25, 50 and 75 are generated for each replication, yielding the total sample
sizes n = 50, 100 and 150. The cured percentage for g;andg,arep; = 0.135and p, = 0.367, respectively. We
also consider different censored failure time percentages, v = 0,0.1, where the number of censored failure time
for g; and g, are given by ny(1 — p1)y and ng(1 — p2)¥, respectively. For ¢ = 0.1, the total censoring percentages
for gy and g, are 22.1% and 43.1%, respectively. The codes used in this section are presented in supplemental
material.

Using equation (9), we can define the regression structure as

wi = Bor + Puixii, o =exp(Bor+ Piax1i), v =exp(Poz+ Bizx1i), T = exp(Bos + Biax1i)

where xj; = land x;; = 0 represent the groups g;andg,, respectively. The model parameters are defined by
wi=Bor + P, 2= Por, o1 =exp(for+ Bi2), 02 =exp(Bra), vi =exp(Boz + P13), va=exp(Bo3), T =

exp(Boa + Bi4) and 2 = exp(Bos)-
The lifetimes considered in each fit are evaluated as min(z;, ¢;) and, for each configuration of nand v, all results

are obtained from 1000 Monte Carlo replications. For each replication, we evaluate the MLEs of the parameters
and then, after all replications, we determine the average estimates (AEs), biases and means squared errors
(MSEs). The simulations are carried out using the R programming language, where the codes presented above
are used for maximizing the total log-likelihood function ((equation (10)).

Table |. The AEs, biases and MSEs based on 1000 simulations for the LSCp model when
w) = |.5, o) = 0.3, V| = 0.|, T = 2, U2 = 2.5, 0y = 0,2, V) = 0.5 and Ty = l.

¥ n 0 AE Bias MSE 0 AE Bias MSE
0% 50 I 1.540 0.040 0.028 U 2.592 0.092 0.055
o 0.290 0.010 0.005 02 0.194 0.006 0.007
V| 0.101 0.001 0.014 vy 0412 0.088 0.181
7| 2.198 0.198 0.095 ) 1.162 0.162 0.100
0% 100 I 1.514 0.014 0.013 2 2.527 0.027 0.013
o 0.297 0.003 0.002 02 0.198 0.002 0.003
v 0.101 0.001 0.004 vy 0.490 0.010 0.085
7| 2.028 0.028 0.041 7 1.058 0.058 0.016
0% 150 I 1.508 0.008 0.006 U 2.505 0.005 0.005
o 0.296 0.004 0.002 0y 0.200 0.000 0.002
V| 0.098 0.002 0.002 vy 0.507 0.007 0.052
7| 2.042 0.042 0.019 7 1.001 0.001 0.003
10% 50 i 1.536 0.036 0.034 o 2.637 0.137 0.079
o 0.288 0.012 0.005 03 0.192 0.008 0.007
V| 0.096 0.004 0.009 vy 0.361 0.139 0.139
7| 2.004 0.004 0.112 ) 1.069 0.069 0.109
10% 100 m 1.516 0.016 0.013 U 2.530 0.030 0.023
o 0.293 0.007 0.002 02 0.197 0.003 0.004
V| 0.097 0.003 0.003 V) 0.482 0.018 0.103
7| 1.835 0.165 0.035 7 0.967 0.033 0.021
10% 150 I 1.509 0.009 0.006 U 2510 0.010 0.009
o 0.294 0.006 0.002 02 0.199 0.001 0.003
V| 0.096 0.004 0.002 vy 0.507 0.007 0.072
7| 1.854 0.146 0.016 7 0.897 0.103 0.006

AE: average estimates; MSE: mean squared error.
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Figure 3. LSCp survival functions at the true parameter values and at the AEs obtained in Table | by taking v = 0 (a) n = 50, (b)
n = 100and (c)n = 150 and by taking ¥/ = 0.1 (d) n =50, (e) n = 100and (f )n = 150.

The results are reported in Table 1 and, for a visual analysis, we present in Figure 3 the generated and the
estimated (considering the AEs given in Table 1) survival functions for n = 50, 100 and 150 and considering the
two groups represented by the explanatory variable xi;.

The results of the Monte Carlo study in Table 1 indicate that the MSEs of the MLEs of the parameters decay
toward zero as n increases, as expected under standard asymptotic theory. The AEs tend to be closer to the true
parameter values when n increases. This fact supports that the asymptotic normal distribution provides an
adequate approximation to the finite sample distribution of the MLEs. The normal approximation can often be
improved by using bias adjustments to these estimators. In general, for the LSCp GAMLSS, the variances and
MSEs increase when the failure times percentage ¥ increases, as expected. Even with high percentages of censored
observations, we can note a good fit of the LSCp GAMLSS. This fact can be noted in Figure 3.

6 Predicting breast cancer data

The highest breast cancer incidence rates continue to be observed in high-income countries, including countries in
Northern America, Australia, and Northern and Western Europe. Almost 1.7 million new breast cancer cases and
521,900 breast cancer deaths were estimated to have occurred in 2012 worldwide.*® One in eight women (12%) are
expected to have this diagnosis in her lifetime. Although breast cancer incidence rates continued to increase in
many countries, mortality rates have declined in 34 of 57 countries. These reductions have been attributed to early
detection through mammography and improved treatment.

The initial prognostic model considers the explanatory variables tumor size, histology grade and lymph node
status as basic factors to be taken into consideration.?® Due the fact of the introduction of new imaging modalities,
the multifocality has also been considered as a important prognostic to be taken into consideration. The results
using magnetic resonance imaging reveal that the multifocality appears in a considerable proportion of cases, thus
influencing some clinicians to take this information into account when planning surgical and oncologic therapy.>’
Surgery is the most common treatment for breast cancer. There are several kinds of surgery. The surgeon usually
removes one or more lymph nodes from under the arm to check for cancer cells. If cancer cells are found in the
lymph nodes, other cancer treatments will be needed. At any stage of disease, care is available to control pain and
other symptoms to relieve the side effects of treatment, and to ease emotional concerns.

The data set represents the survival times (7) until the patient’s death or the censoring times at the end of
the study.”® A total of n = 284 women who had been treated with mastectomy and axillary lymph node dissection
at Memorial Sloan-Kettering Cancer Center (New York, NY) between 1976 and 1979 met the following



Ramires et al. 3217

Table 2. MLEs of the LSCp model parameters, the corresponding SEs (given in parentheses) and the GD,
AIC and BIC statistics.

n e’ e’ e’ GD AIC BIC
2.271 —0.987 —0.960 —0.853 712.8 720.8 7354
(0.057) (0.055) (0.096) (0.060)

GD: global deviance; AIC: Akaike Information criterion; BIC: Bayesian Information criterion.
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Figure 4. The estimated and empirical survival functions.

requirements for study inclusion: confirmation of the presence of invasive mammary carcinoma, no receipt of
neoadjuvant or adjuvant systemic therapy, no previous history of malignancy, and negative lymph node status as
assessed on routine histopathologic examination. There are 74% censored observations corresponding to the
women who died from other causes or were still alive at the end of the study.

Some explanatory variables are associated with pathologic characteristics of the tumor. The tumor grading was
performed using the standard modified Bloom—Richardson system. The lymphovascular invasion was obtained
using morphologic criteria. The lymph node status was measured according to immunohistochemistry (IHC) and
hematoxylin and eosin (H&E) stains. The explanatory variables for each woman (i =1,...,284) are described
below:

t;: observed time (in years);

d;: failure indicator (0: censored, 1: observed);

X;1: age (in years);

xp: multifocality (0: no, 1:yes);

3. tumor size (in cm);

xj4: tumor grading (0: I, 1: II, III and lobular);

X;5: lymphovascular invasion (0: no, 1: yes)

Xi6: lymph node status (0: IHC+ ITHC- and H&E-, 1: IHC+ and H&E+4).

e 00000 0 0
=
(98]

We start the analysis by fitting the LSCp model (9) disregarding regression variables. Table 2 gives the MLEs
(and the corresponding SEs in parentheses) of the model parameters and the values of the GD, AIC and BIC
statistics for the fitted model. Using equation (11), the estimated cure proportion is given by p = exp(—0.853) =
0.653, being an indication of the presence of a proportion of patients for whom the breast carcinoma will never
recur.* Then, the patients can be considered as cured. Figure 4 provides the plots of the estimated and empirical
survival function. Table 2 and Figure 4 indicate that the LSCp model provides a good fit to these data.

Recently, the Poisson beta Weibull (PBW), Poisson Weibull (PW), negative binomial beta Weibull (NBiBW),
negative binomial Weibull (NBiW), geometric beta Weibull (GBW) and geometric Weibull (GW) cure rate
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Table 3. The GD, AIC and BIC statistics for some models.

Fitted models GD AIC BIC
LSCp 670.3 690.3 726.8
PBW 674.2 696.2 736.3
PW 678.9 696.9 729.7
NBiBW 673.1 697.1 740.8
NBiwW 678.9 698.9 735.3
GBW 675.5 697.5 737.6
GW 680.2 698.2 731.0

GD: global deviance; AIC: Akaike Information criterion; BIC: Bayesian Information criterion; LSCp:
log-sinh Cauchy promotion time; PBWV: Poisson beta Weibull; PW: Poisson Weibull; NBiBW:
negative binomial beta Weibull; NBiW: negative binomial Weibull; GBW: geometric beta
Weibull; GW: geometric Weibull. Bold figures highlight the lowest value.

regression models were fitted to these data'® using all the explanatory variables to model the cured proportion
parameter. We compare the results of these models by fitting the LSCp regression model, in which all explanatory
variables are used to model t, i.e.

logt = By + B X1 + B Xo + B3 X5 + B4 Xy + Bs X5 + Bs X

The values of the GD, AIC and BIC statistics for the fitted models are listed in Table 3. The lowest values of the
information criteria correspond to the LSCp model, which provides a better fit to the current breast cancer data
than the other models.

Using the steps described in Section 4 to select the additive terms for the different parameters, we present results
for the model parameters defined by

wi = Por + Par X, 07 =exp(Bo2 + PrxXp + BerXis)s
v; = exp(Bos + Bsaxis) and 7; = exp(Bos + B3axi3 + BaaXia + BeaXie)

As suggested by a referee, we compare the results by fitting the Weibull cure rate mixture (Weibullcr) model
with scale u > 0, shape o > 0 and cure rate v € [0, 1] parameters. The Weibullcr model was also implemented
in the GAMLSS package, which the codes can be found in the supplemental material for future research.
The additive terms selected for the Weibullcr model are

wi = exp(Bor + Barxia + Bsixis), o1 = exp(Boz)

and

v; = logit(Boz + Ba3Xip + +P33xi3 + BazXiy + Ps3xis + Be3Xis)

Table 4 provides the MLEs, SEs and p values obtained from the fitted LSCp and Weibuller GAMLSS
regressions. We note that all parameters are significant at the 5% significance level, indicating the accuracy of
the method to select the additive terms. Based on the figures in this table, we can conclude that the explanatory
variables tumor size, tumor grading and lymph node status are significant factors for the cure probability of
women with breast cancer. The variables tumor grading and lymph node status are also significant to model the
location and scale parameters. It means that these variables have influence in the mean and variance in the
women’s lifetimes who were considered uncured. Finally, the variables multifocality and lymphovascular
invasion are significant to model the variability and symmetry existing in the lifetime of the uncured women.
Note that the parameter estimates, relative to the cure parameter, from LSCp GAMLSS ““t** are different to the
parameter estimates from Weibuller GAMLSS ““v.”” This happens because the link functions are not the same.
Moreover, the SEs of the MLEs from the fitted LSCp GAMLSS are smaller than those obtained from the
Weibuller GAMLSS. This fact indicates that the estimates of the LSCp model are more precise than those of
the Weibuller GAMLSS. A difference exists regarding the significance of the covariate X, and X5, because they are
non-significant in the LSCp model, whereas they become significant at the 5% level in the Weibuller GAMLSS.
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Table 4. The MLEs, corresponding SEs and p values of the estimates from the fitted LSCp and Weibullcr
GAMLSS regression.

Model Parameter Estimate SE p Parameter Estimate SE p
LSCp Bol 1.550 0.052 <0.001 Bs3 1.202 0.205 <0.001
Bai 0.692 0.064 <0.001 Boa —4.400 0.187 <0.001
Boz —1.016 0.043 <0.001 B3a 0.288 0.060 <0.001
B2 —0.464 0.101 <0.001 Baa 1.205 0.197 <0.001
Be2 —0.625 0.074 <0.001 Bea 2.932 0.174 <0.001
Bo3 —1.511 0.097 <0.001
Weibullcr Boi 0.711 0.106 <0.001 Ba3 —1.358 0.438 0.002
Bai 1.602 0.113  <0.001 B33 —0.647 0.109  <0.001l
Bsi 0.806 0.108 <0.001 Baz —6.030 0.218 <0.001
Boz 0410 0.043 <0.001 Bs3 —4.061 0.468 <0.001
Bos 8.562 0.243 <0.001 Bes —2.816 0411 <0.001
SE: standard error.
Table 5. LR tests.
Parameter 1(0) A b Parameter 1(0) A b
Complete —327.689 - - Bs3 —330.979 6.581 0.010
Bar —329.674 3.970 0.046 B3a —331.613 7.849 0.005
B2 —330.143 4.909 0.027 Baa —334.250 13.123 0.001
Be2 —332.200 9.022 0.003 Bea —333.817 12.257 0.001
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Figure 5. Residual analysis: For the LSCp and Weibullcr models, (a)-(d) Density of the quantile residuals, (b)-(e)Q-Q plot and (c)-(f)

WP, respectively.
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Figure 7. For maximum tumor size “max(X3)“, the estimated survival functions for (a) g, and (b) g| as well as the fitted hazard
functions for (c) g;and(d) g;.

Table 5 provides the formal tests to verify the significance of the explanatory variables presented in Table 4 for
the LSCp model. Using the LR test, we compare the complete model with submodels, removing each explanatory
variable selected. For example, to test if the explanatory variable x;» indeed need to be used to model the scale
parameter, we can test the hypothesis Hy : B2, = 0. We can conclude, at the 5% significance level, that all selected
explanatory variables should remain in the selected model.
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Figure 8. Index plots for |LD;(0)|.

The criteria obtained for the fitted models in Table 4 are GD =655.3, AIC=677.3 and BIC=717.5 for the
fitted LSCp GAMLSS and GD=661.2, AIC=681.2 and BIC=717.7 for the fitted Weibuller GAMLSS.
The plots of residual analysis are displayed in Figure 5 in order to verify the adequacy and the assumptions of
the fitted models. In Figure 5(a) and (b), we note that the quantile residuals have an approximately normal
distribution. The WP given in Figure 5(c) reveals that the proposed regressions for modeling the mean,
variance, skewness and kurtosis are correct. Figure 5(d) and (e) indicates that the Weibullcr model does not
present a good fit for extreme values. Also, in Figure 5(f), we can note a U-shape in the WP, thus indicating
failure for modeling the skewness in the data. We can conclude from this plot that the proposed model provides a
good fit for the breast cancer data.

Using equation (11), the estimated cured proportions can be determined using the results obtained in equation
(4) as p; = exp[—exp(—4.290 + 2.817x4 + 1.195x;6 + 0.288x;3)]. In Figure 6, we present the estimated cured
proportions for different levels of the explanatory variables X4 and Xy as functions of X3. We note in this plot
that the tumor grading II, III and lobular are very aggressive, influencing dramatically the cured probability. It is
also possible to note that the tumor size has a large influence on the probability of cure in patients with tumors
classified as II, IIT and lobular with lymph node status IHC+ and H&E+.

We define the high-risk g; group composed by X4 = 1 and X4 = | (blue line in Figure 6) and the low-risk g,
group composed by X4 = 0 and X4 = 0 (black line in Figure 6). In Figure 7, we present the fitted survival functions
for g; and g, considering the maximum of tumor size max(X3)=38.5. We also present in this plot the fitted hazard
functions for g; and g,. We can observe in these plots the effects of X, and X5 in the scale and symmetry
parameters, respectively.

Next, we compute the case deletion measures LD;(f). Figure 8 displays the plots of the absolute influence
measure index. We note that the cases #128 and #218 are possible influential observations. The censored
observation #128 has a highest tumor size X3 and #128 corresponds to the highest lifetime #; = 18.75 for the g;
group when X, = 0 and X5 = 1 (see Figure 7(b) pink curve).

7 Conclusions

The parametric log-sinh Cauchy promotion time generalized additive model for location, scale and shape (LSCp
GAMLSS) regression provides a flexible model for a dependent real outcome. The parameters of the model can be
interpreted as relating to location, scale, skewness/bimodality and cure rate, and they can each be modeled as
parametric functions of explanatory variables. Procedures for fitting the LSCp GAMLSS regression and for model
diagnostics are included in the GAMLSS package, which are available from the authors. We use the proposed
model to estimate breast carcinoma mortality, assuming that the number of competing causes that can influence
the survival time follows a Poisson distribution. The results reveal that the tumor size, tumor grading and lymph
node status have a significant influence in the cure probability. We also conclude that the variables tumor grading,
lymph node status, multifocality and lymphovascular invasion are also significant to model the women’s lifetimes
who were considered uncured.
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