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Climate change in the Eastern Amazon: crop-pollinator
and occurrence-restricted bees are potentially more affected
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Abstract
There is pressing need to anticipate the impacts of climate change on species and their functional contributions to ecosystem
processes. Our objective is to evaluate the potential bee response to climate change considering (1) response traits—body size,
nest site, and sociality; (2) contributions to ecosystem services (effect trait)—crop pollination; and (3) bees’ size of current
occurrence area. We analyzed 216 species occurring at the Carajás National Forest (Eastern Amazon, Pará, Brazil), using two
different algorithms and geographically explicit data. We modeled the current occurrence area of bees and projected their range
shift under future climate change scenarios through species distributionmodeling.We then tested the relationship of potential loss
of occurrence area with bee traits and current occurrence area. Our projections show that 95% of bee species will face a decline in
their total occurrence area, and only 15 to 4% will find climatically suitable habitats in Carajás. The results indicate an overall
reduction in suitable areas for all traits analyzed. Bees presenting medium and restricted geographic distributions, as well as vital
crop pollinators, will experience significantly higher losses in occurrence area. The potentially remaining species will be the
wide-range habitat generalists, and the decline in crop-pollinator species will probably pose negative impact on pollination
service. The north of Pará presented the greatest future climatic suitability and can be considered for conservation purposes.
These findings emphasize the detrimental effects on biodiversity and agricultural production by climate change and provide data
to support conservation planning.
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Introduction

Pollinating bees play a fundamental role in angiosperm repro-
duction (Ollerton 2017), in both natural and agricultural envi-
ronments (Klein et al. 2007; Potts et al. 2016). They are es-
sential to safeguard global food security due to their world-
wide importance for crop production (Garibaldi et al. 2013;
Potts et al. 2016). Besides, they actively contribute to the
recovery of degraded ecosystems (Montoya et al. 2012;
Williams and Lonsdorf 2018) and can also play a crucial role
in sustainable development projects and programs (Wolff and
Gomes 2015), by providing an extra source of income to tra-
ditional and low-income communities (Jaffé et al. 2015). Bee
populations are in decline as a result of human activities, and
the leading causes include changes in land use, competition
with invasive species, pathogens, agrochemical usage, and
climate change (Biesmeijer et al. 2006; Brown and Paxton
2009; Potts et al. 2010). This seems to be a general trend
among insects since a recent review showed that global ento-
mofauna is under severe threat of extinction, particularly those
taxa belonging to Hymenoptera (Sánchez-Bayo and
Wyckhuys 2019).

Anthropogenic climate change is a major menace for pop-
ulations of both natural and managed species worldwide
(Pacifici et al. 2017; Potts et al. 2016; Rafferty 2017), and
the impacts of climate shift are already affecting species dis-
tributions, abundance, morphology, and phenology (MacLean
and Beissinger 2017; Pacifici et al. 2015).

Climate is an important factor for pollinating bee species.
Recent studies have shown that climate influences the com-
munity of pollinators (Devoto et al. 2009) and their behavior
(Santos et al. 2015), potentially causing local extinction
(Martins et al. 2015a, b). Potential reductions and shifts in
the geographical distribution of crop pollinators were also
projected due to climate change. One evaluation of bee polli-
nators projected losses of suitable occurrence areas for most of
the evaluated species in Brazil (Giannini et al. 2012). Another
study showed that passion fruit pollinators belonging to the
genus Xylocopa could face reductions of up to 90% in their
distribution areas in the Brazilian savanna (Giannini et al.
2013). A potential reduction of 8–18% in coffee-pollinating
bees has been demonstrated for Latin America, affecting up to
30% of the future area of coffee production (Imbach et al.
2017). The tomato pollinators will likely face reductions in
their areas of occurrence in Brazil, and Bombus morio
Swederus 1787 will potentially face the largest reduction (up
to 71% in the most pessimistic scenario) (Elias et al. 2017).
Recent analysis considered the impact of climate change on
the distribution of pollinators of 13 different agricultural crops
in Brazil, showing that more than 90% of the municipalities
that produce some of the analyzed crops will suffer loss of
pollinators, and consequently some economical loss (Giannini
et al. 2017).

Changes in rainfall and temperature regimes in response to
greenhouse gas emissions may result, for example, in an av-
erage increase of 2 to 4 °C in global temperatures by 2050
(IPCC 2014). In the Amazon biome, climate change may alter
the intensity (IPCC 2014), frequency (Marengo et al. 2009),
and duration of extreme climatic events (Christensen et al.
2007). Results can include climate-induced shifts in species
composition (Esquivel-Muelbert et al. 2018), and also ecolog-
ical mismatches (Wood et al. 2018), which may compromise
ecosystem functionality (Fei et al. 2017). Thus, understanding
species responses to ongoing changes is imperative in order to
maintain ecosystem functioning and sustainability.

One way to predict an organisms’ response to environmen-
tal changes (e.g., land use, competition, resource availability,
and climate) is the use of species traits (response traits)
(Schleuning et al. 2015). Species traits are any characteristic
of an individual that can be assigned to a species, which could
be phenological, morphological, physiological, reproductive,
or behavioral (Kissling et al. 2018). Not only can species’
responses be measured and predicted by using trait-based ap-
proaches but also their contribution to ecosystem functions
and services, and the potential impacts of non-random species
loss on these processes (effect traits) (Bartomeus et al. 2018).
For example, pollinators’ body size influences the response to
land-use change (Steffan-Dewenter and Tscharntke 1999;
Benjamin et al. 2014; Aguirre-Gutiérrez et al. 2016; Mayes
et al. 2019), the compatibility with different floral morphol-
ogies (Armbruster and Muchhala 2009), and, also, the polli-
nation efficiency per visit (i.e., pollen deposition) (Martins
et al. 2015a, b).

Besides body size, other response traits can affect bee spe-
cies when facing ecosystem pressures (De Palma et al. 2015).
For example, nesting and foraging habits are strongly related
to land use, with ground-nesting and polylectic bees being
much less affected by agricultural or livestock expansion than
cavity-nesting and oligolectic bees (Coutinho et al. 2018).
Sociality is also an important response trait that could be af-
fected by different ecosystem pressures, as social species are
often food generalists and have long periods of activity
(Michener 2007). On the other hand, crop-pollinator species
(effect trait) are key providers of pollination services in agri-
cultural landscapes and, thus, shifts in their distribution can
directly impact food production and human well-being
(Costanza et al. 1997; Garibaldi et al., 2013). Also, the size
of geographical distribution is an important characteristic,
since geographically constrained species are more sensitive
to environmental changes, as they might be restricted to local
environmental factors influencing their distribution patterns
(Bommarco et al. 2010).

In this study, we present the first extensive list of bee spe-
cies recorded in the Carajás National Forest, a protected area
in the Eastern Amazon (southeastern region of Pará State,
Brazil), where biological surveys and sampling efforts have
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been carried out since the 1980s. Together, this list comprises
approximately 80% of the bees found in the Brazilian Eastern
Amazon (Moure et al. 2008). The Carajás forest is within a
mosaic of protected areas, surrounded by areas strongly im-
pacted by land-use change, mainly due to the expansion of
livestock and agriculture (Souza-Filho et al. 2016). In our
study area, at least 21 of the crops produced depend on bees
for their pollination (Supplementary Information A). We con-
sidered crop pollinators the bee species previously quoted on
the literature as being effective pollinators of those crops
(following Giannini et al. 2015a; Campbell et al. 2018). Bee
species quoted as visitors were not included.

Here we evaluate the potential response of bees occurring
in the Carajás National Forest (Eastern Amazon) to climate
change considering (1) response traits—body size, nest site,
and sociality; (2) contributions to ecosystem services (effect
trait)—crop pollination; and (3) bees’ size of current occur-
rence area (Fig. 1). For this, we built a database of bee species
and their traits and analyzed the impact of climate change on
their distribution through species distribution modeling. To
our knowledge, this is the first study to measure the potential
future impact of climatic changes on bee species taking into
account both their response and effect traits; moreover, it is
also the first one to analyze the impact of climate changes on
Amazon bees.

Material and methods

Study area

The study area is the Carajás National Forest, a protected
area located in the southeast region of Pará State, Brazil
(5° 52′ 11″ to 6° 32′ 13″ S latitude and 49° 53′ 28″ to 50°

44′ 29″ W longitude) (Fig. 2). The forest total size is
approximately 400,000 ha, located within a mosaic com-
posed of six national protected areas, encompassing a to-
tal range of almost 1,300,000 ha (Fig. 2). The Carajás
Mosaic is an Amazonian domain, with altitudinal range
of 400–900 m, and montane Amazonian climate with av-
erage annual temperatures of approximately 21 to 22 °C.
The rainy season extends from November to April with an
average precipitation/month of 229 mm, accounting for
79% of total annual rainfall (approximately 1800 mm)
(ICMBIO 2016).

Deforestation covers a great portion of the north and
southeast of Pará, but in the western portion of the state,
other protected areas can be found, relatively well-
connected to large protected areas in the Western
Amazon (Fig. 2). The high species richness found in pre-
served areas and the presence of considerable amount of
degraded landscapes make the study site an area of par-
ticular importance for the understanding of the climate
change impacts on pollinators.

List of bee species

The list of bee species reported for Carajás (Supplementary
Information A) was determined from relevant scientific liter-
ature and public biodiversity data providers, such as
speciesLink (a Brazilian repository of biodiversity data) and
the Global Biodiversity Information Facility (GBIF). In addi-
tion, the final list was validated at the two Brazilian entomo-
logical collections that house the specimens collected in
Carajás, pertaining to the Museu Paraense Emílio Goeldi
(MPEG) and the Universidade Federal de Minas Gerais
(UFMG).

Fig. 1 Climate change impacts on
bee species include reducing their
habitat suitability. Bee responses
to climate change can be
complexes, with potential
negative effects on ecosystem
functions
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In this study, we chose to use the list of bees from the
Carajás for two main reasons. Firstly, multi-taxa surveys have
been conducted in Carajás since 1981, including a great vari-
ety of bees, whose data are available at the previously men-
tioned entomological collections. Secondly, basic biological
information about the bee species listed for Carajás is still
scarce; studies on traits or climate change impact were not
previously made, which hinders decision-making processes.

The exotic bee species Apis mellifera L. occurs in our study
region, as well as across almost the entire American continent.
This widespread species is considered a habitat-generalist bee
and occurs in almost all types of biomes and on degraded
landscapes (Giannini et al. 2015b). For this reason, this spe-
cies was not modeled through species distribution modeling
(SDM) (see below).

Traits

Three of our traits are related to bees’ response to the environ-
ment (body size, nest site, sociality), and one is related to their
functional contribution and provision of ecosystem services
(crop pollination). These functional traits were used to cate-
gorize the bees and to evaluate if there is a tendency in the
effects of climate change on some of these categories, aiming
to subsidize conservation actions.

We measured the body size (based on intertegular distance
(ITD)) of five specimens (available at previously mentioned
entomological collections) for each of the species included in
our study region that had been identified to the species level
by a specialist taxonomist. We classified the bees into three
body size classes (small, medium, and large) following other
authors (Benjamin et al. 2014; Wray et al. 2014). We used the
body size of bees in the genus Melipona Illiger, 1806 as the
standard for medium size; they are the largest stingless bees,
but are smaller than solitary carpenter bees (Xylocopa spe-
cies). While small Meliponini bees are more likely to access
very small flowers (e.g., açai flowers, see Campbell et al.
2018), Melipona size-like bees would access medium-size
flowers (e.g., eggplant, see Nunes-Silva et al. 2003), whereas
carpenter bees would access large-size flowers (e.g.,
passionfruit, see Junqueira and Augusto 2017). Thus, we con-
sidered bees with an ITD below that of the smallestMelipona
species (< 2.2 mm) as small; bees with ITD ranging between
the smallest and the biggest Melipona species (≥ 2.2 and ≤
3.9) were considered medium; and those with ITD larger than
the largest Melipona species (> 3.9) were considered large.

We retrieved information about nest site, sociality, and crop
pollination from the relevant scientific li terature
(Supplementary Information A). Nest sites were classified into
five categories: cavity, exposed (usually hanging from tree
branches or anthropogenic constructions), soil, termite, or

Fig. 2 Study area. a Carajás
National Forest in southeastern
Pará state. b Aspect of the
diversity of Carajás bees: (1)
Xylocopa frontalis Olivier, 1789;
(2) Melipona seminigra Friese;
(3) Centris denudans Lepeletier,
1841; (4) Euglossa cognata
Moure, 1970; (5) Euglossa
imperialis Cockerell, 1922; and
(6) Centris aenea Lepeletier,
1841 (photos: Fernanda
Trancoso). c Photo of the region
(by João Marcos Rosa)
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multi (when the species are reported to build their nest in more
than one of the considered categories). Sociality affects polli-
nation services mainly through the increase of foragers on
flowers and is classified here in three categories: social, soli-
tary, or cleptoparasitic. We did not consider intermediate
stages of sociality, as it was not the focus in this work. Crop
pollination information is represented as yes (crop-pollinator
species) or no (not previously reported as a crop pollinator)
(following Giannini et al. 2015a; Campbell et al. 2018). We
considered crop species listed by IBGE as occurring in the
municipalities around our study site, as well as bee species
previously quoted as their pollinators on the study area (we
did not include, at any stage, bee species quoted as visitors)
(Supplementary Information A and E).

Finally, for the size of current occurrence area, we used the
model generated by each species through SDM (see below).
We categorize the area size as follows: (1) restricted ≤
441,000 km2; (2) 441,000 < medium ≤ 882,000 km2; and (3)
wide > 882,000 km2.We chose these values based on the sizes
of occurrence areas presented by our bee species
(Supplementary Information A and B). We followed this sim-
ple categorization since there is no other similar analysis in the
scientific literature using such a high number of species with
such a heterogeneous distribution. We also emphasize here
that these values are based in the total known distribution of
each bee species, which was used to produce the models in the
SDM (see below); most of species presents broad distribution,
and there is no endemic species in the study area.

Species distribution modeling

Occurrence records of each bee species were retrieved from
the two abovementioned biodiversity data repositories
(speciesLink and GBIF: https://doi.org/10.15468/dl.8sujwg)
and an internal database (named “bdbio”) totaling 11,952
records (Supplementary Information A and C), ranging from
2 to 347 occurrence points per species. Species occurrences
were enough to produce good-quality models for the vast
majority of species, which were supported by our modeling
procedure that establishes a high threshold for model accuracy
(TSS = 0.7, as explained below). A few species, however,
presented low number of reported occurrences (< 10), which
impeded modeling processes, and for this reason were not
included in the present analysis (Table 1; Supplementary
Information A).

For each species, we generated SDM models for the
Neotropical region, as it represents the maximum complete
distribution area of the bees in our dataset (Supplementary
Information B), and, subsequently, models were projected on-
ly for Pará. This projection was chosen since our interest was
to evaluate the future potential suitable areas outside of
Carajás that could be suggested for the conservation of the
analyzed bees and to evaluate the pollination service they

provide in the same region. The dataset analyzed here is the
best possible representative of each bee species distribution,
since it compiles all updated available data; although there
may be biases in the surveys conducted in the various regions
encompassed by our analysis, SDM is considered a robust tool
to be used in such a case (Peterson et al. 2011).

We used the biomod2 (Thuiller 2003) package for R (R
Development Core Team) for SDM with two algorithms:
maximum entropy (MAXENT; Phillips et al. 2006) and gen-
eralized linear model (GLM; McCullagh and Nelder 1989)
algorithms. Both were chosen due to their frequent use and
broad application (Li and Wang 2013). The environmental
variables were chosen from the 20 least-correlated topo-bio-
climatic layers (Aguirre-Gutiérrez et al. 2013) of the dataset
available in WorldClim (Hijmans et al. 2005) that define the
mean temperature and precipitation data for 1970–2000, as
well as altitude. The following layers were used: altitude,
isothermality, mean temperature of the driest quarter, annual
precipitation, driest month, seasonality of precipitation, pre-
cipitation of the hottest quarter, and precipitation of the coldest
quarter. We generated three sets of pseudo-absence data con-
taining ten times the number of presence data randomly dis-
tributed (Chefaoui and Lobo 2008). The accuracy of the
models was evaluated by true skill statistic (TSS) from three
randomizations of 25% of the data, and the cutoff threshold of
models was equal to 0.7, which produces highly accurate re-
sults and precludes model generation from poor data quality
(Allouche et al. 2006).

The future scenarios were for the years 2050 and 2070,
which were projected by the Hadley Center (HadGEM2-ES,
Hadley Global Environment Model 2-Earth System) and the
National Center for Atmospheric Research (CCSM4, The
Complete Coupled System Model) and available on the
WorldClim website with a 5-min arc resolution. Two green-
house gas emission scenarios were used corresponding to rep-
resentative concentration pathways (RCPs) equal to 4.5 and
8.5, which consider medium and high increases in emissions,
respectively (IPCC 2014). Consensus models were built from
calculating the averages of two scenarios (HadGEM2-ES and
CCSM4) and the two algorithms (Maxent and GLM). To fa-
cilitate the interpretation and to standardize results, the final
values of habitat suitability (i.e., the relative likelihood of oc-
currence) of a species were converted to percentages. The
raster packages (Hijmans and Etten 2012) for R and the
QGIS (Open Source Geospatial Foundation) were used for
the spatial analysis.

Statistical analyses

The final models were used to calculate the occurrence range
of the species in the current and future scenarios. We multi-
plied the cell area (10 × 10 = 100 km2) by the number of cells
considered suitable by the model. Species richness was
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computed by stacking and summing the maps of all individual
species for each scenario.

We quantified the proportional change in the size of occur-
rence area as the difference between the range in each future
scenario and the current one (i.e., respFi = (area_futurei −
area_current)/area_current; where i is a future scenario, see
Supplementary Information A). We used the proportional
change because species with wider range distribution may
present higher loss rates simply because they have more area
to lose than those more restrict species, and thus misleading
the general trends of climate change effects. The betareg func-
tion in the betareg package (Cribari-Neto and Zeileis 2010) in
R was used to model the potential loss of occurrence area in
response to species traits. Predictor variables included all the
traits and the size of current occurrence area (respFi ~ area.cat
+ size.cat + sociality + nest.location + crop.pollination, see
Supplementary Information A). Beta regression shares prop-
erties with linear models, but is more applicable for modeling
proportional data ranging from 0 to 1 (Ferrari and Cribari-

Neto 2004). Only species with complete information on traits
and those presenting future range losses were modeled (N =
151, Supplementary Information A). A transformation
[(respFi × (number of observations − 1)) + 0.5)/number of
observations] was applied to avoid zeros and ones (Smithson
and Verkuilen 2006). The significant difference for each cate-
gory was tested with post hoc Tukey tests as implemented in
emmeans package for R.

Results

We obtained a total of 216 bee species recorded in the Carajás
National Forest, which included representatives from the five
bee families currently found in Brazil: Andrenidae (2 species),
Apidae (189), Coletidae (2), Halictidae (15), andMegachilidae
(8). Stingless bees accounted for 36% of bee species found in
Carajás (77 species), whereas orchid bees accounted for 27%
(59 species). Two genera of solitary bees alone correspond to

Table 1 Bee species that will
potentially find suitable habitat in
the Carajás in the future, at least in
one of the scenarios analyzed
(details on Supplementary
Information A)

Genus Subgenus Species Author, year

Centris (Xanthemisia) ferruginea Lepeletier, 1841

Centris (Melacentris) rhodoprocta Moure & Seabra, 1960

Coelioxys (Rhinocoelioxys) clypeata Smith, 1879

Eufriesea ornata (Mocsáry, 1896)

Eufriesea surinamensis (Linnaeus, 1758)

Euglossa (Glossura) allosticta Moure, 1969

Euglossa (Euglossella) decorata Smith, 1874

Euglossa (Euglossa) hemichlora Cockerell, 1917

Euglossa (Euglossa) heterosticta Moure, 1968

Euglossa (Euglossa) securigera Dressler, 1982

Eulaema (Apeulaema) nigrita Lepeletier, 1841

Eulaema (Apeulaema) pseudocingulata Oliveira, 2006

Eulaema (Eulaema) tenuifasciata (Friese, 1925)

Lestrimelitta limao (Smith, 1863)

Lestrimelitta rufa (Friese, 1903)

Lestrimelitta rufipes (Friese, 1903)

Melipona (Melikerria) fasciculata Smith, 1854

Paratetrapedia lineata (Spinola, 1853)

Paratrigona incerta Camargo & Moure, 1994

Partamona gregaria Pedro & Camargo, 2003

Plebeia minima (Gribodo, 1893)

Scaptotrigona polysticta Moure, 1950

Trigona albipennis Almeida, 1995

Trigona fulviventris Guérin, 1844

Trigona fuscipennis Friese, 1900

Trigona hypogea Silvestri, 1902

Trigona recursa Smith, 1863

Xylocopa (Neoxylocopa) frontalis (Olivier, 1789)

Xylocopa (Schonnherria) viridis Smith, 1854
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28% of the species (Euglossa Cockerell, 1917 with 39 species,
and Centris Fabricius, 1804 with 23 species). We obtained the
complete set of species traits for 167 of the species found in
Carajás (Supplementary Information A). ITD ranged from
0.68 to 8.7 mm, with 65 species categorized as small, 38 me-
dium, and 48 large body size. Solitary bees accounted for more
than 50% of species (79 solitary species, 67 social, and 5
cleptoparasitic). Cavity-nesting bees totaled 81 species, 4 spe-
cies build exposed nests, 38 nest in soil, 12 nest associated with
termites, and 16 species use more than one nesting location. Of
the analyzed species, 70 have been quoted as crop pollinators.
As for bees’ occurrence area, 56 species were considered re-
stricted, 54 presentedmedium occurrence areas, and 41 species
presented wide occurrence areas.

Of the 216 total species, the impact of climate change could
not be evaluated for 17 species (8%) (Table 1) due to the low
number of occurrence points, making SDM unfeasible by the
methodology used here (Supplementary Information A). The
exotic bee species Apis mellifera L. was also not modeled, as
already pointed. In addition, no current suitable habitats were
projected for seven species. Of the total number of species ana-
lyzed by SDM (191 species), the vast majority (181 species,
95%) will potentially lose occurrence area; at least 135 (71%)
will potentially lose more than 80% of occurrence area; and only
between 29 (15%; 2050; RCP 4.5) and 7 (4%; 2070; RCP 8.5)
will find suitable habitats specifically within Carajás in the future
scenarios (Table 1; Supplementary Information A and D).

All beta regression analyses showed a good fit (pseudo-R2

ranging from 0.19 to 0.24, all P < 0.01; Table 2); however, only

two of the analyzed characteristics showed significant differ-
ences related to the loss of suitable area in the future: size of
current occurrence area and crop pollination (Fig. 3). In addi-
tion, these differences occur over short time periods (year 2050)
and in the more optimistic scenario (RCP 4.5). Medium-to-
restricted distributed species and crop pollinators will potential-
ly be more negatively affected by short-term climatic changes
occurring in the eastern portion of the Amazon basin (Fig. 3).

In general, the central and eastern portions of the Pará pre-
sented the highest species richness, according to our current
projections (Fig. 4). Under future scenarios, a drastic potential
reduction in the suitable habitats available for bee species has
been detected. They will be restricted mainly to the northeast
portion of the state, reaching a maximum of 80 (42%) species
per grid cell (27 [24%] for species with restricted/medium
distribution; or 18 [29%] for crop pollination species).

Discussion

Our models revealed that 95% of bees currently occurring on
Carajás will face a decrease in occurrence area due to climate
change impacts, and only 15 to 4% of the extant bee species
will find climatically suitable habitats specifically in the
Carajás region in the future. These results are particularly rel-
evant since the diversity of bees in Carajás corresponds to
80% of species cited for the Eastern Amazon, as previously
quoted, indicating that our study displays the general trends
for bee distribution shifts in this area. Based on our models,

Table 2 Linear models of beta regression

Parameter 2050 RCP4.5* 2050 RCP8.5** 2070 RCP4.5† 2070 RCP8.5‡

Est. SD z Pr(>|z|) Est. SD z Pr(>|z|) Est. SD z Pr(>|z|) Est. SD z Pr(>|z|)

Intercept 1.76 0.48 3.64 0.00 2.30 0.45 5.07 0.00 1.91 0.48 4.01 0.00 2.73 0.44 6.27 0.00

Area.cat (restrict) 0.27 0.22 1.25 0.21 0.10 0.21 0.48 0.63 0.27 0.21 1.26 0.21 0.04 0.20 0.19 0.85

Area.cat (wide) − 0.60 0.22 − 2.77 0.01 − 0.41 0.20 − 2.02 0.04 − 0.53 0.21 − 2.49 0.01 − 0.42 0.20 − 2.08 0.04

Size.cat (medium) 0.28 0.25 1.08 0.28 0.20 0.24 0.82 0.41 0.21 0.25 0.84 0.40 0.03 0.24 0.12 0.91

Size.cat (small) 0.37 0.30 1.24 0.22 0.29 0.28 1.04 0.30 0.31 0.29 1.07 0.28 0.21 0.28 0.75 0.46

Sociality (social) − 0.36 0.54 − 0.66 0.51 0.04 0.50 0.07 0.94 − 0.24 0.53 − 0.46 0.65 0.25 0.48 0.53 0.60

Sociality (solitary) − 0.20 0.48 − 0.42 0.67 0.11 0.45 0.25 0.81 − 0.12 0.47 − 0.24 0.81 0.31 0.43 0.72 0.47

Nest.location (exposed) 0.42 0.55 0.76 0.45 0.24 0.53 0.46 0.65 0.38 0.54 0.70 0.48 0.32 0.52 0.61 0.54

Nest.location (multi) 0.25 0.30 0.83 0.40 − 0.05 0.28 − 0.19 0.85 0.22 0.29 0.73 0.46 − 0.15 0.28 − 0.52 0.60

Nest.location (soil) − 0.06 0.22 − 0.26 0.79 − 0.05 0.21 − 0.21 0.83 − 0.02 0.22 − 0.08 0.93 − 0.05 0.21 − 0.25 0.81

Nest.location (termite) 0.23 0.34 0.66 0.51 0.03 0.33 0.09 0.93 0.12 0.34 0.37 0.71 − 0.07 0.32 − 0.23 0.81

Crop.pollination (yes) 0.44 0.19 2.29 0.02 0.46 0.18 2.55 0.01 0.41 0.19 2.18 0.03 0.32 0.18 1.80 0.07

Italicized values are significant

*respF1A, pseudo R2 = 0.2402, P < 0.001

**respF1B, pseudo R2 = 0.1978, P < 0.001
† respF2A, pseudo R2 = 0.2363, P < 0.001
‡ respF2A, pseudo R2 = 0.1927, P < 0.001
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species with restricted-to-medium occurrence areas and those
that perform vital crop pollination services will suffer signif-
icantly higher losses in occurrence area, and the north portion
of Pará will exhibit the most climatically suitable habitats for
the analyzed bees.

The small number of bee species persisting in future sce-
narios on Carajás may have drastic consequences concerning
interactions with the native flora. In our study, we reveal that
the remnant bees (“winners”) will be wide-range habitat gen-
eralists, since bee species with restricted-to-medium occur-
rence areas will face significantly higher change on habitat
suitability, which could imply on a wide trend towards biotic
homogenization at the Carajás region in the future. Decreases
in taxonomic, functional, and phylogenetic bee species rich-
ness due to homogenization (Harrison et al. 2018) will influ-
ence bee-plant interactions and plant distributions may also be
strongly affected by pollinator range shifts (Rafferty 2017).
Another concern regarding plants includes the fact that they

are also susceptible to climatic variation pressures, and tree
compositional shift followed by a more dry-affiliated flora has
already been documented in the Amazon (Esquivel-Muelbert
et al. 2018). However, the lack of up-to-date literature on wild
bee-plant interactions both in the Amazon biome and in our
study region poses an urgent need for studies on pollination
syndromes (Rosas-Guerrero et al. 2014), on bee-plant interac-
tion networks (Schleuning et al. 2015), and on provision of
crop pollination services (Giannini et al. 2017).

Crop production is an important source of income in the
municipalities surrounding Carajás, and the annual value of
pollinator-dependent crops for these municipalities is estimat-
ed as being almost US$17 million in 2017 and the same in the
2018 (based on 14 crops listed in the IBGE website,
Supplementary Information E) (data source: IBGE). Here we
show that crop-pollinator bees will suffer a significantly
higher loss of suitable occurrence area due to climate change.
However, information on the interaction of local bees with
those crops, their role in crop production, and the economic
value of the pollination service provided by them is scarce.
This lack of information highlights the need for basic knowl-
edge and for developing conservation and crop management
strategies (e.g., native species management) that consider sus-
tainability of pollination services (Potts et al. 2016).
Furthermore, data on animal pollinator dependence for region-
al crops is also scant (but see Giannini et al. 2015c), as well the
annual production of crops not listed by the IBGE. Although
we provide information on poorly known bee species distri-
bution shifts here, the lack of complementary data makes it
difficult to analyze an accurate impact of pollinator loss on
regional agricultural production. Thus, the next steps for un-
derstanding the impact of bee losses in this area include to
improve the knowledge about bee-plant interaction and
local-crop production for which no information is available,
mainly through field work.

Although our study provides evidence that some species
will not find suitable habitats in the Carajás region, most of the
species will find potential habitats in the northeast of Pará. To
date, no other study has analyzed the impact of climate change
on invertebrate species in this same area. However, other stud-
ies shown important suitable area reductions in the Amazon
for vertebrates (Costa et al. 2018; Ribeiro et al. 2018; Miranda
et al. 2019). All studies quoted showed a preponderance of
future suitable habitats mainly in west and northeast of the
state of Pará, which represents two important potential areas
for conservation. Northeastern Pará is characterized by a
higher annual volume of precipitation, when considering the
state of Pará as a whole (Lopes et al. 2013), which is mainly
associated with the intertropical convergence zone, a zone of
maximum coverage of convective clouds interacting near the
equatorial belt (Ferreira 1996). However, this area presents
two distinct conditions in terms of land use. The westernmost
portion corresponds to Marajó Island, a relatively well-

Fig. 3 Estimated loss of area due to the impact of climate change for two
significantly related traits of bees. a Crop pollination. b Size of current
occurrence area. Models account for the year 2050 and 2070 and for two
scenarios of carbon emission (RCPs 4.5 and 8.5). Different letters indicate
significant differences (p values < 0.05) according to linear models
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preserved protected area, but habitats on the eastern portion
corresponds to more degraded landscapes, inserted in the so-
called arc of deforestation (Aldrich et al. 2012). This last area
has the longest history of Amazon forest loss and retains only
24% of its original primary forest (Almeida and Vieira 2010).
According to the IBGE, the municipalities of this area present
low Human Development Index values (HDI—0.55 to 0.74)
and the population reaches 1.4 million inhabitants in the cap-
ital alone. Particularly in this northeastern portion, restoration
projects could be considered by stakeholders, mainly those
projects that incorporate agroforestry production (IPCC
2007; Garibaldi et al. 2017), and also those that include native
fauna management (e.g., beekeeping), which could help re-
storing ecosystem functions and services and also provide
resources for low-income population in the region. Common
bee species used in Pará State for beekeeping are mainly those

pertaining to Meliponini tribe (stingless bees), such as,
Melipona fasciculata, M. flavolineata, M. melanoventer, and
M. seminigra. From these, our models suggest that only the
first one (M. fasciculata) will find suitable habitats in Carajás.
However, further studies could evaluate the effectiveness of
other species for beekeeping.

The present study showed that the impact of climate
change in Carajás would potentially severely reduce the num-
ber of bee species in the region, being significantly related to
crop pollinators and species with more restricted distributional
areas, with possible detrimental effects on biodiversity and
agricultural production. Such impacts are of concern, especial-
ly in the absence of knowledge about species’ interactions,
either with wild flora or with species of economic interest.
Moreover, the Amazon biome is highly heterogeneous and
will be impacted by climate change on different ways; thus,

Fig. 4 Potential effect of climate
change for a all bee species
occurring on Carajás, and for two
significantly related traits; b crop
pollination; and c size of current
occurrence area. Models account
for current climatic condition and
for the year 2050 (RCP 4.5)
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further studies addressing Western Amazon and/or other spe-
cies are urgent. In this sense, the development of public poli-
cies that favor the creation and maintenance of research pro-
grams, and the protection and sustainable management of
these species are important to guide conservation strategies
supported by both public and private institutions.
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