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PREAMBULO

1. Desde fins do ano de 1961, quando inicidmos as nossas pesqui-

sas correspondentes 3 teoria dos sistemas associados, vimos trabalhando no

desenvolvimento da mesma. Como resultado destas atividades, temos podiéo
publicar alguns trabalhos. Um novo trabalho neste campo, intitulado M"SO-

ﬁre-a teoria dos sistemas associados para estudo da estabilidade global™

é este que ora temos a honrs de apresentar a Congregaqao‘da‘Escola Politéc-

nica da Universidade de Sao Paulo, como tese para concurso & céatedra "Ma-

tematica Aplicada'.

o, 0 estudo de problemas matematicos de estabilidade concernentes
. sistemas de equagoes diferenciais tem uma apreciavel significagao para &
tecnologia moderna. Bste fato, universalmente reconhecido, constitui-se
talvez na principal razso da existéncia de um numero consideravel de pes—
quisadores que, el todo o Mundo, atualmente se dedicam ao estudo de tais
problemas. Nos dias presentes O tema da estabilidade apresenta-se como ym

tema bem tipico de matematica aplicada.

A teoria dos sistemas associados foi concebida para ser utilizada
no estudo de problemas de estabilidade (global). A finalidade principal
da presente tese & a apresentagao de certos desenvolvimentos da referida
teoria. Assim, entendemos gue & mesSma deva ser considerada como um traba-
lho de matematics aplicada - apesar de na mesma nao aparecerem focalizadas
aplicagSes espec{ficas da mencionada teoria & problemas suscitados direta-
mente por. situagoes da pratica tecnolégica. (Alias, algumas tais aplica-

¢oes jé foram feitas, e encontram-se publicadas, tanto por outros autores

como Por nos mesmos. )

3. Faz poucos anos gque & teoria dos sistemas associados foi inici
ada. E pois compreensivel que um grande ndmero de questOes sobre a mesma,
ou relacionadas com a mesma, estejam ainda por sereml estudadas. Temos pa-
re nds que as idéias fundamentais da referida teoria estdo ainda muito lon
ge de terem sido convenientemente exploradas. Alimentamos & esperanga de
que no futuro essa teoria possa vir a receber formulagoes mais poderosas -
que conduzam a resultados mais fortes - bem como Vir a Ser objeto de exten
soes que a tornem utilizével no estudo de outros problemas matematicos -

a1ém daqueles de estabilidade (global). Também consideramos que estudosde



vi

natureza critico-comparativa devam ser objeto de sérias preocupagoes. Re-
ferimo-nos a estudos que visem relacionar os resultados da teoria dos sis-
temas associados com os resultados concernentes a estabilidade global ja

estabelecidos independentemente da mencionada teoria.

A propésitc, sentimos que nos cabe fazer aqui uma declaragao. Ate
a8 presente data vimos nos dedicando mais a um trabalho que se poderia di—
‘zer de inferéncia: vimos procurando explorar as idéias fundamentais da teo
ria dos sistemas associados, visando estabelecer aqueles resultados que jul
gamos mais interessantes dentre os que se apresentaram ao nosso alcance .

Esta atitude reflete-se na presente tese.

“As consecugoes mateméticas apresentadas nesta tese sao modestas. En
tretanto, apesar disso esperamos que a mesma possa ter alguma utilidade -
talvez mais pele que venha a sugerir, do que pelo que realmente acrescents
a teoria dos sistemas associados. Ae conclusoes gerais da tese aparecem
mencionadas no final da mesma, de um modo bastante sucinto, e na forma de

um sumario.

4. Terminando, desejamos exprimir os nossos profundos agradecimen
tos ao Prof. N. bNUCHIC, por abalizados comentarios e preciosas indicagoes,
que tanto nos drientaram na elaboracao do presente trabalho. Ao Prof. J.
A. BREVES FILHO, manifestamos a nossa profunda gratidao pelo constante e
valioso incentivo gue nos deu. Somos sinda igualmente gratos ao Prof. M.
DE OLIVEIRA CESAR, pela desprendida ajuda gque nos prestou. Desejamos fi—
nalmente agradecer ac INSTITUTO DE ELETROTECNICA DA UNIVERSIDADE DE SX0
PAULO, na pessoa do Eng. J. L. DA CRUZ PASSOS, pela execugao dos trabalhos
de impressao, & Srta. E.C. MULLER e a Sra. C. ZIVKOVIC, pela execugao dos
trabalhos de datilografia, e também ao Sr. E. ORTIZ, pela execugao dos tra

balhos de desenho.

Sao Paulo, dezembro de 1966.

L. R. Borges Vieira.
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SOBRE A

TEORIA DOS SISTEMAS ASSOCIADOS

PARA ESTUDO DA ESTABILIDADE GLOBAL

INTRODUGCAQO GERAL

1. APRESENTAGZO

A teoria dos sistemas associados pode ser adequadamente encarada con

siderando-se o seu escopo. Em linhas bastante gerais, pode-se dizer que a

teoria dos sistemas associados se propde a obtencado de resultados sobre a

estabilidade global, atraves da utilizacao de familias de sistemas associa-
das. Estas sao famf{lias de sistemas de equagdes diferenciais que, por satis
fazerem a certas condlgoes, aparecem como assocladas a um sistema de equa-
goes diferenciais que é objeto de estudo quanto a estabilidade glcbal, Den-

tre as aludldas condigoes figura a condicao de associacao, que exprlme mate

maticamente a 1déis mais fundamental da teoria.

Podemos dizer que a teorla dos sistemas associados teve o seu inicio

com & publicagao do artigo [1] , onde expuzemos as idéias fundamentais da

teoria.

(*) Indicagdes como esta sdo relativas 3s referéncias bibliograficas

encontradas no final do presente trabalho.



Logo em seguida apresentamos o artigo [ii], onde comegamos o deser~-
volvimento matematico da teoria dos sistemas associados, obtendo os primei-
ros resultados rigorosamente estabelecidos. (No decorrer do texto gue 3egue,
o artigo [ii] serd preferencialmente designade por [TAS].) Bsses resulta--
dos podem ser divididos em duas categorias: a daqueles concernentes a esta-

bilidade relativa e a da@ueles concernentes a estabilidade assintdtica, Co-

mo base para o estabelecimento désses resultados, respectivamente enuncia--
mos e demonstramos dois teoremas do tipo dagueles nos quais o método direve

de Liapounoff se fundamenta, ambos de carater global: um sobre a estabilida

de relativa, designado por primeiro teorema de Liapounoff global, e outrn

sobre a estabilidade assintdtica, designado por segundo teorema de Liapcu--

noff global [cf. TAS, teorema 1, p. 28, e teorema. 2, p. 34].

Podemos dizer que os principais dentre os mais gerais resultadcs ob-

tidos em LTAS] sao o método dos sistemas associados para a determinacao de

dominios de estabilidade relativa [cf. TAS, parte II, secgao 6 (6.1), s,
50—52] e o método dos sistemas associados para a determinacao de dominios dc
estabilidade assintdtica [cf. TAS, parte II, secgao 6 (6.2), ps. 52-55], Am

bos ésses métodos empregam familias de sistemas associadas quaisquer.

Dentre os resultados de carater mais particular obtidos em [TAS] eg-

tao o método dos sistemas lineares associados para a determinacao de domi--

nics de estabilidade relativa [cf. TAS, parte III, secgao 2, PS. 58-65] g ¢
método dos sistemas lineares associados para a determinagao de dominios de

estabilidade assintotica [cf° TAS, parte IITI, secgao 4, ps 71-76]. Ambos €g

ses métodos empregam familias de sistemas associadas, impondo a restrigaode
que as mesmas sejam consiituidas exclusivamente de sistemas lineares, is%to

é, empregam somente familias de sistemas lineares associadas.

A proposito dos resultados da teoria dos sistemas associados obtidos
em [TAS], em particular a propdsito dos métodos que acabam de ser mensiona-
dos, sentiamos que agueles concernentes & estabilidade assintdtica eram me-
nos satisfatorios do que aquéles concernentes a estabilidade relativa.0 que
fundamentalmente determinava esta situag@o era o emprégo de uma certa nogao

de uniformidade [bf. TAS, definigao 13, p. 46], nogao essa que fomos leva--

dos a introduzir na teoria dos sistemas associados para o tratamento de ques
toes que envolvem a estabilidade assintética. De um modo geral, o referido
emprégo se manifestava pela presenga de uma certa exigéncia indesejével9 a
saber, a exigencia da escolha de uma fung¢ao, geralmente designada por'G(x)g
numa certa classe de fungoes., B o que ocorre nos dois métodos concernentes
a estabilidade assintdtica acima citados. Os dois métodos concernentes a es

tabillidade relativa acima citados apresentam-se livres dessa exigencia.



Entretanto, lcgo unos convencemos de que a aludida situacgao poderia
ser modificada: os resultados concernentes a estabilidade assintética po-
deriam ser aperfeigoados, poderiam de certa forma ssrem equiparadcs a08s
resultados concermentes 2 estabilidade relativa - através da  eliminagao

~da escolha de uma funcao &(x).

Neste sen%ido, continuando com o desgsenvolvimento da teoria dos sis
wat

temas asscciados, apresentamcs o artigo [iii], onde chegamos a certos re-
sultados que se constituism em aperfeigoamentos de alguns resultados con-
cernentes a estabilidade assintdtica obtidos em [TAS]. Assim, estabelece-
mos em [iii] certos resultados gque se apresentavam libertos da escolha de
uma fungao g(x). No entanto, os mesmos cingiram-se a consideragdo de fami
lias de sistemas lineares associadas, e, além disso, foram conseguidos a
custa da introdugdo de uma hipotese restritiva, a hipotese de egfliconti--

nuidade [pf, iii, Do 46]o Dentre tais resultados figura um método que se

- “ . . - . z .
constitui numa forma aperfeiccada do anteriormente citado metodo dos sis-
temas lineares associados para a determinagao de dominics de estabilidade

assintdtica [of, iii, parte II, secgdo 4 (4.1), ps. 56-58].

Posteriormente viemos a tomar pleva consciéncia de certas deficién
cias do segundc “corema de Lispounoff global. Fora fundamentalmente Esse
tecrema qus, dcvido a serias restrigdes que comporia (a diferenga de pri-

iro tecorema de Liapcunoff gicbal), nos levara ao emprégo da nogao de u-
niformidadz, responsavel pela presenga das fury es "o(x) na teoria dos 3ig
temas associados, Pars que tudéssemos slimimnar total e convenientementetal
emprégo, devariamos rover o segunde teorsma de Liapouncff global, substi-

tuindo-¢ por vma sua goneralizacgao, isenta das aludidas restrigoes. Eis,

™

L

muito sumariamente relatvada, & idéia geral que nos conduziu a realizagzo

de novos estudos sobre a2 tr2oria dos sistemas associados.

Agora, prcsseguindo com o desenvolvimento da teoria dos sistemas
associados, apresentamos éste novo trabalho, basisamente dedicado a uma ex
ploragao da aludids idiia. O mesmo &€ essencialmente composto de duas par-

tes, I & II.

Na parte I, trataremcs de uma certa generalizacao do segundo tco-

rema de Liapounoff glcobal, generalizaggo esss que sera adequada a sufici-

ente para as nossas finalidades,

Na parte II, utilizando c3 desenvolvimentos da parte precedente, 2

tingiremcs cs principais otjetivo: do presente trabalho, Trataremos do es

tabelecimento de rovos resultados da teoria dos sistemas associados con--

. - L 3 - n e ~ -
cernentes a estabilidade ass intotica. Ao contrario de [111], nao nos cin-



.

giremos a consideragao de familias de sistemas lineares associadas, mas con
sideraremos sempre familias de sistemas associadas gquaisquer. Além disso,

ainda a0 contrario de [iii], nao nos veremos constrangidos a introduzir hi-

poteses restritivas, como a hipotese de eqiticontinuidade., Dentre os aludi--
dos novos resultados, alguns se constituirao em aperfeigoamentos do princi-
pal dentre os mais gerais resultados concernentes a estabilidade assintdti-
ca obtidos em [TAS]; assim, estabeleceremos certos métodos, que se apressn-
tarao libertos da escolha de uma funggo_ée(x), o que se constituirdo em caﬁ

tas formas aperfeicoadas do anteriormente citado método dos sistemas para a

determinacao de dominios de estabilidade assintdtica.

2. CONSIDERAGJUES PRELIMINARES.

O presente trabalho, pela propria natureza da matéria de que trata,
pode ser considerado como um prolongamento de [TAS]. Sempre que possivel e
interessante, adotaremos aqui as mesmas hipdteses gérais, as mesmas denomi-
nagoes, convengoes e simbolos ja introduzidos em [TAS]. Para uma bda comé:g‘
ensao do presente trabalho, desejamos encarecer a necessidade de uma prévia

e completa leitura de [TAS]&

Como parte integrante desta introdugdo geral, passaremos enm répidarg
vista certos pontos especiais jé& considerados em [TAS], cujo conhecimento car

rente Jjulgamos ser particularmente indispensavel, Desta forma atenderemos 2a

conveniencia do leitor deste trabalho.

2.1. Os sistemas de equactes a serem considerados.

As nossas consideracbes dirao respeito & mesma classe & de sistemas

de equagoes diferenciais definida em [TAS, parte I, secgao 2, ps. 17-2OJo

Lidaremos com sistemas de equagdes diferenciais ordinarias do tipogg

ral (onde n designa um inteiro positivo qualquer)

1 = fl(xl,ao ° 9Xn9't)

(l) ®# 86 80600e00@9060088CPOCEEN

T
!
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nas fungdes incdgnitas escalares xl(t), - xn(t) da varidvel independente t.
(Como de costume, pontos encimando simbolos de funcgbes de t sao empregados pa
ra de31gnar derlvadas em relagao a t.) Trata-se de sistemas normais, mas em

geral nao 11neares e nao necessarlamente auténomos.

Restringir-nos-emos ao COrpo reel.,

Faremos uso do cédlculo matricial. Um ponto (xl,..'.,xn) do esepago de fa

se F (euclideano n - dimensional) serd designado pela matriz coluna
ou pela sua transposta

()i I x! =(xl... xn>.

Introduzindo a matriz coluna

fl(xlgabv9xn,t) 'fl(x,t)
(4) f(x,";) -~ OOOOBBOOQGO‘.OQQQ == : ,
fn(xl,ooo,xn,t) fn(x,‘t)

n

fungao de ponto (x.ﬁ,“a,x ,5) = (x,t) do espago de movimento B (euclideano i+

n+l - d1mers1ona1)9 podemos dar ao sistema (1) a seguinte forma matricial:

(5) x = f(x,%) ,
onde a incdgnita é a matriz coluna

x, (1)

Pt
[
~

It
°e
.

(6) s

x, (%)
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Seja B un conjunto.qualquer do espago de fase F e seja to um ndmero
qualquer (resl). Usamos o simbolo K(E,to) para designar o cilindro do espa
g¢o de movimento b, definido como segues K(E,td) é o conjunto dos pontos

(x,t) tais que x pertence a E e t pertence ao intervalo to < t <+ 00,

Consideraremos sempre sistemas do tipo (5) que ssatisfazem as condi -

goes A, B e C apresentadas a seguir. [Cf. TAS, p. 19].

A, 0 _segundo membro f(x,t) é uma funcao definida e continua num ci-

lindro K(D,to), onde D é um conjunto aberto do espaco de fase Srque con~

tém a origem 0 do mesmo espaco.

B. 0 segundo membro f(x,t) é tal que, para qualquer ponto (xo,tg)

de K(D,to), o problema de valores iniciais que consiste nas imposicoes

da equacac diferencial (5) e da condigao inicial

(7) x(+!) - x,

tem nalgum intervalo ]t < t¥, com t7 > t!, ume e uma 86 solucgao

(8) x(t5x 58)

»*
continua no referido intervalo. ( )

C. 0 segundo membro f(x,t) & tal gue

(9) £(0,%) = 0O

idénticamente no intervalo t, L t<+ o,

DEFINIGEO 01 [cf. TAS, definigdo 1, p. 20]1—7 Dizemos que um sistema
x = f(x,t) pertence & classe €& , se o mesmo é tal que as condigées A, B
e C estao satisfeitas. Para um tal sistema, quando desejarmos especifi-

ficar o conjunto D e o numerc to, diremos que o sistema pertence & classe

& (D,t,)..

(*) A menos que aléo em contrario seja dito, consideraremos sempre
%t como sendo o valor extremo futuro para t (relativo a prolongamentos em
D). Desta forma, pode-se dizer gqua a fungéo x(t;xo;té) fica perfeitamente

determinada por x e té.



~T-

Como se vé, de acordo com a identidade (9), consideraremos sempre sis

temas que admitem pelo menos um ponto de equilibrio, e mais, suporemos sem-

pre que a origem O do espaco de fase-ér seja um tsl ponto. Assim, 0s nossoz
estudos de estabilidade em torno de um ponto de equilibrio serao sempre re-

~ ® N Vd o v ~
lativos a origem O do espago de fase J . Como & sabido, esta padronizagao

nao envolve perda de generalidade.

2,2. Algumas observagoes gerais.

Sendo A = (aik), (1=1,...,p; k=1,...,q), u'a matriz (real) qualquer,

empregaremos a notagﬁo |A| para indicar a norma euclideana de A:
P03 2 | 1/2
(10) 4l - |2 = aik] /
i i=1 k=1

(Neste trabalho as poténcias sao sempre tomadas com as suas determinagaes

nao negativas.)

Indicaremos a distancia (euclldeana) no espago d’(euclldeano n - di--
mensmnal) com o simbolo @ . Assim, quaisquer que se,]am os pontos x € F -
yed', e quaisquer que sejam 08 con;juntos X Cd'e YC d" 1ndlcaremos com
© (x,y) a disténcia de x & y, com @ (x, Y) a distancia de x 2 ¥, e com@ (X,Y

a . distancia de X a Y. Desta forma vé-se que

(12)  elxy) = |x -y

lrad I rd -~ ,
guaisquer gue sejam x € Jeyed . Vé-se tambem que

(12) p (x,Y) = inf |x - ¥| e e (X,1y= inf |x - |
yE€ Y , x€ X
. yet

r’ (rd : n e
quaisquer que sejam x;ed' e YC J e quaisquer que sejam e ey S -

regpectivamente.

A-propésito de conjuntos de 57 empregaremos certos atributos de natu-
reza topoldgica (tais como "aberto", "compacto", etc.). Quando nada em con-
trario for dito, e mesmb que tais conjuntos sejam considerados como subcon-
juntos de outros conjuntos de 5: , 08 aludidos atributos Serao sempre eni-

" [
tendidos como relativos a topologia (euclideana) de J

'2.3. Al gumas definicoes especiais;

Empregaremos com grande freqlléncia certas notagoes e certos conceitos

cuja_,’introdugg.o encontra-se feita em [_TAS], Apresentaremos & seguir uma brg
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ve recordagao concernente a tais notagoes e conceitos.

a) Classe .

Considere-se uma quelquer fungdo numérica @ (x) (real) definida em to-
P ~ ~ - -
do o espago de fase J . Para umas tal fungao, usamos as notagoes simplifica-

das sup § e sup @ (x), definidas pela seguinte expressao:

(13) sup P = sup P(x) = supl_ﬁP(X)o

xed

Seja h um nimero qualquer. A fungdo ¢ (%) e o nimero h determinam per
feitamente um conjunto do espago de fase 6? , conjunto esse que desig‘namos

por L(@ ,h) ou por L(P (x),h), e que definimos como segue:

DEFINIGEO 02 [ef. TAS, p. 20] - L(§,h) é o conjunto dos pontos % do
espago de fase F tais que P (x) < ho

Ta:i:s conjuntos sao empregados na seguinte definigdo da classe Trs

DEFINIGAO 03 [of. TAS, definigdo 2, p. 20| - Dizemos que a fungao
@ (x)pertence & classe TT ou, simplesmente, que ¢ (x) é uma fungao 1T,  se

(P (x) verifica as quatro condigoes seguintes:
. . o
1) (.P (x) é continua em todo o espago de fase .

2) (o)

3) (P(x) > 0 para qualquer x # O pertencente a J .

C.

4) Qualquer gue seja h (estritamente) menor do que sup § , o conjunto
L(§ ,h) é limitado.

Trata~se de uma classe de fungoes que amplia (num certo e conveniente

sentido) a classe das formas quadraticas definidas-positivas.

b) Fungoes definidas-positivas, fungoes definidas-negativas e funcoes

TT-limitadas.

“..Considere-se agora fungoes numéricas, w(x,t), de ambas as varidveis

x e.t.
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DEFINIGAO 04 [of. TAS, definigdes 4 e 5,p. 25] - Dizemos que uma fun--
gao w(x,t) é defini da-posnlva [ negatlva] num oilindro K(R,*t ), se . R
é um conjunto aberto de F que contém a origem 0, e se w(x, t) é uma fun-

. gao definida em K(R,to) de tal modo que

(14) T w{0,t) = 0

para qualquer t >t , e de tal modo que existe uma fungao (P (x) | Q(X)] da

classe TT para a qual a relagao
(15) w(x,t) > Q(x)  [w(x,8)< - o(x) ]

subsiste para qualquer x & R e qualquer % :}to. Nestae condigoes, dizemos
ainda que w(x,t) [-w(x,t) ] pertence a fungao (p(x) [G(x) ] no cilin-
dro K(R,to).

DEFINIQAO 05 [cf. TAS, definigo 6, D. 25] Dizemos que ums  fungao
w(x,t) é J[-limitada num cilindro K(R,u ), se R é um conjunto aberto de F
que contém a origem O, e se w(x,t) é uma fungao definida em K(R,t )de tal

modo que existe uma fungao \]J (x) da classe TT para & qual a relagao

(16) [w(x,%) | € P(x)

subsiste para qualquer x € R e qualquer t >/to.

As definigGoes gque acabam de ser dadas introduzem conceitos de carater

global.
c) Classe Cl(K(D,tO)).

DEFINIQAO 06 [cf TAS, definigao 7, P- 26] Dizemos que uma fungao
w(x,t) pertence a classe C (K(D £ )), ge D é um conjunto aberto de F que
contém & origem 0, e se a fungao w(x t) = w(xl,...,x ,t) é continus e tem
derivadas parciais primeiras em relagao a todos os seus argument.s cscala
Tes, Xy,... X, € t, todas continuas no cilindro K(D,t ) (Nos pontcs x,t)
tais que t = t_, a derivada w (x t) de w(x,t) em relagao a t é tomada co-

mo sendo a derlvada a dlrelta.)

d) Os elementos h((P,R) e os conjuntos & (v,R, {).

Considere-se uma qualquer fungao § (x) da classe TT e um qualguer con

[ o ~
junto aberto R do espago de fase J gue contém a origem O. A fungao P(x) e

o conjunto R determinam perfeitamente um elemento do sistema ampliado de nu-
meros reais, elemento ésse que designamos por n(§,R) ou por n(¢@(x),R), e

que definimos como segue:
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DEFINIGAO 07 [cf. TAS, p. 22] - h(tP ,R) é o extremo superior do con
junto dos nimeros h tais que O<h < sup @ e que o conjunto L( @ ,h) esta

contido em R.

Tem-se que O < h({ ,R) < sup P
Tome-se to como sendo um nidmero previemente fixado.
Juntamente com a fungdo Y (x) e com o conjunto R, considere-se agora

uma qualquer fungio numérica v(x,t) da classe Cl(K(Rpto)), pertencente a
50(1) no cilindro K(R,to). (%)

A fungao v(x,t), o conjunto R e um nimero h qualquer determinam perfei
: = " 5
tamente um conjunto do espago de fase F , conjunto esse que designamos por

s(v,R,h) ou por S(v(x,t),R,h), e que definimos como segues:

DEFINIGEO 08 [cf. TAS, p. 28] - S(v,R,h) é o conjunto dos pontos =
do espago de fase f tais que z&€ R e qﬁe z verifica a desigualdade
V( Z,to) < h, | .
Tem-se que S(v,R,h) C R e que S(v,R,h)C L(lp,h), qualquer que seja
h. Além disso, para O<h < h( ¢ ,R), pode-se afirmar gue S(v,R,h) é limitado

e que S(v,R,h) contém a origem O no seu interior: 0 € int S(v,R,h).

A fun¢go v(x,$), o conjunto R e a fungdo Y (x) determinam perfeitamen
. a . ~ R
te um conjunto do espago de fase J , conjunto esse que designamos por
& (v,R, ¢) ou por S (v(x,t),R, ) ou ainda.por & (v(x,t),R, P(x)),e que

definimos por meio da segluinte expressao [cf, TAS; p. 301:

(17) S (v,R, ) =l JS(V,R,h) .

0<h<h(¢,R)

Equivalentemente, podemos também definir o mesmo conjunto como segue:

DEFINIGAO 09 [cp. TAS, Dp. 30] - &(+,R, tP) é o conjunto ‘dos pontos

z do espago de fase 3'.' tais que z € R e que z verifica a desigualdade

(18) v(z,5,) < h(P,R) .

( %) Observe-se que, devido a esta Ultima imposigao, & fungao v(x,t)

é definida-positivae no cilindro K(R,fo).
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Tem-se que © (v,R, P)C R e que S (v,R, ) é aberto. Além disso, po-
de-se afirmar que g(v,R, ‘P) contém a origem O no seu interior:

o€ int G (v,R, Q) (=S (v,R, @) ).

As definigdes que acabam de ser dadas tém interésse no tratamento de

certas questoes concernentes & estabilidade global,

2.4. Sobre o método direto de Liapounoff. Caso da estabilidade global

assintotica.

No nosso ponto de partida estarao duas definigoes e um teorema, que Tres
pectivamente adotémos e estabelecemos em [TAS]. Faremos abaixo a reprodugao
dessas definigoes-e desse teorema., A primeira definigao reproduzida tem um ca
rater basico, enquanto que a segunda e o teorema enghadram-se tipicamente na

teoria do método direto de Liapounoff.

Considere-se um sistema qualquer
(19) | x = f(x,t)

dado na classe & . Seja éle pertencente a classe é (D.,to).

s) Dominios de estabilidade assintdotica.

Seja S um subconjunto de D que contém a origem O no seu interior.

DEFINIGEO 010 [cf. TAS, definigao 10, p.33] - Dizemos que S é um do-
minio de estabilidade assintdtica do sistema (19) (em torno do ponto de

equilibrio 0), se O é um ponto de equilibrio estavel (*) do sistema (19),

e se qualguer trajetdria x = x(t°x ity ) do mesmo sistemas, que para t = %

parte de um ponto X, € S, é tal que o correspondente valor extremo futuro

para t (relativo a prolongamentos em D) é AN 00, e é tal que
(20) ' lim  x(t5x_5%,) = O .
t¥» +00

Equivalentemente, dizemos que ©O sistema (19) possui estabilidade global

assintdtica em S.

(*) No sentido de Liapounoff.
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L) Puncoes de Liapounoff para a estabilidade (global) assintética.

Sejaz v(x,t) uma qualquer fungao da classe Cl(K(D,tO)). 0 sistema (19)
5 v(x,t) determinam perfeitamente uma outra fungao, & derivada de v(x,t) em
relagdo a t ac longo das trajetdrias do sistema (19). Trata-se da  fungao
v'(x,%) definida no cilindro K(D,to) pela seguinte exprgssao (envolvendo as
derivadas parciais vt(x,t) e v, (x,t), (i=1,400.,n), de

. 3
(e, 1) v{zl,.b.,xn,t)):

n
(21) v (x,8) = v (x,t) + 2. fi(=x,8) v (x,t).
i=1 i

Essa expressao pode ser alternativamente apresentada como segue:

(22) v'(x,t) = vt(x,t) + £1(x,t) grad_ v(x,t),
onde
Vxl(xvt)
(5 grad_ v(x,t) = : .
v (x,t)
n
DEFINIGCAG 011 [cf, TAS, definigao 11, p. 33] - Dizemos que uma fun

¢ao v(x,%t) é uma funcac de Liapounoff num cilindro K(R,to) para & estabi=~

ilidede assintética do sistema (19), se

(a) v(x,t) é da classe Cl(K(D,tO)),
(b) R é um subconjunto de D, que & aberto e que contém a origem O,
(e) w(x,t) é definida-positiva em K(R,to),_

(3) v(x,t) é T|-limitada em K(R,%_),
(e) v*(x,t) é definida-negativa em K(R,to).

A éefinigio acima iniroduz um conceito de cardgter global.

s) Um teorema global do método direto de Liapounoff.

Envolvendo o conceito acima, subsiste o seguinte teorema:
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TEOREMA 01 [cf. TAS, teorema 2, p. 34]-- Se v(x,t) & uma funcio de
Liapounoff num cilindro K(R,to) pars a estabilidade assintdotica do siste-
ma (19), e se ¢ (x) é uma funcéo & qual v(x,t) pertence no cilindro
K(R,to) : , entgo o conjunto & (v,R, ) é um dominio de estabilidade

assintotica do sistema (19).

Bsse teoremé foi designado em [?AS] por segundo teorema de Liapounoff

global.

2.5. Familias de sistemas sssociadas.

Em [TAS, parte II, secgdo 2, ps. 37-39] fizemos a introdugac do con -

ceito de famfilia de sistei.as associada. Trata-se do conceito fundamental da

teoria dos sistemas associados. Reconsidera-lo-emos a seguir (apresentando-

o em toda a generalidade com que foi introduzido).

Considere~se um sistema qualquer

(24) x = £(x,t)

dado na classe § . Seja 8le pertencente & classe &(D,to). ‘

Seja

(25) z =

o9

n

, r~
um ponto variavel num conjunto do espago de fase J. Ao lado do sistema
(24) e parametrizada por z, considere-se uma familia de sistemad de equa -

goes diferengiais ordindrias do tipo geral
(26) x = u(x,t52) ,

onde a8 matriz coluna

(*) Observe-se que tais @ (x) existem e que necessiriamente pertencem

a classe'TT (34 que v(x,t) é definida-positiva em K(R,to)).
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ul(x‘l,...,xn,t;zl,...,zn) ul(x,t;g)
(27)  ulx,t;2) = : =
un(xl,...,xn,t;zl,...,zn) un(,x,_t;z)

é fungao de x, t e z.

Relacionando o sistema (24) c.’om a familia (26), pode-se formular as

seguintes condigoes [cf. TAS, ps. 38 e 39]:

I. A ceda z€ D corresponde um sistema x = u(x,t;z) da fam{lia ,

pertencente s classe Q (D,to).
II. CONDIGAO DE ASSOCIAGAO - A funcgao u(x,t;z) é tal gue
(28) u(z,t32z) = £f(z,t)

para qualquer z& D e gualquer t )to.

DEFINIGKO 012 [of. TAS, definigdo 12, p. 39] - Dizemos que a fami-

lia (26) é uma familia de sistemas associada ao sistema (24), se as con-

digoes I e II estao satisfeitas. Referimo-nos aos sistemas de uma tal

familia como sistemas associados.

Em [‘I‘AS, parte II, secgao 3, ps. 40-42] demonstramos que qualquer que
seja o sistema da classe é , existem familias de sistemas associadas ao mes
mo. Na verdade, demonstrdamos mais: demonstramos que qualquer que seja osis
tema da classe 6 , 0 mesmo admite fam{lias de sistemas associadas de um ti-
po particular, a saber, familias de sistemas associadas constituidas exclu-
sivamente de sistemas lineares, isto &, familias de sistemas lineares asso-

ciadas.
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PARTE I

SOBRE UM TEOREMA GLOBAL DO METODO DIRETO DE LTAPOUNOFF

1. INTRODUCAO.

Consideremos um sistema qualquer,
(1) x = f(x,t) ,
dado na classe 6;. Suponhamos que o mesmo pertenga a classe é% (D,to).

A propésito de tais sistemas, e relativamente ac seu ponto de equi-
1ibrio 0, origem do espago de fase d , enuncidmos e demonstramos em [Tas]
um teorema global do método direto de Liapounoff, concernente a estabilida-

de assintdética. Referimo-nos ao segundo teorema de Liapounoff global, ante-

riormente reproduzido como teorema Ol [cf. introdugao geral, 2.4, c],

Nesta parte I trataremos de uma certa generalizaqao do segundo teo-
rema de Liapounoff global, adequada e suficiente para as nossas posteriores

finalidades. Preliminarmente faremos uma ligeira ampliagao dos conceites glo

bais de fungao definida-positiva e de fungao definida-negativa introduzidos
em [TAS]. Passaremos em seguida ao estabelecimento da aludida generalizagao,
apresentando-a em duas formas (equivalentes). A primeira forma, analoga a
do teorema 0l, serd obtida através do emprégo de um conceito global de fun-
950 de Liapounoff para a estabilidade assintotica ligeiramente mais amplo
do que aquéle adotado em [TAS]. A segunda forma, que se apresentara como sen
do de utilizaggo mais conveniente do gque a primeira, seri obtida através do

emprégo do novo conceito de derivada autonoma de uma funcao em relacao & um

sistema, previamente introduzido e discutido.
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TPerminaremos considerando um teorema obtido por Yoshizawa, e discu-

tindo certas conexdoes entre o mesmo e a acima aludida generalizagao.

2, FUNQGES.DEFINIDAS-NEGATIVAS FRACAS E FUNCOES DEFINIDAS-POSITIVAS
FRACAS.

Nesta secgao introduziremos e estudaremos certos conceitos de card-
ter global, um pouco mais amplos do que aqueles correspondentes introduzidos

em [TASI e dados pela definigao 04 [pf. introdugao geral, 2.3, b].
Introduziremos os aludidos conceitos através da seguinte definigaos

DEFINIGAO 1 - Dizemos que ume fungdo w(x,t) é definida-negativa
[ -positiva ] fraca (*) num cilindro K(R,to), se R é um conjunto aberto
de & que contém a origém 0, e se w(x,t) é uma fungao definida em K(R,to)
de tal modo que, gqualquer que seja o conjunto compacto L delf'contido em
R, cujo interior int L contém O, a mesma w(x,t) (considerada como fungao
definida em K(int L,to)) ¢ definida-negativa [_—positiva ] no cilindro

K(int L,to).

Constata-se imediatamente gue uma fungao w(x,t) é definida-positiva
fraca num cilindro, se e somente se a fungao -w(x,t) é definida-negativa fra
ca no mesmo cilindro. Por motivos de simplificagdo e conveniencia de exposi
¢80, restringiremos as nossas consideragGes as fungoes definidas-negafivas fra
cas; relativamente as fungoes definidas-positivas fracas, consideragoes cor-

respondentes analogas poderac ser facilmente feitas. Comecemos com a seguin-

te proposigao:

PROPOSIGAO 1 - Considere-se um qualquer cilindro K(R,to), onde R de
) (g - o ~
signa um conjunto aberto de J que contém a origem 0. Se uma funqaov&x,t)
é definida-negativa em K(R,to) entao w(x,t) é definida-negativa fraca em

K(R,to).

(#) Empregaremos o atributo "fraca" por nao nos ter ocorrido uma outra

~ . »
expressao que nos parecesse mais recomendavel.
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Essa proposigao pode ser demonstrada de modo extremamente simples.
Em breves linhas, daremos a segulr umae demonstragac para a mesma. Seja L
um qualquer conjunto compacto de C* ‘contido em R, cujo interior int L con
tém & origem O. Utilizando a definigao 04 obtém-se fhacilmente que w(x,t)
é definida-negativa no cilindro K(int L,to). Em vista disso, empregando a
definigao 1, conclui-se imediatamente que w(x,t) é definida-negativa fra-
ca em K(R,to). | '

Passamos g exibir uma propriedade que € possuida por umas qualquer -

fungao w(x,t) definida-negativa num cilindro K(R,t,):

Para qualquer conjuntp compacto L de JF contido em R, cujo interior

int L contém a origem O, existe um numero h = h(L) > 0 tel que

(2) sup . w(x,t) s'-. h,
xe RN°L i '
t>fto
onde cL designa o conjunto complementar de L (_em relacao a 3: ). As restri

goes de L ser compacto e de L estar contido em R podem ser \ellimi;nada.s.

Para demonstrar essa propriedade, comece-se considerando que,sendo
w(x,t) uma fungao definida-negativa no cilindro K(R,to), existe uma fun-

¢ao 6(x) da classeil]| tal gque <
(3) w(x,t) € - o(x)
para qualquer x & R e qualquer t > to.

Em seguida note-se que, exclusivamente com base no .fato de que 8(x)

é uma fungao da classe TT, pode-se demonstrar que subsiste a relagao

(4) inf o(x) » o,
X a CU ' -

onde U designa uma qualquer vizinhanga esférica da origem 0. Com efeito, de
signe-se por k o extremo inferior que figura ne primeiro membro da (4).Cezx
tamente se tem que k 3> 0, pois 6(x)> 0 para qualquer x & F. Consegtiente-
mente, para provar a (4), basta que se prove que a hipotese k = 0 conduz a
um absurdo. Adote-se essa hipdtese. Dés'_igne-.s.e‘_ por' ® o fécho de uma arbitrd
ria vizinhanga esférica da origem O tal que UC & . No conjunto fechado 1i-
mitado e neo vazio & -~ U, a funcao o(x), sendo continua e (estr;ifamente) po

sitiva, tem um minimo absoluto (estritamente) positivo. Assim sendo, vé-se
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facilmente que a hipdtese adotada acarreta que inf o(x) = 0, Daf, le-

x&°E
- vando em oonta a arbitrariedade de 2 , deduz-se sem dificuldade que os con

juntos L(©,i), com 0 < 1 & sup 6, ndo sao limitados. Eis o absurdo.

Considerando agora gque Q & int L, da relagao (4) acima provada ob-

tém-se facilmente que

(s ~ inf o(x) > o.
x& %int L

Resulta imediatamente dai que existe um nimero h > 0 tal que se x & Cint L,
entio 6(x) > h, Segue-se que se x& RN °L, entdo 0(x) > h. Conseglientemen-
te, por forga da (3), deduz-se que se x& RN °L, entdo w(x,t) < - b  para
qualgquer % 2>to. Conclui-se imediatamente que o numero h > 0 acima referido

é tal que a (2) subsiste.

Por meio do uso da propriedade que acaba de ser demonstrade, podemos

constatar de modo simples e sugestivo a subsistencia da seguinte proposicgao:

PROPOSIGEC 2 - - Cons:.dere se um qualquer cilindro K(R,t ), onde R
designa um conjunto aberto de d' que contém a origem O, Ex1stem fungoes
w(x,t) definidas-negativas fracas em K(R,to) que nao sao definidas-nega-

tivas em K(R,to).

Com efeito, inicialmente observemos que, relativamente ao cilindro
K(R,t ), os seguintes dois casos esgotam todas ab pos31bi11dadeS° ou
R = d‘ y ou R % d‘ . Apresentaremos abaixo dois exemplos bastante simples e
sugestivos, um para cada um dos referidos casos, exemplos esses que exibem
fungoes w(x,t) com as seguintes caracteristicas: w(x,t) é definida-negativa
fraca'po cilindro K(R,to), e, relativamente aoc mesmo cilindro, w(x,t) nao
possui a propriedade acima (expressa por meio da (2)). Esta Ultima caracte-
ristica implica que w(x,t) nao & deflnlda -negativa no cilindro K(R,t ) Fi-

card assim constatada a subsisténcia da proposigao.

Para o caso de ser R = 5: » considere-se no cilindro K(R,to) a fun -

~

¢ao

(6) Cw(x,t) = - |x]
E, para o caso de ser R £ ¥ , considere-se no cilindro K(R,to) a fungao

(7 w(x,0) = - Jxl? I [ Rm) 17
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(Neste 1ultimo caso, observe-se que a fronteira ® - int R = R - R de R néo
[~ ~ o’ ’ -

sendo vazia, tem-se que para qualquer x&J a distanciae(x,R-R) é um nume

ro real, ConsegHlentemente a fungdo w(x,t) dada pela (7) assume sempre valo

res reais.)

A propésito das verificagdes de que as fungoes dadas pelas (6) e(7)
constituem-se em exemplos de fungdes w(x,t) com as caracteristicas acima
mencionadas, permitimo-nos, em nome de u'a maior brevidade, omitir conside
ragoes detalhadas. Limitar-nos-emos as ligeiras indicagoes que seguem. As
verificagaes de que essas fungSes nao possuem a propriedadeﬁexpressa por
meio da (2) nao oferecem guaisquer dificuldades. Um pouco mais trabalhosas,
embora exeqtifveis sem grandes dificuldades, sao as verificagoes, feitas a
partir da definigao 1, de que as mesmas fungOes sao definidas-negativas fra
cas. Entretanto, através do emprego da proposigao 3 abaixo, estas ultimas

verificagoes tornam-se mais simples, nao oferecendo quaisquer dificuldades.

0 conteudo das proposigaes 1 e 2 pode ser assim expresso: a classe

das fungOes definidas-negativas fracas num cilindro contém estritamente a

classe das fungaes definidas-negativas no mesmo cilindro (gpalquer que se-

ja tal cilindro).

Daremos a seguir, com a proposigao 3, uma caracterizagao das fun-
goes definidas-negativas fracas num cilindro. Essa caracterizagao é bastan

te importante para o presente trabalho: a mesma permitira que, ao tratarmos

com fungoes definidas-negativas fracas, nos libertemos completamente da con-

sideragao de fungdes da classe ||.

PROPOSIGEO 3 - Para que uma fungao w(x,t) seja definida-negativa

fraca num cilindro K(R,to) é necessirio e suficiente que sejam verifi-
cadas as seguintes condigoes:

(i) w(x,t) é uma fungao definida no cilindro K(R,to), sendo que R
1

. . (g , .
é um conjunto aberto de ¢ que contém a origem O,

(ii) w(x,t) é tal que

L (8) w(0,t) = O

>t .
0
(iii) w(x,t) é tal que, para cada conjunto compacto C de & contido

0} , existe um nimero positivo n=-7% (¢)

para qualquer t

no conjunto R -

tal que

(9) w(x,t) < - 7

A - ) , _ . > . .
NS & s K A T H z
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para qualquer x & C e qualquer t 2> to.

Demonstremcs inicialmente a necessidade das condigoes (i), (ii) e
(iii). Suponha-se que w(x,%) é uma fungao definida-negativa fraca num cilin
dro K(R,zo).

Pela definigao 1 obtém-se imediatamente que a condigio (i) resulta

verificada,

Assim sendo, tem-se que R é um conjunto aberto de é: que contém a o~
rigem 0. Existe portanto uma vizinhanga esférica U de O cujo fécho L esta
contido em R, O conjunto L € um compacto &aér contldo em R, cujo 1nterlor
int Lo contém O, Pe'la' daflnlgao 1 obtém-se gue w(x,t) € definida-negativa no
cilindro K(int Lo,to). Dai, pela definigdo 04, deduz-se que a condigao gii)

resulta verificada.

Para provar que a condigao (iii) resulta verificada, tome-se um qual

T . . .
quer conjuntc compacto C de & contido no conjunto R - {O}.-Pode-se evidente
mente supdr que C ndo é vazio (pois no caso oposto a existéncia do numero 7

é imediata).

Constatar-se-a a seguir. a existencia de um conjunto compacto L de 3?
contido ex R, cujo interior int L contém 0, conjunto &sse que ainda é tal
que o seu interior int L contém C. (Na verdade existe uma infinidade dés-
ses conjuatos.) Considere-se um ponto qualquer x & C. Levando em conta que
CCR-{0}equeR - {0} é aberto, ve-se que existem infinitas vizinhangas
esféricas U de x cujos féchos estao contidos em R - {O} . Considere-se a
classe constituida por todas essas v121nhangas U correspondentes a todos os
pontos X € C. Tal classe é Obviamente um recobrlmento aberto de C, Como C
¢ um conjunto compacto, pelo teorema de ]301:‘6'I Lebesgue pode se afirmar que
ex1sue um numero finito N de v121nhangas da referlda classe que recobrem C.
Des;gne~se tais v1zlnhangas por U ""'UN’ e designe-se os seus respecti-

vos f&chos por Ll’ ss0y L Posto 1sto, construa- -se o conjunto

Nl
L = LQ U L1LJ cee U LN' Sem qualgqguer dlflouldade pode-se verificar que es-
se conjunto L satisfaz a todos os requisitos existenclais acima explicita -

dos.

d : . F . ) -
Como L e um conjunto compacto de J contido em R, cujo interior int
. contém 0, peles definicdo 1 pode-se afirmar que a fung@o w(x,t) é definida
~negativa no cilindro K(int L,to). Dai, pela def1nig§o-04, segue-se que exig

te uma fungdo O(x) da classe || tal gue
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(10) w(x,t) £ - O(r)

para qualquer xe& int L e qualque:ﬂr t > to. Considerando que int L contém C,
obtém-se que a desiguasldade (10) subsiste para qualquer x& C e qualguer

t 2t . Mas, dos fatos de que 6(x) é uma fungéo da classe TT e de que C éum
conjunto compacto nao vazio ao qual nao pertence a origem O, segue-se facil

mente que 6(x) tem um minimo absoluto (estritamente) positivo m em C. Deduz

sec entao que
(11) wix,t)€ - m
para qualguer x € C e qualguer t > to’ bastando pois tomar 7.1:&1 que

(12). 4 O<'7<m
 para se concluir que a condigao (iii) resulta verificada.

Na demonstragao de suficiencia, que sera dada abaixo, consideraremos
graficos de fungdes reais definidas em conjuntos do espago de fase 3:.Assim,
utilizaremos o espago J‘ = ﬁxJ‘l y produto cartesiano de‘?pelo espago R
dos numeros reals, 0 mesmo d‘ ¢ pois constituido pelos pontos (z,-o’), com
z variavel em v.'f'e 7 varlavel em R . Consideraremos 3:‘1 munido da estrutura
de espago euclideano (n+l - dlmensuonal), e utilizaremos o simbolo 91 para
indicar a distancia (euclideana) em J"l do mesmo modo que utilizdmos o sim
bolo @ para indicar a distancia (euclideana) enlér[cf. introdugao geral ,

2. 2]. Note-se que, desta forma, pode-se afirmar gque

[91((x,06) y,p)) ] [e(x,y) ]2 + ]x—ﬁlz, quaisquer que séjam os pon
tos (x,0t) &€ .j- e (y,ﬁ)e d'

Demonstremos finalmente a suficiéncia das condigoes (i), (ii) e

(iii). Suponha-se que w(x,t) é uma fungdo que as satisfaz.

Para demonstrarmos gque w(x,%) é uma funcao definida-negativa fraca
no cilindro K(R,to), em virtude da condigao (i) e tendo em vista a defini -
cao 1, obviamente basta que demonstremos que w(x,t) é definida-negativa mo
cilindro X(int L,to), qualquer que seja o conjunto compacto L de grcontido
em R, cujo interior int L contém a origem O. Mas, para tanto, utilizando. a
definigao 04, vé-se que em virtude da con@iéﬁo (ii) basta que demonstremos

.0 seguinte fato:

o
Qualquer gque seja o conjunto compacto L de Jd contido em R, cujo inte

rior int L contém a origem O, existe uma fungdo QL(x) da classe || tal que
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(13) w(x,t) & - 0L (x)
para qualquer x € int L e qualquer t > to‘

Supondo L fixado, comecemos construindo uma fungao GL(x). Primeira-

mente, consideremos a funcao W(x) definida pela expressio

(14) w(x) = sup w(x,t) .
b2t

Pelas condigoes (i), (ii) e (iii) vé-se facilmente que W(x) é uma fungio de
finida em R, assumindo sempre valores reais. Em seguida, consideremos o gra
fico WL da restrigao da fungao W(x) ao conjunto L (& R), isto é, conside-
remos o conjunto ﬁL dos pontos (y,W(y))e& c’f'ul obtidos quando y percorre L.

Pinalmente, definamos QL(x) pela expressao

(15) o (x) = @,((x,0), %),
ou, de modo equivalente, pela expressac

(16) o (x) = int @, (:,0) , (W) ) .
ye L
Esta GL(x) é uma fungao definida em todo o espago de fase !j:/, assumindo

sempre valores reais (pois L nfo sendo vazio, também ﬂL ndo é vazio).

O fato acima ficara demonstrado se provarmos que a fungio QL(X) que
acaba de ser construida satisfaz a todos os requisitos exigidos no enuncia

do do mesmo., E o que faremos a seguir.

Utilizando as condigoes (i), (ii) e (iii),da (14) tira-se que W(0)=0
e que W(x) < O para qualquer x £ O pertencente a R. Levando isto em conta,

obtém-se facilmente que W(x) = = I 4 l((x,O),(x,W(x))) para qualquer x € R.

Ora, das (15) e (16) tira-se que
- GL(x) = -91((::,0) ,WL) > -pl((x,o),(x,W(x))) para qualguer x& L. Logo
em seguida, considerando que int LC L, pela (14) conclui-se que a (13) sub

siste para qualquer x€& int L e qualquer t > to.

Assim sendo, sé resta provar que a fungao OL(X) pertence a classe | |.
E o que faremos .logo abaixo, mostrando que & funcao QL(x) verifica as condi
goes 1), 2), 3) e 4) que figuram na definigao 03 da referida classe [cf. in

trodugdo geral, 2.3, a].
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: ' L

1) ¢ (x) é continua em todo o espago de fase & . De fato, por uma
propriedade bem conhecida da distancia, sabe-se. que gl((x, 3‘) w ) € uma
fungao contlnua do ponto ( ,'U em todo o espago d' . Dal, usando (15),

obtém-se a referida continuidade de OL(x).

,\J
2) o (O) = 0. De fato, considerando que o ponto (0,0) de J‘l perten

ce a WL’ vé-se pela (15) que isto é imediato,

N B

3) @ ( ) > 0 para qualquer x ,aé 0 pertencente a J' De fato, sendo

GL(x) 2 0 para qualquer xed‘ (Ja que © (x) ¢ definida como uma distancia),
H

a presente condigao SO nao sera verlflcada se existir um ponto x ;4 0 de o
tal que O (x) = 0, Faca-se a hipotese de que este seja o caso. Entao, pela
(15) tem-se que 91((3( 0),W ) = O, e, considerando a (16), ve-se que exis-
te uma seqflencia {(y }ri(y ))} i=1,2, ’ constituida de pontos pertencentes

a WL’ tal que lim gl((x 0), (y ,W(y ))) = 0. Dal segue-se que
' i+00 '

lim W(y,) = 0 e que lim y. = x. Desta dltima relagao, considerando

i-»+00 i-»+00
que- yie L, (1 1 2,...), e que L por ser compacto & fechado, deduz-se que

X& L. Como LC R, e como x # 0, obtém-se que x pertence necessariamente ao
conjunto aberto R - {O} . Assim sendo, existe um conjunto compacto C de F
contido no'conjunto R - {O} tal que x& int C. (Basta que se tome G ¢omo
sendo o fécho de uma‘.vizinhanga esférica de x com raio suficientemente pz-
queno.) Em virtude da condigao (iii), e levando em conta a (14), pode- se )
afirmar que existe um numero Qositivo 7 tal que W(x)s— ‘7 para qualquer
x & C. Ora, éste fato é manifestamemte incompativel com as relagdes

X & int C, - lim ¥y = x e  lim W(yi-) = 0. Conclui-se pois quea hi
: ' is»+00 i»+oo .

potese feita € absurda, sendo portanto GL(x) > 0 para qualquer x # O perten

. ”e
cente a J’.

4) Qualguer que seja h (estrltamente) menor do que sup 6y, o conjun
to L(Q ,h) - isto &, o conjunto dos pontos xe F tais que © ( )<h - & limi
tado. De fato, sempre gue h < 0 o referido conjunto € claramente limitado,
pois, como acima se mosgstrou, 0 -(x) > 0 para qualquer x ;l 0 pertencente a .:/F
) vista disso, supondo—se fixado um qualquer nu_mero h > 0, basta que se mos
tre que o cpnjunto dos pontos XEJ' tais que © (x) h e llmltado, E o gque
sera feito a seguir. (*) Comece-se fixando um nimero M.> 0 de tal modo que

‘y| = (y,O) &£ M para qualquer y e L. Isto ¢ certamente p0531vel, pois o

(*) Note-se que, uma vez isto feito, poder-se-a concluir imediatamen
q e}

te que sup OL% + . ' - .
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conjunto L, sendo compacto, & limitado, Ao lado de M, flxe se arbltrarlamen'
te um outro numero 82> 0. Como se passa a provar, subsiste o seguinte fato:
se um ponto x& & é tal que x| = p(x,0) 2 h + M + (5 entgo certamente

e (x) > h, Com efeito, qualquer que seJa, y&€ L, pode se afirmar'que

[el ((%,0),(r W) 12 = [o(Zy) 1% + Jo - w(m)|% 3 [@(Fiy) 1%, e, conse
qientemente, que P l((x,O),(y,W(y))),,e(xgy)= [x - yl. Dai, como para qual
quer y & L tem-se que .

'l;—y[ 3.!3:-] - ]y|>,h4:M+8-M=h+5(jéque I;l},h+M+§

|yl £ M), deduz-se que, qualquer que seja y& L, tem lugar a relagao

e l((; 0),(y,W(y))) > h + S . Ora, pela (16), levando em conta que 55'0 des
sa relagao obtém-se imediatamente que © (x) > h, ficando assim provado ofa
to acima. Por forga desse fato, conclui-se que se um ponto xeacf € tal que
6 (x) < h, entao certamente ]x] 0(x,0) <« h + M+ 8 . Mas isto significa

que o conjunto dos pontos xe F tais que 6 (x) h é limitado.

. Fica assim concluida a demonstragao da proposiggo 3

Finalizaremos & presente secgao observando que subsiste a seguinte

proposigao:

PROPOSIGAO 4 -~ Considere-se um qualquer cilindro K(R,t ), onde R
designa um conjunto aberto de-f que contém a origem 0. Se uma, fungao
w(x,t) é definida-negativa fraca em K(R,to), entao w(x,t) é semidefini-

da-negativa em K(R,to).

Tendo presente a definigao de fungao semidefihida-negativa, num cilin
dro [cf. TAS, definigao 3, p.24], através da consideragao das condigoes (i),
(ii) e (iii), pode-se obter a proposigao 4 como um corolario imediato da pro

posigao 3.

5. UMA GENERALIZAGAO DO SEGUNDO TEOREMA DE LIAPOQUNOFF GLOP;AL.

Nesta secgac apresentaremos uma generalizacao do teorema que foi de-

gsignado en [TASJ por segundo teorema de‘Liapounoff global, isto &, uma gene
ralizagdo do teorema Ol [cf. introdugdo geral, 2.4, c]. Essa generalizagdo,

bédsica para o presente trabalho, é dada pelo teorema 1, enunciado e demons-

trado mais abaixo.

3,1, Funcoes de Liapounoff fracas ®para a estabilidade (global)

assintotica.
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Principiemos introduzindo a seguinte definigao:

DEFINIGAO 2 - Dizemos que uma fung@o v{(x,t) é uma fungao de
Liapounoff fraca no cilindro K(R,to) para a estabilidade assintotica

do sistema (1) se
(a) +v(x,t) é da classe Cl(K(D,tO)),
(b) R € um subconjunto de D, que é aberto e que contém a origem O,
(¢) v(x,t) é definida-positiva em K(R,to),

(a) existe uma vizinhanca esférica N da origem O contida em R tal

que v(x,t) é [[-limitade no cilindro K(N,to),

(e) +v°(x,t) é definida-negativa fraca em K(R,to).

A definigéo 2 é do mesmo tipo da definigio 011 [cf. introdugao geral,
2.4, tﬂ. Entretanto, a definigao 2 dé um conceito global de fungao de Lia-

pounoff para a estabilidade assintdtica estritamente mais amplo do que aqué

le dado pela definigao 0l1l: td4da fungao de Liapouﬁoff num cilindro para aes
tabilidade assintética de um sistema é uma fungdo de Liapounoff fraca romes

mo cilindro para a estabilidade assintdtica do mesmo sistema, porem nao re-

ciprocamente.

o

Com efeito, as exigencias (d) e (e) da definigdo Oll s&o substituidas
pelas exigéncias (d) e (e) da definigdo 2. (No mais, ambas as.definiQSes co
incidem.) Considerando que N é uma vizinhanga esférica da origem O contids
em R, a qual pode ser de raio arbitrariamente pequeno, pela definicao 05
[cf. introdugdo geral, 2.3, b] facilmente se constata que a exigéncia (d)da
definigao 2 é estritamente menos forte do que a exigéneia (d) da definigao
Oll. E, mais do que isso, as proposigoes 1 e 2 mostram que a exigéncia (e)
da definigdo 2 é estritamente menos forte do que a exigéncia (e) da defini-

¢ao 011.

3.2. Generalizacao do segundo teqrema de Liapounoff global.

O teorema abaixo envolve o novo conceito global de fungao de Lia~-
pounoff para a estabilidade assintética dado pela definigdo 2. Pelos comen
tarios feitos na subsecg¢ao pfecedente, através da consideragao de que o teo
rema Ol envolve o conceito global de fungao de Liapounoff pafa a estabili-
dade assintotica dado pela definiggo 011, ver-se-3 imediatamente que o teo

rema abaixo -congtituirwe numa efetiva generalizagac do teorema 01,
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TEOREMA 1 - Se v(x,t) é uma funcac de Liapounoff fraca num cilin-

dro K(R,1t ) para a estabilidade assintdtica do sistema (1), e se ¢ (x)

€ uma funcao a qual v{x,t) perience no cilindrc K(R90 ) (*), entao o

conaunt S (v,R, ?) € um domlnlc de estabilidade assintdtica dos sis-
tema (1). '

A seguir demonstraremos ¢ teorema 1 de um modo muito semelhante éqqg
le pelo qual demonstramos o %teorema Ol em EDAS, Ps. 34—56]. (Para demonstrar
o teorema 1 poderiamcs nos limitar a fazer alguns retoques na demonstraggo
do teorema Cl, Foi considerands que ¢ teorema 1 ftem um carater basico para
o presente trabalho, e também no intdito de proporcionar u'a maior comodida
de de leitura, gue decidimos expor aqui uma demonstragac completa do mesmo,

independente da do teorema 01l.)

inicialmente, observemos que ® (v,R, ¢ ) é um subconjunto de D que

contém a crigem O no seu interior. Isto resulta facilmente das hipdteses do
teorema, consideradas a definigac 2 e as propriedades dos conjuntos

GB(V,R,tp). Assim sendo, de acdrdec com a definigac de dominio de estabili
dade assintotica [cf, introducao geral, 2.4, a], para demonstrar o teorema
devemos provar que a crigem O é um porto de cquilibrio estdvel (*¥ do siste
ma (1), e que, sendo x, um ponts qualquer do conjunto &S (+,R, ¢ ), a solu-
gao x(t;xo;to) tem um valor extremo futuro para % (relativo a prolongamentos

em D) t¥ = + @ e & tal que

(17) _1im x( 4% ;t~} =0,
% +00
Considerando que a fungao v°(x,%) é definida-negativa fraca no cilin
dro K(R,to), pela proposigac 4 tem-se que v°(x,%) é semidefinida-negativa
em K(R’to)ﬂ Daf, comparando a definigao 2 com a definigdo 9 de [TAS, p. 271,
constata-se que v{x,%) é uma fungao de Liapounoff no cilindro K(R,to) para
a estabilidade relativa do sistema (1). Assim sendo, va-se que as hipdteses

do primetiro teorema de Liapouecoff gliobal rcf TAS, teorema j Po 28] estao

preenchidas, podendo se pertanto afirmar que, qualquer que seja o numero h
tal que 0 < h < h((P R o conjunito S{v,R,h) & um dominioc de estabilidade

relativa do sistema (1).cm relagac ao conjunto L(q),h)

(*)'Obsgrve-se gue tails q>(x) existem & Que necessariamente perten-
cem a classe TT (34 que v(x,t) é definida-pcsitiva em K(R,tn)).
(**) No sentido de Liapounoff.

ae S < S
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Considerando que h((P,R) > 0, vé-se que a classe désses dominios nao
é vazia. De ac6rdo com a definigao de dominio de estabilidade relativa
[cf. TAS, definigao 8, p. 27], conclui-se que a origem 0 € um ponto de equi

. *
1ibrio estavel do sistema (1).

Recordando que

(18) S (v,R, @) = l I s(v,R,h)
- 0<h<h( ¢ ,R)

do fato de que X, e © (v,R, (P )deduz-se que existe um ntimero h tal que
0<h<h(¢,R) para o qual se tem que x & s(v,R,n). Como S(v,R ,h) é um domi
nio de estabilidade relativa do s:Lstema (1), pela citada definigao 8 de

[TAS, Pe 27] conclui-se que tf = + o0,

Agora sb resta provar a subsisténcia da relagao (17).

Como S(v,R,h) é um dominio de estabilidade relativa do sistema (1)
em relagdo ao conjunto L(cp ,h), de acérdo com a mesma definigao 8 de
[TAS, P. '27] pode-se afirmar que para qualque; t:;_to o ponto x(t;xo;to)
pertence 2 a L((P,— . Mas, como 0< h < h((P,R), tem-se que L((P ,h)C R.
Vé-se assim que para qualgquer © 2 t -0 ponto x(t-x ;t ) pertence 2 R.
Posto isto, considerando que a fungao v(x,t) e deflnlda-p051t1va no cilin
dro K(R,to), sendo portanto v(x,t) 3 O em K(R,to), deduz-se que & fungao
composta v(x(t;xo;to),t), nao 8§ é definida para t 2t , mas ainda e tal

gue

(19) v(x(t5x35%,),) 30

para qualquer t 2t . Considerando que a funga,o v'(x,t) e definida—negat_j;
va fraca no cilindro K(R,t ), sendo portanto v'(x,t)&g O em K(R,t ), en
v:Lsta. da expressao. (21) da 1ntrodugao geral deduz-se gque

E_ v(x(t; x5t ),t) = v'(x(t;xo;to),t)so para gqualqguer t.a-.too Consegllen
temente a funga.o. v(x(t;xo';"to),t) é nao crescente para t = t,, tendo portan
to um limite v quando t tende a + ® . Levando em conta (19) pode-se afir-

- ’ ~ q . 0 . G
mar que v e um numero nao negativo. Fica assim estabelecida a relagao.

(20) t]_;ii.ﬂoo v(x(t;xo;to),t) =»;>O .

(%) No sentido de Liapounoff.
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Mostremos qus se¢ v = 0, entdo a rslagac (17) subsiste, Para tanto,
provaremos a seguir que dada arbitrariamente uma vizinhanga esférica U da
origem 0, cxiste um nimero T 2, %al que o poLto x(x,xa,uo) pertence 3
vizinhanga U, qualquer que seja t > T. Com efeitc, sendo (P (x) uma fun-
¢ao da classe ||, empregando a relagio (4) anteriormente demonstrada, po-
de-se afirmar gque inf (P(x) >-O Assim sendo, & possivel tomar-se (arbi -

x & ‘v
trarismente) um ndmers k' tal que 0 < h'< irf @(x). Sem dificuldade

xe_ °y
se constata qu: ¢ correspondente conJuW;c L(CP 9h ) esta contido na vizi -
e

nhanga U. Posto isto, considere-se agora a hipdtese v = 0, Nessa hipotese,
levando em conta & (20)) pode-se afirmar que existe um numerc T > 5, tal
que v(x(‘a;xogto),t)c( ﬁ'p_'ara qualquer % > T. Tendc c¢cm vista que para qual
quer t+ > T (> %) 0 ponto x(t;xogto) pertence a R, & considerando gque a
fungde v(x,%) é definida-vositiva pertcncente a @ (x) no cilindro K(R,to),

o que implica que P (x) L v(x,t) en K(Rgtn)q obiim-se que (P(x(t;xo;to))<

< h' para qualquer t > T, Isto mostra que o ponto x( '&;;XO;'EO) pertence ao
conjunto L((P ,h'), qualquer que seja % > T, Ora, como L((P ,h') estd conti

do em U, conclui-se que o numero T > t, acima & tal que o ponto x(t;xo;to)

pertence a vizirnhanuga U, qualquer que seja ¥ > T.

A vis%a de gqus se v = 0, entdo a rolacie (17) subsiste, nao temos
mais do que mostrar gue necessariamente ¥ = 0, E o que sera feito a = se-
guir. Faga-sc a hipdtese de que v # O, Gomo v >0, cssa hipstese implica
que v >0. Corsiderando que v(x,t) & TT-Limitada oum cilindro.K(Nyth), on
de N designa uma vizinhanga esférica da origem O contida em R, vé-se que
existe uma fungao Y (x) da classe TT a1l que +(x,%)< \P(x) vara qualquer
x€ N e qualquer © > ;Oo Posto isto, come v >0, ¢ possivel tomer-se (ar-
bitrariamente) um nimers h" tal que 0< h" « v. Levandc em con%a que ¥ (x)
¢ uma fungao da classe TT, facilmente se constata que existe uma vizinhan
¢a esférice U da origem O contida em N & tal que Y (x)< %" para qualquer
x € U, Deduz-se gque v{x,%) €« v para qualquer x & U e qualquer & >t Dai,

5 (pois subsiste
=t

considerando qus v(x(t;x X 3%, )yt) > v para qualquer % St
a (20) e v(x(t-xog'a ),%) & nao crescente para * ,>,-.~;O), obtim~se que o pon
to x(‘t;xoa ) psrtence ao conjunto complementar °T de g, _.qu.alque:r que se-
ja t > toa Mas, por outro lado, como auteriormente se vi"l‘:, 0 ponto

x(t;xo;to) pertencs ao sonjunto L((P,E), qualguer que seja % =% . Pode -
se  pois afirmar que, para qualquer +t > tr:ﬁ o pernto x(‘b;xo;tov) pertence
ao conjunto C = L((.P ,E) N °U. Ora, C & visiveimente um conjunto compacto
de F contido no conjuato R - {0} . Entac, considerando que a ~ fungac

v'(x,t) é definida-negativa fracs no cilindro K(Rs,:())57 por meio do empré-

go da proposicac 3 {cf., condigao (iii)) podec-se afirmar que existe um ni-
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mero positivo B} -tal que v'(x,t) < -7 para qualquer x € C e gualquer &%
Assim sendo, resulta que a relagao v.(x(tixo;to)’t)'< f‘q subsiste para qual
‘quer t > t . Como?P>0, dessa relagao conclui-se facilmente que (para wvalores
suficientemente grandes de t) a fungao v(x(t;xo;to),t) assume valores inferio
res a qualquer nimero (em particular negativo) fixado. Em face do fato de que
v(x,t) é uma fungao definide-positiva no cilindro K(R,to), esta conclusio €
manifestamente absurda. A hipdétese inicialmente feita é pois absurda, o que

significa que necessariamente v = 0.

Fica assim completa a demonstragao do teorema 1.

4. NOVA FORMA DA PRECEDENTE GENERALIZACXO DO SEGUNDO TEQREMA DE
LIAPOUNOFF GLOBAL.

A presente secggo é primordialmente dedicada a apresentagao de uma no-

va (e equivalente) forma do teorema 1. Trata-se do teorema 2, dado mais abai

x0. O teorema 2 apresentar—se—é como sendo de utilizagao mais conveniente do
que o teorems 1, e serad tomado como ponto de partida para a obtengao dos no-
vos resultados da teoria dos sistemas associados a serem apresentados poste

0 . » - » ] ~ - -~
riormente., Principiaremos introduzindo uma nogao de derivada autonoma, em tozr

no da qual girarEo os desenvolvimentos desta secgao.

4.1. A nogao de derivada autonoma em relacao a um sistema.

Considere-se o sistema dado (1), x = f(x,t) pertencente a classe
& (D,to). Em geral, a fungao f(x,%) além de depender de x, depende tambem do
t'

Juntamente com o sistema (1), considere-se uma qualquer fungao v(x,st)
da classe Cl(K(D,tO)). Em geral, a fungao v(x,t) além de depender de X, de-
pende também de t.

Nestas condigoes fica perfeitamente determinada a fungao v {x,t), de-

rivada de v(x,t) em relacao a t ao longo das trajetdrias do sistema (1). A

fungao v (x,t) é definida no cilindro K(D,to), e dada por uma gqualguer das
duas expressoes (21) e (22) da introdugao geral. Essas expressoes mostram

que, em geral, a fungao v'(x,t) além de depender de x, depende também de t.

Nesta subsecgao introduziremos uma nova fungao, construindo-c a par
tir de v (x,t). Essa nova fungao, que sera designada pela'notagao +i(x), de

pendera, em geral, de x - porém, ao contrario de v (x,t), sera independente
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de t. Podemos dizer que a fungao v’(x) se constituira nume espéoie de deri
vada de v(x,t) em relagéo ao sistema (1), numa espécie de "derivada shtono-

ma',

Inicialmente, consideremos a fungao v'(x) definida pela expressao

(21) v (x) = sup v (x,t)

: 'lita‘to
Vé-se facilmente que v ' (x) é definida em D e assume valores no sistema am -
pliado de ntimeros reais. (v (x) poders eventualmente assumir o valor + o,
porém nunce o valor - ®.) A fungao v (x) fica perfeitamente determinada pe

lo sistema (1) e pela fungao v(x,t).

Para x variavel em D, designemos agora por ® (x) a distancia de x a
fronteira de D. (No caso em que a fronteira de D é vazia, ®&(x) = + @ .)
Considerando que D é aberto, vé-se que & (x) é sempre um elemento (estrita-
mente) p031t1vo do sistema ampliado de numeros reais. De31gnemos ainda por
r uma variavel auxiliar real e por y ume variavel auxiliar em d' Constata-

se : facilmente que, para cada x& D,

(22) fufé.' v (¥)

¢ uma fungao de r definida no intervalo 0 < r < &(x), a qual assume valo -
res no sistema ampliado de nimeros reais. Essa fungao é claramente nso de-
crescente no referido intervalo., Assim sendo, podemos considerar a fungEo

v’(x) definida pela expressao

(23) v (x) = lim v(y)
r-y» 0+ iy-xfs r
ou seja, pela expressao 5
(24) v'(x) = 1lim sU sup v (y,t)
T 0+ ° ]y—xfs T t >t e

Vé-se facilmente que v’(x) é definida em D e assume valores nos sistema am-
pliado de nimeros reais. (v’(_x) podera eventualmente assumir o valor + o,
porém nunca o valor - ®.) A fungao v’(x) fica perfeitamente determinada pe

1o sistema (l) e pela fu.ngEo vix,t).

DEFINIGEO % - Dizemos que a fungao v’(x) acima construida é a deri-

vada autonoma da funcao v(x,t) em relacéo ao sistema (1).

Nzo oferece maiores dificuldades a verificagao de gue pars se definir

a fuligle ~ vi(x) pode-se, em lugar da expressao (24) (ou da (23)), equiva-
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lentemente empregar & expressﬁo

(25) v’ (x) lim - su’r‘.j-' v (y,t) .
Py

T3 O+
t 2 to R
Observemos que a partir das expressoes (21) e (23) estabelece-se fa-

cilmente que
(26) v (x) 2 v (%) 2 v (x,1)
para gualquer xE€De gqualquer t = t_.

B interessante que ainda observemos que subsistem os fatos expressos

pela seguinte proposigao:

PROPOSIGRKO 5 - Se as fungdes £(x,t) e v(x,t) independem de t no ci
lindro R(D,t ), entSo o mesmo ocorre com a fungao v (x,t), e, mais do

que isso, tem-se que

(27) v (x) = v(x) = v (x,t)

para qualquer x& D e gualquer t 2 to.

Com efeito, pela expressao (21) da introdugao geral vé-se que a fun-
¢ao v (x,t) independe de t, e, tendo presente a expressao (21) acima, deduz-
g que v'(x,t) = v'(x) para qualguer x& D e gualquer I Além disso,
considerando que o sistema (1) pertence a classe € (D,t ) e que a fung?io
v(x,t) é da classe Cl(K(D t )),obtem—se fhcilmente que a fungio v'(x,t) ¢
continua no cilindro K(D,t ) Deduz-se que v (x) é continua em D. Por for-
¢a desta continuidade, resulta imediatamente da expressao (23) que v (x) =

v’(x) em D, A proposigao fice assim demonstrada.

De agora em diante, em quaisquer circunstancias nas quais estivermos

considerando um sistema (1), % = f(x,t) pertencente a uma classe Q(Iuto),

e, concomitantemente, uma fungao v(x,t) da classe Cl(K(D,tO)), diremos que

se verifica o caso autonomo se as fungoes £(x,t) e v(x,t) independem de 't

no cilindro K(D,t ).

Pela proposigao 5, vé-se que no caso autdénomo a derivada autonoma de
v(x,t) em relagdo ao sistema (1) coincide com a derivada de v(x,t) em rela-
gao at a0 longo das trajetorias do sistema (1) (desde que esta ultima deri
vada, que independe de t, seja considerada como fungao deflnlda em D, e nao

em K(D,to)).
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4.2, 0 caso vedlicontinuo.

A presente subsecgao & dedicada a algumas consideragoes em torno da

subiststéncia da relagao

(28) v (x) = v'(x)
para qualquer x&€ D - {O} Tenha-se presente que, como o ex1be a relaggo
(26), sempre se tem que v’(x) =v'(x) para qualquer x &€ D. '

Iniciglmente observemos que, de acordo com. a proposigao 5, no  caso

autonomo as fungoes f(x,t) e v(x,t) sao tais que a relacao (28) subsiste.

Entretanto, como passamos a ver atra_vés da analise de um exemplo, a

relagao (28) nem sempre tem lugar.

E interessante que comecemos considerando no c:Lllndro K(d- ,0) um sis-

tema de equagoes diferenciais do tipo

(29) J'c=Hx+b(|x|,t)x,

onde supomos que H é u'a matriz constante hemissimétrica (H' = - H) e que
b(q,t) é uma fungao real das duas variaveis reais q e t, definida e conti-
nua para 0 < g<+ ® e 0L t <+ . Sobre a funcac b(q,t), ainda supomos
que a mesma satisfaz a seguinte condigao (do tipo das) de Lipschitz: quais-
quer que sejam q, =0 e t' =0 -, existem trés constantes

L=L(qo,té)>o, =0 q, ,t' >0e d- §(q »t!) > 0 para as quais a de

sigualdade

(30) ' |o(T,t) - b(3,t)|<L|T - §

é verificada para quaisquer g, E.e t tais que g = 0, |g - qo] <P

EBO, IE - qol<e e t(; gt< tc'a + S . Com as suposigoes feij:as, (empregan-
do um dos teoremas classicos de existéncia a unicidade de solug:Ses de siste
mas normeis de equagOes diferenciais ordindrias) chega-se sem maiores difi

culdades a constatagao de que o sistems (29) pertence a classe

€ (F,0). ™ '

(*) Sistemas do tipo acima prestam-se a variadas ilustragoes interes
santes, Veja-se, por exemplo, o livro [iv, D, '235], onde sac considerados
sistemas desse tipo (se bem que bastante menos gerais, em particular autd -

nomos, e com objetivos diferentes dos nossos),
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Juntamente com o sistema (29), consideremos a fungao

(31) B v(x,t) = x'x = |x|°

g ' ' o
no. cilindro K( & ,0). Manifestamente, essa fungao e da classe Cl(K(JF,O)),

Usando a expressao (22) da introdugdo geral, estabelece-se facilmen

~ . . Lo g ~
te que a fungao v'(x,t) é dada no cilindro K(d,0) pela expressao
. 2 -
(32) vi(x,t) = 2 ]x‘ b(lx];zt) .
Com efeito, levando em conta que H é hemissimétrica, deduz-se sucessivaﬁqg

te que .

(33) | v'(x;t)'='EHx + b(]x|,t)x I' grad_ ]x|2 -
| [- xB + o(|x|,t)x'] (2x)

-.2 x'H¥.+ 2 lx|2 b( |x|,t)

u
it

2 1x)% v(|x|,t) .

Empregando as expressoes (21) e (23), em virtude da (32) obtém-se

que as fungdes v (x) e v'(x) 830 dadas em F pelas expressdes

- (34) . v(x) = 2. sup \x]z b(|x|,t
t 20 : : i
(35) v/(x) = 2 lim sup  |7]% v(|¥|,%).

su
r—-» O+ ly-xf‘ r t 20

.Observe-se qué as fungdes v.(x) e v’(x) independen de H (o que decorre do

fato de que a fungdo v'(x,t) independe de H).

Note-se que as (54) e (55) estabelecen relagSes bastante simples 1li-
gando as fungdes v '(x) e v’(x) com a fungao b{q,%). Pode-se dai entrever a
possibiiidade da construgao dé exemplos - através de escolhas da fungao
b(q,t) - nos quais as fungdes v'(x) e v’(x) se apresentam com caracteristi-
cas de comportamento interessantes, como naquele que sera apresentado a se-

' guir.,
Consideremos o exemplo no qual o sistema (29) assume a forma
. - l ' g -
(36) Cx=Hx+ | s (x| -1) -e ||| _ 2|t ] =,

isto é, o exemplo no qual a fungao b(q,t) é dada pela expressao
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(37) b(qg,t) = %.(q - 1) _'e~]q - 2|t .

Pode-se ver sem dificuldade que a expressac (37) determina uma fungio
b(q,t) que satisfaz aos acima exigidos requisitos de definicao, continuida-

de e lipschitzianeidade.
Utilizando a (37), através de uma aplicagdo da (34) deduz-se que

vi(x) = sur x| % (x| - - é—llxj - 2|
(38) (x) z_;otl 5 (=] - 1) ]

g > 'a -< o
para qualquer xe &, Ora, facilmente se estabelece que, para x variavel em

F

(39) owp  |x|? & (Jx] - 1) - el IEl -2t
t 20 |

% |x]? &Txl ~ 1) sempre que lx‘ £2

P

[x]z'(]xl -3 ) sempre que |x| =2,

i .. , =
Assim sendo, pela (38) obtém-se que a fungdo v (x) é dada em J pela expres
8a0 '
12 '
|x|© (]x| ~ 1) sempre que |x| £ 2

(40) = v'(x) =

|x|2 (x| -~ j) sempre que |x| = 2 .

0 cdlculo da fungdo v’(x), correspondente aguele acima feito da fungao v (x),
é um pouco mais trabalhoso. Utilizando a (37), através de uma aplicagio da

(35) deduz-se que . .

| R .
(41) +v'(x) = 2 1lim su sup ]y[2 [%k(|y} - 1) - e-e}yi - 2|t }
) 10+ |y-x|gr t >0 '

g .
para qualquer x& J . Num primeiro caso, suponha-se que Ix] # 2, Nesse caso,

levando em conta a (39), a partir da (41) constata-se sem dificuldade que

(42) v'(x) = 2. lim s 2152 (y] - 1),
. T O+ ly—xlsrv

donde imediatamente se obtém que

(43) v (x) = |x|f(]x] - 1) .
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Num segundo caso, suponha-se que ]x] = 2, Nesse caso, maeis ums vez levando
em conta & (39), novamente a partir da (41) constata-se sem dificuldade que

(44) v'(x) = 2 lim max su % 1Y12 (IYI -1)
r~-» O+
T;y 742
su 0 ] (| ] - z) &
T< 2 'y \,Jr < -
-x|S 7
2
= 2 'limO max | su'< 3 |71 Clyl - 1)
o> O+ ly-X|s £
b
ISTPZ 5 lYI2 lyl - 3) =
y ==
= 2 max Ei?o | T % !y|2 (il - 2)
T + y-x|< T
lig !ssz % lle (IY‘ - 3) =
=30+ yi=

= 2 max % ‘xig (|x] - 1)

-
noj=
»
n
~~
L
b
(oY
'
&.—~_.0
o

donde imediatamente se cbtém que

2
(45) vi(x) = |x|® (lx] - 1) .
Reunindo os resultados obtidos ros dois casos acima considerados, a visia
das (43%) e (45) facilmente se doduz que a fungac +’(x) é dada em é;.pela
' expressao
' Ix12 (1,
(46). v (x) = |x|° (x| - 1) .

s (40) & (46) mostram que as funcdes v (x) e v'(x) nao resultam
n 5 _
iguais em todo o conjunto J . Nos pontes x tais que ]x! = 2 (e somente nes

ses pontos) tem-se gue

(47) vi(x) > vi(x)

pois v (x) = - 4 e v?(x) = 4, Terminando a andlise do exemplo considerado,

podemos concluir que a relacao (28) nem sempre tem lugar.

A partir déste po.:to ¢ até o final da presente subsecgao, dessnvol-
veremos certas analises visando o estabelecimento de condigoes suficientes

para que as fungdes f(x,t) e v(x,t) sejam tais que a subsisténsia da rela-
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cao (28) fique assegurada. Referimo-nos a certas condigoes suficientes mais

amplas do gque aquelas dadas pelo caso autSnomoa

PROPOSIGAO 6 -~ Se a fungao v°(x,t) é egflicontinua em D - {O} , Pa-

ra t variavel no intervalo t € t<+ o, entao a fungao v (x) é contima
em todos os pontos x& D - {0} nos quais a fungio v°(x,t) é superiormen-
te limitada como funcao de t no intervalo tos t<+ o, e mais, subsis-

te a relascao v’(x) = v’ (x) para qualquer x& D - {O} .

De fato, considere~se inicialmente um ponto qualquer x & D - {O} tal
que & fungao v (X,t) é superiormente limitada no intervalo tS t<+ .
Pela suposta eqflicontinuidade da fungao v'(x,t), tem-se manifestamente que
s mesma fungao é egliicontinua no ponto X, para t varidvel no intervalo
tos t <+ ®w. Levando em conta que D - {O} é um conjunto aberto, isto sig
nifica que dado arbitrariamente um nimero & > 0, existe um nimero 6~ >0 (in
dependente de t) tal gue |x - X|< 6" implica que x@D - {O} e tal que a de

sigualdade
(48) |vo(x,%) - v (X,t)|< &

€ satisfeite para qualquer x da vizinhanga |x - i|< 8" e para qualquer t do
intervalo t & t < + ®. Como v'(x,t) é superiormente limitada no interva-
lot € t<+ ®, por meio da (48) obtém-se que o mesmo ocorre com v'(x,t),
qualquer que seja x da referida vizinhanca. A vista disso, utilizando a ex
pressao (21), constata-se imediatamente que a fungao v (x) assume valores
reais em todos os pontos x da mesma vizinhanga. Assim sendo, a partir da

(48), e através de uma nova utilizagao da expressao (21), facilmente se de-

duz que a desigualdade
(49) |[v'(x) - v'(3)|s €

é satisfeita para qualquer x da vizinhanga Ix - 5&] < 6" . Ve-se daf que a fun
gao v'(x) é continua no ponto x. Conclui-se imediatamente que a fungéo
v '(x) é continua em todos os pontos x €D - {0} nos quais a fungdo v'(x,t)

é superiormente limitada como fungio de t no intervalo t, L t<+ o,

Considere-se agora um ponto qualquer on D - {O} . 0Os seguintes
dois, e somente os seguintes dois casos mutuamente exclusivos sao possiveis:
ou a fungao v'(xo,t) € superiormente limitada no intervalo t, € t<+ o,
ou a funcgao v'(xo,t) nao é superiormente limitada no intervalo t,€ t < +oo.

No primeiro caso, como acima se provou, a fungado v (x) é continua no ponto
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x . Assim sendo, por meio do emprégo da expressiéo (23) facilmente se deduz
que v’(xo) = v'(xo). No segundo caso, pela expressao (21) vé-se que

v'(xo) - + ®. Assim sendo, por meio do emprégo da expressao (23) obtém-se
facilmente que também v’(xo) = + ®, donde de deduz gque v’(xo) = v'(xo). Pe
la a.rgu.mentag?a’.o que acaba de ser feita, conclui-se imediatamente que subsis

te a relagio v’(x) = v'(x) para qualquer x& D - {0} .

A proposiggo 6 mostra que o estabelecimento de condigSes suficientes
do tipo acima mencionado pode ser feito através do estabelecimento de condi
¢des suficientes para que as fungoes f(x,t) e v(x,t) sejam tais que a fungao
v*(x,t) resulte eqtlicontinua em D - {0} , para t varidvel no intervalo
togg t <+ ®. Um conjunto de taig condigoes é manifestamente dado pela sg
guinte proposigao:

PROPOSIGAO 7 - Se as fungdes f(x,t), grad_ v(x,t) e vt(x,t) 880 e-

gqlticontinuas em D - lO} , para t variavel no intervalo t,€ t<+ @, e

além disso, se, para cada x@ D - {0} , as fungdes f(x,t) e grad_ v(x,t)

séo limitadas como fungoes de t no intervalo t £ t <+ @, entao a fun-

¢ao v'(x,t) é eqlicontinua em D - {0} , para t variavel no intervalo

to.s t< + ©.

De fato, considere-se um ponto qualquer on D - {O} . Pela expres-

sao (22) da introdugao geral obtém-se que as igualdades

(50) vi(x,t) - vi(x ,t) =
= vt(x,t) - Vt(xo,t) + £1(x,t) grad_ v(x,t) - f'(xo,t) grad_ v(xo,t) =
= vt(x,t) - vt(xo,t) +
+ [£1(x,t) - f'(xo,t)] grad_ v(x_,t) +
+ £1(x ) [gradx v(x,t) - grad_ v(xo,t)] +

+ [f'(x,t) = f'(xo7t):[ [gradx v(x,t) - grad_ v(xo,t)]
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i

sao verificadas para qualquer x € D - {0} e gqualguer % ;to. Segue~se que a8

desigualdade
(51) o (x,8) - v {x,,%)|=

-+

< Ivt(x,t) - vt(xopt)
+ |£(x,%) - f(xo,t)! lgradx v(xo,t)l +
+ ]f(xog";),l ]gradx (x,%) - grad_ v(xogt)[ +
+ {£(x,%) -~ f(xo,’c:)l ‘}gradx (x,%) - grad, v(xo,t)|
¢ verificada para qualquer x € D - {O} e qualquer % ?,toa
Seja agora arbitrariamente dado um nﬁmero‘ € >0, Tendo em i gtey que
D - {0} ¢ um conjunto aberto, pela admitida eq'uicontinuidadeldas fungdss

f(x,%t), grad, v(x,t) e v, (x,t) pode~se afirmar que e¢xiste um nimero & > 0

tal que |x - xo|< G implica que x € D ~ {0} e $al que as desigualdades

(52) v (x,%) - 7, (x,0) < €

(53) |£(x;t) ~ £(x_,t)| < €,

(

Ut

4) gradx v(x,%) -~ grad,x v(xo,t)! < E

sao satisfeitas para qualquer x da vizinhanga !x - xol<6‘ ¢ para qualquer
t do intervalo "co.s <+ o . Além disso, pela suposia limitagao das fun-
goes f(x,t) e grad wv(x,t) pode-se afirmar que existem constantes

Kt >0 ¢ K">» 0 tals que as desigualdades

(55) [#(x_,8)|< ¥'

0
(56) ]gradx v(xo,t)! < K"

sao satisfeitas para qualquer % do intervalo to\< T+ @,

Da (51) combinade com as (52), (53), (54), (55) e (56) resulta que a
desigualdade '

(57) |v"(x,%) - v*(x,,8)| < (L + K" + K" + E) &
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é satisfeita para qualquer x da vizinhanga |x - xoi < G e para qualquer t

do intervalo t < t < + @. Vée-se dai que a fungao v'(x,t) é eqticontinua
ne ponto X,y para t variavel no intervalo to < t < + ©., Considerando que
x_ & um ponto qualquer de D - {0}, conclui-se que a fungdo v'(x,t) é eqtii

0
continus em D - {O} , para t varidvel no intervalo t Kt <+ ®.

A partir das proposigoes 6 e 7 chega-se imediatamente ao estabeleci-

mento da seguinte proposigao:

PROPOSIGAO 8 - Se as fungoes f(x,t), grad_ v(x,t) e vt(x,t) sao
eqicontinuas em D - {0} , para t varidvel no intervalo t g t <+ o,
e, além disso, se, para cada x&€ D - {0}, as fungdes f(x,t) e

grad v(x,t) sdo limitadas como fungOes de t no intervalo § £ t < + oo,
entdo & fungao v (x) é continua em todos os pontos x € D - {0} nos quais
a fungdo v'(x,t) é superiormente limitada como fungao de t no intervalo

t, < t<+ o, e mais, subsiste a relacao

(58) v’ (x) = v(x)
para. qualquer x € D - {O}.

De agora em diante, em guaisquer circunstancias nas quais estiver-

mos considerando um sistema (1), % = f(x,t) pertencente a uma classe
Q (D,to), e, concomitantemente, uma fungao v(x,t) da classe Cl(K(D,tO)),

. . . . L4 o - 0 A
diremos gque se verifica o caso eqllicontinuo se as fungoes . .., 1]

f(x,t), grad_ v(x,t) e vt(x,t) sdo eqlticontinuas em D - {0} , para t varia

vel no intervalo to\< t <+ 0, &, além disso, se, para cadg X € D - {0} o

as fungoes f(x,t) e grad_ v(x,t) sBo limitadas como fungoes de t no inter-

valo to$t<+ 00 .

Pela proposigao 8 somos conduzidos & seguinte conclussao: a verifica-

(r? . I'd -~ 0 q . ~ . ~
cao do caso eqHicontinuo e suficiente para gue a subsistencia da relagao

C28) fique assegurada.

Observe-se que o caso eqHicontinuo é mais amplo do que o caso autang
mo. Se éste WUltimo se verifica, ent@o aqudle primeiro também se verifica,po
rém nao vice-versa. O caso eqflicontinuo abrange uma variedade bastante gran
de de sistemas x = f(x,%) ndo autbnomos (e de fungdes v(x,t) efetivamente

dependentes de t). (*)

(*) Nao nos deteremos em comentirios detalhados a éste respeito. No

entanto, julgamos interessante fazermos pelo menos a mengao que Segue. - tn
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Casos nos quais a subsisténcia da relagao (28) fica assegurads sao
interessantes pelo fato d« gque, nos mesmos, pode-se tomar a derivada autSng
ma v'(x) como sendo dada nos pontos x &€ D - {O}por uma expressac bem mais

simples do que a (24), a saber, pela seguinte expressao:

(59) v'(x) = sup v (x,%) .

vt
="

Para se ver isto, tenha-se presente a oxpressao (21).

4.%. Nova forma do teorema da seccaoc precedernte.

o
Ao lado do sistema (1), x = ©(x,t) pertencente & classc & (Dgta)9

consideremos uma fungao v(x,t), supondo por ora que a mesma satisfaga somep

te a seguinte condigaos

(a') v(x,t) é da classe Cl(K(D?to)>°

Nestas circunstancias, sabemos que a derivada autonona v9(x) da funa-
cao v(x,t) em relacdo ao sistema (1) fica perfeitamente determinada., A pat-
tir de v’(x) introduziremos abaixo dois conjuntos, R? e R¥.

«
Em primeiro lugar, introduzamcs o conjunto Rg9 definirdc-o da seguin

te maneira: R¥ € o coniunto dos pontos x € D - {O} t2is gue

(60) vi(x) < 0,

Estabeleceremos a seguir certas propriedades do conjuntec R*., As mes-
L

mas sao dadas pela seguirte proposigac:

PROPOSIGAO 9 - Uma condigao necessiria e suficiente para que um

‘ponto x pertenga ao conjunto Rgg & que x possua uma vizinhancga esférica
U contida em D - {0} sal que a fungdo v°(¥,t) ¢ superiormente limita
da no cilindro K(U,to) por um numerc negativo. Uma qualquer viginhanga
esférica U que satisfaz a éstes resisitcs esis cevbamenie contida em Rg.

, Vg
O conjunto R* é um aberto de g,

Considere-se um qualquer sistema % = f(x,t) pertencente a uma classe

g (D,to), cujo segundo membro f(x,t) é uma funcano periddica em relagac a %
no cilindro K(D,to). Pcde-ss constatar sem grande dificuldade que ésse sis-
teme é tal que a funggo f(xgt) satisfaz a todos os requisitos exigidcs para

a verificagao do caso egliicontinuo.



-40-

De fato, considerando a (25), pela definigao do conjunto R: ve-seque

um ponto X pertence a R* se e somente se x € D - {o} e

(61) 1lim su v (y,t) <0,
r—» O+ ]y—x £r
b2t
isto é, se e somente se x & D - {0} e existe um nimero r > 0 tal que
(62) sup v (y,t) <0
ly-xleT
t > tg

e tal que a vizinhanga esférica U de x definida por !y - xl<: r esta con-
tide em D - {0} , ou seja, se e somente se X possui uma vizinhanga esféri-

ca U contida em D - {O} tal que

(63) sup v (y,t) <O .
(v,5) € K(U,%)

Considerando que a relacao (63) exprime que a fungao v'(x,t) é superiormen-
te limitada no cilindro K(U,to) por um némero negativo, vé-se que é de fato

necessaria e suficiente a condigao enunciada na proposigao.

Seja agora U uma gqualquer vizinhanca esférica contida em D - {O}tal
que a fungao v (x,t) € superiormente limitada mno cilindro K(U,to) por um nu
mero negativo. Suponha-se que y seja um ponto qualguer de U. B imediato que
y possui uma vizinhanga esférica V contida em D - {O} tal que a fungao
v'(x,t) é superiormente limitada por um numero negativo. (Basta que se.tome
V contida em U.) Pela condigao necessaria e suficiente acima provada, dedug

se. que y € RX. Resulta dai que U estd certamente contida em R¥.

Pelos &ois fatos precedentemente estabelecidos, conclui-se imediata-
.
mente que o conjunto Rg éd un aberto de J" ., Fica assim terminada a demons —

tragao da proposicgao.

Em segundo lugar, introduzamos o conjunto R¥*, definindo-o da seguin-

te maneira: R* é a reuniao do conjunto R¥ com o conjunto {0} , isto €,

(64) R¥* = Rgu{d} .

Observemos que os conjuntos Rg e R* ficam perfeitamente determinados
pelo sistema (1) e pela fungdo v(x,t). Ambos, R¥ e R¥, sao conjuntos de F

contidos em D, O conjunto R¥ contém a origem O, enquanto que o conjunto R¥
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nao & contém. A propdésito de relagdes entre esses conjuntos e a referida o-
rigem, pode-se considerar uma divisao da possibilidedes em dois casos: ou o
interior int R* do conjunto R* contém a origem O, ou nao a contém. Subsiste

a seguinte proposigao:

PROPOSIGRO 10 - No caso em que O € int R¥, o conjunto R¥ é um
aberto de F.

~ »  udd
Com efelto, pela proposigao 9 tem-se que Rg é um aberto de o .Assim
sendo, por meio da (64) iacilmente se constata que se 0 € int R¥, entao to-

dos os pontos de R¥ sso interiores a R*.

Suponhamos agora que, além da condigao (a'), a fungao v(x,t) satisfa

¢a também as seguintes condigoes:

(p1) v(x,t) é definida-positive num cilindro K(R,to), onde R de—

signa um conjunto contido em D.

(ct) v(x,t) é T[-limiteda em algum cilindro K(N,to), onde N desig-

na uma vizinhanca esférica da origem O contida em R.

De acordo com o enunciado da condigao (b'), o conjunto R que nelecom
parece devera ser considerado como dado. Tendo presente a definicao 04 [cf.
introdugao geral, 2.3, b:l, ve-se que R é necessariamente um conjunto aberto

N L .
de que contem a crigem O.
Nes presentes circunstancias, subsiste a seguinte proposigao:

PROPOSIGAO 11 - No caso em que O € int R*, a funcgao v(x,t) é uma

funcao de Liapounoff fraca no cilindro K(RN R*,to) para a estabilidade.

assintdtica do sistema (1).

De fato, provaremos s seguir que as condigoes (a), (b), (c), (d) e
(e) da definigao 2 resultam satisfeitas, quando nelas se substitui R por

R R*, Serd o quanto basta para que se tenha a proposigao demonstrada.

A condigao (a) resulta satisfeita, pois néo é outra coisa que a con-
digao (a'): Como O € int R*, utilizando a proposigao 10 pode-se afirmar que
R* & um subconjunto de D, que é._aberto e que contém a origem O. Mas, de a-
cordo com & condigao (b'), tendo presentes as observagoes acima feitas 80 -
bre o conjunto R, vé-se que esse conjunto goza da_s mesmas propriedades. Con
seqilentemente, R M R* ¢ um subconjunto de D gue é aberto e que contém a ori
gem O. A condigao .(b) resulta pois satisfeita. Considerando éste fato,e ten

do em vista que RF R*C R, por meio da definigao 04 constata-se ficilmente
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que em virtude da condigao (b') a fungao v(x,t) é definida-positiva no ci-
lindro K(R A R*,% ). Vé-se assim que a condigao (e) igualmente resulta sa-
tisfeita, Utlllzando a definigao 05 [cf 1ntrodugao geral, 2.3, b] e o fa-
to de que R M R* é um aberto que contém a origem O, por forga da condigao
(c') obtém-se gque existe uma vizinhanga esférica N, da origem O contida em
RM R* tal que v(x,t) é [[-limitada no cilindro K(Nl,to)o Assim sendc, a

condigao (d) por sua vez resulta satisfeita.

Para se provar que a condigao (e) também resulta satisfeita, ist%e é,
para se provar que a fungao v'(x,t) é definida-negativa fraca no cilindro
k(RN R*,t ), basta, com base na proposigao 3, que se prove que as condi-
goes (i), (11) e (iii) da mesma sdo verificadas pela fungao v °(x,t) no ci-

lindro X(R A R* ,to). E o que se passa a fazer.

Considerando que a fungao v'(x,%t) € definida no cilindro K(D,to),
levando em conta que R 1 R¥ & um subconjunto de D que é aberto e que contém

N ] . . ) . [4 . .
a origem O, constata-se facilmente que a condigao (1) e verificada.

Pela condigao (b'), a fungao v(x,t) é definida-positiva no cilindro
K(R,to). Daf, por meio da definigdc 04, ottém-se que v(0,t) = O para qual-
quer t % %,. Deduz-se que subsiste & seguinte identidades vt(O,‘T,) = 0 para
qualquer % >t _. Mas, como a origem 0 é ponto de equilibrio do sistema (1),
tem-se mais & seguinte identidades £(0,t) = O para gqualquer t )toa Em vig
ta dessas duas identidades, pela expressio (22) da introdug@o geral, cons-
tata~se imediatamente que v°(0,%t) = O para qualquer t >t , isto €;que a con

dicao (ii) é verificada.

Serd feita a seguir a constatagio de que a condigao (iii) é verifi-
» H .
cada: mostrar-se-3 que dado um qualguer conjunto compacto C de J contide

no conjunto RMA R* - {0} , existe um numero positive n- Y| (¢) tal que

(65) (x5, 6) < - 7

para qualquer x € C ¢ gvalquer % ?,to., Inicialmente, cbserve-se que de
CCRAR" - {0} e de R* = R* U {0} obtém-se que CC RMR¥, e, portanto,
.que C C R* Além disso, observe-se que pode ser adotada a suposicao de que
C nao é vazio (pois no caso opcsto a existéncia do numeroc 7{ é imediata).
Considere-se sgora um ponto gualquer X €EC, Como CC Ré, tem~-se que

x € R¥, Utilizando a proposigao 9, deduz-se que existe uma vizinhanga esfé~
rica U de x contida em D - {0} +al que a fungado v’(x,t) é superiormente
limitada no cilindro K(U,to) por um nimero negativo. Como imediatamente se
vé, a cada ponto x € C corresponde uma infinidade de tais vizinhangas esfé

ricas U, Considere-se a classe constitufda por todas essas vizinhangas Ucor
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respondentes a todos os pontos x € C, Tal classe é evidentemente um recobri
mento aberto de C. Como C é um conjunto compacto, pelo teorems de Borel-Le-
- besgue pode-se afirmar que C-é recoberto por um numero finito N de vizinhan

gas Ul’ eeey U da referida classe, Para essas vizinhgngas pode-se fixar N

numeros negatigos -771, ceey = Ry tels que a fungao v° ({x‘,t) ¢ superiormen-
te limitada nos cilindros K(Ul,to), cons K(UN,’GO) respectivamente por

-7 19 eee - 7ZN. Conclui-se facilmente gue existe um numero positivo 7[,
por exemplo 7 = min {71,..., 72N} , tal que a (65) subsiste para gualquer

x & C e qualquer & 2% .
A proposigao 11 fica assim completamente demonstrada.

Consideremos por fim ums fungao ¢ (x) a qual v(x,t) pertence no ci~

*
lindro K(R,to). (

No caso em que O € int R¥, o conjunto Rf1 R* além de ser um conjunto

o~ , ) :
aberto de g que contém a origem O, é um conjunto que esta contido.em R. No
referido caso, usando a definigdo 04, deduz-se facilmente dai que P (x) & |

uma fungdo a qual v(x,t) pertence no cilindrc K(R M R*,to).

Levando isto em conta, através do emprégo da proposigao 11, somos i~
mediatamente conduzidos a seguinte conseqliencia do teorems 1l: no caso em gue

0 & int R*, o conjunto © (v,R M R*, @) é un dominio de estabilidade assinté-

tica do sistema (1). De um modo mais completo, éste fato pode ser enunciadc

na forma do seguinte teorema:

TEOREMA 2 - Dado o sistema (1), x = f(x,t) pertencente a classe

& (D,to), seja v(x,t) uma fungdo que satisfaz as seguintes condigoes:

(at) v(x,t) é da classe Cl(K(D,tO)), '
(bt) v(x,t) é definida-positiva num cilindro K(R?’co),onde R de-

signa um conjunto contido em D,
(ct) v(x,t é T-limitada em algum cilindro K(N,to), onde N de-

signe uma vizinhanga esférica da origem O contida em R,

Seja P(x) uma funcdo a qual v(x,t) pertence no cilindro K(R,to)u

Designe-se por R* a reuniso do conjunto {O} com O conjuntoe Ré‘-“

'~ dos pontos x & D - {0} tais que & derivada autdnoma v’(x) de v(x,%)

em relacao ao sistema (1) é negativa, Nestas circunstanciass, se o inte-

(*) Observe-se que tais (P(x) existem e que necessiriamente perten-

cem & classe || (pois estamos supondo que a condig@o (b') é satisfeita). -
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rior do conjunto R* contém a origem O, entao o conjunto @f(v ROARX, i?)

é um dominio de estabilidade assintdtica do sistema (1).

A argumentagao acima apresentada mostra que o teorema 2 pode ser de-

monstrado com base no teorema 1.

Como passamos & ver, a reciproca desta asserQEo pode também ser fei-
ta. Para tanto é interessante que comecemos retomando as mesmas circunstan-
cias que, na presente subsecgao, conduziram a proposigao 11, Nessas circuns

tancias, subsiste a seguinte proposigao:

PROPOSIGAO 12 - Se a fungio v(x,t) é uma fungdo de Liapounoff fra
ca no cilindro K(R,'bo) para a estabilidede assintdtica do sistema (1),
entao certamente se tem que RC R¥*, E, mais, pode-se afirmar que

o0& int R*,

De fato, considere-se um ponto qualquer x € R. Num primeiro caso,su
ponha-se que x # O, Pela definigao 2 tem-se que v*(x,%) é uma fungao defini
da-negativa fraca no cilindro K(R,to), Dai, considerando que x # O, através
de uma aplicagho da proposigdo 3 obtém-se sem dificuldade que existe uma vi
zinhanga esférica U de x zontida em D - {0} tal que a fungao v (x,t) é su-
periormente limitada no ¢ilindro K(U?to) por um numero negativo. (Como T,
pode-se tomar uma gqualquer vizinhanga esférica de x cujo fécho esia contido
no conjunte B - {0} .) Assim sendo, por meioc do emprégo da proposigao 9,
deduz-se que X € R*, donde, pela (64), resulta que o ponto x é tal que
x € R¥*, Num segundo caso, suponha-se gue x = O, Pela (64) vé-se que O€ R*,
Assim sendo, resulta que o poento x é tal que x € R*, Levando em conta 08
dois casos considerados, conclui-se que certamente se tem que RC R*, Consi

derando éste fato, e tendo presente que O & R = int R, conclui-se mais: po-

de-se afirmar que O € int R¥, c

Suponhamos agora gque &as hipcteses do teorema 1 estejam satisfeitas,
isto é, suponhamos que v(x,t) é uma fungdo de Liapounoff fraca num cilindro
K(R,to) para a estabilidade assintdtica do sistema (1), e que P(x) é uma

fungdo a gqual v(x,t) pertence no cilindro K(R,to)o

Nestas circunstancias, pela definigg,o 2 obtém-se imediatamente que a
fungso v(x,t) é da classe Cl(K(D t )), que v(x,t) é definida-positiva no ci
lindro K(R,t ), onde R € um congunto contido em D, e que v(x,t) é ||-limita
da em algum 0111ndro K(N,t ), onde N designa uma vizinhanga esférica da ori

gem O contida em R; além dlSSO, pela proposigao 12 obtém-se que O € int R¥*,

Levando em conta éstes fatos, é-se facilmente levado a seguinte consegfiencia
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do_teorema 2: o conjunto S (v,R AR¥, Y) é un dominio de estabilidade assiﬁ
tética do sistema (1), Ora, subsiste a relagao R = R M R¥*, pois, pela propo-
sigio 12, R & R¥, Pode-se portanto concluir que o conjunto & (v,R, @) £ um
dominio de estabilidade assintdtica do sistema (1). Esta conclusi@o nac é ou-

tra coisa que a tese do teorema 1.

A argumentaggo acima apresentada mostra que o teorema 1 pode ser de-

- monstrado com base no teorema 2.

0 teorema 2 constitui-se numa nova (e equivalente) forma do teorems 1.

) diferenga do teorems 1, o teorema 2 emprega a nogao de derivada autonoma em
relacao a um sistema. Uma das vantagens do teorema 2 scbre o teorema 1 pode-
ré ser apreciada através dos comentirios que serao feitos no final da subseg

¢ao seguinte.

Como dissemos no comego da presente secgao, ¢ teorema 2 sera tomado
como ponto de partida para a obtengao dos novos resultados da teoria dos sig
temas associados a serem apresentados posteriormente. Na seqtiéncia déste tra
balho, o teorema 1 nao mais sera empregado. Ora, sem maiores dificuldades com
preende-se que poderiamos ter enunciado e demonstrado o teorema 2 logo de i-
nicio, sem passarmos pelo teorema 1. Isto poderia trazer como conseglléncia
uma reducdo da extensdo desta parte I. E pois natural que se inguira por qué
passamos pelo teorema 1 para chegarmos ao teorema 2. Uma breve resposta Jjus-
tificativa pode ser dada como seguet se assim tivéssemos feito, teriamos del
xado de por em evidéncia um bom numero de relagoes interessantes, ¢, em ¢s-
pecial, teriamos deixado de exibir uma linha de desenvolvimento que principia
na parte I do ariigo EPAS] , @ que continua, passo por passo, hna parte I dég

te trabalho, até o teorema 2.

4.4. Sdbre a determinacho de dominios de estebilidade assintdtica.

Podemos exprimir o teorema 2 numa outra forma, na forma de um método

para a determinacio de dominios de estabilidade assintdtica., Para eésse méto-
do - que marcha seguindo as linhas gerais do método direto de Liapounoff -

daremos & formulagao que segue.

Dado o sistema (1), x = £(x,t) pertencente 2 classe & (D,to), para

se fazer a determinacao de¢ domfnios de estabilidade assintética de mesmo,

pdde—se proceder executando as tres etapas IA’ IIA ol IIIA, abaixo apresen
tadas, e, em seguida, utilizando o teorema 3, posteriormente enunciado.

ETAPA I Escolha de uma funcao v(x,t) da classe Cl(K(DgtO))g

..A-
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que pertence & uma fungdo ¢ (x) num cilindro K(R,to), com R€C D, ¢

que & TT-limitada em slgum cilindro K(N,to), onde N € R designa uma

vizinhanca esférica da origem O,

ETAPA II, - Obtencho da derivada autdnoma v’(x) (de v(x,t) em

relagio ao sistema (1)),

ETAPA IIIA - Determinacio do conjunto R¥*, reunizo do conjunto

{O} com o conjunto Rg dos pontos x& D - {O} tais que

(66) v'(x) < 0 .

-

TEOREMA 3 - Se 0 & int R*, entdo o conjunto G(v,RAR*, @) ¢

um dominio de estabilidade assintdtica do sistema (1).

Um exame da formulag@o que acaba de ser dada mostra imediatamente
que o método constitui-se numa outra forma de expressao para o teorema 2,
Na verificacgao deste fato reside a justificagao do método, em especial do

teorema 3. A formulagho acima serd Util para confrontagoes futuras.

Uma observagao que apresenta interésse é aquela que passamos a fa-

zer. BExiste um caso especial no qual o método acima pode ser simplificado.

No caso geral, a fungao v’(x) é dada pels expressao (24). No caso eqilicon-
Eiggg, levando em conta que subsiste g relagﬁo (28), constata~se imediata
mente que a fungdo v’(x) pode ser substitufda pela fungao v'(x) dada pela
expressao (21), bem mpis simples do que a expressao (24).

Fechando a presente secgdo, faremos alguns comentarios que chamam

a atenggo para um ponto que julgamos ser significativo.

Da mesma forma que acima procedemos relativamente ao teorema 2, PO
deriamos, calcados no teorema 1, ensaiar a formulagdo de um método andlo-
go: que principia pela escolha de uma fungao v(x,t) satisfazendo a certas
condigdes (por exemplo as da etapa I,, que envolvem am dado conjunto R),
e que prossegue, até o final, através'da aplicacao de processos completa
e explicitamente descritos. Considerando o enunciado do teorema 1, ngo é.
¢gificil ver que, ume vez escolhida a fungdo v{x,t), surgiria um problema

a resolver: surgiria o problema da existéncia e obtencao de conjuntos X

para os quais a fungdo v(x,t) resulta ser uma fungao de Liapounoff fraca
no cilindro K(X,to) para a estabilidade asssintdtica do sistema (1). Po-

demos dizer que - gracas & utilizacdo da derivada autdnoma v'(x) (e da

consideragso do conjunto R¥* obtido a partir da mesma) - o teorema 2 ja a
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presenta o referido problema resolvido. (Trata-se de uma resolugao que é esg
sencialmente dada pela proposicao 11, a qual, sob a condigdo de existéncia

0 & int R*, fornece o conjunto X = R M R* como solugao.)

De acordo com a idéia brevemente relatada acima, podemos dizer que o
teorema 2 constitui-se numa espécie de "forma resolvida" do teorema 1. Eis
ume raz2o pela qual o teorema 2, embora equivalente ao teorema 1, apresenta

se  como sendo de utilizagBo mais conveniente do que éste ultimo.

5. CONSIDERACOES E DISCUSSCOES SUPLEMENTARES.

Nesta secgdo consideraremos um teorema obtido por Yoshizawa (*) edis
cutiremos certas conexoes entre o mesmo e o teorema 2, apresentado na sec-

(*¥)

cao precedente,

5.1, Um teorema de Yoshizawas e correspondente corolario.

Procurando generalizar para sistemas de equagoes diferenciais nao au
tonomos certos resultados anteriores de La Salle sobre ocomportamentc assin
tético de solugdes de sistemas de equagdes diferenciais autonomos [ef. v, teo
rema 1 & corolérios] Yoshizawa foi conduzido a estabelecer noseu artigo re-
lativamente recente [v1] um certo teorema. Daremos abaixo um enunclado do mes

mo, sob o nome de teorema de Yoshizawa. Trata-se do teorema 6 de Ev1, ,BSﬂo

Considere-se um sistema de equagoes diferenciais
(67) ‘ x = F(x,t) + 6(x,t)

num cilindro K(Q,to), onde Q designa um conjunto aberto do espago de fase

F. P(x,t) e G{x,t) designam fungdes definidas no referido cilindro.

Relativamente a um tal sistema, pode-se formular as hipdteses I, II,

IIT e IV abaixo.

(*) Tomédmos conhecimento désse teorema por intermédio de N. Onuchie

(no ano de 1965).

(**) A leitura da presente secgao pode ser omitida sem prejuizo para

a compreensao das matéria que serd posteriormente exposta.
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,\l
i Qualquer que seja o conjunto compacto Q¥* de J contido em Q, a

fungao F(x,t) é limitada no cilindro K(Q*,to).
II, As fungdes F(x,t) e G(x,t) sdo continuas no cilindro K(Q,to),

III. A fungdo G(x,t) é tal que a integral

(68) _{Tm |e(x(s),s)]| as

0

coowgonverge, gqualguer que seja a funggo x(f) gozando das seguintes proprie-
dades: x(t) é definida no intervalo t! £ t <+ o, com t! > 1, x(t) as-
sume valores num conjunto compacto de F contido em @, e x(t) é continua

no referido intervalo.

Iv. Qualquer que seja a solugao x(t) de (67), os valores assumidos

’U
pela mesma pertencem a um conjunto compacto de J contido em Q.

Considere-se uma fungao escalar v(x,t) definida no cilindro K(Q,to),

Envolvendo a mesma, pode-se formular as hipdteses V, VI e VII abaixo.

[0

V. A fungéo v{x,t) é nso negativa no cilindro K(Q,to).

[N

vI. A fungao v(x,t) é continua no cilindro K(Q,to).

O

VII. A funcdo v(x,t) é localmente lipschitziana em relagdo a x em Q,

paratvaridvel no intervalo t &£ t <+ .

Designe-se por v¥(x,t) a fungao definida no cilindro K(Q,to) pela ex

pressao

(69) v*(x,t) = hZ§§o+ v( x + h(F(x,t)+G(x,z)) , t+h ) - w{xet) (%)

Seja L& um conjunto (contido em Q) fechado relativamente a Q. Envel —

vendo o mesmo, pcde~se formular as hipoteses VIII, IX e X abaixo.

VIII. Sendo W(x) uma fungdo {escalar) definida-positiva em relacdo afd

no conjunto Q, a desigualdade

(*)APode—se constatar sem maiores dificuldades que no caso em que
v(x,t) pertence a classe Cl(K(Q,tO)), a fungao v*(x,t) ora introduzida re-
" duz-se & fungdo v°(x,t) obtida segundo a expressao (22) da introdugao ge-

ral. Assim, nesse caso,

v¥(x,t) = vt(x,t) + [F(x,t)+G(x,t)]' grad v(x,t) .



(70) v*(x,t) & - W(x)

subsiste para qualquer x & Q e qualquer t ->/to'

Una fungao W(x) e dita definida-positiva em relagao a L% no conjun-
to Q, se W(x) = O para qualquer x & L2 , e se, para cada numero & > 0 ]
para cada conjunto compacio Q¥ de gcontido em Q, existe um numero
é (Q*, &) > 0 tal que a relagdo W(x) = é(Q*,E) é acarretada pela relagso
x& Q¥ n_°U(.O., E), onde U(LL,E&) designa a vizinhanga- & de L& (isto &,
U(SfL ,€&) designa o conjunto dos pontos yeg:tais gue & distancia de y a
£ é menor do que & ). [Cf. vi, p. 382].

IX. A fungéo F(x,t) é tal que para cada nimero &> 0 e cada ponto
y&Ll, existem dois nimeros S(y,e) >0e T(y,s)>to para os quais

(71) |P(x,t) - F(y,t) |< €
sempre que Ix - y|< S(Y, E) e que t>,T(.y, E).

X. Para x variavel em S e para t tendendo a + ®, a fux 2,620
F(x,t) converge para uma fungao H(x), sendo esta convergéncia uniforme
sobre qualquer conjunto compacto de d‘ contido em L2.

r,
.

’7: »
Note-se que, desta forma, a fungao

(72) . H(x) = 1lim F(x,t)
t> + @

”,

€ uma fungao continua em L1 . .

Introduza-se agora o sistema de equagoes diferenciais autonomo

(73) 7 H(x)

considerado no coanjunto f1.

Un conjunto I & dito um conjunto semi-invariante do sistema (73),
ge I ¢ un subconjuntc de L1, e se de cada ponto de I parte pelo menos uma

trajetoria de (73) que permsnece em I por todo o futuro. [Cf. vi,

ps. 377-378].

Subsiste o seguinte teoremas
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TEOREMA A (Teorema de Yoshizawa)- Sendo verificadas as hlpoteses

I; II, +.., IX e X, todas as solugdes x(t) do sistema (67) tendem, quan-

do t tende & + oo, &0 maior conjunto semi- 1nvar1ante J do 31stema (73).

Frizemos que esse teorema diz respeito ao comportamento assintotico

de solugoes de sistemas de equagoes diferenciais nao (necessariamente) au-

ténomos. Sem entrarmos em maiores comentarios, diremos que se trata de um
teorema com apreciavel generalidade. Para se adquirir uma idéia da consecu
g&o que éste teorema representa, pode-se ler com proveito o relatdrio

[vii] de La salle.

Como passamos a mostrar, do teorema de Yoshizawa pode-se obter um

outro teorema, um corolario de demonstragao imediata.

Em acréscimo as hipdéteses I, II, ..., IX e X, pode-se formular as

hipdteses XI, XII e XIII abaixo.

XI. + A .origem O do eépago de fase éF pertence ao conjunto Q, e é

um ponto de equilibrio do sistema (67):
(74) F(Ost) + G(O,t)

identicamente no intervalo to Lt<+ o,

rd 'd . ” * -
XIT. A crigem O e um ponto de equilibrio estavel (*) do sistema
(67).
XIII, O maior conjunto semi-invariante J do sistema (73) se reduz

a {0}
(75) 3 - {o}.
Subsiste o seguinte teorema:

TEOREMA B (Coroldrio do teorema de Yoshizawa)- Sendo verificadas

as hipoteses I, II, ..., XII e XIII, o conjunto Q é um dominio de esta-

bilidade assintdtica do sistema (67) (em tdrno do ponto de equilibrio

0).

(*) No sentido de Liapounoff.
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Considerandoc as hipoieses adicionais XI, XII = XIII, bem como a de-
finigao 010 |cf. introdugao geral, 2.4, alg ¢ facil constantar-se gue o teg
remg B segue do teorema A.

Este ultimo teorema diz respeito a estabilidade global assintdtieca

de sistemas de equagdes diferenciais ndo (necessariamente) autonomos emn

torno de um ponto de equilibrio, Como facilmente se depreende, tLtrata-se

de um teorema que se presta & determinacgao de dominios de estap:iliidade as-
sintotica. Essa determinagéo & feita com auxflio de uma fungac v(x,t)9 -
tilizada {em grandes linhas) como no metodo direto ds Liapcunoff. Dent'rs
todos *als teoremas que chegaram ao nosso conhecimento, Julgamos, geralmen
te falando, gque o tcorsma B se constitua no de maior generalidade. Sem ma-

iores comentarios, diremos que essa generalidade advem da do teorema A,

5.2. Algumas observacgoes de zarater comparativo.

ct
i
)
(e}

Precedentemente apresentamos o teorema 2., O mesmo, aralogamen

—~

te

(=]
[

gque sucede com o ‘eorema B, constitul-se num teorema que se presta a

i
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ferencizis nao (necessiriamente) autonomos em torno de um ponto de equilf
_f—

brio, determinagac essa gue € feita com auxfiio de uma fungdo {x.%t), ut:

Y &

lizada {em grandes linhas) como no metodo direto d2 Liapouncif.

Assim, fomos naturalmenie conduzidos & quastao de se comparar o tego
rema 2 com ¢ teorema B. Considerando os objetivos principals do presente
trabalho (obtengéo de resuliados pertinentes a teor-a dos sistemas associy
dos), decidimos nao nos deter numa extensa analise comparativa. que pudes-
se ser qualificada de completa. O gque simplesmente & seguir farémos, sers,
a apresentagéo de certos argumenios que conduzirao ao~es£ébelecimento dsa

seguinte afirmagao:

0 teorema 2 rao €& mals geral do gue ¢ teorema B, e o teorema B nrac

€ mais geral do gue o teorcma 2.

Comecemos com uma breve discussao de um exemplo bastante simples de

aplicagao do teorema B. Consideremos ¢ sistema de equagoes difsrenciais
(76) x - M(x,t) % ,

onde
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no cilindro K(E 0). BRsse sistema se enquadra no tipo daqueles inicialmen
te considerados na subsecgao precedente. tome-se Q = 3'", to = 0, e tome-
se F(x,t) e G(x,t) como sendo dadas no cilindro K(d‘,O) pelas expressoes

F(x,t) = M(x,t)x e G(x,t) = 0. Como fungdo v(x,t), tomemos aquela dada no

cilindro K(&F ,0) pela expressao
- 2
(78) v(x,t) = x'x = |x]

Sem maiores dificuldades, pode-se constatar que as hipoteses I, ..., VII
o * .
estao verificadas. (*) Levando em conta que v(x,t) pertence a classe

N td -
Cl(K(d‘ ,0)), obtém-se facilmente que

(19) () = vi(x,t) = [M(x,)x) " graa_ |x|® =

2 xM'(x,t)x = - 2 xi

It

no cilindro K( ‘F,O). Como conjunto £&, tomemos o conjunto dos pontos xe\"F
tais que x; = O. Tomando-se W(x) dada en F pela expressao W(x) = 2 xi ,
facilmente se constata que a hipotese VIII fica verificada. Também facil-
nmente se constata que as hipﬁteses IX e X ficam verificadas, esta ultima

com H(x) dads em L} pela expressao H(x) = M (x)x, onde comparece a matriz

M (x) que definimos em J" pela expressao

(*) A constatagao de que & hipdotese IV esta verificada pode ser fel

ta utilizando-se o fato de que v'(x,t) < O em K(\F 0), como o mostra a
. (79).
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Assim, vé-se que o sistema autdnomo (73) resulta ser o sistema

(81) X = Ma)(x) x

considerado no conjunto Ll . Nao oferece maiores dificuldades a constata
gao de que as hipdteses XI e XII estio verificadas. (x A fim de se cons-
tatar que a hipdtese XIII também esta verificada, faga-se a suposigao de

que x(t) seja, no intervalo 0 t < + ® 5 uma solugao qualquer do sistema
(81). Como eésse sistems e considerado no conjunto LL, tem-se que a pri-
meirs componente xl(t) de x(t) é tal que x1<u) = 0 idénticamente no inter
valo 0 £t < + ®. Ora, a primeira equagao escalar do sistema (81) é

(82) X, = - X 4+ xg +_x§ + oao + xﬁ 5

Vé-se dai que as demais componentes xz(t),.x5(t), soos xn(t) de x(t) sao
tais que xz(t) = xB(t) = ees = xn(t) = 0, idénticamente no intervalo

0€ t< + ®. Assim sendo, deduz-se que a suposigdo acima acarreta que
x(t) = 0, idénticamente no intervalo 0 t < + ®. Hste fato, combinado
com o de que a fungdo x(t) = O é, no intervalo 0g t < + ®, uma solugao
do sistems (81), conduz facilmente & constatagao de que a hipdtese XIII tam
bém estéd verificada., Em suma, sendo verificadas todas as hipoteses I, II,

..., XIT e XIII, vé-se que através do emprégo do teorema B, e com aux{lio

da funcao v(x,t) dade pela (78), pode-se obter a seguinte concluséo: o sig
tema (76) admite todo o espago de fase d* por dominio de establlldade as—

gintotica.

Mostremos gque através do emprégo do teorema 2, e com aux{lio da fun-

gao v(x,t) dada pela (78), nio se pode obter a mesma concluséo. Com efei-

to, facilmente se constata que o sistema (76) pertence & classe Q(

(*) A constatagao de que a hipotese XII esta verificada pode ser fei

ta utilizando-se o fato de que v'(x,t) << O em K(JF,O), como o mostra a (79).



-54-

e que as condigoes (a'), (b') e (c') do referido teorema resultam satlsfel
tas por essa fungao v(x,t) quando como R se toma um gqualguer conjunto de.f
que é aberto e que contém a origem 0. No entanto, como se passa a consta-
tar, o conjunto R* resulta ser tal que o seu interior nao contem a origem
0. Levando em conta a (79), por uma apllcagao da expressao (24) deduz— se
imediatamente que no presente caso a derivada autonoma v’(x) é dada em

pela expressao

(83) vi(x) = - 2 xi .

Conseqlientemente o conJunto R _fica determinado como & reuniao do conjunto
{O} com o conjunto R dos pontos x & F tais que X; £ 0. Obtém-se dai que
o interior do conJunto R* nio contém a origem O. Levando em conta este fa
to, ve-se imediatamente que através do emprego do teorema 2, e com auxilio
da funcao v(x,t) dada pela (78), ndo se pode chegar a estabelecer qualquer
domiﬁio de estabilidade assintotica do sistema (76), em particular o domi-

nio J.

Da argumentagao que acaba de ser apresentada resulta que o teorema

2 nao é mais geral do que o teorema B.

Notemos que a mesma argumentaggao ilustra um dos maiores méritos do
teorema B: o de poder conduzir ao estabelecimento de dominios de estabili-
dade assintotica mesmo coém 0O auxilio de uma fungao v(x,t) tal que & fungao
v*(x,t) nao é definida-negativa em algum cilindro K(R,to).' Ao contrario ,
sem dificuldade pode-se constatar que o teorema 2 nao é suficientemente for

te para isso.

Entretanto, o teorema B, apesar de ser aplicdvel a uma classe bas—
tante ampla de sistemas de equagoes diferenciais, impoe & fungao F(x,t) a
restricao de ser limitada em qualquer cilindro K(Q t ), onde Q° designa
um gualquer conjunto compacto de ir contido em Q. Esaa restrlgao torna-se
relativamente sensivel em face das demais que dellmltam a aludida classe ,
especialmente em face da restrlgao de convergéncia da integral (68) envol-
vendo a fungao ¢(x,t). De seu lado, o teorema 24 também aplicavel a uma
classe bastante ampla de sistemas de equacoes diferenciais, possui o méri-
to de ndo impor nenhuma restrigao de limitagdo & fungao f(x,t). Pode-se en
trever dai a existéncia de sistemas de equagoes diferenciais aos quais o
teorema 2 se aplica, de forma a permitir o estabelecimento de dominios de
estabilidade assintdtica dos mesmos, sistemas agses aos quais o teorema B

nao se aplica, de forma a permitir o estabelecimento de dominios de estabi
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lidade assintotica dos mesmos. Veremos abaixo que essa existéncia & efeti

va.

Comecemos com uma breve discussao de um exemplo particularmente sim
ples de aplicagao do teorema 2., Consideremos o sistema (linear) de equa--

¢oes diferenciais
(84) | | % = - (1+t) x

no cilindro X (\;',O)a Sem maiores dificuldades, pode-se constatar que o
sistema (84) pertence & classe & (E,O). Como fungao v(x,t), tomemos aque

. .

la dada no cilindro K(J,0) pela expressao
| | 2

(85) v(x,t) = x'x = |x|

Facilmente se constata que as condigdes (a'), (b') e (c') do referido teo-
Tema resultam satlsfeltas por essa funcao v(x,t) quando como R se +toma o
espago de fase J' Como <P(x), pode-se tomar a fungao dada em d“ pela ex-
pressao @ (x) = x'x., A derivada autdnoma v’(x) da funcio v(x,t) em rela-

¢ao ao sistema (84) pode ser facilmente calculada. Obtém-se sucessivamen-

te:

(86) vi(x,t) = [ - (1+t) =" graa_ |z = - 2 (1+t) [2]?,

no cilindro k(F,0), e .,
(o0 v -y e s [2 e 1517 - -2 )

F
em & . Empregando a (87), constata-se facilmente que o conjunto R* resul-
ta ser igual a d‘ s €, portanto, que o interior de R* contém a origem 0 .,
Levando em conta as constatagOes acima feitas, vé-se facilmente que,em vir
B V >
tude do teorema 2, o conjunto G(x‘x,Jng“,x'x) é un dominio de estabili-
dade assintotica do sistema (84). Utilizando a definigao 09 [cfm introdu-~
o & & T’
gao geral, 2.3, d], obtem=se com facilidade que G (x'x,dN \?,x'x) =, Em

suma: o teorema 2 se aplica ao sistema (84), de forma a permitir o estabe-

lecimento de todo o espago de fase d‘ como dominio de establlldade assintd

(*)

tica do mesmo.

(*) O sistema (84) é tao simples, que a sua solugho geral pode ser
obtida imediatamente. E interessante que se observe que o referido estabe-
lecimento pode ser facilmente conseguido com o uso dessa solugao, sem o em

prégo de qualguer teorema especial.
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Mostremos que o teorema B nao se aplica ao sistema (84), de forma a

permitir o estabelecimento do espago de fase JF como dominio de estabilida-
de assintdtica do mesmo. Neste sentido, é interessante que provemos um fato
um pouco mais geral. Seja @ um qualguer conjunto aberto de 5‘1 que contém a

a . 2 - (g . o
origem 0., Em particular, podersa ser Q = J . Consideremos o sistema

(88) x = - (1+t) x

no cilindro K(Q,0). Provemos gque o teorema B nzo se aplica ao sistema (88),
de forma a permitir o estabelecimento do conjunto Q como dominio de estabili
dade assintotica do mesmo. Com efeito, para que uma tal aplicacao seja possi
vel, & necessario que no cilindro K(Q,0) o segundo membro -(1l+t)x possa ser
decomposto numa soma F(x,t) + G(x,t), onde F(x,t) e G(x,t) designam fungoes
definidas no referido cilindro tais que as hipoteses I, II e III com to =0
sao verificadas. Faga-se a suposigdo de que exista uma tal decomposigao.

Desta forma, tem-se que
(89) G(x,t) = - P(x,t) - (1+1%) x

vara qualquer x& @ e qualquer t 2 0. Tome-se em Q um ponto qualquer x 74 0.
(Como § € um aberto que contém O, tais pontos certamente podem ser tomados. )

Dz (89) tira-se que
(9C) a(x,t) = - F(x,t) - (1+t) X

srvalo 0L t €+ ©. Estando verificadas as hipoteses I e II, facil-
noo s+ deazz gue P(x,t) é uma fungao de t limitada no intervalo
+ ®, ¢ que G(x,t) & uma fungdo de t continua no intervalo

5°v<
< t< + ©. Levando em conta (90), bem como a continuidade de G(x,t) |,

+0 +@
(91) f |G(z,s)| as = f |F(Xy8) + (1+s) X| ds .
0 0
Cousiderzanéso que F(X,t) é limitada, e que X # O, constata-se imediatamente
que t1vr [#{Zz,t) + (1+t) x| = +® . Conseqfientemente a integral do segun-
400 :

do menbro da (91) nao converge. O mesmo acontece portanto com a integral
do primeirc membro. Conclui-se facilmente dai que a hipotese III  nao
estd verificada. (Basta que se considere a fungao x(t) = x num interva-
lot g t<+ @, com t! > 0). Esta conclus@o mostra que a suposigao ini-
cialmente feita é absurda. Isto significa que o teorema B nao se aplica ao

sistema (88), de forma a permitir o estabelecimento do conjunto @ como do-
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minio de estabilidade assintdtica do mesmo.

Da argumentagao que acaba de ser apresentada resulta que o teorema

B nao € mais geral do que o teorema 2.

Fica assim completo o estabelecimento da afirmagao feita no inicio

da presente subsecgao.

Tendo presente a equivaléncia dos teoremasle 2, vé-se que a mesma
afirmagao pode ser feita relativamente ao teorema 1: dos teoremas 1 e B,

. *
nenhum e mais geral do que o outro. ( )

(*) A propésito déste assunto, podemos também fazer a seguinte oue
tra afirmagao, relativa ao teorema Ol da introdugdo geral -° anteriormente
publicado em [TAS]: o teorema Ol (ainda que menos geral do que qualguer um
dos teoremas 1 e 2) j& possuia um campo de aplicabilidade nao contido no do
teorema B. Como sem dificuldade se pode constatar, o mesmo exemplo (84) a

cime se presta para uma verificagao deste fato.
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PARTE 11

SOBRE O ESTUDO DA ESTABILIDADE GLOBAL ASSINTOTICA

POR MEIOC DE SISTEMAS ASSOCIADOS

1. INTRODUGAO.

c G
Consideremos novamente um sistema qualquer,

(1) x = £(x,t) ,

dado na classe g Suponhamos gue o mesmo pertenga a classe Q(D,to).

A propdsito de tais sistemas, e relativamente ao seu ponto de equi-

4 . - 5
librio 0, origem do espago de fase\f, estabelecemos em [TAS, parte II,sec

cao 6 (6.2), pes. 52—551 ¢ método dos sistemas sssociados para a determi—

nacao de dominios de estabilidade assintdtica. Sobre é€sse método, podemos

dizer que € o principal dentre os mais gerais resultados da teoria dos sis

temas associados concernentes a estabilidade assintdotica obtidos em [TASlo

Nesta parte II, utilizando os desenvolvimentos da parte precedente,
atingiremos aguéles que consideramos os principais objetivos do presente

trabalho. Trataremos d¢ estabelecimento de novos resultados de teoria dos

sistemas asscciados concernentes a estabilidade assintotica. Principiare-

mos fazendo um estudo gue consiste essencialmente na introdugao e discus-—

sao do novo conceito de derivada autOnoma de uma funcao em relacdo a ums

familia de sistemas associada. Empregando ésse estudo, enunciaremos e de-

monstraremos dois teoremas sObre a estabilidade global assintdtica,os quais
podem ser qualificados de resultados basicos da teoria dos sistemas asso—
ciados. Posteriormente, estabeleceremos e discutiremos dois novos métodos

para a determinagao de dominios de estabilidade assintdotica. Trata-se de
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métodos andlogos aquele acima citado. Os mesmos podem ser considerados (em

certos sentidos) como formas aperfeicoadas do método dos sistemas associa-

dos para a determinacao de dominios de estabilidade assintdtica. Essas for

mas aperfeigoadas nao sao outra coisa que certas reformulagdes dos dois teo

remas acima aludidos.

2. DOIS TEOREMAS SOBRE A ESTABILIDADE GLOBAL ASSINTGTICA.

O objetivo principal da presente secgao € o estabelecimento de dois
teoremas sobre a estabilidade global assintltica. & com fundamento nesses

teoremas, os quais podem ser qualificados de resultados basicos da teoria

dos sistemas associados, que sera desenvolvida a matéria da secgao seguin-

te. Visando a obtengao désses teoremas, principiaremos introduzindo uma

nova nogao de derivada autdnoma (em relagao a uma familia de sistemas asso

ciada).

2.1. A nogao de derivada autdnoma em relacio a uma fam{lia de sis-

temas associada.

Considere-se uma qualquer familia de sistemas associada ao sistema

dado (1). Parametrizada por z, seja ela

(2) x = u(x,t;z) .

De acordo com a definigao 012 [cf. introdugao geral, 2.5], tem-se que a ma
triz coluna u(x,t;z) é uma fungdo definida para x, t e z varidveis indepen

dente e respectivamente em D, no intervalo togg t <+ ®» e em D.

Juntamente com a familia (2), considere-se uma qualquer funggo

v(x,t) da classe Cl(K(D,to)).

Nestas condigoes fica perfeitamente determinada a fungao derivada

de v(x,t) em relacdo a t ac longo das trajetérias dos sistemas associados

(2), isto é, a fungdo que designamos por v (x,t;z) e que, ‘para qualquer
¢

x €& D, qualquer t >,to e qualquer z € D, é dada pela seguinte expressao:

(3) vi(x,t;z) = vt(x,t) + ﬁl ui(x,t;z) vx_(x,t) .

Essa expressao pode ser alternativamente apresentada como segue:
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(4) v (x,t3z) = vt(x,t) + u'(x,t;2) grad_ v(x,t) .

Nesta subsecgao introduziremos uma nova fungao, construindo-a a par
tir de v'(x,t;z). Essa nova fungdo, que sera designada pela notagao
¥'(x;z), em geral dependerd de x e de z, porém, &0 contrario de v'(x,t;z),

sers sempre independente de t. Podemos dizer que a fung@o v’(x3z) se cons

$ituira nume espécie de derivada de v(x,t) em relagao a fam{lia de siste—

mas associada (2), numa espécie de "derivada autonoma'.

Inicialmente, consideremos a fungao v7(x;z) definida pela expressao

(5) v (x3z) = sup v (x,t;z) .
t>,-to

Vé-se facilmente que v'(x;z) é definida para x e z variaveis (independente
mente) em D, e que v’(x3z) assume valores no sistema ampliado de numeros
reais. (v7(x;z) podera eventualmente assumir o valor +w, POTEm nunca o ve
lor - ® ). A fungao vf(x;z) fica perfeitamente determinada pela familia

(2) e pela fungao v(x,t).

Para x e z variaveis (independentemente) em D, designemos agora por
ﬁ(x;z) e minima das distanciass de x a fronteira de D e de z a fronteira de
D. (Yo caso em que a fronteira de D é vazia, @(x;z) =+ ®o.) Consideran
do que D é aberto, vé-se que @(x;z) é sempre um elemento (estritamente)
positivo do sistema ampliado de nimeros reais. Designemos ainda por r uma
variavel auxiliasr real e por y e por w dums varidveis auxiliares (indepen-

I .
dentes) em J. Constata-~se facilmente que, para cada x € D e cada z € D,

(6) Iyifsr v (ysw)

|w-zlex

é uma fungao de r definida no intervalo 0 < r< @(x;z), a qual assume valo
res no sistema ampliado de nimeros reais. Essa fungdo é claramente nao dg
crescente no referido intervalo. Assim sendo, podemos considerar a fungg.o

v'(x;z) definida pela expressao

(7) v’(x;z) = lim sup v (y3v) ,
' r«>»0+ |y-—xfsr '

[W-ZISr

ou seja, pela expressao
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(8) v (x3z) = lim su sup v (y,t;w) .
r-% 0+ |y—szr t;to

|w-z|gr

Vé-se facilmente que v’(x;z) é definida para x e z varidveis (independente
mente) em D, e que ;’(x;z) assume valores no sistems ampliado de numeros

reais. (v’(x;z) poders eventualmente assumir o valor + ® , porém nunca o
valor - a)) A fungﬁo v’(x;z) fica perfeitamente determinada pela familia

(2) e pela fungio w(x,t).

DEFINIGCAO 4 ~ Dizemos que a fungao v’(xj;z) acima construida é a

derivada sutOnoma da funcao v(x,t) em relacio a famflia de sistema as—

sociada (2).

Nao oferece maiores dificuldades a verificagao de que para se defi-
nir a fungao v’(x;z) pode-se, em lugar da expressao (8) (ou da (7)), equi-

valentemente empregar a expressao

(9) v (x5z) = lim sup V' (y,tiw) .
r-» 0+ |y—x £r
bazlez
t:;to

E conveniente que fagamos a nota que segue. A famflia de sistemas
(2) foi considerada como sendo uma famflia de sistemas associada ao siste-
ma dado (1). Como vimos, de acordo com a definigio de familia de sistemas
associada, a fungao u(x,t;z) é definida para x, t e z variaveis independen
té e respectivamente em D, no intervalo tos t< + o e em D, Bste fato
foi efetivamente utilizado na construgédo acima feita da fungao v’(x;z). En
tretanto, desejamos salientar que, de acordo com a mesma definigao, tém a-
inda lugar os seguintes outros fatos: para cada z & D, o correspondente sis
tema x = u(x,t;z) pertence a clasma@(D,to), e, além disso, & satisfeita a

condigdao de associagao, isto &,

(10) u(z,t3z) = £(z,t)

Para qualquer z € D e qualquer t ) to. Ora, ve-se facilmente que a cons—
trugao acima feita da fungdo v’(x;z) poderia ter sido levada a cabo mesmo
que esses outros fatos nio tivessem lugar. Assim sendo, compreende-~se que
poderiamos ter apresentado uma nogao mais geral: uma nogao de "derivada au
tonoma em relagio a ums familia de sistemas" - fam{lia essa ndo necessarig

mente associada a um sistema previamente dado. Foi tendo em vista que as
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fam{lias de sistemas que consideraremos serao sempre associadas a algum sis
tema previamente dado, que preferimos - ganhando em simplicidade - proce—

der da forma precedentemente exposta.

Observemos que a partir das expressdes (5) e (7) estabelece-se fa—

cilmente que
(11) v (x52) > v (x52) > v (x,t52)

para qualquer x € D, qualquer z € D e qualquer % >/t0.

Sem preocupagaes de sermos precisos ou completos, diremos que a ma-
téria apresentada na presente sﬁbsecgﬁo pode ser considerada como corres—
pondente aquela apresentada na subsecgao 4.1 da parte I: sistemas sao subg
tituidos por famflias de sistemas associadas. -A propdésito, julgamos que
seja importante observarmos que certos fatos que 14 se verificam nao encon
tram correspondeﬁtes aqui. TNeste sentido, faremos a seguir algumas consi-
deragoes das gquais poder-se-a depreender que uma proposigao correspondente

a proposigdo 5 nac tem lugar agui.

Consideremos o caso em que as fungdes u(x,t;z) e v(x,t) s2o indepen
dentes de t. Nesse caso, a (4) mostra que o mesmo ocorre com a fungao
v'(x,t32), e pela (5) deduz-se imediatamente que

(12) v (x52) = v (x,t32)

para qualquer x€ D, qualquer zE D e qualgquer t > to; entretanto, pode-se
fazer a seguinte afirmagaos: nem sempre subsiste a igualdade

v'(x3z) = v"(x3z) para qualquer x € D e qualquer z & D. Facilmente se de-
preende que se tivesse ‘lugar aqui uma proposigao correspondente é proposi-
¢cao 5, no caso em consideragac essa "igualdade deveria éempre subsistir. A
referida afirmagio seri abaixo justificada através da andlise de um exem--

-plo.

Seja o sistema

(13> X=-x ’

. ‘o a . .
considerado no cilindro K(tf,O). Trata-se de um sistema extremamente sim-

ples, que certamente pertence a classe é (AF,O)°

Sem dificuldade pode-se constatar que, de acordo com a definigao de
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familia de sistemas associada, existe uma grande arbitrariedade na fixagao
de uma fam{lia de sistemas associada a um dado sistema da classe é . Apro
veitando-nos dessa arbitrariedade, consideraremos a seguir uma familia de
sistemas associada ao sistema (13). Sera uma fam{lia que, como familia de
sistemas associada ao sistema (13), podera a primeira vista aparecer como
um tanto artificial. Mas sera uma familia que se prestara bem aos nossos

objetivos.,
. . & . .
Sejam fixados em J dois pontos c e Z, taisg que ¢ % 0 e
(14) clz = 0 .
(R manifesta a existéncia de tais pontos.) Para x e z variaveis (indepen-

dentemente) em & , definamos uma funcéo escalar g(x;z) pela seguinte ex-

pressao:

0 sempre que z % Z
o
(15) g(x5z) =
cix sempre que z = 2 .
Consideremos agora a familia de sistemas
(16) x=-x - g(x;2) x,
L ~ ﬁ
onde z e um parametro que varia em F , € onde, para cada valor de gz, o

correspondente sistema é considerado no cilindro K(éF,O), Essa & uma fami
lia de sistemas associada ao sistema (13%). Efetivamente, levando em conta
as (14) e (15), sem maiores dificuldades pode-se verificar que tanto a con
digao I como a condigao II (condigio de associagéo) da definigdo 012 [cf.
introdugao geral, 2.5] resultam satisfeitas. Note-se que o segundo membro

u(x,t3z) = - x ~ g{x3z)x é independente de t.
Juntamente com & familia (16), consideremos a fungao
2
(17) v(x,t) = x'x = ]xl

& . ' -~ . 42
no cilindro K(.f;O)o Manifestamente, essa fungao e da classe.Cl(K(J',O)).

Note-se que a mesma ¢ independente de t.

Empregando a expressao (4), facilmente se calcula a fungao

vi(x,t;2)
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(18) v (x,t52)

[ - x - glxsz) x]' grad_ x| -

2
- 2 [x] '[l + g(x;z)]
~ o~ ' :
pare qualquer x & J’, qualquer z € g e qualguer t.2 0.

Levendo em conta que as fungdes u(x,t;z) e v(x,t) sao independentes

de t, vé-se que subsiste a (12). Entao, em virtude da (18), resulta que
i 2
(19) v(x3z) = - 2 || [l + g(x;z)]

para qualquer x € F e qualquer z € !F Utilizando a expressgo (15), facil

mente se deduz da (19) que, para x varidvel em j: e z varidvel em F , B8

fungao v’(x;z) é dada pela seguinte expressao:

= |x|2 sempre que z 74 z,

(200 Txsn) - . ,
-2 |x|° (1 + c'x) sempre gue z = z_ .

o
A obtencdo da fungao v’(x3;z) é um pouco mais trabalhosa do que aque
la scima feita da fungdo v (x3z). De acdrdo com a expressao (7), em vista

da (19) tem-se gue

(21) v'(x3z) = linm suT [- 2 |y|2 1 + g(y;w)] ]
r-p 0+ |y-x <r
[w-zlsr

Ird n . .
para qualguer xeJ e qualquer z € J. Num primeiro caso, suponha-se que
z # z,. Nesse caso, levando em conta a (15), a partir da (21) facilmente

se constata que

= im su i j 2 =
(22) v (x32) = riL-)O+ ly-xfsr [ 2 Iﬂ J
{w-zisr
= lim su -2 =l
0+ ly_zﬁsr [ Iyl ]

donde imediatamente se obtém que
-, 2
(23) v (x5z) = - 2 |x|° .

Num segundo caso, suponha-se que z = zZ - Nesse caso, mais uma vez levan-

do em conta a (15), ainda a partir da (21) facilmente se constata que
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(24)  v'(x32) = lim max su [ -2 |y|2 ] R
r-» 0+ |y-xfsr
0<|v-z_|gz
sup. [—21y]2(1+c'y)]‘ =

Iy-—x €T

W=z
= lim max su [-— 2 lylz:[ ’

r-»0+ Iy—for

I?fi]sr [-2051°+ecy) ] } -

max lim su [- 2 |y|21 ’
r-»0+ ly-xTSr

lim su [-2 172 (1 +ery) ] )
r-»0+ ly—xT-$1'

donde imediatamente se obtém que
= 2 2
(25) v’(x;2) = max { -2 ]x|®, -2 |x|° (1 + e'x) } .

Reunindo os resultasdos obtidos nos dois casos acima considerados, facilmen
” P . ”
te se deduz das (23) e (25) que, para x variadvel em J e z varidvel em f,

a fungdo v’(x;z) é dada pela seguinte expressao:

_ -2 ]jc]z sempre que z # z,
(26) V,(X;Z) = 2 2
max{ -2 0x|c, -2 |x]° (1 + c'x)} sempre que z = z_.

Comparando agora as expressdes (20) e (26), estabelece-se imediata-

mente que a relagao
(27) v’ (x52) > ¥ (x52)

0 S ﬁ'
subsiste para (e somente para) z = z, e qualquer x€ J tal que ¢c'x >0 .
Note-se que, sendo ¢ £ 0, a existéncia de tais x€ F & efetiva. Através da

analise do exemplo que acaba de ser apresentado, podemos pois concluir que,

mesmo no caso em gue as funcdes u(x,t;z) e v(x,t) sio independentes de t,

Q 0 — - .
nem sempre subsiste a igualdade v'(x;z) =.v (x;z) para = *°, :s i

gualquer x € D e qualquer z € D.

AT
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2.2. Dois teoremas.

Nesta subsecgao estabeleceremos os dois teoremas sobre a estabilida
de global assintotica mencionados no infcio da presente secgido. O seu esta

belecimento sera essencialmente fundamentado no teorema 2 [cf. parte I,

4.3].

Dado o sistema (1), x = f(x,t) pertencente & classe Q(D,to), consi

deremos uma qualquer familia de sistemas associada ao mesmo,
(28) x = u(x,t;z) .

Consideremos também uma fungdo v(x,t), supondo inicialmente que a

mesma satisfaga a seguinte condigao:

(a') +v(x,t) é da classe Cl(K(D,to)).

Como sabemos, a derivada autdnoma v?(x) da fungdo v(x,t) em relagao
ao sistema (1) fica perfeitamente determinada [cf. parte I, 4.1]. A mesma
coisa podemos dizer dos conjuntos R: e R®, definidos a partir de v (x) [bﬁ
parte I, 4.3]° Como ainds sabemos, a derivada autdnoma v’(x;z) da fungao
v(x,t) em relagio & famflia de sistemas associada (28) também fica perfei-
tamente determinada [cf. 2.1], Em térmos de v’(x;z) introduziremos abaixo

E*

()

dois conjuntos, E:

Préviamente & introdugdo désses conjuntos, suponhamos que, além da

condigao (at'), a fungdo v(x,t) satisfaga também a seguinte condigao:

(p') v(x,t) € definida-positiva num cilindro K(R,to), onde R de-

signa um conjunto contido em D.

De acordo com o enunciado da condigzo (b'), o conjunto R que nele
comparece devera ser considerado como dado. Tendo presente a definigao 04
[cf. introdugao geral, 2.3, b], vé-se que R € um conjunto aberto de éF que
contém a origem 0. As definigoes dos conjuntos EZ e E* envolverao ésse

conjunto R.

Em primeiro lugar, introduzamos o conjunto Eo’ definindo-o da se-—

guinte maneira: E"O" é o conjunto dos pontos z€ D - {0} tais que

(29) v'(z;2) < O
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para qualquer x € R - {O} .

Relativamente a ésse conjunto, subsiste a seguinte proposigao:

PROPOSIGAO 13 - A intersecgdo dos conjuntos R e E: esta contida

no conjunto R::

* ¥*
(30) RﬂEoCRO.

De fato, suponha-se que z seja um ponto qualquer tal que z & R O E:.
Considerando que z & E:, pela definigao de E: tem-se que z&€ D - {0},
sendo portanto z # 0. Mas, mais do que isso, combinando & referida defini

¢ao com a expressao (9) obtém-se que

(31) v'(x3z) = 1lim su v (y,t;w) €0
T 0+ ]y—xfsr
]w-Elsr
t 3t
pare. qualquer x&€ R - {0} . Considerando que z& R, e que z # 0, vé-se

que zE&€ R - {O} . Segue-se que a (31) subsiste para x = z, podendo-se por

tanto afirmar que

(32) v'(z;z) = 1lim su v (y,t;w) < O .
r-»0+ [y-zfsr
|w-z|gr
t >t

Sem maiores dificuldades, a partir da (32) deduz-se que tem lugar a desi-—

gualdade

(33) : lim su v (y.t;y) <0 .
r->0+ Iy-zfér

b >t

Como se passa a ver, a condicao de associag@o sera a seguir utiliza

da de modo decisivo. Essa condigao diz que u(z,t;z) = f(z,t) para qual—
quer z& D e qualquer t > to. Com base neste fato, por meio da expressao
(4) e por meio da expressao (22) da introdugao geral pode-se chegar imedia

tamente a constatagdo de que subsiste a seguinte relacao:

(34) V.(th) = ‘-’.(Z’tiz)
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pars qua.l.quer z& D e qualquer t > to. (Trata-se de uma relagg,o bastante

importante, no sentido de que & mesma estabelece uma conexao entre as duas

derivadas v (x,t) e v'(x,t;2).)

Em virtude da relagdo (34), vé-se que & desigualdade (33) equivale

a desigualdade

(35) lim su v'(y,t) €0 .
r-9» 0+ ly—zfér

t >t
Conseqlientemente, devido & expressio (25) da parte I, pode-se afirmar que
(36) v’ (z) < 0.
Assim sendo, como z & D - {0} , pela definigao do conjunto R:. [cf. parte
I, (60)] deduz-se imediatamente que o ponto z é tal que z € R;. Em conclu

sao: RN E¥C R* .
o )

Em segundo lugar, introduzamos o conjunto E*, definindo-~o da seguin

te maneira: E¥ é a reuniao do conjunto EZ: com o conjunto {0}, isto &,

(37) B = EX U {0} .

A respeito do conjunto E*, podemos desde logo observar que subsis—
tem as seguintes duas relagSes, imediatamente obteniveis a partir da propo

sigao 13
(38) '~ RAE*CR*,
(39) RN int E¥C int R™ .

Com efeito, considerando a (37) e a definigao do conjunto r* [cf, parte I,
(64)1, vé-ge que a (38) segue imediatamente da proposigao 13. Quanto a
(39), a mesma pode ser imediatamente obtida da (38), por meio da considera

gao de que R & aberto.

Observemos. gue 0s conjuntos E;-e E* ficam perfeitamente determinados
pela famflia de sistemas associada (28), pela funmgdo v(x,t) e pelo conjun-
to R. Ambos, E: e E*, sao conjuntos de \’F contidos em D. O conjunto E*

contém a origem O, enquanto que o conjunto E: nao a contém. A proposito
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de relagoes entre 8sses conjuntos e a referida origem, pode-se considerar

una divisao de possibilidades em dois casos: ou o interior int E* do con--
* - f ~ s g . q

Junto E” contem a origem O, ou nao a contém. Subsiste a seguinte proposi~

¢ao:

PROPOSIGAO 14 - No caso em que O& int E*, pode-se afirmar gue

0O€ int R*. (E, além disso, pode-se ainda afirmar que int R* = R*.)

Com efeito, a vista da (39), basta que se leve em conta que O & R
pars que se possa concluir que se 0€ int E*, entao 0& int R*. (E, além
disso, considerando este fato, pela proposigao 10 constata-se imediatamen-

te que se 0 &€ int E¥, entao int R* = R¥*,)

No sentido de virmos a utilizar o teorema 2, fagamos agora a suposi
¢8o de que, em acréscimo as condigdes (a') e (b'), a fungao v(x,t) satisfa

¢a ainda a seguinte condigao:

(e')  wv(x,t) é T[-limitada em algum cilindro K(N,t ), onde N de—

signe uma vizinhanca esférica da origem O contida em R.

Consideremos também ume fungdo @ (x) & qual v(x,t) pertence no ci-

lindro K(R,to) . (*)

Nas presentes circunstancias, subsiste o seguinte fato: no caso em
que 0 € int EX, o conjunto & (v,R M int EX, @) & um dominio de estabilida-
de assintética do sistema (1). Mostraremos a seguir que ésse fato pode ser

estabelecido através de uma aplicacao do teorema 2.

Admita~se que se verifique o caso em que 0& int E¥. No teorema 2,
como fungao v(x,t), tomemos aquela mesma acima considerada. Como conjunto
R do teYrema 2, tomemos o conjunto RM int E* (onde R tem a significacao
fixada precedentemente nesta subsecgao). Desta forma, considerando que
O€& int E¥, sem dificuldade se constata que as condigdes (a'), (b') e (e)
do teorema 2 resultam satisfeitas. Como fungao CP(x) do teorema 2, tome—
mos a mesma fungao 4 (x) acima considerada. Podemos assim proceder, pois,
como sem dificuldade se constata, essa (P(x) é uma fungao a qual v(x,t)

pertence no cilindro K(R M int E*, to). Considerando mais ums vez gque

(*) Observe-se que tais @(x) existem e que necessariamente perten-

cem & classe || (pois estamos supondo que a condigao (b') é satisfeita).
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QE int E¥, ve-se que em virtude da proposicao 14 pode-se garantir que o in
terior do conjunto ﬁ* resulta conter a origem O. Assim sendo, por forga do
teorema 2, podemos concluir que o conjunto SG(v,RM int EXAR*, Q) & un
domfnio de estabilidade assintética do sistema (1). Ora, em virtude da

(39) constata-se imediatamente gue R M int E*MA R* = R A int EX. Ve-se dai

que o referido dominio de estabilidade assintética do sistema (1) é preci-

samente & (v,R A int E*, P).

0 fato acima considerado, e que acaba de ser estabelecido, pode, de

um modo mais completo, ser enunciado na forma do seguinte teorema:

TEOREMA 4 - Dado o sistema (1), x = f(x,t) pertencente a classe

6 (D,to ), seia

(40) % = ulx,t32)

ume gualguer famflia de sistemas associada ao mesmo. Seja ainda v(x,t)

uma. funcao gue satisfaz as seguintes condicgoes:
(a') v(x,t) € da classe Cl(K(D,to)),
(') +v(x,t) é definida-positiva num cilindro K(R,to), onde R de-

signa um conjunto contido em D,
(¢') v(x,t) é [[-limitada em algum cilindro K(N,to), onde N de-

signa uma vizinhanca esférica da origem O contida em R.

Seja <P(x) uma funcao a qual v(x,t) pertence no cilindro K(R,to).

Designe-se por B* a reunizo do conjunto {0} com o conjunto E"; dos

pontos z & D - {0} tais que a derivada autdnoma v (x;z) de v(x,t) em

relacio & familia de sistemas associada (40) é negativa para qualquer

x&R - {0} . Nestas circunsténcias, se o interior do conjunto E* con-

tém a origem 0, entdo o conjunto &(v,R N int E*, @) é um dominio de es-

tgbilidade assintdtica do sistema (1).

Por meio da argumentagac que acaba de ser feita, o teorema 4 foi ob
tido como conseqliéncia do teorema 2. A propdésito, julgamos que seja inte-
ressante que mostremos que, vice-versa, o teorema 2 pode ser obtido como
conseqliéncia do teorema 4. Bste nosso objetivo sera atingido por meio da

a.rgu.mentagg,o apresentada a seguir.

Principiemos considerando o teorems 2. Dado o sistema (1), seja
v(x,t) uma fungdo que satisfaz as condigdes (a'), (b') e (¢'). Com a con-
digao (b') fica introduzido um dado conjunto R. Seja @ (x) uma funcgao a

qual v(x,t) pertence no cilindro K(R,to). Admita-se que se verifique o ca
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so em que O €& int R*. 0 teorema 2 afirma que, nestas circunstancias, pode
se tirar a seguinte conclusfo: o conjunto & (v,R N R*,<P) é um dominio de

estabilidade assintdética do sistema (1). Mostraremos abaixo que, nas refe

ridas circunstancias, essa mesma conclusao pode ser obtida através de uma

aplicacao do teorems 4. Sera o guanto basta para que o nosso objetivo se-

Jja atingido.

No teorema 4, como familia de sistemas associamda x = u(x,t;z), to-
memos aquela definida pela fungfo u(x,t;z) = f(x,t) para qualquer x& D ,
qualguer z € D e qualquer t 3> to. Verifica-se facilmente que a fam{lia as
sim obtida é de fato uma familia de sistemas associada ao sistema (1). Tra

ta-se da associagao trivial, ja considerads em I:TAS, P. 40]. Como passa—

mos a ver, uma vez feita a associagao trivial, pode-se afirmar que a igual
dade v’(x3z) = v’(x) subsiste para qualque.f Xx€ D e qualquer z & D. Com e-
feito, por meio da expressac (4) e por meio da expressao (22) da introdu—
gao geral, constanta-se imediatamente que v°(x,t;z) = v (x,t) para qualquer
x& D, qualgquer z &€ D e qualquer t ';;.to. A partir dai, empregando a ex—
pressao (9) e empregandc a expressao (25) da parte I, estabelece-se facil-

mente gue de fato a referida igualdade tem lugar:

(41) v'(x3z) = lim = su v (y,t;w) =
T 0+ ]y-xfsr
IW".'ler
2,
= lim su vi(y,t) =
r-9»0+ Iy—xfsr
| w-z|gr
2t

lim su v (y,t) = v (x)
-9 0+ ly—szr
=1

T2

para qualquer x € D e qualquer z & D. Ainda no teorema 4, como fungao
v(x,t'), tomemos aquela mesma acima considerada. Como conjunto R do teore-
ma 4, tomemos o conjunto R M R* (onde R tem a significagao acima fixada) .
Desta forma, considerando que 0 & int R*, sem dificuldade se constata que
as condigoes (a'), (b') e (o') do teorema 4 resultam satisfeitas. Como fun
¢ao @ (x) do teorema 4, tomemos a mesma @ (x) acima condiderada. Podemos
assim proceder, pois, como sem dificuldade se constata, essa <P(x) é uma

fungao a qual v(x,t) pertence no cilindro K(R 11 R*,to). Passamos agora &
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ver que o conjunto E¥ resulta ser igual a D. Com efeito, pela definigao
do conjunto R:, obtém-se facilmente que v’(x) < 0 para qualquer x & R N R:.
Daf, pela definigao do conjunto R*, segue-se que v’(x) < 0 pard qualquer
x& R NR* - {0} . Assim sendo, por meio do emprégo da igmaldade
¥’ (x;2z) = v’(x) acima estabelecida, a partir da definigao do conjunto E:
constata-se facilmente gque o mesmo E: resulta ser igual a D - {0} . Tendo
presente a definigao do conjunto E¥, deduz-se imediatamente dai que de fa-
to o conjunto E¥ resulta ser igual a D. Uma vez estabelecido isto, fica
manifesto que o interior do conjunto E* resulta conter a origem 0. Nestas
circunstancias, por forga do teorema 4, pode-se tirar a seguinte conclusao:
o conjunto & (v,R N R¥ A int E¥, ‘P) é um dominio de estabilidade assintdti
ca do sistema (1). Ora, considerando que E* = D, constata-se sem dificul-
dade que int E* = D, e, logo em seguida, que R 1 R* N int E*¥ = R N R*. Ve-
se dai que o referido domfnio de estabilidade assintdtica do sistema (1) é
precisamente © (v,R N R¥, ‘-?) . )

A discuss3o precedentemente feita, relacionando os teoremas 2 e 4 ,
nos permite chegar sem qualguer dificuldade a4 seguinte conclusgo: no ue

= . ~ o N - l ]
diz respeito a capacidade de estabelecer conjuntos como dominios de esta—

bilidade assintética, os teoremas 2 e 4 se equivalem.

Ao lado do teorema 4, passamos agora a apresentagao de um outro teo

rema do mesmo tipo. Trata-se do teorema 5 enunciado abaixo.

Comecemos observando gque o teorema 4 emprega a derivada autonoma
v'(x;z), definida pela expressao (8), bem como os conjuntos E"O" e E¥*, defi-
nidos a partir de w-r’(x;z). Em seguida consideremos a fung'é'.o Gf(x;z), defi
nida pela expressao (5), e introduzamos dois novos conjuntos, E: e B%, de-
finidos a partir de v'(x;z) da mesma forma que os conjuntos E: e B sao de

finidos a partir de v’(x;z): 8% é o conjunto dos pontos z€ D - {0} tais

0
gue

(42) vi(x;z) < 0

para qualquer x& R - {0}, e 8% é a reunifio do conjunto E‘g com o conjunto

{O} , isto &,

(43) B* - 87 u {0} -

Podemos agora nos propor a seguinte questao: Se, no enunciado do

teorema 4, substituirmos "derivada autdnoma v*(x;z) de v(x,t) em relagéo a
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fam{lia de sistemas associada (40)" por "funcao v’'(x3z) definida a partir
\\{ s

de v(x,t) e da famflie de sistemas associada (40)", bem como "Ei" e "E*n

respectivamente por "Eg" e "B*" obteremos um enunciado verdadeiro?

Para essa questao ue manifestamente visa uma substituicao de
?
v’(x32) por v'(x3;z), e que se poe de um modo bastante natural, daremos a

resposta que segue.

Na. parte I, subsecgao 4.2, definimos o caso eqliicontinuo, caracteri
zado por certas restrigoes especiais impostas as fungoes f(x,t) e v(x,t) c
Pois bem, podemos dizer que na hipotese de se verificar o caso eqficonti—
nuo, a questao acima admite uma resposta afirmativa. (*> Mais especifica-~

damente, podemos asseverar a subsisténcia do seguinte teorema:

TEOREMA 5 - Dado o sistema (1), x = f(x,t) pertencente & classe

€ (d,t,), seja

(44) x = u(x,t;2)

uma guelquer famflia de sistemas associada 8o mesmo., Seja ainda v(x,t)

uma funcao ogue satisfaz as seguintes condicoes:
(a')  w(x,t) & da classe cl(K(D’to))’
(b')  v(x,t) é definida-positiva num cilindro K(R,to), onde R de-

signa um conjunto contido em D,
(e')  v(x,3) é [[-limitada em algum cilindro K(N,t_ ), onde N de-

signa uma vizinhanca esférica da origem O contida em R.

Seja q’(x) uma_funcao a oqual v(x,t) pertence no cilindro K(R,to).

Suponha~-se que se verifigue o caso egliicontinuo, isto &, suponha-se

que as fungdes f(x,t), grad v(x,t) e vt(x,t) sao eqliicontinuas em

D - {0}, para t variavel no intervalo tog; t-< + ®, e, além disso,que,

para cada x & D -~ {0}, as funcdes f(x,t) e grad_ v(x,t) sio limitadas

como funcoes de t no intervalo t,L t<+ o,

" g * .~ - .
Designe-se por " a reunifo do conjunto {O} com o conjunto Eg dos

pontos z & D - {0}, tais que a funcio v'(x;z) definida a partir de

(*) Convém que se note que esta nao aparece aqui como uma afirmagao
que merega ser taxada de trivial: de acordo com o exemplo analisado na sub
secgao 2.1, nem mesmo no caso autonomo - que é menos amplo do que o caso
eqiiicontinuo -~ pode-se garantir gque sempre subsiste a igualdade das duas

fungoes v’(x3z) e v (x;z).
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v(x,t) e da familia de sistemas associada (44) é negativa para gqualquer
x& R - {0}. VNestas circunstancias, se o interior do conjunto B* con-

tém a origem O, entdo o conjunto &(v,R M int £%, @) & um dominio de

estabilidade assintética do sistema (1),

Com auxilio dos desenvolvimentos feitos na subsecgﬁo 4.2 da parte I,
em especial com auxilio da proposigao 8, o teorema 5 pode ser demonstrado
a partir do teorema 2 por uma linha de consideragoes e raciocinios bastan-
te semelhante aquela anteriormente seguida na presente subsecgao para se
demonstrar o teorema 4. Nao exporemos de modo completo uma demonstragao do
teorema 5: julgamos que sejam bastantes as breves indicagoes gque serac da-
das abaixo - por meio das quais, e sem maiores dificuldades, poder-se-é

chegar a exibigao de uma demonstracao completa do teorema 5.

Na argumentacgao da presente subsecgao que levou ao estabelecimento
do teorema 4, considere-se em lugar da derivada autdonoma v’(x3z) a fungao

. * . ; .
vf(x;z), bem como em lugar dos conjuntos Eo e BE¥ respectivamente os conjun

tos B¥ e B*,
)

Em lugar da proposigao 13, podJ-se afirmar que subsiste uma proposi
gao correspondente, ou melhor, pode-se afirmar que RN E:(: R:. No estabe
lecimento déste fato, sucintamente indicado a seguir, € que se encontram
as diferencgas essenciais de demonstragao entre os teoremas 4 e 5. Tenha-se
em vista a seqliéncia de raciocinios que conduziram ao estabelecimento da
prdposig§0 13, Analogamente ao que la foi feito, comece-se supondo que z
seja um ponto qualquer tal que z& R N E:. Note-se que z& D -~ {O'}o Em

substituicao as (31) e (32) é-se levado as relagoes

(45) vi(x,z) = sup V'(x,1;2) K0
t >t
)
e
(46) v(z3z) = sup v°(z,t;z)< O .
"
)
(Nao tem lugar aqui a passagem por uma relagao que substitua a (33).) Em

virtude da relagao (34), a partir da (46) passa-se as relacgoes

(47) sup v (z,t) <0
t2,

e

(48) vi(z) <0,
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Jue substituem as (35) e {36). A esta altura, considerando que se verifi-

ca o caso eqﬁlcontinuo, por meio do emprego da proposiqﬁo 8 constata-se que

e (48) pode ser assim expressa:
(49) vz <o. ™

A vista disso, como z& D ~ {0}, deduz-se que o ponto z é tal que z & R"O".

Em conclusao: R M E:C Rz..
Note-se gue, em substituigdo a (39), pode-se afirmar que
(50) RN int B¥c int R* .

Em lugar da proposigao 14, também subsiste uma proposigao correspondente,
ou melhor, se O € int B*, entdo 0 & int R* (e, além disso, int R* = R¥) .
Dai por diante, tdda a argumentagao subseqliente a proposigao 14 pode ser u

tilizadsa, de modo que atraves de uma aplicacgao do teorema 2 chega-se fécil

mente sao estabelecimento do teorema 5. .

Terminando a presente subsecgao, fagamos as observagoes que seguem.
Os teoremas 4 e 5 sao, em muitos aspectos, semelhantes ao teorema 2. Tanto
aqufles primeiros quanto éste ultimo afirmam que, em determinadas circuns-
tancias, certos conjuntos szo dominios de estabilidade assintotica de um
sistema dado. No entanto, os teoremas 4 e 5 distiguem-se do teorema 2 por

’ . ~ . .
um carater essenciasl: contrariamente aoc que ocorre com o teorema 2, 0s teo-

tema dado. Bste fato confere aos teoremas 4 e 5 o carater de resultados

da teoria dos sistemas associados. Assim como o teorema 2 desempenha um
papel basico na teoria do método direto de Liapounoff, podemos dizer que
os teoremas 4 e 5 desempenham um papel basico na teoria dos sistemas asso-

ciados.

3, METODO DOS SISTEMAS ASSOCTADOS PARA A DETERMINAGAO DOS DOMINIOS
DE ESTABILIDADE ASSINTOTICA. FORMAS APERFEICOADAS.

Como ja foimencionado, em [TAS] estabelecemos o método dos sistemas

(*) Frizemos: na suséncia da hipotese de que se verifica o caso e-

q#icontinuo, néo teriamos condigoes de fazer esta afirhacao.
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as.socia.dos para a determinacao de dominios de estabilidade_assintética [cf.
TAS, parte II, secgao 6 (6.2), ps. 52—55]. Trata-se de um método bastante

geral, que possui o carater de envolver a escolha de uma familia de siste-

mas associada ao sistema que é objeto de sua aplicagao, familia essa que
pode ser absolutamente qualquer. A finalidade principal da presente sec—
gao é o estabelecimento de dois novos métodos andlogos, que pPOSSuem O mesS-

mo carater, e que podem ser considerados como formas aperfeigoadas do me—

todo dos sistemas associados para a determinacio de dominios de estabili—

dade assintotica. Uma dessas formas aperfeigoadas é aplicével a gqualquer

sistema da classe Q . A outra dessas formas aperfeigoadas, relativa ao ca
so eqflicontinuo,' s0 é aplicavel a sistemas de uma subclasse de é . Entre-
tanfo, dentro do caso eqllicontinuo, esta segunda forma apresenta-se como
sendo mais conveniente do que aquela primeira forma. Serao desenvolvidos
comentérios de carater comparativo, com os quais ficarao especificados os
sentidos nos quais os mencionados dois novos métodos aperfeigoam o me todo

estabelecido em [TAS].

3,1, Método dos sistemas associados para a determinacao de dominios

de estabilidade assintotica. Uma forma aperfeigoada.

Assim como na subsecgg.o 4.4 da parte I exprimimos o t;éorema 2 na
forma de um método, podemos aqui também exprimir o teorema 4 numa outra
forma (bastante conveniente para aplicagoes e certas discussoes), na forma
de um método para a determinagao de dominios de estabilidade assintotica .

Daremos para tal método a formulagao que segue.

Dado o sistema (1), = f(x,t) pertencente a classe G(B,to), para
se fazer a determinagao de dominios de estabilidade assintotica do mes-
mo, pode-se proceder executando as quatro etapas AI’ AII’ AIII e AIV s
abaixo apresentadas, e, em seguida, utilizando o teorema 6, posterior--

mente enunciado.

ETAPA A - Escolha de uma (qualguer) familia de sistemas associa-

da (ao sistema (1))
(51) x = u(x,t3z) .
ETAPA A . - Escolha de uma funcao v(x,t) da classe C].‘(K(D’to))’

gue pertence a uma funcao (P(x) num cilindro K(R,to), com}bRC D, e gue
e -ﬂ--limitada en algum cilindro K(N,to), onde NC R designa uma vizi-

nhanca esférica da origem O.
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ETAPA Aj ;- Obtencao da derivada sutdnoma v’(x;z) (de v(x,t) em

relagao a familia de sistemas associada (51)).

ETAPA A, - Determinacgdo do conjunto E*, reunizo do conjunto {0}

com o conjunto Ez dos pontos z& D - {0} tais que

(52) v (x;2) £ 0

para qualgquer x € R - {0}.

»

TEOREMA 6 - Se O &€ int E¥*, entao o conjunto & (v,R M int E¥, P) &

um dominio de estabilidade assintdtica do sistema (1). _

Un exame da formulagao que acaba de ser dada mostra imediatamente
que o método acima constitui-se numa outra forma de expresséo para o teore-
me 4. Na verificagao deste fato reside a justificagdo do método, em espe-

cial do teorema 6.

0 método estabelecido acima visivelmente marcha gseguindo ag linhas
gerais do método dos sistemas associados para a determinagao de dominios
de estabilidade assintdtica estabelecido em [TAS, parte II, secgao 6 (6.2),
psS. 52—551. (*) Ambos ésses métodos apresentam os seguintes caracteres em
comum: ambos sa&o aplicaveis a qualguer sistema da classe g, e ambos envol
vem & escolha de uma familia de sistemas associada ao sistema que é objeto
de sua aplicacao, familia essa que pode ser absolutamente gqualquer. No en-
tanto, como se vera na subsecgao seguinte, o método estabelecido mscima a-
presenta certas caracteristicas realmente vantajosas sobre o metodo estabe
lecido em [TAS]. Sao tais caracteristicas que viraso a justificar a consi-

deragao do método estabelecido acima como uma forma aperfeicoada do método

dos sistemas associados para a determinacao de dominios de estabilidade

assintotica.

Terminando a presente subsecgdo, ¢ interessante que chamemos a aten

¢80 para o seguinte ponto, que diz respeito a uma confrontagio entre o mé-

(*) Julgamos que existe conveniéncia em se incluir também o método
estabelecido acima na designagao ﬁmétodo dos sistemas associados para a
determinagao de dominios de estabilidade assintética". O carater geral do
mesmo justifica éste pequeno abuso de linguagem, gque resultas exclusivamen-

te da nomenclatura anteriormente empregada em [TAS],
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- todo exposto na subsecggo 4.4 da parte I e o método estabelecido acima.

Considerando que o primeiro é uma forma de expressac para o teorema 2e que
o] segundo é uma forma de expressac para o teorema 4, de acordo com a equi-
valéncis entre ésses teoremas (constatada na subsecgao 2. 2), pode-se afir-

mar que os dois referidos métodos se equivalem guanto a capacidade de for-

ne01mento de dominios de estabilidade assintotica.

3,2. Alzuns comentarios de carater comparativo.

Nesta subsecgdo faremos alguns comentédrios de carater comparativo ,
os quais consistirao essencialmente na consideracao de certos fatos que e-
xibem caracteristicas realmente vantajosas do método estabelecido na sub——
secgao 3.1 sdbre o precedentemente citado método estabelecido em [TASl. (A
fim de evitarmos longas repetigdes, no decorrer désses comentarios permitir
nos—emos empregar livremente as notagoes e designagoes adotadas em [TAS]

a propdsito do método la estabelecido).
Um primeiro dos fatos acima aludidos pode ser expresso COmO Segue.

Toda fungao v(x,t) passivel de escolha no método estabelecidoem
@ms] ¢ também passivel de escolha no método estabelecido em 3.1. A reci-

proca nao é verdadeira.

Bste fato pode ser facilmente constatado através da consideragac de
que as duas etapas A, e A;; distinguem-se somente no que diz respeito as
condigoes de ||-limitaglo que impSem a fungao v(x,t): a condigao imposta

| - . s 3 3 - =) .
na etapa A, & estritamente mais restritiva do que a condigao imposta na e~

2
tapa AII“
B Sbvio que o fato acima constitui-se numa vantagen do método esta-
belecido em 3.1 sdbre o método estabelecido em [TASJD Desejamos no entan-
to declarar que essa vantagem nos . parece relativamente pequena em compara

cao com as outras vantagens que serao vistas abaixo.

Um segundo dos fatos anteriormente aludidos pode ser expresso COmo

segue.,

Com o método estabelecido em 3.1 fics eliminada a escolha de uma

fungdo ©(x) da classe |}, escolha essa gue é indispensavel no método esta-

belecido em [TAS].

A procedéncia déste fato pode ser constatada através de um simples
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exame dos dois métodos, com especial consideracao das etapas A4 e AIV'

A ﬁresenga da escolha da fungao 0(x) no método estabelecido em @ASJ
apresenta-se como algo indesejavel. Isto pela razac de que se trata de
uma escolha arbitraria, a qual estao associadas certas circunstancias bas-
tante inconvenientes. Sem nos preocuparmos em discutir completamente esta
situagao, limitar-nos-emos a seguinte breve mengido a somente uma dessas cir
cunstancias: dependendo exclusivamente de como tenha sido feita a escolha
da fungao 9(x), o método estabelecido em [TAS] pode conduzir, ou deixar de
conduzir a um dominio de estabilidade assintdtica. (De passagem, observe—
mos que esta circunstancia podera ser facilmente comprovada por meio doprd
ximo exemplo, a ser considerado mais abaixo.) Conseqllentemente, pode-se
dizer que a eliminagao da escolha da fungao 6(x), ja em si, constitui-se
numa vantagem do método estabelecido em 3.1 sobre o método estabelecido em
[TASJ. Entretanto, a propésito dessa eliminagao, podemos dizer que a mes-
ma torna-se realmente significativa por vir acompanhada das novas vanta—

gens que serao discutidas abaixo.

Umn terceiro dos fatos inicialmente aludidos pode ser expresso como

(*) ”

segue.
Seja X = fx,t) um qualquer sistema de uma classe €(D,‘bo). Consi-
dere-se duas eaplicagoes a tal sistema, uma do método estabelecido em @ASJ
e outra do méetodo estabelecido em 3.1. Facga-se a suposigao de gque tanto
numa como noutra aplicagéo sejam escolhidas a mesma familia de sistemas as
sociada x = u(x,t;z), a mesma funcao v(x,t) (a qual certamente devera sa—

tisfazer a condigao de TT-limitagéo imposta na etapa A2), juntamente com o

mesmo conjunto R e com a mesma fungao (P(x).

Nestas circunsténcias, qualquer gue seja a funcao Q(X) escolhida

para a aplicacao do método estabelecido em [TAS], pode-se fazer a seguinte

afirmagao:

(*) Por razdes de comodidade, consideraremos dagui por diante o con
junto F(©) do método estabelecido em [TAS] como sendo dado pela seguinte
definigao: F(O) é o conjunto dos pontos z & D tais que v'(x,t;z)< - 0(x)
para qualquer x & R e qualquer t ;-;.to. A inclusdo da exigéncia de que
z €& D constitui-se nu'a modificagao inessencial, dado gque, como facilmente
se pode constatar, no referido método o conjunto F(Q) é aproveitado sdmen-

te através da sua intersecgao com D.
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(o) Entre os conjuntos F(0) e E* subsiste a relagao de inclusao

int F(@)c int E*.
Além disso, pode-se ainda fazer a seguinte afirmagao:

(i) Se 0& int F(O), isto é, se se verifica o caso em que O meto-
do estabelecido em. [TAS] conduz a um domfnio de estabilidade assintética
S(v,r N int F(O), P), entio também O € int E-, isto é, também se verifica
0 caso em que o método estabelecido em 3.1 conduz a um dominio de estabili
dade assintética &(v,R N int EX, @), e mais, entre tais dominios de esta-
bilidade assintética subsiste a relagdo de inclusao
G(v,R N int F(0), P) & &S(v,R N int EX, P).

Nas mesmas referidas circunstancias, e suposta escolhida a fungao
o(x), também tem lugar as seguintes afirmagoes adicionais:

(ii) Pode efetivamente dcorrer que 0¢ int F(0) e que 0 €& int E¥,
isto é, pode efetivamente ocorrer que o método estabelecido em [TAS] nao
conduz a um dominio de estabilidade assintdtica e que o método estabeleci-

do em 3.1 conduz a um dominio de estabilidade assintotica.

(iii) Pode efetivamente ocorrer que O € int F(0), que O &« int E*
e que a relagao de inclusio &G(v,R N int F(e),p)Cc & (v,R N int EX, @)
subsiste no sentido estrito, isto é, pode efetivamente ocorrer que ambos os
métodos conduzem a dominios de estabilidade assintética e que o dominio
fornecido pelo método estabelecido em [TAS] é estritamente menor do que o

dominio formecido pelo método estabelecido em 3.1.

0 fato que acaba de ser expresso sera justificado por meio da argu-

mentagﬁo que passa a ser apresentada.

Pars se demonstrar a afirmagdo (o), demonstrar-se-a a seguir que
int F(Q) € E*. Considerando que int F(6) é um conjunto aberto, ve-se fa—
cilmente que isto & o quanto basta. Preliminarmente, note-se que, pela de
finigao de F(9Q) [cf. precedente nota de rod.apé], gualquer que seja
2z € F(0), a desigualdade

(53) v (x,t52) < - o(x)
verifica-se para qualquer x € R e gualquer t >,to. Suponha-se agora que z
seja um ponto qualquer tal que z € int F(6). Considerando que RC D, que

int F(6) € F(0) € D, e que tanto R como int F(0) sao conjuntos abertos,por

-
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meio da utilizag@o da expressao (9) e da desigualdade (53) facilmente se

obtem que
(54) v’ (x3z) = 1lim su vi(y,tiw) £ lim su [-oly)]
r->»0+ ]y—xfsr ' -0+ ]y—xfér
|w-zlgr
t >/t0

para qualquer x €& R - {0}. Sendo 6(x) uma fungdo dea classe ||, tem-se que
0(x) é continua em qualquer ponto x & R - {0}, jé que 6(x) é continua em
todo o espago da fase F. vé-se daf que o ultimo membro da (54) ndo é ou-

tra coisa que -0(x), podendo-se portanto afirmar que
(55) v’ (x;52) < - o(x)

para qualquer x& R - {0}. Mas, ainda por ser O(x) uma fungdo da classe
r‘
TT, tem-se gque Q(x) > 0 para qualquer x ;4 0 do espago de fase J-. Assim

sendo, pela (55) deduz-se que & relagao
(56) v'(x;z) < 0O

subsiste para qualguer x € R - {O} Recordando a definigao do conjunto

E;, vé-se imediatamente que se z # 0, entdo, por férga da relagdo (56), re
sulta que z & EZ._ Dai, pela definigao do conjunto E¥, conclui-se que no
caso de ser z £ 0, o ponto z é tal que z & E*. Ora, ainda pela definigao
‘do conjunto E* (e de modo independente da argumentagio que precede), tam-—
bém conclui-se que no caso de ser z = O, o ponto z é tal que z & E*. Desta

forma, vé-se que int F(0)& E¥*, ficando pois demonstrada a afirmagao (o).

Uma demonstragao da afirma:gg.o (i) pode ser muito simplesmente dada
com base na afirmagéio-(q).' Faga-se a hipotese de que 0 & int F(6). Note-
se gue, de acdrdo com o teorema 8 do método estabelecido em [TAS_], 0 caso
em gue O& int F(©) é precisamente o caso em que o referido método conduz
a um dominio de estabilidade assintética &(v,Raint F(0), ¢). DNessa hipd-
tese, tem-se que também O & int E*. Efetivamente, pela afirmagdo (o) pode

. 8¢ asseverar que int F(O)G int E*., Note-se que de acordo com o teorema
6 do método estabelecido em 3.1, o caso em que O € int E* é precisamente o
caso em que o referido método conduz a um dominio de estabilidade assinté-
tioca G(V,R M int E*, (P) Fica assim demonstra@a a primeira parte da afir
magéo (1) Levando isto em conta, pode-se assegurar que na hipdtese de que
O €& int F(Q), os dois dominios de estabilidade assintética
& (v,R N int F(0), P) e & (v,R N int E¥, @) estao perfeitamente definidos.
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De acdordo com a definigao 09 [cf. introdugac geral, 2.3, dJ, o primeiro ¢é
o conjunto dos pontos z do espago de fase F tais que z€& R M int F(8) e que
z verifica a desigualdade v(z, tg ) < n(P,R M int F(8)), e o segundo &€ o con
junto dos pontos z do espago de fase & tais que z & R Mint EX e que z ve
rifica a desigualdade v(z,t )< h(¢,R N int E*). Ora, utilizando a afir-
magao (o) pode-se afirmar que subsiste a relagio R A int F(0)c R M int EX
Dai, pela definigao 07 [cf. introdugao geral, 2.3, d] deduz~-se sem maio-—
res dificuldades que também subsiste a relagao
h(¢ ,R N int F(0)) < h(¢{,R N int E*), Levando em conta as definigdes dos
dom{nios de estabilidade assintética G (v,R N int F(8),P) e
55(V,Rl1 int E ,(P) acima fornecidas, estas duas tltimas relagoes conduzem
imediatamente B conclusdo de que entre ésses dominios de estabilidade as—
sintética subsiste a relagao de inclusao
&(v,R N int F(6), P)C S (v,R N int E¥, P). Fica assin demonstrada a se-

gunda parte da afirmacao (i). Isto completa a presente demonstragao.

As afirmacgoes (ii) e (iii) serao & seguir demonstradas por meio da
consideragao de um exemplo, alids bastante simples, mas que, como sem difi
culdade se vera, presta-se bastante bem para evidenciar diferengas essen—
cisis entre o método estabelecido em [TAS] e o método estabelecido em 3.1.
Basicamente, esse exemplo consistira numa analise de certas aplicagoes dos
referidos métodos a um sistema de equagSes diferenciais. Alguns detalhes
dessas aplicagSes serao omitidos por razoes de brevidade, visto que as re-
feridas aplicagSes poderao ser discutidas de modo completo sem gualquer di

ficuldade.
No cilindro K(éF,O), considere~se o sistema

(57) x=Hzx+ (|x| -1) x,
onde H designa u'a matriz constante hemissimétrica fixada arbitrariamente.

- * »
Bsse € um sistema da classe @(3’,0). () Tanto para aplicar o metodo es-
tabelecido em [TAS] como o método estabelecido em 3.1, escolha-se a fami -—
lia

(58) | x=8zx+ (|z] -1) x,

. . - o . . .
parametrizada por z variavel em J, como fam{lia de sistemas associada ao

(*) 0 sistema (57) é do tipo do sistema (29) considerado na parte I.
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sistema (57), e, como fungao v(x,t), escolha-se aquela dada em K(‘?,O) pela

expressao
(59) v(x,t) = x'x = [x|2 ,

tomando simultdneamente R = F e Q(x) = x'x em F. 1 obtencao das fun—

coes v'{x,t;z) e v'(x3;z) ndo oferece gqualguer dificuldade, e conduz as ex-

pressoes
(60) vi(x,t3z) = 2 (|z] - 1) ]x|2
e

=

(61) v'(xsz) = 2 (|z] - 1) |x

Ed N
validas pare qualquer x & 3", qualquer z& J e gqualquer t 3> 0. Para apli-
car o métcéo estabelecido em [‘I‘AS], escolha-se como 8(x) uma fungao dada

en F pela exXpressao

N
Ox
av

e

O(x) =U x'x ,

onde y designa um parametro positivo. Levando em conta as (60), (61) e
(62). as determinacgdes dos conjuntos F(o) e E* podem ser facilmente feitas,
z r~
e conduzem acs seguintes resultados: F(@) é o conjunto dos pontos z € I
tais aque
N ¥
(63) lzlg 1 -3

s
3 - _y oo

e E¥ € o conjunio dos pontos z&€J tais que

(64) lzl<: 1.

Posto isto, atribua-~se ao paré.metro J um valor qualquer tal gque

T

i~ 5 % 0., aAssim fazendo, pela (63) deduz-se imediastamente gque o conjunto
int #(§) resulta ser vazio. De conseqidncia, obiZm-se que O* int F(0).
Mas, por outro lado, pela (64) constata-se imediatamente que 0 & int E*.
Deste forma vé-se que pode efetivamente ocorrer que O€E int F(O) e que

0 € int E*., De acordo com os teoremas 8 ds [TAS] e 6 da subsecgao 3.1, is
to significa que pode efetivamente ocorrer que o método estabelecido em
[TAS] nao conduz a um dominio de estabilidade assintotica e que o método
estabelecido em 3.1 conduz & um dominio de estabilidade assintotica. Fica

assim demonstrada a afirmacgao (ii).



-84~

Atribua-se agora ao parametro Y um valor qualquer tal que 1 - % >0
(com U’> 0). Assim fazendo, pela (63) results imediatamente que O& int F(9).
Por outro lado, como j& se constatou acima, tem-se que 0€ int E*. Nestas
condigdes, de acordo com os teoremas 8 de [TAS] e 6 da subsecgdo 3.1, o mé-
todo estabeleéido em ETAQ] conduz ao dominio de estabilidade assintotica
&G(v,R A int F(8), P) e o método estabelecido em 3.1 conduz ao dominio de
estabilidade assintética &(v,R N int E*,(P). Assimy os conjuntos
S(v,R N int F(6),P) e &S (v,R MNint EX, (P) estdao perfeitamente definidos .
A sua determinagio nao oferece dificuldades. Chega-se a08 seguintes resul-
tados: & (v,R M int F(6), ) é o conjunto dos pontos ze F tais que
(65) lz] <1 -

9

]
2
e &(v,R N int E¥, t?) é o conjunto dos pontos za@ F tais que

(66) lz] < 1.

Considerando gue 1 - g <1 (pois ¥ > 0), pelas (65) e (66) constata-se i—
mediatamente que o primeiro conjunto esta propriamente contido no segundo
conjunto. Desta forma vé-se que pode efetivamente ocorrer que 0 € int F(0),
que O € int E* e que a relagio de inclusao

& (v,R Nnint F(6), P)C S (v,R N int EX, @) subsiste no sentido estrito. Em
outros termos, pode efetivamente ocorrer que ambos os métodos conduzem a do
minios de estabilidade assintdtica e que o dominio fornecido pelo método es
tabelecido em [TAS} & estritamente menor do que o dominio fornecido pelo mé_

todo estabelecido em 3.l. Fica assim demonstrada a afirmagao (iij)c

Examinando as afirmagdes (i), (ii) e (iii) do terceiro fato acima
considerado, ve-se que as mesmas exibem novas e bastante importantes vanta-
gens do método estabelecido em 3.1 sobre o método estabelecido em [TAS], 0
contetido dessas afirmacgoes, ndo muito precisa ., porém sugestivamente, pode

gser expresso da seguinte maneiras

Sempre que o método estabelecido em [TAS] conduz a um dominio de es-

tabilidade assintdtica, o mesmo ocorre com O método estabelecido em 3.1,

vorém nao vice-versa. Além disso, 0s dominios de estabilidade assintdtica

fornecidos pelo método estatelecido em 3.1 sa0 sempre nao menores, podendo
%) »
ser estritemente maiores ' ° do _gue o0S dominios de estabilidade assintotica

(*) Em geral é este o caso que se verifica.
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fornecidos pelo método egtabelecido em [TAS].

. Numa palavra, pode-se dizer que o método estabelecido em 3.1 tem que~
lidade melhor do que o método estabelecido em EiAS]

Terminando, parece-nos que seja interessante dar realce a seguinte
observagﬁo. Em lugar da derivada ;'(x,t;z) enpregada pelo método estabele-
cido em [@AS], o método estabelecido em 3.1 emprega a derivada autonoma
v’(x;2). Pode-se dizer que os aperfeigoamentos dados pelas caracterisiicas
vantajosas correspondentes aos dois ultimos fatos acima considerados, foram

conseguidos em virtude da utilizacao da derivada autonoma v’(x3z) em lugar

da derivada v'(x,t;z).

3.3, Método dos sistemas associados para a determinacgo de domfnios

de estabilidade assintotica. Uma forma aperfeicoada relativa ao caso eqili-

r'd
continuo.

Assim como na subsecgao 3.1 exprimimos o teorema 4 na forma de um mé
todo, podemos aqui também exprimir o teorema 5 numa outra forma (bastante
conveniente para aplicagoes e certas discussoes), na forma de um metodo pa—'
ra a determinagao de dominios de estabilidade assintotica. Daremos para tal

método a formulagao que segue.

Dado o sistema (1), x = f(x,t) pertencente & classe &(D,t ), faga-se

& hipotese de que a funcao f(x t) é eqlticontinua em D - {O}, para t va-

riavel no intervalo togs t<+ ®, e, alénm disso, a hipotese de que, pa-

ra cada x&€ D - {0}, a funcao f(x,t) é limitada como funcao de t no in-

tervalo t,& t< + ®. Nestas condigdes, para se fazer a determinacao
de dominios de estabilidade assintotica do referido sistema, pode-se rro
ceder executando as quatro etapas AI, AII’ AIII e AIV’ abaixo apresenta-

das, e, em seguida, utilizando o teorems Ty posteriormente enunciado.

ETAPA KI - Egscolha de uma (gqualguer) familie de sistemas asscciada

(a0 sistema (1))
(67) x = u(x,t;z)
ETAPA E - Escolha de uma funcao v(x,t) da classe Cl(K(D t )),

que pertence a uma funcao @(x) num cilindro X(R,t ), com R&C D, e gue
é T]-limitada em algum cilindro K(N,t ), onde NC R designa uma vizinhan-

¢a_esférica da origem 0, funcao v(x,t) essa gue alnda_preenche 0 regui-—
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sito de gue as funcoes grad v(x,t) e vt(x,t) sao egfiicontinuas em
D - {O},;pana t variavel no interﬁalo tofs t <+ ©®, £ além disso, o

requisito de que, pars cada x& D - {o}, & fungao grad_ v(x,t) é limi-

tada como funcao de t no intervalo t0\< 1<+ ©o

ETAPA ﬁIII - Obtencao da fungdo v’ (x;z) (definida a partir de

v(x,t) e da familia de sistemas associada (67)).

ETAPA EIV . Determinacic do conjunto &%, reuniso do conjunto {0}

com o conjunto E: dos pontos z €D - {0} tais que

(68) | +*(x32) < 0

para qualquer X € R ~ {0}

rd

WEOREMA { - Se 0 € int B*, entao o conjunto G(v,R N int £%, @) &

BQ;@QEé?EP-Q? sstabilidade assintética do sistema (1),

Um exame da formulagao gque acaba de ser dada mostra imediatamente
que o método acima constitui-se numa outra forma de expressao para o teore
me 5. Na verificagac déste fato reside a justificagdo do método, em espe-

cial do hLeorsma 7.

Na subseccao 3.1 foi estabelecido um método que se constitul numa
forma aperfeigoada do método dos sistemas associados paTa a determinagﬁo
de dominios de estzbilidade assintética. Bgse método e o método estabele-
cido acima visivelmente marcham seguindo as:: mesmas linhas gerais. ( Am~
bos esses méiodos apresentam o seguinte carater em comum: ambos envolvem
s escolha de uma familia de sistemas agssociada ao sistema que ¢ objeto de
sua &plicacgac, famfl:a essa que pode ser absolutamente qualquer. ks res—
trigoes que o citado método estabelecido em 3.1 impoe as fungoes f(x,t) e
v(x,t), o método estabelecido acima acrescenta certas outras restrigoes .
Pode-se Tacilmsnte constatar que estas ultimas restrigSes correspondem pre

cisaments & exigeéencia de verificagao do caso eqlticontinuo, definido na par

(*) Julgamos que existe conveniéncia em se incluir também o método
estabelecido acima na designagao "nétodo dos sistemas associados para a de
terminagso de dominios de estabilidade assintética", O carater geral do
mesmo Jjustifica éate pequeno abuso de linguagem, que resulta exclusivamen-

te da nomenclature anteriormente empregada em [EASJD
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te I, subsecgao 4.2. Assim sendo, pode-se ainda facilmente ver que Q métg

do estabelecido acima tem uma generalidade menor, no sentido de que .0 seun

gmbito ds aplicagdo é (esiritamente) mais restrito do que o do método esta
belecido em 3.1. Diremos que o método estabelecido acima & relativo ao ca
so eqiticontinuo. Mas, em compensagao, podemos afirmar que o método estabe
lecido acima vai elém de uma simples restrigac do método estabelecido em
3.1 20 caso ecfiicontinuo. Efetivamente, como se vera na subsecgao seguin-
te, cdeniro do seu ambito de aplicagao, o método estabelecido acima apre—
senta certas caracteristicas realmente vantajosas sObre o método estabele-
cido em 3.1. Sao essas caracteristicas que virao nio sé a justificar a con
siderscac em separado do método estabelecido acima, mas tambem, em face
dos comentérios feitos na subsecgdo 3.2, a conceitud-lo como uma forma a-

perfeicoade do método dos sistemas associados para a determinacao de domi-

nios ée estabilidade assintotica relativa ao caso eqllicontinuo.

%.4. XNovos comeniarios de cardter comparativo.

Nesta subsecgazo, £0s comentdrios com os quais termindmos a subsec—
gao precedente, acrescentaremos alguns outros comentdarios de carater compa
rative, os guais consistirao essencialmente na consideragio de certos fa-
tos que exiber caracteristicas realmente vantajosas do metodo estabelecido

(*)

na subsecgac 3.3 sObre o método estabelecido na subsecgao 3.1.
tm prireiro dos fatos acima aludidos pode ser exXpresso como segue.,

Em luger dz derivada autdnoma v’{x;z), empregada pelo método esta—

~

belecidc em 2.1, ¢ método estabelecido em 3.3 emprega (exatamente do mesmo

modo) a funcao v {x;z). 3

A procedzncia déste fato pode ser imediatamente constatada.

Pode~32 dizer que o referido fato constitui-se numa vantagem do mé-
todo estabeleclidc em 3.3 sObre o método estabelecido em 3.1. Com efeito ,
a derivads sutonoma v’(x;z) é definida pels expressao (8), enquanto que &

A

fungao v7{x;2) ¢ definida pele expressdo (5) - bastante mais simples. En-

(¥*) Comsiderando que ésses métodos nao sio outra coisa que formas
de expressao pars oS teoremas 4 ¢ 5, compreende-ge que todos os menciona—
dos comeniirios poderdo ser interpretados como comentarios que dizem res-

peitoc a uma comparagao entre os referidos teoremas.
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tretanto, a propdsitc desta substituigio de v’(x;z) por v7(x;z), podemos
dizer que a mesms se torna realmente interessante por vir acompanhada das

novas vantagens que serao discutidas abaixo.

Um segundo dos fatos anteriormente aludidos pode ser expressc CoOmo

segue.

Seja x = f(x,t) um qualquer sistema da classe § (D,to), ao qual o
método estabelecido em 3.3 & aplicavel (isto &, para o qual estao satisfei
tas as hipdteses sobre f(x,t) explicitadas no infcio da formulagao do re—
ferido método). Considere-se duas aplicagoes a tal sistema, uma .do método
estabelecido-em 3.1 e outra do método estabelecido em 3.3%. Faga-se a su-
posigﬁo de que tanto numea como noutra aplicaggo sejam escolhidas a mesma
famflia de sistemas associada x = u(x,t;z), a mesma fungao vix,t) (a qual
certamente deveré preencher os requisitos explicitamente formulados na eta

pa A juntamente com o mesmo conjunto R e com a mesma fungao (P(x).

II) ’

Nestas circunstancias, pode-se fazer a seguinte afirmagao:

(o) Entre os conjuntos E¥ e £% subsiste a relaglo de inclus&o

int E¥c int B%,
Além disso, pode-se ainda fazer a seguinte afirmagao:

(1) Se 0 e int E¥, isto é, se se verifica o caso em que o método
estabelecido em 3.1 conduz a um dominio de estabilidade assintotica
&(v,R N int E¥, @), entao também 0 € int £B¥, isto é, também se verifica o
caso em gque o método estabelecido em 3.3 conduz a um dominio de estabilida
de assintotica @(V,R N int E*, (P), e maisg, entre tais dominios de estabi-
lidade assintdtica subsiste a relagdo de inclusao
&(v,R N int E¥, ) € G(v,R N int £, @).

Nas mesmas referidas circunstancias, também tém lugar as seguintes

afirmagoes adicionais:

(ii) Pode efetivamente ocorrer gque O¢ int E¥ e que 0 &€ int E*, is-
to €, pode efetivamente ocorrer que o método estabelecido em 3.1 nao con—
duz a um dominio de estabilidade assintdtica e que o método estabelecido

‘em 3.3 conduz a um dominio de estabilidade assintdtica.

(iii)  Pode efetivamente ocorrer que O € int E*, que 0 & int B* e

que a relagao de inclusao & (v,R N int EX,Q)C & (v,R N int B%, (P) subsis
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te no sentido estrito, isto &, pode efetivamente ocorrer que smbos os métg
dos conduzem a dominios de estabilidade assintdtica e que o domf{nio forne-
cido pelo método estabelecido em 3.1 é estritamente menor do gue o dominio

fornecido pelo método estabelecido em 3.3,

0 fato que acaba de ser expresso sera justificado por meio da argu-

mentagao que passa a ser apresentada.

Para se demonstrar a afirmagéo (o), demonstrar-se-a a seguir que
E*C B*. Como se vé imediatamente, isto 6 o quanto basta. De acdrdo com
a (11), obtém-se sem dificuldade que a relagdo v’(x;z) > v (x;2) subsiste
para qualquer x& D e qualquer z& D. Em seguida, utilizando essa relagao,
e levando em conta que R& D, pelas definigoes dos conjuntos EZ e E: deduz
se facilmente que E:C: E:. Daf, pelas definigdes dos conjuntos E* e B* |

conclui-se que E*EC 8%, ficando pois demonstrada a afirmagao (o).

Uma, demonstragao da afirmagao (i) pode ser muito simplesmente dada
com base na afirmagao (o), seguindo-se as mesmas linhas de argumentagdo an
teriormente seguidas na subsecgdo 3.2 para se demonstrar a afirmagao (i)
dessa subsecgao com base na afirmagdo (o) dessa mesma subsecgdo. Podemos
perfeitamente omitir uma exibigao especifica da referida demonstragao,pois,
para obter tal exibigao, basta que se tome o texto da demonstragao da afir

agao (i) da subsecgio 3.2, e que no mesmo se substitua "F(Q)" por "E*n
'teorema 8" por "teorema 6", "[TASI" por "3.1", "E*" por "B¥", wteorema 6"

or "feorema T" e "3.1" por "3,3",

As afirmagoes (ii) e (iii) serfo a seguir demonstradas por meio da
consideragdo de um exemplo. Basicamente, ésse exemplo consistird numa ang
~ise de certas aplicagoes dos métodos estabelecidos nas subsecgdes 3.1 e

.3 a um sistema de equagoes diferenciais extremamente simples. Alguns de
a2lhes dessas aplicagOes serao omitidos por razoes de brevidade, visto que
s referidas aplicagoes poderao ser discutidas de modo completo sem qual—

uer dificuldade.
F
Ne cilindro K(J,0), considere-se o sistema

Zsse é um sistema da classe dg(éF,O), ao qual o método estabelecido em 3.3

€ aplicavel.
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Seja 04(q) uma gualquer fungdo que goza das seguintes propriedades:
o,(q) é definida no intervalo O & q&+ 0, e assume valores reais de tal

forma que

(70) 0L of(a) < 1

para qualguer q do referido intervalo. Considere-se a familia de sistemas

(11) Sc=-[or.(|z|)+[1-oc(|zl)] e'lx"z|t]x,

parametrizada por z variavel em 3: Sem msiores dificuldades pode-se cons
tatar que essa é uma familia de sistemas associada ao sistema (69). Trata
-se de uma familia que, como fam{lia de sistemas associada ao sistema (69),
poders & primeira vista parecer um tanto artificial. Mas é uma familia

que se prestara bem as finalidades que se tem em mira.

_ Tanto para aplicar o método estabelecido em 3.1 como o método esta-
belecido em 3.3, escolha-se a famflia (71) como familia de sistemas asso—
ciada,e, como fungao v(x,t), escolha-se aquela dada em K(qF,O) pela expres

880
— 1 2
(72) v(x,t) = x'z = [x|°
. - & (4
tomando simultaneamente R =3 e CP(x) =x'x em J.

A fungdo v'(x,t;z) pode ser calculada sem nenhuma dificuldade. Che-

ga-se & expressao

(1) Fensn) - -2 22 [etlah + [ - (2] o170 ]
. ‘F »
valida para qualquer x & , qualquer zéd’e qualquer t 2> 0.

De acdrdo com a expressiao (5), em virtude da (73), resulta que

(1) #(xi=) = ow [ 2 [xl® [oc(Jal) + [ -ec(]2D)] 1=t ] ]

t 20

[ ol , e

para qualquer xE«? e qualquer z & J' Posto isto, para x variavel em J
. nr =

e z varidvel em &, considere-se a fungao real p(x;z) definida a partir

de ©&(q) pela expressao

ol(|z|) sempre que x £z

(75) B (xi2) -

1 sempre gue X = Z.
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Utilizando a (75) e levando em conta a (70), facilmente se deduz da (74)
S e
que, para X variavel em J e 2z varlavel em @l a fungao v'(x,z) é dada re -

la seguinte expressao:
AY e . 2 L
(76) vixiz) = - 2 [x[° B(x;2)

s obbengzo da fungao v’(x;z) é um pouco mais trabalhosa do que aque
la wcina feite da fungido v (x;z). De acordo com a expressao (7), em virtu

de da (76)., tem-se gue

(77)\ v'(x52) = lim suﬁ‘r [-2 ]Yiz Fi(y;W) ]

-0+

[wrzlsr

~ g )
para gqialquer x € e gqualquer z €& . Num primeiro caso, suponha-se que
x # z, Nesse caso, levardo em conta a (75), a partir da (77) facilmente

ge constata que

(78) v'(x;z) = lim
r-»0+ Iyx&r
‘w—z|$r

[-2y]2 «(w]) ] -

= lim su

-2 |yl?ee(lv]) ]
r-» O+ ‘w- ,-51" ly xfsr ‘

Cepare-se agora dois subcasos: x £ O e x = 0. Se x £ 0, tendo em vista a

(70), a partir da (78) fhaeilmenie se constata que

(79 v (x52) = lim  sup [ -2 (le (v ] =
r-»0+ ﬁ:r
= - 2 1lim [(Ix[;—lr)zg inf (| w|) J =
r- 0+ . w-zl€r
- -2 |x? 1m | inr dc(]w]) .

-0+ _IIWI-IZIFSr

e x = 0, terndo em vista a (70), & partir da (78) facilmente se constata

(80) | | v (x3z) = O.;

reunindo os dois subcasos, ainda com auxilio da (70), obtém-se facilmente
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que, pars X variavel em J e z variavel em .

(81) v (x3z) = - 2 ]x|2 lim inf o (|w]) ,

desde gue se verifigue o caso x 7( z. Num segundo caso, suponha-se que
x = z. Nesse caso, mais ume vez levando em conta a (75), ainda a partir

da (77) facilmente se constata qus

(82) v (x3z) = lim max < sup [- 2 ]ylz c(lwl) ] ,
-0+ ly-xlsr

lw-zlsr

k.V?éW‘ 5

Y
1l

sup [ -2 |y|?]
|y-x|sr

|w-zlgr

y =W ¥

r-30+ | w-2 |y~

su' - 2
}y—XTéI’ L2 byl ]}

evare-se agors dois gubcasos: x # 0 e x = 0. Se x ;4 0, tendo em vista a
\
/

= 1lim max{ su?sr S:T;r [‘ 2 I-')’l2 M(IWI) ] ’

2), a partir da (82) facilmente se constata que

TN
(W]
N
—
|
-
—
<
N
~—
H

r-»0+ |w—z|$r

S 2B}
- max { lin suf<r [— 2 (|x] - r)2 o(.(lw])] ;

r-»0+ !w—z

lim max { sup [— 2 (le - I‘)‘.Z °C(|W|) ] ’

lim

sup  [-20y*] ¢ -
O+ Iy-xfsr
- mex { -2 1w [ (Jx] - )? ] inf ec(|w)) ], -2 |x|2} -

r-3» 0+ w-2z|8T
= max -2 lx]g lim inf O(('wl) , - 2 |x|2 =
: r-%» 0+ wa—lz]’sr
=—2]x|2 X(|w]) .

lim inf
r>0e | [w|-]2] ke
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Se x = 0, tendo em vista a (70), a partir da (82) facilmente se constata

que

(84) ' v (x3z) = o .

Reunindo 98 dois subcasos, ainda com auxflio da (70), obtém-se facilmente

que, para X variavel em Jre z variavel em -9:,

(85) v'(x3z) = - 2 \x\z lim inf «<(lw|) ,
TH0: |[wl-1z2] |s=

desde que se verifique o caso x = 2. Posto isto, para q variavel no inte_z;'
valo 0 € 9 < + ©, considere-se a fungao real ¥ (q) definida a partir de
o.(q) pela gxpreasﬁo '

(86) U(q) =  lim inf  ©(p)
r»0+ |p-al§T
p20

Reunindo os resultadosA obtidos nos dois casos acima considerados, e utili-

zando & (B86), & vista das (81) e (85) deduz-se facil e finalmente que, pa-
2 I . o4 - - ,

ra x varidvel em ez variavel em J, a fungsao v*(x;z) ¢ dada pela se-

guinte expressaot : 0
(87) #(xs2) = - 2 |x|® g(la])

Ume vez obtidas as fungdes v/(xjz) e v’(x;z), as determinagdes dos
conjuntos E¥ e £% podem ser feites sem qualquer dificuldade. A determina-
gao do conjunto £ conduz a um resultado que independe da fungao &C(g) ini
cialmente considerada. Efetivemente, através do emprego da (76), e obser-
vando que, gqualguer que seja a fungao ©(q) inicialmente considerada, tem-
se que ﬂ(x,z) > 0 para gqualquer x&F ¢ qualquer z & d’, chega-se facil—
mente ao seguinte resultado: B* & todo 09". Ao contrario, a determinagao
do conjunto EX conduz a um resultado que depende da fungdo 6 (q) inicial—
mente considerada. Efetivamente, através do emprégo da (87), chega-se fa-
cilmente so seguinte resultado: E¥ é a reunido do conjunto {0} com o con

Junto dos pontos e F - {0} tais que
(88) » 3’(|z|)>0.

Prosseguir-se-4 agora com as presentes aplicagoes .do método estabe-

lecido em 3.1 e do meétodo estabelecido em 3.3, através da adogao de conve-
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nientes especializagoes da fungao oc{q) inicialmente considerada«

Em primeiro lugar, tome-se a fungao o{(q) de tal forma que (aléem de
gozardas propriedades que lhe foram inicialmente impostas) goze da seguin-

te propriedade [cf. (86)]

(89) ' F(a) =0

para qualquer q do intervalo 0 € q £+ ®. (*) Assim fazendo, de acordo
com a determinagao do conjunto E* precedentemente apresentéda., resulta ime
diatamente que E* = {0} . De conseqfiéncia, obtem-se que 0* int E*. Por
outro lado, de acordo com a determinagao do conjunto B* precedentemente a-
presentada, pode-se afirmar que 2* _ &. De conseqiéncia, obtém-se que

0 € int B*. .Desta forma ve-se gue pode efetivamente ocorrer que 0* int E¥e
qe O€int £*. Pelos teoremas 6 da subsecgao 3.1 e T da subsecgao 3.3, is-
to significa que pode efetivaménte ocorrer que o método estabelecido em 3.1
nao conduz a um dominio de estabilidade assintotica e que o metodo estabe-
lecido em 3.3 conduz & um dominio de estabilidade assintotica. Fica assim

demonstrada a afirmagao (ii).

Em segundo lugar, tome-se a fungao ot(q) de tal forma que (além de
gozar das propriedades que lhe foram inicialmente impostas’) goze das se—

guintes propriedades [cf. (86)]:

(90) F(Q) >0

para qualquer q de um intervalo 0L a4 < g, onde g designa um dado numero po

gitivo, e

(91) ¥la) =0

(*) Sem grande dificuldade pode-se verificar que um exemplo de fun-
¢ao que goza de todas as referidas propriedades € constitufdo pela fungao
0%((1) apresentada a seguir. Primeiramente defina-se a restrigao de O(.o(q)
ao intervalo 0 £ q £ 1, pondo OLO(q) = 1 para q irra._cidnal, e, para q Ta-
cional, pondo Obo(q) = 711' , onde d & o denominador da fragao irredutivel de
ntmeros inteiros e positivos que representa q. Posteriormente defina-se
“o(q) em todo o interva-lo 0L gL + @, prolongando a referi'da restrigﬁo
por meio da exigencia de que ﬁo(q) resulte periddica de periodo 1 nesse in
tervalo. (A idéia da consideragao desse exemplo provém da andlise classi-

ca, onde semelhantes exemplos sao considerados em diversas circunstancias).-
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: - * 1 A
para qualquer g do intervalo g £ e L+ @ ( ) Aspim fazendo, de acordo
com a determina.ga.o do conjunto E* precedentemente apresentada, resulta ime

diatamente que E* é o con,junto dos pontos ze.‘F tais que
(92) lz| < q .

De consegléncia, como g 6 um nimero positivo, obtém-se que 0 & int E*. Por
outro lado, de acordo com a determinagdo do conjunto B* precedentemente a-
presentada, pode-se afirmar que E¥ = -9". De conseqliéncia, obtém-se que

ce int RB*, Nestas condigoes, pelos teoremas 6 da subsecgao 3.1 e 7 da sub
secgao 3.3, 0 método estabelecido em 3.1 conduz ao dominio de estabilidade
 assintdtica & (v,R M int E*, @) e o método estabelecido em 3.3 conduz a0
domfnio de estabilidade assintdtica &G (v,R fint B*, ). Assim, os conjun
tos & (v,R M int EX, @) e G(v,R N int B%, P) estdo perfeitamente definidos.
A sua determinagdo nao oferece dificuldades. Chega-se aos seguintes resul

tadoss &S (v,r n int E*, ‘P) é o conjunto dos pontos zEJ’ tais que
(93) -Izl < a s

e S(v,R M int E*,(P) - ¥ . B dbvio que o primeiro conjunto esta propria-
mente contido no segundo conjunto. Desta forma ve-se que pode efetivamen-
te ocorrer que 0 €& int E*, que 0& int B* e que a relagdo de inclusao

S (v,R O int EX, CP)C. S (v,R N int E*,(P) subsiste no sentido estrito. Em
outros termos, pode efetivamente ocorrer que ambos os métodos conduzem a do
minios de estabilidade assintética e que o dominio fornecido pelo método
estabelecido em 3.1é estritamente menor do que o dominio fornecido pelo me~

todo estabelecido em 3.3. Fica assim demonstrada a afirmagao (iii).

Examinando as afirmagdes (i), (ii) e (iii) do segundo fato acima con
siderado, ve-se que as mesmas exibexﬁ novas e bastante importantes wvanta—
gens do método estabelecido em 3.3 sobre o método estabelecido em 3.1. O
conteido dessas afirmagoes, nao muito precisa, porém sugestivamente, pode

ser expresso da seguinte maneira:

Dentro do ambito de aplicacao do método estabelecido em 3.3, sempre

™

(*) Un exemplo de uma tal fungdd é constituido pela fungﬁo“.l(q) de
finida a seguir. Sendo OLo(q) s fungBo considerada na precedente nota de
rodapé, ponha-se ©.(q) = 1 para 0 q <, e 0 (q) ='0(.0(q) para
1L£1<+ @©-

*
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que o método estabelecido em 3.1 conduz a um dominio de estabilidade assin-

'. » . > i~ -
tdtica., o mesmo ocorre com o metodo estabelecido em 3.3, porem nao vice-

versa, Além disso, os dominios de estabilidade assintotica fornecidos pelo

nétodo estabelecido em 3.3 SAoc sempre nao menores, podendo ser estritamente

. - o A Co I3 » 1] s
meiores do gque os dominios de estabilidade assintotica fornecidos pelo me-~

todd-éstabelecido em 3.1,

Nums palavra, pode-se dizer que o método estabelecido em 3.3, dentro

do seu ambito de aplicagao, tem gualidade melhor do que O método estabele——

cido em 3.1,



SUMARIO

1. No presente trabalho, essencialmente composto de duas partes, I

e II, sao apresentados certos estudos sobre a estabilidede global assinto—

tlca de sistemas de equagoes diferenciais ordindrias, em torno de um ponto
de equ.illbr1o. Os sistemas de equagoes sao aqueles pertencentes a cla.sse&,
definida em [TAS, parte I, secgéo 2, ps. l7—20] Prata-se de uma classe
bastante ampla, constituida de sistemas normais (em geral nao lineares e nso
necessariamente autdnomos). Os resultados obtidos na parte I servem de fun

damento para os desenvolvimentos feitos na parte II.

2. Em [TAS, parte I, secgao 5 (5.3), PB. 34-36] foi enunciado e de

monstrado um teorema sobre a estabilidade global assintotica, 14 designado

por segundo teorema de Liapounoff global.

Na parte I é feita uma certa generalizacao do segundo teorema de Lia-

pounoff global. O citado teorema e & aludida generalizagao enquadram-se ti

picamente na teoria do método direto de Liapounoff. Essa generalizagao é

obtida em duas formas (equivalentes). Para a obtengio de uma dessas formas,
que se apresenta como sendo de utiligagﬁo mais conveniente do que a outra ,

é feita a introdugao do conceito de derivada autonoma de uma funcao em re-

lecao a um sistema. Apés a reprodugﬁo de um recente teorema de Yoshizawa ,

s&o discutidas certas conexOes entre o mesmo e a aludida generalizagao do

segundo teorema de Liapounoff global.

3. Em [TAS, parte II, secgdo 6 (6.2), ps. 52-55] foi estabelecido

um método, 14 designado por método dos sistemas associados para a determi—

nacao de dominios de estabilidade a331ntotlca, metodo esse que possul o ca-

rater de envolver a escolha de una familla de sistemas assoclada qualquer.

Na parte II sdo estabelecidos e discutidos certos dois méfodos ana-—
logos a0 citado método, métodos ésses que também possuem o aludido cariter.

Os mesmos podem ser considerados (em certos sentidos) como formas aperfei—
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goadas do método dos sistemas associados para a determinacao de dominios de

establlldade assintbética. Essas formas aperfeigoadas nao sao outra coisa

que certas reformulagoes de dois teoremas, previamente enunciados e demons~
trados, os quais podem ser qualificados de resultados basicos da teoria dos

sistemas associados. Visando a obtengao desses teoremas, é feita a introdu

gao do conceito de derivada autonoma de uma funcgdo em relagao a uma familia

de sistemas associada.
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