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Predicting the cure rate of breast
cancer using a new regression model
with four regression structures
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Abstract

Cure fraction models are useful to model lifetime data with long-term survivors. We propose a flexible four-parameter

cure rate survival model called the log-sinh Cauchy promotion time model for predicting breast carcinoma survival in

women who underwent mastectomy. The model can estimate simultaneously the effects of the explanatory variables on

the timing acceleration/deceleration of a given event, the surviving fraction, the heterogeneity, and the possible existence

of bimodality in the data. In order to examine the performance of the proposed model, simulations are presented to

verify the robust aspects of this flexible class against outlying and influential observations. Furthermore, we determine

some diagnostic measures and the one-step approximations of the estimates in the case-deletion model. The new model

was implemented in the generalized additive model for location, scale and shape package of the R software, which is

presented throughout the paper by way of a brief tutorial on its use. The potential of the new regression model to

accurately predict breast carcinoma mortality is illustrated using a real data set.
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1 Introduction

Breast cancer, as the name indicates, affects the breasts, which are glands formed by lobes, in turn divided into
smaller structures called lobules and ducts. It is the most common malignant tumor among women and the one
that causes the most deaths. For example, according to statistics, Brazil had about 576,000 new cases of cancer in
2014–2015, of which over 57,000 were breast cancer. Breast cancer is relatively rare before the age of 35, but above
this age, its incidence rises rapidly. However, it is important to remember that not all tumors of the breast are
malignant, and that breast cancer can also occur in men, although at a much lower rate. The majority of nodules
(or lumps) detected in the breast are benign, but this can only be confirmed through medical tests. Tumors of this
size are too small to detect by palpation but are visible in mammograms. Therefore, it is fundamental for all
women to be examined by mammography once a year as of the age of 40 years. Breast cancer—and cancer in
general—does not have a single cause. Its development is a function of a series of risk factors, some of them
modifiable and others not. When diagnosed and treated in the early stage (when the nodule is smaller than 1 cm in
diameter), the chances of curing breast cancer are up to 95%. On the other hand, with the advancement of
pharmaceutical research, development of new drugs, the chances of a cure as well as the survival times are
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increasing, requiring a flexible statistical distribution to model such facts. In this study, we address the log-sinh
Cauchy promotion time model assuming that part of the population is cured.

Models to accommodate a cured fraction have been widely developed. Models for survival analysis typically
assume that all units under study are susceptible to the event and will eventually experience this event if the follow-
up is sufficiently long. However, there are situations for which a fraction of individuals is not expected to
experience the event of interest; that is, those individuals are cured or insusceptible. Perhaps, the most popular
type of cure rate models is the mixture models (MMs) pioneered by Berkson and Gage,1 Boag2 and Farewell.3

MMs allow simultaneously estimating whether the event of interest occurs, which is called incidence, and when it
occurs, given that it occurs, which is called latency. The disadvantage of the MMs is that they do not have a
biological interpretation. As an alternative to the MMs, Yakovlev and Tsodikov4 introduced the promotion time
cure model, based on a biological context. The main difference between the MMs and promotion time cure models
is that in the MMs, the unknown number of causes of the event of interest is assumed to be a binary random
variable on f0, 1g, and in the promotion time cure modeling, this number follows a Poisson distribution. In a
biological context, the idea behind these assumptions lies within a latent competing cause structure, in the sense
that the event of interest can be the death of a patient or a tumor recurrence, which can happen due to unknown
competing causes. If there is no death or tumor recurrence, the patient can be considered cured.

To introduce the promotion time cure models,4 we consider thatM � Poisson(�) represents the number of cases
for the breast cancer and Zi denotes the time until the cancer becomes detectable for the ith individual. Given M,
the random variables Zi, for i ¼ 1, . . . ,M, are assumed to be independent and identically distributed with a
common distribution function FðzÞ ¼ 1� SðzÞ that does not depend on M. The time until the cancer being
detected corresponds to the shortest among the M promotion times. Thus, the delay to detectability may be
represented by the random variable T ¼ fminZi, 0 � i �Mg, where PðZ0 ¼ 1Þ ¼ 1. The resulting survival
function for the entire population is

SpðtÞ ¼ exp½��FðtÞ� ð1Þ

where SpðtÞ is the unconditional survival function of t for the entire population. Note that when t!1,
SpðtÞ ! e�� ¼ p, where 0 � p � 1 denotes the cured proportion. The probability density function (pdf)
corresponding to the survival function ((equation (1)) is given by

fpðtÞ ¼ � f ðtÞ exp½��FðtÞ� ð2Þ

Note that equation (2) is an improper function, since SpðtÞ is not a proper survival function. These latent
competing causes M can be assigned to metastasis-component tumor cells left active after an initial treatment.5

Latent variables represent a theoretical issue and are not observable, so they cannot be measured directly.
However, they can be measured by other variables. Genes with low and high expression are significant factors
in the lifetime of patients with breast cancer, which may cause lifetimes with bimodal densities.6 Due to this fact,
flexible statistical models are needed to predict as well as correctly identify explanatory variables that may
influence the lifetimes of patients diagnosed with breast cancer. In this sense, for modeling a lifetime T> 0, the
log-sinh Cauchy (LSC) distribution7 was introduced to accommodate various shapes of skewness, kurtosis and bi-
modality. The LSC pdf can be expressed as

f ðt;�, �, �Þ ¼
�

t��

cosh
logðtÞ � �

�

� �

�2 sinh2
logðtÞ � �

�

� �
þ 1

ð3Þ

where � 2 R and �4 0 are the location and scale parameters, respectively, and �4 0 is the symmetry parameter,
which characterizes the bi-modality of the distribution. The advantage of the LSC distribution is that it
accommodates various shapes of the skewness, kurtosis and bi-modality and can be used as an alternative to
mixture distributions in modeling bimodal data. The cumulative distribution function (cdf) corresponding to
equation (3) is given by

Fðt;�, �, �Þ ¼
1

2
þ

1

�
arctan � sinh

logðtÞ � �

�

� �� �
ð4Þ
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A standard assumption in regression analysis with censored data is homogeneity of the error variances.
Violation of this assumption can have adverse consequences for the efficiency of estimators, so it is important
to check for heteroscedasticity whenever it is considered a possibility. In this paper, we propose a general class of
regression models with cure fraction, where mean, dispersion, bi-modality and cure fraction parameters vary
across observations through regression structures.

The assessment of robustness of the parameter estimates in statistical models has more recently been
an important concern. For example, Ortega et al.8 investigated local influence in generalized log-gamma
regression models with cure fraction, Silva et al.9 adapted global and local influence methods in log-Burr XII
regression models with censored data and Hashimoto et al.10 proposed the log-Burr XII regression model for
grouped survival data. The influence diagnostic is an important step in the analysis of a data set as it provides an
indication of bad model fitting or of influential observations. The case deletion measures, which consist of studying
the impact on the parameter estimates after dropping individual observations, are probably the most employed
technique to detect influential observations. We develop a similar methodology to detect influential subjects in the
new regression model with long-term survivors.

On the other hand, many researchers have introduced new models in computational packages for ease of use by
other researchers. The COM-Poisson cure rate model11 was introduced in the generalized additive model for
location, scale and shape (GAMLSS)12 package of the R software,13 considering that the number of competing
causes of the event of interest follows the Conway–Maxwell–Poisson distribution; some long-term survival models
were implemented by taking the Weibull as the parent distribution5; the standard mixture Weibull model with a
frailty term was also introduced in the GAMLSS package,14 incorporating heterogeneity of two subpopulations to
the event of interest. We set the new model in the GAMLSS package, for which the introduction and all
instructions for using are discussed in the following sections.

The paper is organized as follows. In Section 2, we propose the log-sinh Cauchy promotion time (LSCp)
model by defining the density, cumulative and survival and hazard functions and discuss inferential issues.
In Section 3, we introduce the log-sinh Cauchy promotion time regression model, where the parameters can be
modeled as function of explanatory variables using the GAMLSS framework. We also discuss inferential issues in
this section. Strategies to select the best model, residual analysis, goodness of fit and global influence measure are
addressed in Section 4. Section 5 contains methods for generating random values and two Monte Carlo
simulations on the finite sample behavior of the maximum likelihood estimates (MLEs). Application to breast
cancer data is presented in Section 6 to illustrate the flexibility of the new regression model. Finally, we offer some
conclusions in Section 7.

2 The LSCp model

Based on the LSC distribution, we define the LSCp model by inserting equations (3) and (4) in equation (2).
The pdf and survival function of the LSCp model are given by

fpðt;�, �, �, �Þ ¼
��

t��

cosh wð Þ

�2 sinh2ðwÞ þ 1
exp �

�

2
�
�

�
arctan � sinh wð Þ½ �

n o
ð5Þ

and

Spðt;�, �, �, �Þ ¼ exp �
�

2
�
�

�
arctan � sinh wð Þ½ �

n o
ð6Þ

respectively, where w ¼ logðtÞ��
� , � 2 R and �4 0 are the location and scale parameters, respectively, �4 0 is the

symmetry parameter, characterizing the bimodality of the distribution, and �4 0 is the cure rate parameter.
A random variable having density (equation (5)) is denoted by T � LSCpð�, �, �, �Þ. We can omit the
dependence on the parameters to simplify notation, for example, SpðtÞ ¼ Spðt;�, �, �, �Þ.

The survival function for non-cured individuals and the hazard rate function (hrf) of the LSCp model are given,
respectively, by

Sðt;�, �, �, �Þ ¼
exp � �

2�
�
� arctan � sinh wð Þ½ �

� �
� expð��Þ

1� expð��Þ
ð7Þ
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and

hpðt;�, �, �, �Þ ¼
��

t��

cosh wð Þ

�2 sinh2ðwÞ þ 1
ð8Þ

Note that the hpðtÞ is multiplicative in � and f(t); thus, it has the proportional hazard structure. The
identifiability between the parameters in cure fraction and those in the time failure distribution for the cure
model have been discussed in literature.15–17 The cure model in equation (1) is identifiable if Fð:Þ is a
parametric model.17

source(‘‘https://goo.gl/gx3t66‘‘)
library(gamlss.cens);library(gamlss)

dLSCp(t,mu,sigma,nu,tau)#pdf

pLSCp(t,mu,sigma,nu,tau)#cdf¼1-S(t)

hLSCp(t,mu,sigma,nu,tau)#hrf

The functions (5), (6) and (8) are implemented in the R software and can be easily accessed by following the
steps in the box displayed above. Plots of the LSCp survival and hazard functions for selected parameter values are
displayed in Figures 1 and 2, respectively. Figure 1 reveals clearly the bi-modality and symmetric effects caused by
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Figure 1. The LSCp survival function when � ¼ 1 and: (a) For � ¼ 0:1, � ¼ 2 and different values of �; (b) For � ¼ 1, � ¼ 1:5 and
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H
az

ar
d

σ=0.5
σ=0.3
σ=0.2
σ=0.1

H
az

ar
d

ν=1.0
ν=0.7
ν=0.4
ν=0.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
0

0.
2

1.
0

0.
4

0.
6

0.
8

15 20 251050

t
10 1284 620

(a) (b)

t
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the parameters � and �, respectively. Further, Figure 2 indicates that the hrf of T has decreasing, unimodal and
bimodal shapes.

Note that the parameters �, � and � describe location, scale and skewness, for the failure times. For larger
values of �, survival times are larger and consequently the average of the failure time is larger. For larger values of
�, variability is larger and consequently the rate of acceleration (of the survival curves) is larger resulting in a
higher hazard rate. Low values of � indicating bimodality is more likely.

3 Regression models

In practical applications, the lifetimes of patients are affected by explanatory variables like age, tumor size, lymph
node status and others. They can affect the probability of an individual being healed, so these variables need to be
added in the statistical models to obtain better estimates as well as individual interpretations for such variables.
Recently, a new cure rate survival regression model was proposed for predicting breast carcinoma survival in
women who underwent mastectomy, modeling the probability of cure using explanatory variables.18 Similarly, the
generalized log-gamma regression model with cure fraction8 was introduced to model the cured proportion with
explanatory variables. The problem to model only the parameters relative to the cured proportion is that the
explanatory variables also affect the lifetime of patients considered uncured, and therefore, it should be used to
model the other parameters of the model. As an alternative to regression models cited above, the systematic part of
the GAMLSS19 can be expanded to allow not only the cure rate parameter but all parameters of the conditional
distribution of T to be modeled as parametric functions of the explanatory variables.

3.1 Definition

Let T � LSCpðt; hÞ, where hT ¼ ð�, �, �, �Þ denotes the vector of parameters of the pdf ((equation (5)). Consider
independent observations ti’s conditional on the parameter vector hi (for i ¼ 1, 2, . . . , n) having pdf fpðti; hiÞ, where
hT ¼ ðlT, rT, mT, sTÞ is a vector of parameters related to the response variable. We can define the elements of the
vector h using four appropriate link functions as

l ¼ g1ðX1b1Þ, r ¼ g2ðX2b2Þ, m ¼ g3ðX3b3Þ, s ¼ g4ðX4b4Þ ð9Þ

where gkð�Þ, for k ¼ 1, 2, 3, 4, denote the injective and twice continuously differentiable monotonic link functions,
bk ¼ ð�0k,�1k, . . . ,�mkkÞ

T is a parameter vector of length ðmk þ 1Þ, mk denotes the number of explanatory variables
related to the kth parameter and Xk is a known model matrix of order n� ðmk þ 1Þ. The total number
of parameters to be estimated is given by m ¼ m1 þm2 þm3 þm4 þ 4 and the choice of parameters to be
modeled by explanatory variables is discussed in Section 4. For the following sections, we shall consider the
identity link function for g1ð�Þ and the logarithmic link function for gkð�Þ (k¼ 2, 3, 4).

3.2 Inference

Consider a sample of n-independent observations t1, . . . , tn. Let ci denote the censoring time, yi ¼ minfti, cig and
�i ¼ Iðti � ciÞ, where �i ¼ 1 if ti is a time-to-event and �i ¼ 0 if it is right censored. From n observations,
explanatory variables and censoring indicators ð y1, �1, xk1Þ, . . . , ð yn, �n,xknÞ, the log-likelihood function under
non-informative censoring for the parameter vector h ¼ ðbT

1 , b
T
2 , b

T
3 , b

T
4 , Þ

T takes the form

l ðhÞ ¼
X
i2F

logð�iÞ þ logð�iÞ � logð�i�Þ � logð yiÞ þ log coshðwiÞ � log 1þ �2i sinh
2
ðwiÞ

� 	� �
�
X
i2F

X
i2C

�i
1

2
þ

1

�
arctan �i sinh wið Þ½ �


 � ð10Þ

where yi ¼ ½logðtiÞ � �i�=�i, F and C denote the sets of individuals for which ti is the log-lifetime or log-censoring
and the vector of parameters are defined in equation (9) by specifying appropriate link functions for gkð�Þ, i.e.,
�i ¼ �01 þ �11xi1 þ � � � þ �mk1ximk

.
The numerical maximization of the log-likelihood function (equation (10)) can be easily performed in the

GAMLSS package in R. The advantage of this package is that we can use different maximization methods.
Note that for censored observations, the additional package gamlss.cens is required to determine numerically
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the observed information of the likelihood function referring to the censored observations. The maximization
algorithm adopted in the presence of censored data is the RS procedure.12,19 This method is also available in the
documentation of the GAMLSS package. For a specific data set, the likelihood potentially has multiple local
maxima. This is investigated using different starting values and has generally not been found to be a problem in the
data set analyzed, possibly due to the relatively large sample sizes used.

m1¼gamlss(Surv(T,D)�x1þx2,

sigma.formula ¼�x1þx2,

nu.formula¼�x1þx2,

tau.formula¼�x1þx2,

family¼cens(‘LSCp’))

Here, we present an example of how to maximize the likelihood (equation (10)) in the R software. For the steps
that will be presented below, consider the codes presented above. Let T be a response variable as well the failure
indicator D. Now, consider the model m1 where the explanatory variables X1 and X2 are used to model all
parameters in equation (9). The results of the fitted model are accessed using summary(m1). Note that for a
null model (disregarding regression variables), the results obtained using this script still consider the regression
structure ((equation (9)), e.g., � ¼ expð�04Þ. The fit of the LSCp model gives the vector of estimated cured
proportion

bp ¼ exp½� expðX4
bb4Þ�, 05bp5 1 ð11Þ

where X4
bb4 can be accessed using m1$tau.fv.

The asymptotic distribution of ðbh� hÞ is Nmð0, IðhÞ
�1
Þ, where IðhÞ is the expected information matrix. This

asymptotic behavior holds if IðhÞ is replaced by L
::

ðbhÞ, i.e., the observed information matrix evaluated atbh given by

L
::

ðbhÞ ¼ � @2l ðhÞ

@h@hT
j	̂. The multivariate normal Nmð0, L

::

ðbhÞ�1Þ distribution can be used to construct approximate

confidence intervals for the individual parameters.

Besides estimation of the model parameters, hypothesis tests can be investigated. Let h ¼ ðhT1 , h
T
2 Þ

T, where h1

and h2 are disjoint subsets of h. Consider the test of the null hypothesis H0 : h1 ¼ h01 against Ha : h1 6¼ h01, where

h01 is a specified vector. Leteh be the restricted MLE of h obtained under H0. The likelihood ratio (LR) statistic to

test H0 is given by � ¼ 2½‘ ðbhÞ � ‘ ðehÞ�. Under H0 and some regularity conditions, the LR statistic converges in

distribution to a chi-square distribution with dim(h1) degrees of freedom.

An important consideration in the statistical analysis in the regression models is the assumption that all
observations have equal variances. The non-compliance with this assumption affects the efficiency of the
estimates of the parameters, so it is important to develop tests to determine the presence or absence of such
homogeneity. Note that in healing models, there is heterogeneity in the data because of three subpopulations: one
formed by the failure data, another for censored data and one formed by the cured individuals. In particular, we
now consider the test for homogeneity of variance for the LSCp regression model with cure fraction based on the
LR statistic. Following equations (5) and (6), we generalize the scale parameter � by �i, where the parameter �i can
be modeled by �i ¼ g2ðx

T
i2b2Þ, where xi2 is a vector of explanatory variable values. We assume that there exists a

unique value �0, then �i ¼ �0 and the Yi’s have constant variance. Hence, the LR statistic for the homogeneity of

scalar parameter can be expressed by H0 : �i ¼ �0 against Ha : �i 6¼ �0, which is given by � ¼ 2½‘ ðbb1,
bb2,

bb3,bb4Þ � ‘ ðeb1, �0, eb3,
eb4Þ�, where eb1,

eb3 and eb4 are the restricted MLEs of b1, b3 and b4, respectively, obtained

from the maximization of equation (10) under H0 : �i ¼ �0. Analogously, we can perform the same tests of

hypotheses for the parameters ln, mn and sn.

4 Model selection

Here, we consider the model selection process in four steps. The first step consists in choosing the best distribution
to represent the lifetime and cure proportion. After, in the second step, we present a method to select the
explanatory variables to fit each parameter of the selected model. The model assumptions are investigated in
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the third step. Finally, in the fourth step, we study the sensitivity of the chosen model with the existence of
influential observations.

4.1 Select the distribution

AIC(m1)

BIC(m1)

deviance(m1)

In the first stage, the Akaike Information criterion (AIC), Bayesian Information criterion (BIC) and global
deviance (GD) criteria are used to assess different fitted models. The GD, AIC and BIC criteria are defined by
GD ¼ �2l ðbhÞ, AIC ¼ GDþ 2k and BIC ¼ GDþ logðnÞk, respectively, where l ðbhÞ is the total log-likelihood
function, n represents the sample size and k denotes the number of fitted parameters. The model with the
smallest values for these criteria is then selected. The codes to access these statistics are presented above.

4.2 Selecting explanatory variables

For the LSCp GAMLSS regression, the selection of the terms for all parameters is performed using a stepwise AIC
procedure.20 There are many different strategies that could be applied for selection of the terms used to model the
four parameters ln, r, mn and sn. Let 
 be the selection of all terms available for consideration, where 
 contains
the linear terms. Then, for all terms in 
 and for fixed distribution and link functions, the strategy consists of two
steps. In the first step, we adopt a forward selection procedure to select an appropriate model for ln, with rn, mn
and sn fitted as constants. After that, repeat the same procedure to select the model for rn, mn and sn, respectively,
using the models already obtained in the previous steps as constants. For the second step, we perform a backward
selection procedure to choose an appropriate model for mn, with ln, rn and sn fitted as constants and repeat this
procedure for rn and ln, respectively. At the end of the steps described above, the final model may contain
different subsets from 
 for ln, rn, mn and sn.

m1¼gamlss(Surv(T,D)�1,family¼cens(‘LSCp’))

m2¼stepGAICAll.A(m1,scope¼list(lower¼�1,

upper¼�x1þx2þx3))

An easy way to reproduce the steps mentioned above is using the stepGAICAll.A function implemented in
GAMLSS package. The first step consists of fitting a null model m1 (without regression structure) considering the
lifetime T variable as well as the failure indicator D. Next, consider the second model m2, in which all parameters
can be modeled by the explanatory variables indicated in the upper command. An example is shown in the codes
presented above, which has three explanatory variables, X1, X2 and X3. At the end, the final model m2 may contain
different subsets from 
 for �, �, � and �.

4.3 Diagnostics

In order to study departures from the error assumption and the presence of outlying observations, we can use the
diagnostic tools in the GAMLSS package. The first technique consists of the normalized randomized quantile
residuals,21 which are given by r̂i ¼ ��1ðûiÞ, where ��1ð�Þ is the quantile function (qf) of the standard normal
variate and ûi ¼ FðtijbhiÞ. For censored response variables, û is defined as a random value from a uniform
distribution on the interval ½1� SðtijbhiÞ, 1�.

plot(density(m2$residuals))

qqnorm(m2$residuals)

qqline(m2$residuals,col¼2)

wp(m2)

Although the quantile residuals are widely used in literature, it is not possible to identify specifically failures to
fit the mean, variance, skewness and kurtosis existing in the variable responses. As an alternative, we can use the
Worm Plots (WP).22 These plots of the residuals were introduced in order to identify regions (intervals) of an
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explanatory variable within which the model does not fit adequately the data. This is a diagnostic tool for checking
the residuals for different ranges of one or two explanatory variables. The idea consists to fit cubic models to each
of the detrended QQ plots with the resulting constant, linear, quadratic and cubic coefficients, thus indicating
differences between the empirical and model residual mean, variance, skewness and kurtosis, respectively, within
the range in the QQ plot. The interpretations of the shapes of the WP are: a vertical shift, a slope, a parabola or a
S shape, thus indicating a misfit in the mean, variance, skewness and excess kurtosis of the residuals, respectively.
Let m2 the final model selected. Using the commands presented in the box, we can easily access the residuals
discussed before.

4.4 Global influence

Since regression models are sensitive to the underlying model assumptions, performing a sensitivity analysis is
strongly advisable. This idea was used to motivate the assessment of influence analysis,23 suggesting that more
confidence can be put in a model, which is relatively stable under small modifications. The best known
perturbation schemes are based on case-deletion,24 in which the effects or perturbations of completely removing
cases from the analysis are studied.

In the following, a quantity with subscript ‘‘ð�iÞ‘‘ refers to the original quantity with the i th case deleted. For

model (9), the log-likelihood function ((equation (10)) for h is denoted by l ðhÞ. LetbhTð�iÞ ¼ blT
ð�iÞ,brT

ð�iÞ,bmTð�iÞ, bsTð�iÞ� 

be the MLEs of l, r, m and s obtained from l ðhð�iÞÞ. To assess the influence of the i th case on the MLEbh, the idea
is to compare the difference between bhð�iÞ andbh. If deletion of a case seriously influences the estimates, more

attention should be given to that case. Hence, ifbhð�iÞ is far frombh, then the i th case is regarded as an influential

observation. A popular measure of the difference betweenbhð�iÞ andbh, called log-likelihood distance, is given by

LDiðhÞ ¼ 2 l ðbhÞ � l bhð�iÞ� 
h i

Note that for the GAMLSS, all parameters can be modeled by explanatory variables, so the log-likelihood can

potentially have multiple local maxima. We suggest to use the MLEbh as initial vector to obtain the MLEbhð�iÞ. An

example of how to calculate LDiðhÞ using the GAMLSS package is given in supplemental material.

5 Simulation study

In this section, we report a Monte Carlo simulation study assessing the finite sample behavior of the MLEs of the
parameters for different sample sizes, cured percentages and percentage of censored in the failure times. Note that
cured percentages represent the percentage of individuals who are considered cured and the censored failure time
percentages represent the percentages of individuals who for some reason did not remain until the end of the study.
The cured percentage is denoted by p as shown in equation (11) and the censored failure times percentage is
denoted by  .

We can simulate LSCp random variables using the qf, which is obtained by inverting FðtÞ ¼ 1� SðtÞ ¼ u, where
SðtÞ represents the survival function for non-censored observations (equation (7)). The qf of T � LSCpðt,�, �,
�, �Þ is given by

T ¼ QðuÞ ¼ exp �þ � arcsinh
1

�
tan � kðu, �Þ � 0:5ð Þ½ �


 �� �
ð12Þ

where kðu, �Þ ¼ � log½ðu� 1Þðe�� � 1Þ�: Equation (12) can be used for simulating random variables by fixing
�, �, �, � and setting u as a uniform random variable in the ð0, 1Þ interval.

rLSCp(n,mu,sigma,nu,tau)

To generate the cured proportion, we adopt the following strategy. Let n be the total sample size, composed by
the sample of the cured individuals C, with size nc ¼ ne�� , and by the sample of the observed times T, with size
nt ¼ n� nc. Now, we generate nt observations using (12) and, for generate nc cured observations, we consider that
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C � U½maxðTÞ, 2� sd ðTÞ�, where sd ðTÞ represents the standard deviation of the generated time sample.
The samples can be easily generated in R using the codes presented above. Censored failure times can be set by
selecting random values in T generated samples.

Here, we consider that the lifetimes T are composed by the lifetimes of two groups, g1 and g2, where
Tj g1 � LSCpð�1 ¼ 1:5, �1 ¼ 0:3, �1 ¼ 0:1, �1 ¼ 2Þ and Tj g2 � LSCpð�2 ¼ 2:5, �2 ¼ 0:2, �2 ¼ 0:5, �2 ¼ 1Þ. For
each group, samples of size ng ¼ 25, 50 and 75 are generated for each replication, yielding the total sample
sizes n ¼ 50, 100 and 150. The cured percentage for g1 and g2 are p1 ¼ 0:135 and p2 ¼ 0:367, respectively. We
also consider different censored failure time percentages,  ¼ 0, 0:1, where the number of censored failure time
for g1 and g2 are given by ngð1� p1Þ and ngð1� p2Þ , respectively. For  ¼ 0:1, the total censoring percentages
for g1 and g2 are 22.1% and 43.1%, respectively. The codes used in this section are presented in supplemental
material.

Using equation (9), we can define the regression structure as

�i ¼ �01 þ �11x1i, �i ¼ expð�02 þ �12x1iÞ, �i ¼ expð�03 þ �13x1iÞ, �i ¼ expð�04 þ �14x1iÞ

where x1i ¼ 1 and x1i ¼ 0 represent the groups g1 and g2, respectively. The model parameters are defined by
�1 ¼ �01 þ �11, �2 ¼ �01, �1 ¼ expð�02 þ �12Þ, �2 ¼ expð�02Þ, �1 ¼ expð�03 þ �13Þ, �2 ¼ expð�03Þ, �1 ¼
expð�04 þ �14Þ and �2 ¼ expð�04Þ.

The lifetimes considered in each fit are evaluated as minðti, ciÞ and, for each configuration of n and  , all results
are obtained from 1000 Monte Carlo replications. For each replication, we evaluate the MLEs of the parameters
and then, after all replications, we determine the average estimates (AEs), biases and means squared errors
(MSEs). The simulations are carried out using the R programming language, where the codes presented above
are used for maximizing the total log-likelihood function ((equation (10)).

Table 1. The AEs, biases and MSEs based on 1000 simulations for the LSCp model when

�1 ¼ 1:5, �1 ¼ 0:3, �1 ¼ 0:1, �1 ¼ 2, �2 ¼ 2:5, �2 ¼ 0:2, �2 ¼ 0:5 and �2 ¼ 1.

 n h AE Bias MSE h AE Bias MSE

0% 50 �1 1.540 0.040 0.028 �2 2.592 0.092 0.055

�1 0.290 0.010 0.005 �2 0.194 0.006 0.007

�1 0.101 0.001 0.014 �2 0.412 0.088 0.181

�1 2.198 0.198 0.095 �2 1.162 0.162 0.100

0% 100 �1 1.514 0.014 0.013 �2 2.527 0.027 0.013

�1 0.297 0.003 0.002 �2 0.198 0.002 0.003

�1 0.101 0.001 0.004 �2 0.490 0.010 0.085

�1 2.028 0.028 0.041 �2 1.058 0.058 0.016

0% 150 �1 1.508 0.008 0.006 �2 2.505 0.005 0.005

�1 0.296 0.004 0.002 �2 0.200 0.000 0.002

�1 0.098 0.002 0.002 �2 0.507 0.007 0.052

�1 2.042 0.042 0.019 �2 1.001 0.001 0.003

10% 50 �1 1.536 0.036 0.034 �2 2.637 0.137 0.079

�1 0.288 0.012 0.005 �2 0.192 0.008 0.007

�1 0.096 0.004 0.009 �2 0.361 0.139 0.139

�1 2.004 0.004 0.112 �2 1.069 0.069 0.109

10% 100 �1 1.516 0.016 0.013 �2 2.530 0.030 0.023

�1 0.293 0.007 0.002 �2 0.197 0.003 0.004

�1 0.097 0.003 0.003 �2 0.482 0.018 0.103

�1 1.835 0.165 0.035 �2 0.967 0.033 0.021

10% 150 �1 1.509 0.009 0.006 �2 2.510 0.010 0.009

�1 0.294 0.006 0.002 �2 0.199 0.001 0.003

�1 0.096 0.004 0.002 �2 0.507 0.007 0.072

�1 1.854 0.146 0.016 �2 0.897 0.103 0.006

AE: average estimates; MSE: mean squared error.
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The results are reported in Table 1 and, for a visual analysis, we present in Figure 3 the generated and the
estimated (considering the AEs given in Table 1) survival functions for n ¼ 50, 100 and 150 and considering the
two groups represented by the explanatory variable x1i.

The results of the Monte Carlo study in Table 1 indicate that the MSEs of the MLEs of the parameters decay
toward zero as n increases, as expected under standard asymptotic theory. The AEs tend to be closer to the true
parameter values when n increases. This fact supports that the asymptotic normal distribution provides an
adequate approximation to the finite sample distribution of the MLEs. The normal approximation can often be
improved by using bias adjustments to these estimators. In general, for the LSCp GAMLSS, the variances and
MSEs increase when the failure times percentage  increases, as expected. Even with high percentages of censored
observations, we can note a good fit of the LSCp GAMLSS. This fact can be noted in Figure 3.

6 Predicting breast cancer data

The highest breast cancer incidence rates continue to be observed in high-income countries, including countries in
Northern America, Australia, and Northern and Western Europe. Almost 1.7 million new breast cancer cases and
521,900 breast cancer deaths were estimated to have occurred in 2012 worldwide.25 One in eight women (12%) are
expected to have this diagnosis in her lifetime. Although breast cancer incidence rates continued to increase in
many countries, mortality rates have declined in 34 of 57 countries. These reductions have been attributed to early
detection through mammography and improved treatment.

The initial prognostic model considers the explanatory variables tumor size, histology grade and lymph node
status as basic factors to be taken into consideration.26 Due the fact of the introduction of new imaging modalities,
the multifocality has also been considered as a important prognostic to be taken into consideration. The results
using magnetic resonance imaging reveal that the multifocality appears in a considerable proportion of cases, thus
influencing some clinicians to take this information into account when planning surgical and oncologic therapy.27

Surgery is the most common treatment for breast cancer. There are several kinds of surgery. The surgeon usually
removes one or more lymph nodes from under the arm to check for cancer cells. If cancer cells are found in the
lymph nodes, other cancer treatments will be needed. At any stage of disease, care is available to control pain and
other symptoms to relieve the side effects of treatment, and to ease emotional concerns.

The data set represents the survival times (T) until the patient’s death or the censoring times at the end of
the study.28 A total of n ¼ 284 women who had been treated with mastectomy and axillary lymph node dissection
at Memorial Sloan-Kettering Cancer Center (New York, NY) between 1976 and 1979 met the following
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requirements for study inclusion: confirmation of the presence of invasive mammary carcinoma, no receipt of
neoadjuvant or adjuvant systemic therapy, no previous history of malignancy, and negative lymph node status as
assessed on routine histopathologic examination. There are 74% censored observations corresponding to the
women who died from other causes or were still alive at the end of the study.

Some explanatory variables are associated with pathologic characteristics of the tumor. The tumor grading was
performed using the standard modified Bloom–Richardson system. The lymphovascular invasion was obtained
using morphologic criteria. The lymph node status was measured according to immunohistochemistry (IHC) and
hematoxylin and eosin (H&E) stains. The explanatory variables for each woman (i ¼ 1, . . . , 284) are described
below:

. ti: observed time (in years);

. �i: failure indicator (0: censored, 1: observed);

. xi1: age (in years);

. xi2: multifocality (0: no, 1:yes);

. xi3: tumor size (in cm);

. xi4: tumor grading (0: I, 1: II, III and lobular);

. xi5: lymphovascular invasion (0: no, 1: yes)

. xi6: lymph node status (0: IHCþ IHC- and H&E-, 1: IHCþ and H&Eþ).

We start the analysis by fitting the LSCp model (9) disregarding regression variables. Table 2 gives the MLEs
(and the corresponding SEs in parentheses) of the model parameters and the values of the GD, AIC and BIC
statistics for the fitted model. Using equation (11), the estimated cure proportion is given by p̂ ¼ expð�0:853Þ ¼
0:653, being an indication of the presence of a proportion of patients for whom the breast carcinoma will never
recur.4 Then, the patients can be considered as cured. Figure 4 provides the plots of the estimated and empirical
survival function. Table 2 and Figure 4 indicate that the LSCp model provides a good fit to these data.

Recently, the Poisson beta Weibull (PBW), Poisson Weibull (PW), negative binomial beta Weibull (NBiBW),
negative binomial Weibull (NBiW), geometric beta Weibull (GBW) and geometric Weibull (GW) cure rate
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Figure 4. The estimated and empirical survival functions.

Table 2. MLEs of the LSCp model parameters, the corresponding SEs (given in parentheses) and the GD,

AIC and BIC statistics.

� e� e� e� GD AIC BIC

2.271 �0.987 �0.960 �0.853 712.8 720.8 735.4

(0.057) (0.055) (0.096) (0.060)

GD: global deviance; AIC: Akaike Information criterion; BIC: Bayesian Information criterion.
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regression models were fitted to these data18 using all the explanatory variables to model the cured proportion
parameter. We compare the results of these models by fitting the LSCp regression model, in which all explanatory
variables are used to model �, i.e.

log s ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b4X4 þ b5X5 þ b6X6

The values of the GD, AIC and BIC statistics for the fitted models are listed in Table 3. The lowest values of the
information criteria correspond to the LSCp model, which provides a better fit to the current breast cancer data
than the other models.

Using the steps described in Section 4 to select the additive terms for the different parameters, we present results
for the model parameters defined by

�i ¼ �01 þ �41xi4, �i ¼ expð�02 þ �22xi2 þ �62xi6Þ,

�i ¼ expð�03 þ �53xi5Þ and �i ¼ expð�04 þ �34xi3 þ �44xi4 þ �64xi6Þ

As suggested by a referee, we compare the results by fitting the Weibull cure rate mixture (Weibullcr) model
with scale �4 0, shape �4 0 and cure rate � 2 ½0, 1� parameters. The Weibullcr model was also implemented
in the GAMLSS package, which the codes can be found in the supplemental material for future research.
The additive terms selected for the Weibullcr model are

�i ¼ expð�01 þ �41xi4 þ �51xi5Þ, �i ¼ expð�02Þ

and

�i ¼ logitð�03 þ �23xi2 þþ�33xi3 þ �43xi4 þ �53xi5 þ �63xi6Þ

Table 4 provides the MLEs, SEs and p values obtained from the fitted LSCp and Weibullcr GAMLSS
regressions. We note that all parameters are significant at the 5% significance level, indicating the accuracy of
the method to select the additive terms. Based on the figures in this table, we can conclude that the explanatory
variables tumor size, tumor grading and lymph node status are significant factors for the cure probability of
women with breast cancer. The variables tumor grading and lymph node status are also significant to model the
location and scale parameters. It means that these variables have influence in the mean and variance in the
women’s lifetimes who were considered uncured. Finally, the variables multifocality and lymphovascular
invasion are significant to model the variability and symmetry existing in the lifetime of the uncured women.
Note that the parameter estimates, relative to the cure parameter, from LSCp GAMLSS ‘‘�‘‘ are different to the
parameter estimates from Weibullcr GAMLSS ‘‘�.’’ This happens because the link functions are not the same.
Moreover, the SEs of the MLEs from the fitted LSCp GAMLSS are smaller than those obtained from the
Weibullcr GAMLSS. This fact indicates that the estimates of the LSCp model are more precise than those of
the Weibullcr GAMLSS. A difference exists regarding the significance of the covariate X2 and X5, because they are
non-significant in the LSCp model, whereas they become significant at the 5% level in the Weibullcr GAMLSS.

Table 3. The GD, AIC and BIC statistics for some models.

Fitted models GD AIC BIC

LSCp 670.3 690.3 726.8

PBW 674.2 696.2 736.3

PW 678.9 696.9 729.7

NBiBW 673.1 697.1 740.8

NBiW 678.9 698.9 735.3

GBW 675.5 697.5 737.6

GW 680.2 698.2 731.0

GD: global deviance; AIC: Akaike Information criterion; BIC: Bayesian Information criterion; LSCp:

log-sinh Cauchy promotion time; PBW: Poisson beta Weibull; PW: Poisson Weibull; NBiBW:

negative binomial beta Weibull; NBiW: negative binomial Weibull; GBW: geometric beta

Weibull; GW: geometric Weibull. Bold figures highlight the lowest value.
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Figure 5. Residual analysis: For the LSCp and Weibullcr models, (a)-(d) Density of the quantile residuals, (b)-(e)Q-Q plot and (c)-(f)

WP, respectively.

Table 4. The MLEs, corresponding SEs and p values of the estimates from the fitted LSCp and Weibullcr

GAMLSS regression.

Model Parameter Estimate SE p Parameter Estimate SE p

LSCp �01 1.550 0.052 <0.001 �53 1.202 0.205 <0.001

�41 0.692 0.064 <0.001 �04 �4.400 0.187 <0.001

�02 �1.016 0.043 <0.001 �34 0.288 0.060 <0.001

�22 �0.464 0.101 <0.001 �44 1.205 0.197 <0.001

�62 �0.625 0.074 <0.001 �64 2.932 0.174 <0.001

�03 �1.511 0.097 <0.001

Weibullcr �01 0.711 0.106 <0.001 �23 �1.358 0.438 0.002

�41 1.602 0.113 <0.001 �33 �0.647 0.109 <0.001

�51 0.806 0.108 <0.001 �43 �6.030 0.218 <0.001

�02 0.410 0.043 <0.001 �53 �4.061 0.468 <0.001

�03 8.562 0.243 <0.001 �63 �2.816 0.411 <0.001

SE: standard error.

Table 5. LR tests.

Parameter l ðhÞ � p Parameter l ðhÞ � p

Complete �327.689 – – �53 �330.979 6.581 0.010

�41 �329.674 3.970 0.046 �34 �331.613 7.849 0.005

�22 �330.143 4.909 0.027 �44 �334.250 13.123 0.001

�62 �332.200 9.022 0.003 �64 �333.817 12.257 0.001
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Table 5 provides the formal tests to verify the significance of the explanatory variables presented in Table 4 for
the LSCp model. Using the LR test, we compare the complete model with submodels, removing each explanatory
variable selected. For example, to test if the explanatory variable xi2 indeed need to be used to model the scale
parameter, we can test the hypothesis H0 : �22 ¼ 0. We can conclude, at the 5% significance level, that all selected
explanatory variables should remain in the selected model.
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The criteria obtained for the fitted models in Table 4 are GD¼ 655.3, AIC¼ 677.3 and BIC¼ 717.5 for the
fitted LSCp GAMLSS and GD¼ 661.2, AIC¼ 681.2 and BIC¼ 717.7 for the fitted Weibullcr GAMLSS.
The plots of residual analysis are displayed in Figure 5 in order to verify the adequacy and the assumptions of
the fitted models. In Figure 5(a) and (b), we note that the quantile residuals have an approximately normal
distribution. The WP given in Figure 5(c) reveals that the proposed regressions for modeling the mean,
variance, skewness and kurtosis are correct. Figure 5(d) and (e) indicates that the Weibullcr model does not
present a good fit for extreme values. Also, in Figure 5(f), we can note a U-shape in the WP, thus indicating
failure for modeling the skewness in the data. We can conclude from this plot that the proposed model provides a
good fit for the breast cancer data.

Using equation (11), the estimated cured proportions can be determined using the results obtained in equation
(4) as pi ¼ exp½� expð�4:290þ 2:817xi4 þ 1:195xi6 þ 0:288xi3Þ�. In Figure 6, we present the estimated cured
proportions for different levels of the explanatory variables X4 andX6 as functions of X3. We note in this plot
that the tumor grading II, III and lobular are very aggressive, influencing dramatically the cured probability. It is
also possible to note that the tumor size has a large influence on the probability of cure in patients with tumors
classified as II, III and lobular with lymph node status IHCþ and H&Eþ.

We define the high-risk g1 group composed by X4 ¼ 1 and X6 ¼ 1 (blue line in Figure 6) and the low-risk g2
group composed by X4 ¼ 0 and X6 ¼ 0 (black line in Figure 6). In Figure 7, we present the fitted survival functions
for g1 and g2 considering the maximum of tumor size maxðX3Þ ¼ 8.5. We also present in this plot the fitted hazard
functions for g1 and g2. We can observe in these plots the effects of X2 and X5 in the scale and symmetry
parameters, respectively.

Next, we compute the case deletion measures LDiðhÞ. Figure 8 displays the plots of the absolute influence
measure index. We note that the cases #128 and #218 are possible influential observations. The censored
observation #128 has a highest tumor size X3 and #128 corresponds to the highest lifetime ti ¼ 18:75 for the g1
group when X2 ¼ 0 and X5 ¼ 1 (see Figure 7(b) pink curve).

7 Conclusions

The parametric log-sinh Cauchy promotion time generalized additive model for location, scale and shape (LSCp
GAMLSS) regression provides a flexible model for a dependent real outcome. The parameters of the model can be
interpreted as relating to location, scale, skewness/bimodality and cure rate, and they can each be modeled as
parametric functions of explanatory variables. Procedures for fitting the LSCp GAMLSS regression and for model
diagnostics are included in the GAMLSS package, which are available from the authors. We use the proposed
model to estimate breast carcinoma mortality, assuming that the number of competing causes that can influence
the survival time follows a Poisson distribution. The results reveal that the tumor size, tumor grading and lymph
node status have a significant influence in the cure probability. We also conclude that the variables tumor grading,
lymph node status, multifocality and lymphovascular invasion are also significant to model the women’s lifetimes
who were considered uncured.

0 50 100 150 200 250
8

0
2

4
6

10
12

Index

|L
ik

el
ih

oo
d 

di
st

an
ce

|

#128

#218censored
failure

Figure 8. Index plots for jLDiðhÞj.

Ramires et al. 3221



Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article:

The first author acknowledge the financial support of the ‘‘Ciência sem Fronteiras’’ program of CNPq (Brazil) under the

process number 200574/2015-9.

Supplemental material

Supplemental material is available for this article online.

References

1. Berkson J and Gage RP. Survival curve for cancer patients following treatment. J Am Stat Assoc 1952; 47: 501–515.

2. Boag JW. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc B 1949; 11:

15–53.
3. Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38:

1041–1046.
4. Yakovlev A and Tsodikov AD. Stochastic models of tumor latency and their biostatistical applications. In: Mathematical

biology and medicine. Vol. 1, Hackensack, NJ: World Scientific, 1996, pp.321–326.
5. de Castro M, Cancho VG and Rodrigues J. A hands-on approach for fitting long-term survival models under the

GAMLSS framework. Comput Meth Progr Biomed 2010; 97: 168–177.

6. Hellwig B, Hengstler JG, Schmidt M, et al. Comparison of scores for bimodality of gene expression distributions and

genome-wide evaluation of the prognostic relevance of high-scoring genes. BMC Bioinformat 2010; 11: 1.
7. Ramires TG, Ortega EMM, Cordeiro GM, et al. A bimodal flexible distribution for lifetime data. J Stat Comput Simulat,

Epub ahead of print 8 June 2015. DOI:10.1080/00949655.2015.1115047
8. Ortega EM, Cancho VG and Paula GA. Generalized log-gamma regression models with cure fraction. Lifetime Data Anal

2009; 15: 79–106.

9. Silva GO, Ortega EMM, Cancho VG, et al. Log-Burr XII regression models with censored data. Comput Stat Data Analy

2008; 52: 3820–3842.
10. Hashimoto EM, Ortega EMM, Cordeiro GM, et al. The Log-Burr XII regression model for grouped survival data.

J Biopharmaceut Stat 2012; 22: 141–159.
11. Rodrigues J, de Castro M, Cancho VG, et al. COM—Poisson cure rate survival models and an application to a cutaneous

melanoma data. J Stat Plan Infer 2009; 139: 3605–3611.

12. Stasinopoulos DM and Rigby RA. Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw

2007; 23: 1–46.
13. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing,

www.R-project.org/ (2015, accessed 8 February 2017).
14. Calsavara VF, Tomazella VL and Fogo JC. The effect of frailty term in the standard mixture model. Chil J Stat 2013; 4:

95–109.

15. Cooner F, Banerjee S, Carlin BP, et al. Flexible cure rate modeling under latent activation schemes. J Am Stat Assoc 2007;

102: 560–572.
16. Ibrahim JG, Chen MH and Sinha D. Bayesian survival analysis. New York: Springer, 2001.
17. Li CS, Taylor JM and Sy JP. Identifiability of cure models. Stat Prob Lett 2001; 54: 389–395.
18. Ortega EM, Cordeiro GM, Campelo AK, et al. A power series beta Weibull regression model for predicting breast

carcinoma. Stat Med 2015; 34: 1366–1388.

19. Rigby RA and Stasinopoulos DM. Generalized additive models for location, scale and shape. J R Stat Soc C 2005; 54:

507–554.
20. Voudouris V, Gilchrist R, Rigby R, et al. Modelling skewness and kurtosis with the BCPE density in GAMLSS. J Appl

Stat 2012; 39: 1279–1293.
21. Dunn PK and Smyth GK. Randomized quantile residuals. J Comput Graph Stat 1996; 5: 236–244.

22. Buuren SV and Fredriks M. Worm plot: a simple diagnostic device for modelling growth reference curves. Stat Med 2001;

20: 1259–1277.
23. Cook RD. Assessment of local influence. J R Stat Soc B 1986; 48: 133–169.
24. Cook RD and Weisberg S. Residuals and influence in regression. New York: Chapman and Hall, 1982.

25. DeSantis CE, Bray F, Ferlay J, et al. International variation in female breast cancer incidence and mortality rates. Cancer

Epidemiol Biomark Prevent 2015; 24: 1495–1506.

3222 Statistical Methods in Medical Research 27(11)

www.R-project.org/


26. Fitzgibbons PL, Page DL, Weaver D, et al. Prognostic factors in breast cancer: College of American Pathologists
consensus statement 1999. Arch Pathol Lab Med 2000; 124: 966–978.

27. Berg WA, Gutierrez L, NessAiver MS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR

imaging in preoperative assessment of breast cancer 1. Radiology 2004; 233: 830–849.
28. Kattan WM, Giri D, Panageas KS, et al. A tool for predicting breast carcinoma mortality in women who do not receive

adjuvant therapy. Cancer 2004; 101: 2509–2515.

Ramires et al. 3223


