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Abstract

Background There is a growing search for therapeutic targets in the treatment of gout. The present study aimed to evaluate
the analgesic and anti-inflammatory potential of angiotensin type 2 receptor (AT,R) antagonism in an acute gout attack
mouse model.

Methods Male wild-type (WT) C57BL/6 mice either with the AT,R antagonist, PD123319 (10 pmol/joint), or with vehicle
injections, or AT,R KO mice, received intra-articular (IA) injection of monosodium urate (MSU) crystals (100 pg/joint), that
induce the acute gout attack, and were tested for mechanical allodynia, thermal hyperalgesia, spontaneous nociception and
ankle edema development at several times after the injections. To test an involvement of AT,R in joint pain, mice received
an IA administration of angiotensin II (0.05-5 nmol/joint) with or without PD123319, and were also evaluated for pain and
edema development. Ankle joint tissue samples from mice undergoing the above treatments were assessed for myeloperoxi-
dase activity, IL-1p release, mRNA expression analyses and nitrite/nitrate levels, 4 h after injections.

Results AT,R antagonism has robust antinociceptive effects on mechanical allodynia (44% reduction) and spontaneous noci-
ception (56%), as well as anti-inflammatory effects preventing edema formation (45%), reducing myeloperoxidase activity
(54%) and IL-1 levels (32%). Additionally, Agtr2"™!® mutant mice have largely reduced painful signs of gout. Angiotensin I
administration causes pain and inflammation, which was prevented by AT,R antagonism, as observed in mechanical allodynia
4 h (100%), spontaneous nociception (46%), cold nociceptive response (54%), edema formation (83%), myeloperoxidase
activity (48%), and IL-1p levels (89%). PD123319 treatment also reduces NO concentrations (74%) and AT,R mRNA levels
in comparison with MSU untreated mice.

Conclusion Our findings show that AT,R activation contributes to acute pain in experimental mouse models of gout. There-
fore, the antagonism of AT,R may be a potential therapeutic option to manage gout arthritis.
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Introduction

Gouty arthritis is characterized by hyperuricemia (serum
urate levels >7 mg/L) that leads to the formation and
deposition of monosodium urate (MSU) crystals in the
joints, resulting in disabling pain. Gout is the most com-
mon cause of inflammatory arthritis worldwide (Dalbeth
et al. 2018, 2021). However, for the large and growing
number of individuals with gout, current therapeutic
options remain limited and are largely contraindicated,
mainly because of the concomitant presence of comorbidi-
ties that these individuals exhibit which reduce therapeutic
efficacy, increase toxicity and make them prone to adverse
effects of drug—drug interactions (Schlesinger 2017; Elf-
ishawi et al. 2018).

Hypertension is among the most frequent comorbidi-
ties associated with gout. Some of the drugs used to treat
hypertension, such as angiotensin converting enzyme
inhibitors (ACEi) have been shown to increase the risk
of developing an acute gout attack (Choi et al. 2012;
Zhu et al. 2012; Elfishawi et al. 2018). It is well known
that inhibition of angiotensin converting enzyme (ACE)
can result in the upregulation of bradykinin and of the
renin—angiotensin systems. Our group have demonstrated
that the kinin system is only partially involved in an acute
gout attack, including those precipitated by the use of
ACEi (Silva et al. 2016). However, there are no studies to
date evaluating the possible involvement of renin—angio-
tensin system in gout. We investigate here whether a dys-
regulation of the renin—angiotensin system, and in particu-
lar an action at the AT,R, may also be responsible for the
pain and inflammation observed in gout.

The angiotensin system has two major G protein-cou-
pled receptor subtypes, the angiotensin II type 1 recep-
tor (AT,R), that plays an important role in the regulation
of blood pressure, and the angiotensin II type 2 receptor
(AT,R), that has recently been shown to play an important
role in pain (Vargas et al. 2022). The AT,R is expressed
in different cell types present in the articular environment,
such as endothelial cells, synoviocytes, peripheral sensory
neurons and peripheral macrophages (Pueyo and Michel
1997; Terenzi et al. 2017; Shepherd et al. 2018a). Recent
findings demonstrate an involvement of the angiotensin
system targeting AT,R in pain sensitization and, that AT,R
antagonism has antinociceptive effects in animal models
of neuropathic, inflammatory and bone cancer pain (Smith
et al. 2013; Muralidharan et al. 2014; Chakrabarty et al.
2018; Shepherd et al. 2018a, b). In addition, a phase II
clinical trial demonstrate that AT,R inhibition reduced
neuropathic pain in individuals with post-herpetic neu-
ralgia, supporting efficacy and safety for human treatment
(Rice et al. 2014). Despite the growing interest, is still
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unclear whether AT,R plays any role in the development
of pain and inflammation in gout. The purpose of the pre-
sent study was to investigate the therapeutic potential of
AT,R antagonism in alleviating the pain and inflammation
of gout, by the use of an experimental mouse model.

Methods
Animals

All animal handling and experimental procedures were
approved by the Ethics Committee in Animal Experimenta-
tion of the Federal University of Uberlandia (CEUA/UFU-
080/16) or by the Animal Welfare Ethical Review Board
(AWERB) of King's College London (for experiments in
KCL). Adult male C57BL/6/J/UFU mice (20-25 g, bred in
house) provided by UFU REBIR (UFU rodent animal breed-
ing group), and C57BL/6 N wild-type (WT) strain isogenic
compared to Agtr2"™!% mutant mice provided by KCL BSU
(biological services unit), were used in the experiments.
Agtr2mlaEUCOMMWISE (A grotmlay mytant mice were gener-
ated at Wellcome Trust Sanger Institute on a C57BL/6 N
genetic background (Skarnes et al. 2011; White et al. 2013).
These mice carry a promoter-driven knockout-first allele,
with a large cassette inserted in the intron before the targeted
critical exon 3 which interferes with transcription leading to
effective knockout of AT,R expression. Further details can
be found at www.mousephenotype.org.

Animals were kept in a controlled-temperature environ-
ment in individual ventilated cages, with wood shaving bed-
ding and nesting material, maintained at 22+ 1 °C, with a
12 h light/dark cycle and fed with rodent chow (Puro Lab
22 PB pelleted form, Global Diet 2018, Harlan, Lombardia
for mice) and tap water ad libitum. Animals were allowed to
acclimatize to their experimental room for 1 h before experi-
ments. Behavioral observations were performed in a blinded
fashion by investigators and followed the Animal Research
Reporting In vivo Experiments (ARRIVE) guidelines as
well as (for experiments in KCL) in accordance with the
Home Office (UK) regulations and the Animals (Scientific
Procedures) Act 1986. Intra-articular injections were per-
formed only in anesthetized mice (isoflurane 2%, 100% O,
1 L/min). The number of mice used in each experiment is
presented in graph legends, and a total of 199 adult male
mice were used for the study.

Reagents and drugs

Unless otherwise indicated, all reagents were from Sigma
(Sigma, St Louis, MO, USA) and dissolved using phos-
phate buffered saline (PBS) as vehicle. The AT,R antago-
nist, PD123319 ditrifluoroacetate, was purchased from
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TOCRIS Bioscience, USA (“1361” batch no: 3A/189254).
MSU crystals were prepared according to Hoffmeister
et al. (2011). Polarized light microscopic examination
confirmed that the crystals were rod shaped and varied in
length (12 +2 pm). Crystals were aliquoted (100 pg) and
kept stored for use only once, being discarded after use.

MSU-induced acute gout attack animal model
and treatments

The acute gout attack animal model was induced by an
intra-articular (IA) injection of MSU crystals (10-100 pg/
joint, typically 100 pg/joint, see Results) administered on
into the tibio-tarsal articulation (ankle joint) of the animals
(Silva et al. 2016; Rossato et al. 2020).

The AT,R antagonist, PD123319, (10 pmol/joint) was
co-administered by an intra-articular injection with MSU
crystals or Angiotensin II, or orally administrated (1 mg/
kg) 30 min before MSU crystal IA injections (Muralid-
haran et al. 2014; Shepherd et al. 2018a). Angiotensin II
was also administered alone (0.05-5 nmol/joint) by IA
route (Shepherd et al. 2018a, with some modifications in
relation to the route). After the injections the animals were
analyzed for nociception and inflammation development
at the time points 1, 2, 4, 6 and 24 h.

Nociception evaluation

To evaluate behavioral nociception mice were placed in an
acrylic cage individually (9 X7 X 11 cm) with a wire grid
floor, at least 1 h before start of behavioral testing. When
the animals had no exploratory movements, defecation and
were not resting the evaluations began. Mechanical allo-
dynia was measured in mice using von Frey hair filaments
of increasing strength (0.008-1.4 g), applied in the center
of the hind paw with a gentle stimulus following the “Up
and Down” method as described by Chaplan et al. (1994).
The weakest filament able to elicit a response was identi-
fied and the results were expressed as mechanical nocicep-
tive threshold (Cunha et al. 2004). Spontaneous nocicep-
tion was measured according to their behavior to support
the weight of the body on the paw corresponding to the
injected joint on a scale from O to 3 of spontaneous noci-
ception (Coderre and Wall 1987; Silva et al. 2016). The
cold nociceptive response were measured using a acetone
cold stimulus (50 pl) that was sprinkled topically with the
aid of a syringe to the center of the plantar surface of the
hind paw (Caspani et al. 2009) with modifications. The
online supplementary material provides detailed descrip-
tions of the nociceptive procedures.

Inflammatory evaluation

As an inflammatory parameter we evaluated edema forma-
tion in the ankle joint 4 h after MSU administration using a
plethysmometer (Ugo Basile, Monvalle, Italy). The values
were expressed in milliliters of water dislocated by the
articulation and compared with the baseline measure or
control groups.

To evaluate inflammatory neutrophil infiltration, we
analyzed MPO activity and IL-1p levels. Only for this
analysis we performed knee joint MSU (100 ug/joint) or
angiotensin II (0.5 nmol/joint) injection, to reach the final
volume necessary to the assays. Then, 4 h after MSU or
angiotensin II injections, the injected joint (knee) synovial
cavity was washed three times with 5 uL and the extract
was diluted to a final volume of 50 ul of PBS to obtain
the synovial lavage sample (Pinto et al. 2010; Rossato
et al. 2020). Vehicle injected mice were used as a con-
trol. The samples were centrifuged at 800 g for 8 min at
4 °C, the pellet was collected and resuspended in 50 pL.
of PBS-EDTA for the MPO assay. The supernatant was
collected and diluted in 20 pL. of PBS-EDTA for IL-1p
levels determination.

For MPO activity assessment, the resuspended pel-
let was homogenized in 80 mM NaPO, buffer (pH 5.4)
containing 0.5% hexadecyltrimethylammonium bro-
mide (HTAB) and evaluated by colorimetric assay based
on peroxidation of tetramethylbenzidine (TMB). The
reaction was stopped by adding 4 M H,SO, and deter-
mined by spectrophotometry (Spectra Max-250; Molecular
Devices, Sunnyvale, CA, USA) at 450 nm. Results were
presented as the number of neutrophils x 10°/mg of joint
(Alves-Filho et al. 2010).

IL-1p was measured by ELISA following the manu-
facturer’s instructions (R&D Systems, Minneapolis, MN,
USA). Results were expressed as picograms of cytokine
per milligram of synovial fluid.

Nitric oxide (NO) concentration measurement

To evaluate the NO, and NOj articular tissue concen-
tration, 4 h after PD123319, (10 pmol/joint) plus MSU,
synovial lavage was obtained as previously described
(Pinto et al. 2010). Samples were prepared as according to
(Miranda et al. 2001; Rossato et al. 2020). Briefly 100 ul
of standard nitrate solution (range 2 mM-0.125 mM) was
serially diluted at 96-well plates, the collected samples
were prepared with 100 pl of Griess reagent plus 40 ul of
vanadium chloride (0.02 mg/mL), then incubated for 1 h
at 37 °C. Measurements were made using a spectropho-
tometer with wavelength absorption (540 nm), and results
were expressed in uM concentration.
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RNA isolation and qPCR

For PCR analyzes, mouse tibio-tarsal articular whole joint
samples were collected 4 h after administration of MSU.
The tissue was held in 500 pl of TRIzol reagent (Sigma-
Aldrich, St. Louis, MO) and stored at —90 °C, until the day
of the experiment, then the samples were homogenized with
a Polytron Homogenizer (Thermo Scientific, USA). Quantity
and purity of isolated RNA were checked by a NanoDrop
spectrophotometer (Thermo Scientific, USA) with wave-
length absorption ratio (260/280 nm) and 500 ng of RNA
was transcribed into cDNA using reverse transcription reac-
tion (Superscript II; Invitrogen Life Technologies). gPCR
reactions have the final volume of 13 pl with 6.25 ul of Pow-
erUp SYBR Green Master Mix (Applied Biosystems), 0.5 pl
forward primer, 0.5 pl reverse primer, 4.75 ul Milli-Q water
(Millipore Corporation) and 1 pl sample. Reactions were
performed in 96-well plates compatibles with the Axygen
Scientific Real-Time PCR System. Following initial dena-
turation, samples were cycled through denaturation (95 °C,
10 s), annealing (60 °C, 60 s) and extension (60 °C, 60 s)
for 40 cycles, followed by melt curve analysis to ascertain
specificity of amplification. Primers used (Table 1).

Statistical analyses

The number of animals needed in experiments was deter-
mined using the G. Power 3.1 software, statistical power
greater than 7 was obtained. Kolmogorov—Smirnov nor-
mality test was used to determine whether the data val-
ues had normal distributions. Results were expressed as
the mean + standard error of the mean (S.E.M.). Differ-
ences among 3 or more groups at one point were ana-
lyzed by one-way analysis of variance (ANOVA) followed
by Newman—Keuls or Dunnett’s post-test. Differences
among 3 or more groups at different times were analyzed
by two-way ANOVA followed by Bonferroni’s post-
test. Statistical analysis was performed using GraphPad

Table 1 Oligonucleotides used in RT-PCR experiments

Name of primer Primer sequence for 5’ 3

AT |R-F GGCCAGTGTTTTTCTTTTGAATTTAGCAC
AT R-R TGAACAATAGCCAGGTATCGATCAATGC
AT,R-F CTGCTGGGATTGCCTTAATG

AT,R-R CATCTTCAGGACTTGGTCAC

ACE-F CACTATGGGTCCGAGTACAT

ACE-R ATCATAGATGTTGGACCAGG

ACE2-F GTGCACAAAGGTGACAATGG

ACE2-R ATGCGGGGTCACAGTATGTT

GAPDH-F GGGTGTGAACCACGAGAAAT

GAPDH-R CCACAGTCTTCTGAGTGGCA
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Software 5.0 (GraphPad Software, San Diego, CA, USA).
P values <0.05 were considered significant. To meet the
ANOVA assumptions, the mechanical hyperalgesia data
were log transformed prior to statistical analysis.

Results

AT,R activation is involved in nociception
in MSU-triggered acute gout attack

The MSU-induced acute gout attack model in mice was
confirmed by the decreased paw withdrawal thresholds in
response to mechanical stimulus, spontaneous and cold
nociception development, when compared to the vehi-
cle group (supplementary figure 1). The doses of 30 and
100 pg of MSU crystals evoked a significant nociceptive
mechanical and spontaneous response, and the 100 pg dose
was selected for following experiments (Rossato et al.
2020). Interestingly the intra-articular (IA) coadministra-
tion of the AT,R antagonist, PD123319 (10 pmol/joint)
together with the MSU crystals (100 pg/joint), prevented
mechanical allodynia at 4-6 h (Fig. 1A), spontaneous
nociception from 2 to 4 h (Fig. 1B), and cold thermal noci-
ceptive responses (Fig. 1C) from 1 to 24 h after IA injec-
tions. The same nociceptive parameters were analyzed for
mice treated with the AT,R antagonist (PD123319, 1 mg/
kg) given orally half hour before MSU IA injection. We
found inhibition of both mechanical allodynia and sponta-
neous nociception 4—6 h after the injection (supplementary
figure 2). Following this study, we routinely used IA rather
than oral administration as it also allows the evaluation of
AT,R involvement in acute gout employing lower quanti-
ties of the antagonist for the experiments.

To confirm the previous data, we induced the acute gout
attack model in Agtr2™!® mutant mice, which are effectively
deficient for the AT2 receptor. As expected, we noticed that
IA injection of MSU (100 pg) in WT mice of the same
strain (C57BL/6 N) induced a significant reduction in the
paw mechanical withdrawal threshold when compared to
the PBS IA injection group (Fig. 1D). In agreement with
the data obtained with PD123319 treatment, we observed
that the Agtr2'™® mutant mice did not develop mechanical
allodynia during MSU-triggered acute gout attack.

It has been demonstrated that AT,R can be expressed
by macrophages (Shepherd et al. 2018b). Accordingly, we
observed that peripheral macrophage depletion by admin-
istration of liposome-encapsulated clodronate leads to an
antinociceptive response, as previously observed (supple-
mentary figure 3A) (Rossato et al. 2020). The depletion of
macrophages was confirmed by a viability test (supplemen-
tary figure 3B).
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Fig. 1 Prevention of MSU-induced nociceptive response mediated
by treatment with angiotensin II type 2 receptor selective antagonist,
PD123319, or Agtr2™!? mutant mice. A and D Mechanical allodynia,
B spontaneous nociception, C thermal nociceptive responses. N=6
mice per group. Each column represents the mean +SEM. #P <0.05
and #¥P <0.01 and ™*P <0.001 represent significant differences com-

AT,R activation is involved in inflammation
in MSU-triggered acute gout attack

An inflammatory process characterized by articular
edema, neutrophil migration and increased IL-1f pro-
duction was observed in the MSU-triggered acute gout
attack model (Fig. 2A). The edema was prevented by
local treatment with PD123319 (10 pmol/joint) (inhibi-
tion of 45.4 + 6.8% of control, Fig. 2A), and the MSU-
induced myeloperoxidase activity was also decreased in
the PD123319-treated group in comparison with control
group (54.6 +4.9%) (Fig. 2B). Moreover, PD123319 also
prevented the IL-1f production (release) (32.7 +18.4%)
(Fig. 20).
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pared to vehicle group. ¥*P <0.05, **P<0.01 and ***P <0.001 rep-
resent significant differences compared to MSU injected group. The
statistical analysis was performed using two-way ANOVA followed
by Bonferroni’s post-test in (A) and one-way ANOVA followed by
Dunnet’s post-test in each interval (B), (C), (D)

Angiotensin ll-induced nociception is prevented
by AT,R antagonism

To assess a specific action of AT,R on articulation, we
treated the mice by IA injection with the AT,R agonist,
angiotensin II, and evaluated the development of mechani-
cal allodynia. We noticed that the agonist injection induced
mechanical allodynia at all tested doses starting 2 h after
the injection (Fig. 3A). The 0.5 nmol dose was chosen to be
used for following experiments. AT,R antagonist, PD123319
(10 pmol/joint) completely prevented mechanical allodynia
induced by angiotensin II (Fig. 3B). Angiotensin II was also
able to induce spontaneous nociception and cold thermal
nociceptive responses from 1 to 4 h, which was prevented

@ Springer



T.N. Vieira et al.

2404
A B
0.204 100+
-
i
E 0.184 801
8 —
B &
8 %
3 |
1] 60_
E
2 0.16- T =
g £
5 S
=] =
Y 3 40
2 014 =
=1 . 1
§ |
20-
0.12

T
Vehicle Vehicle PD123319 Vehicle

600-
it
it
_ 4007 .
E
)
a2
=
-
A 200
T
Vehicle PD123319 " Vehicle Vehicle PD123319

MSU (100 pgljoint)

Fig.2 Prevention of MSU-induced inflammation mediated by
treatment with angiotensin II type 2 receptor selective antagonist,
PD123319. A Articular edema, B Myeloperoxidase activity and C
IL-1p levels. N=5 (A and B) and 10 (C) mice per group. Each col-
umn represents the mean+SEM. P <0.001 represent significant

by IA coadministration of the AT,R antagonist, PD123319
(10 pmol/joint) (Fig. 3C, D).

Angiotensin ll-induced inflammation is prevented
by AT,R antagonism

To further explore the inflammatory role of AT,R on articu-
lation, we treated mice with the AT,R antagonist plus angio-
tensin II, and evaluated edema, neutrophil migration and
IL-1p production. The angiotensin II injection induced artic-
ular edema, neutrophil migration and increased IL-1f pro-
duction additionally to the nociception previously observed.
Interestingly, the coadministration of PD123319 plus angio-
tensin II reduced edema (83.33% of reduction) (Fig. 4A),
myeloperoxidase activity (48.7 +2.6%) (Fig. 4B) and IL-1p
production (release) (89 +26.4%) (Fig. 4C).

AT2R antagonism prevented release of nitric oxides
in MSU-induced acute gout model

Nitric oxides (NOX) are involved in rodent and human acute
gout attacks (Carey et al. 2001; Dao et al. 2016; Gumanova
et al. 2017; Rossato et al. 2020). In agreement, the NO, and
NO; concentration in the articular synovial fluid of the MSU
injected group were found to be significantly increased com-
pared to the vehicle-injected group (Fig. S5A). Co-adminis-
tration of the AT,R antagonist, PD123319 (10 pmol/joint),
significantly prevented the MSU-increased NO concentra-
tion (70 + 1% of prevention) (Fig. 5A).
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differences compared to vehicle group. *P <0.05 and **P <0.01 rep-
resent significant differences compared to MSU injected group. The
statistical analysis was performed using one-way ANOVA followed
by Dunnet’s post-test

AT,R, AT,R, and ACE2 mRNA levels are altered
in the ankle joint after MSU injection and AT,R
antagonism

We found an increase in AT;R mRNA levels in the acute
gout attack model suggesting increased expression of the
AT R when MSU was intra-articular administered, which
was decreased when AT,R was antagonized with PD123319
(Fig. 6A). Despite the slight altered mRNA levels of AT,R
and ACE2, neither was statistically significant when com-
paring vehicle to the MSU group (Fig. 6B, D). However,
when MSU plus PD123319-treated group was compared to
MSU group, the mRNA levels of AT,R and ACE2 decreased
significantly in both groups (Fig. 6B, D). The results of
the ACE1 qPCR shows no difference between the groups
(Fig. 6C).

Collectively, all results described until here, indicate that
AT2R involvement in gout includes NO and IL-1p release
signaling as depicted in Fig. 7.

Discussion

Gout is characterized by joint MSU crystal deposition,
resulting in disabling and excruciating painful acute epi-
sodes (Dalbeth et al. 2019, 2021; Dehlin et al. 2020). Recent
studies indicate that the angiotensin system is involved in
pain sensitization, including in inflammatory conditions
(Chakrabarty et al. 2018; Shepherd et al. 2018a, b), but this
has not yet been shown for the pain of an acute gout attack.
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Here, we demonstrate that the antagonism of the AT,R pre-
vented an acute gout attack in an animal model, alleviating
pain and inflammation, and therefore that AT,R antagonists
may contribute to a better management of gout.

Pain in gout is clinically described as disabling, charac-
terized mainly by spontaneous pain and joint allodynia, and
individuals affected by this condition have several problems
in performing basic functions, such as walking. This strongly
affects the patients’ quality of life, causing numerous pub-
lic health, economic, and social problems (Busso and So
2010; Taylor et al. 2015; Dalbeth et al. 2019). In accord-
ance, we confirmed pain development after MSU injections
and, importantly, we demonstrated that AT,R antagonism
has antinociceptive effects in an acute gout attack. Also,
we verified for the first time that AT,R genetic deletion can
prevent MSU inducing mechanical allodynia, suggesting an
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nificant differences compared to vehicle group. *P <0.05, **P <0.01
and ***P <0.001 represent significant differences compared to Angi-
otensin II injected group. The statistical analysis was performed using
two-way ANOVA followed by Bonferroni’s test (A) and (B) and one-
way ANOVA followed by Dunnet’s post-test in each interval (C) and
D)

important role of the angiotensin system in the context of
the arthritic pain of gout. AT,R pharmacological blockade
has been described previously as a strategy to inhibit neuro-
pathic, inflammatory and bone cancer pain in animal models
(Smith et al. 2013, 2016; Muralidharan et al. 2014; Shep-
herd et al. 2018b), and in this study we extend the beneficial
effects of AT,R inhibition to the pathology of gout.
Besides pain, we observed that the AT,R antagonism
was also able to reduce articular edema, neutrophil infiltra-
tion and IL-1p release. MSU crystal injection reproduces
in rodents the inflammatory characteristics observed in
gout patients, such as redness, articular edema, neutrophil
migration, as well as increased levels of IL-1f (Dalbeth et al.
2019). It is important to note that neutrophils are the main
cells present in gout synovial fluid in humans and that IL-1f
is the key cytokine driving the inflammatory process of an
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ment with angiotensin II type 2 receptor selective antagonist,
PD123319. A Articular edema, B Myeloperoxidase activity and C
IL-1pB levels. N=5 (A, B) and 6 (C) mice per group. Each column
represents the mean+SEM. #P<0.01 and " P <0.001 represent

ﬁo_
S i
(=4
2
§ 40
]
[
(5]
(=4
o
(5]
o 204
=z *kk
[+
o)
H
0t T 1 T
Vehicle Vehicle PD123319

MSU (100 pgljoint)

Fig.5 Prevention of NO levels in synovial fluid of mice submitted
to acute gout attack mediated by treatment with angiotensin II type 2
receptor antagonist, PD123319. N=6 mice per group. Each column
represents the mean+SEM. *#P <0.001 represent significant differ-
ences compared to vehicle group. ***P <0.001 represent significant
differences compared to MSU injected group. The statistical analysis
was performed using one-way ANOVA followed by Dunnet’s post-
test

acute gout attack (Mitroulis et al. 2013; Dumusc and So
2015; So and Martinon 2017). These findings suggest that
AT,R antagonism has the potential to treat acute gout attacks
and other acute inflammatory conditions.

Although AT,R has recently been described to play a role
in pain sensitization, there are few studies demonstrating
the AT,R expression in articular tissues (Kawakami et al.
2012; Tsukamoto et al. 2013; Kawahata et al. 2015) and

@ Springer

Vehicle Vehicle PD123319
Angio Il (0.5 nmol/joint)

Vehicle Vehicle PD123319
Angio Il (0.5 nmolijoint)

significant differences compared to vehicle group. *P<0.05 and
*##%P <0.001 represent significant differences compared to Angio-
tensin II injected group. The statistical analysis was performed using
one-way ANOVA followed by Dunnet’s post-test

the recent literature suggests that angiotensin II does not
directly influence sensory neuronal function (Shepherd
et al. 2018a). Interestingly, after injecting angiotensin II
into a naive mice ankle joint, we observed pain develop-
ment, which was prevented by specific AT2R antagonism.
Moreover, intra-articular angiotensin II administration also
induced inflammatory parameters, that are also the clini-
cal features of gout in humans, such as edema, neutrophil
infiltration and IL-1p release, all of which were prevented
by specific AT2R antagonism. These exciting findings from
our investigation point out that the angiotensin system is an
important player for the development of pain and inflamma-
tion in articular disease. In support of this proposal, it has
been shown previously that MSU can increase articular ACE
activity, and can also induce an increase in angiotensin II
formation, which would be able to activate the AT2R in the
articular microenvironment leading to an acute gout attack
(Silva et al. 2016; Vargas Vargas et al. 2022).

Although the molecular mechanisms of these events
remain to be elucidated, Shepherd et al. (2018a) suggested
the existence of crosstalk between peripheral macrophages
and sensory neurons, mediated by AT,R via TRPA1 redox
signaling, as critical for peripheral pain sensitization. Mac-
rophages are also present in the articular microenvironment
and are involved in MSU-induced pain and inflammation
(Martin et al. 2009; Rossato et al. 2020). Additionally,
TRPA1 redox signaling has also been previously described
as critical for an acute gout attack in mice (Trevisan et al.
2014). Altogether, these findings indicate that AT,R
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expression in macrophages may be related to articular pain
and inflammation, such as observed in gout arthritis.
Besides TRPAL1 involvement in gout, TRPV1 channels
are also described as important for gout pain and inflam-
mation (Hoffmeister et al. 2011; Rossato et al. 2020). More
specifically, we have recently demonstrated that increased
levels of nitric oxide, triggered by TLR4 expressed in phago-
cytic cells, results in TPRV1 activation and 1L-1p release
during acute gout attack (Rossato et al. 2020). Nitric oxide
and the enzyme responsible for its production, the induc-
ible nitric oxide synthase, have been shown to be present in
the synovial fluid of patients with gout and in MSU-stimu-
lated cell culture (Chen et al. 2004). Interestingly, AT,R are
upregulated by NO in endothelial cells, and AT,R activation
leads to an increased synthesis and release of NO (Carey
et al. 2001; Dao et al. 2016). In agreement, we find here that
an MSU-induced gout attack is dependent on AT2 expres-
sion and NO release by macrophages, which may interact
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#P<0.01 represent significant differences compared to vehicle
group. ¥*P<0.05 represent significant differences compared to MSU
injected group. The statistical analysis was performed using one-way
ANOVA followed by Dunnet’s post-test

with TRP channels to cause IL-1p increase. These results
point to AT,R as a new and important target to improve gout
management.

Furthermore, we have observed that MSU increased
articular AT ;R gene expression, and the AT,R antagonism
was able to reduce AT R, AT,R and ACE2 gene expression,
when compared to MSU-induced gout group. These obser-
vations confirm the complex regulation of the angiotensin
system, where each receptor and enzyme can counteract to
the expression/activity regulation of the others, as previously
demonstrated (AbdAlla et al. 2001; Kostenis et al. 2005;
Nemoto et al. 2014; Forte et al. 2016).

In summary, we have demonstrated an important role of
AT,R in gout arthritic pain and inflammation, indicating
that the involvement of AT,R in gout promotes the release
of the pro-inflammatory factors NO and IL-1p, as depicted
in Fig. 7, and therefore may be a promising therapeutic target
to improve the management of acute gout attacks.
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