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Abstract. We prove a local version of Gowers” Ramsey-type theorem [Ann. of Math. 156 (2002)],
as well as local versions both of the Banach space first dichotomy (the “unconditional/HI”
dichotomy) of Gowers [Ann. of Math. 156 (2002)] and of the third dichotomy (the “minimal/tight”
dichotomy) due to Ferenczi—Rosendal [J. Funct. Anal. 257 (2009)]. This means that we obtain
versions of these dichotomies restricted to certain families of subspaces called D-families, of
which several concrete examples are given. As a main example, non-Hilbertian spaces form
D-families; therefore versions of the above properties for non-Hilbertian spaces appear in new
Banach space dichotomies. As a consequence we obtain new information on the number of sub-
spaces of non-Hilbertian Banach spaces, making some progress towards the “ergodic” conjecture
of Ferenczi—Rosendal and towards a question of Johnson.

Keywords. Ergodic Banach spaces, Ramsey theory, Banach-space dichotomies, non-Hilbertian
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1. Introduction and background

In this paper, we will only consider real Banach spaces; however, all of our results trans-
pose to the complex case. Unless otherwise specified, when writing about a Banach space
(or simply a space), we shall mean an infinite-dimensional Banach space, by subspace,
we shall mean an infinite-dimensional, closed vector subspace, and by direct sum, we
shall mean a topological direct sum. By operator, we shall always mean a bounded linear
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operator. By Hilbertian space we mean a space which is linearly isomorphic (but not nec-
essarily isometric) to a Hilbert space. For all other unexplained notation, see the end of
this introduction.

1.1. Ergodic Banach spaces

A Banach space is said to be homogeneous if it is isomorphic to all of its (closed, infinite-
dimensional) subspaces. A famous problem due to Banach, and known as the homoge-
neous space problem, asked whether, up to isomorphism, ¢, is the only homogeneous
Banach space. The answer turned out to be positive; this problem was eventually solved in
the 1990’s by a combination of results by Gowers—Maurey [26], Komorowski—Tomczak-
Jaegermann [35], and Gowers [25].

The homogeneous space characterization of the Hilbert space shows that, as soon as a
separable Banach space X is non-Hilbertian, it should have at least two non-isomorphic
subspaces. Thus, the following general question was asked by Godefroy:

Question 1.1 (Godefroy). How many different subspaces, up to isomorphism, can a sep-
arable, non-Hilbertian Banach space have?

This question seems to be very difficult in general, although good lower bounds for
several particular classes of spaces are now known. A seemingly simplest particular case
of Godefroy’s question was formulated by Johnson:

Question 1.2 (Johnson). Does there exist a separable Banach space having exactly two
different subspaces, up to isomorphism?

Even this question is still open. More generally, it is not known whether there exists a
separable, non-Hilbertian Banach space with at most countably many different subspaces,
up to isomorphism; anticipating our considerations below, let us note that a positive
answer to Conjecture 1.9 would imply that such a space does not exist. In the rest of
this paper, a separable Banach space having exactly two different subspaces, up to iso-
morphism, will be called a Johnson space.

It turns out that the right setting to study Godefroy’s question is the theory of the clas-
sification of definable equivalence relations. This theory studies equivalence relations E
on non-empty standard Borel spaces X which, when seen as subsets of X2, have a suf-
ficiently low descriptive complexity (in general, Borel or analytic). Recall that a Polish
space is a separable and completely metrizable topological space. A standard Borel space
is a set X equipped with a o-algebra B such that B is the Borel o-algebra associated to
some Polish topology on X. When X is a standard Borel space, the X"’s, forn > 1, will
always be endowed with the product o-algebras; this makes them standard Borel spaces
as well. A subset A of a standard Borel space (X, B) is said to be Borel if it is an ele-
ment of B, analytic if it is the projection of a Borel subset of X 2 and coanalytic if its
complement is analytic. A Borel mapping between two standard Borel spaces is a map-
ping for which the preimage of every Borel set is Borel, and an isomorphism is a Borel
bijection (then automatically its inverse is Borel). It is a classical fact in descriptive set
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theory that all uncountable standard Borel spaces are isomorphic, and that a Borel subset
of a standard Borel space is itself a standard Borel space when equipped with the induced
o-algebra. For the proofs of all the aforementioned facts, see [34]. The central notion of
the theory is Borel-reducibility.

Definition 1.3. Let X, Y be non-empty standard Borel spaces, and E, F be equivalence
relations on X and Y respectively.

e We say that E Borel-reduces to F, denoted by (X, E) <p (Y, F) (orsimply E <p F),
if there is a Borel mapping f : X — Y (called a reduction) such that for all x, y € X,
wehavex Ey & f(x) F f().

e We say that £ and F are Borel-equivalent, denoted by E =p F, if E <p F and
F <p E.

e We denote by E <p F the factthat £ <p F and E #p F.

The Borel-reducibility relation defines a hierarchy of complexities on the class of all
equivalence relations on standard Borel spaces, the complexity classes being the equiva-
lence classes of =p.

Observe that a reduction f from (X, E) to (Y, F) induces a one-to-one mapping
X/E — Y/F, and in particular, if £ <g F, then |X/E| < |Y/F|. Thus, complexity
classes can be seen as Borel cardinalities: studying the complexity of an equivalence rela-
tion gives us at least as much information as counting its classes. If E is analytic and has at
most countably many classes, then E is actually Borel and £ <p F < |X/E| < |Y/F|.
Thus, for such an E, the complexity of E and the number of its classes agree. However,
for relations with uncountably many classes, it turns out that the complexity of the rela-
tion gives strictly more information than the number of its classes. The classification of
relations with exactly continuum-many classes is extremely complex and is actually the
main focus of the theory.

We now define a particular equivalence relation that will be important in the rest of
this paper. Denote by A the Cantor space, that is, {0, 1} with the product topology and
the associated standard Borel structure.

Definition 1.4. The equivalence relation Eg on A is defined as follows: two sequences
(xn)nenN and (y)nen are Eg-equivalent if and only if x,, = y, eventually.

It can easily be shown that (A, =) <p (A, Ey); in particular, E¢ and equality on
the Cantor space are examples of two inequivalent equivalence relations both having
continuum-many classes. It follows from important dichotomies by Silver [56] and by
Harrington—Kechris—Louveau [28] that the following family of equivalence relations:

(17=) <B (27=) <B (37=) <B ' <B (sz) <B (Av=) <B (A’EO)

is an exhaustive initial segment of the whole hierarchy of Borel equivalence relations, in
the sense that every Borel equivalence relation E is either Borel-equivalent to some ele-
ment of this hierarchy, or is strictly above E(. Note that this is not true anymore when E is
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only supposed to be analytic (an analytic equivalence relation E which is strictly above
(N, =) and incomparable to (R, =) is constructed in [56]). For a complete presentation of
the theory of classification of definable equivalence relations, see [33]; note for example
that Eg is still quite low in the whole hierarchy.

One of the main applications of this theory is the study of the complexity of classi-
fication problems in mathematics. When one wants to classify a class 4" of objects up
to isomorphism, it is often possible to equip ¢ with a natural Borel structure for which
the isomorphism relation is, in general, analytic. Knowing the complexity of this iso-
morphism relation gives an indication on the difficulty of the associated classification
problem. For instance, such a class of structures can be classified by real invariants if and
only if the isomorphism relation on this class is reducible to (R, =) (or equivalently, to
(A, =)). Conversely, if (A, Eg) is reducible to the isomorphism relation on this class, this
implies that the associated classification problem is quite complex.

One can in particular study the classification problem for closed vector subspaces of a
given separable Banach space X . To do this, we first need to put a standard Borel structure
on Sub(X); this was first done by Bossard [9]. We refer to his paper for more details and
proofs. The set Sub(X) is endowed with the Effros Borel structure, that is, the o-algebra
generated by sets of the form {Y € Sub(X) | Y N U # @}, where U ranges over all open
subsets of X. This makes it a standard Borel space, on which the isomorphism relation is
analytic. It is clear from the definition that this Borel structure on Sub(X) only depends
on the isomorphic structure of X; in particular, if 7 : X — Y is an isomorphism between
two separable Banach spaces, then 7" induces a Borel isomorphism between Sub(X) and
Sub(Y). It is also easy to see that if Y is a subspace of X, then the Effros Borel structure
on Sub(Y) coincides with the trace on Sub(Y") of the Effros Borel structure on Sub(X).

We also record the following lemma, which will be useful in applications. Here,
& (N) is identified with the Cantor space, and if (x;);cs is a family of elements of a
Banach space X, we will let [x; | i € I] = span(x; | i € I).

Lemma 1.5. Let X be a separable Banach space and let (xn)neN be a sequence of ele-
ments of X. Then the mapping j : P (N) — Sub(X) defined by j(A) = [x, | n € A] is
Borel.

Proof. Let U be an open subset of X; it is enough to prove that
Vi={4AePN)| jANU # @}

is an open subset of ?(N). Let A € V. Then since U is open, U contains a finite linear
combination of the x,,’s, n € A, such there is a finite s C A with [x,, |[n € s]NU # @.In
particular, the open neighborhood {B € P (N) | s C B} of A is entirely containedin V. =

Let us mention that the Effros Borel structure can also be used to study the isomor-
phism relation on the class of a/l finite- and infinite-dimensional separable Banach spaces.
Indeed, using the fact that the separable Banach space € (A) is isometrically universal for
this class, we can identify the class of all finite- and infinite-dimensional separable Banach
spaces with Sub(€(A)). Using this coding, it has been shown by Ferenczi, Louveau
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and Rosendal [19] that the isomorphism relation on the class of all finite- and infinite-
dimensional separable Banach spaces is analytic-complete, that is, it is maximum for <p
among all analytic equivalence relations on standard Borel spaces. This gives a formal
proof of the heuristic fact that there is no reasonable classification of separable Banach
spaces, up to isomorphism.

We can also simply study the complexity of the isomorphism relation on Sub(X) for
any separable Banach space X; this complexity gives strictly more information than the
number of different subspaces of X, up to isomorphism, including the finite-dimensional
ones. So Godefroy’s question can be generalized by asking, for spaces X with infinitely
many different subspaces up to isomorphism, what is the complexity of the isomorphism
relation of Sub(X). In their investigation of this question, Ferenczi and Rosendal [20]
defined the following class of separable Banach spaces:

Definition 1.6. A separable Banach space X is said to be ergodic if E¢ is Borel-reducible
to the isomorphism relation on Sub(X).

In particular, ergodic Banach spaces have continuum-many pairwise non-isomorphic
subpaces, and their subspaces cannot be classified by real numbers, up to isomorphism.
Immediate consequences of this definition are that £, is non-ergodic, that a subspace of
a non-ergodic space is itself non-ergodic, and that the notion of ergodicity is invariant
under isomorphism. Ergodic Banach spaces are quite complex and on the contrary, non-
ergodic spaces are expected to be regular in some sense. Ferenczi and Rosendal have
shown several regularity properties for non-ergodic spaces. For instance:

Theorem 1.7 (Ferenczi—Rosendal, [21,50]). Let X be a non-ergodic Banach space with
an unconditional basis. Then X is isomorphic to X ® Y for every subspace Y spanned
by a (finite or infinite) subsequence of the basis. In particular, X is isomorphic to its
square and to its hyperplanes.

Theorem 1.8 (Ferenczi—Rosendal, [20]). Let X be a non-ergodic separable Banach
space. Then X has a subspace Y with an unconditional basis such that Y is isomorphic
to Y @ Z for every block-subspace Z of Y .

All these results led them to the following conjecture:
Conjecture 1.9 (Ferenczi—Rosendal). Every separable non-Hilbertian Banach space is
ergodic.

This conjecture is still open. We quote below some of the most relevant partial results

supporting the conjecture.

Definition 1.10. A Banach space X is said to be minimal if it embeds isomorphically into
all of its subspaces.

The notion of minimality was based on the classical examples of the £,’s, 1 <
p < o0, and ¢¢ (and their subspaces). Later on, the dual of Tsirelson’s space, and then
Schlumprecht’s arbitrarily distortable space, were added to the list; see [11, 54, 60], as
well as [10] for variants of Schlumprecht’s example.



W. Cuellar Carrera, N. de Rancourt, V. Ferenczi 6

Theorem 1.11 (Ferenczi, [15]). Every non-ergodic separable Banach space contains a
minimal subspace.

It is a consequence of Kwapien’s theorem [36] that a space is Hilbertian if and only if
there exists a constant K such all of its finite-dimensional subspaces are K-isomorphic to
a Euclidean space. This property may be relaxed as follows:

Definition 1.12. A Banach space X is said to be asymprotically Hilbertian if there exists
a constant K such that for every n € N, there exists a finite-codimensional subspace Y
of X all of whose n-dimensional subspaces are K-isomorphic to £.

Theorem 1.13 (Anisca, [3]). Every asymptotically Hilbertian, non-Hilbertian separable
Banach space is ergodic.

A generalization of the last result will be proved in this paper (see Theorem 5.25),
using a different method than Anisca’s.

Theorem 1.14 (Cuellar Carrera, [12]). Every non-ergodic separable Banach space has
type p and cotype q forall p <2 < gq.

This last result is particularly significant since it shows that counterexamples to Con-
jecture 1.9 should be geometrically very close to being Hilbertian. In particular, the £,’s,
1 < p#2< o0, and ¢ are ergodic (this had already been shown by Ferenczi and
Galego [17] forthe £,’s, 1 < p <2, and ¢o). A consequence of this, combined with James’
theorem, is that non-ergodic spaces having an unconditional basis should be reflexive.

We refer to the survey [23] as well as to Ferenczi’s These d’Habilitation [16] for
more details. These references list in particular better estimates on the complexity of the
isomorphism relation between subspaces for several classical Banach spaces.

On the way to possible answers to Johnson’s Question 1.2 and Ferenczi—Rosendal’s
Conjecture 1.9 we identify two weaker conjectures to be studied in the present paper.

Conjecture 1.15. Every Johnson space has an unconditional basis.

Conjecture 1.16. Every non-ergodic non-Hilbertian separable Banach space contains a
non-Hilbertian subspace having an unconditional basis.

Conjectures 1.15 and 1.16 are important because they allow us to reduce Johnson’s
and Ferenczi—Rosendal’s conjectures to the case of spaces having an unconditional basis,
for which, as we saw above, we already know many properties. We have not been able to
solve these conjectures, but we make significant progress on them in Section 6.

1.2. Gowers’ classification program

In order to motivate our forthcoming definitions, we first present the main steps of the
solution of the homogeneous space problem. We start with a definition.

Definition 1.17 (Gowers—Maurey, [26]). A Banach space X is hereditarily indecompos-
able (HI) if it contains no direct sum of two subspaces.



Local Banach-space dichotomies and ergodic spaces 7

HI spaces exist: they were first built by Gowers and Maurey [26], as a solution to
the unconditional basic sequence problem; they were the first spaces known to contain
no subspace with an unconditional basis. Independently of the existence of HI spaces,
the combination of the following three results solves positively the homogeneous space
problem:

Theorem 1.18 (Gowers—Maurey, [26]). An HI space is isomorphic to no proper subspace

of itself.

Theorem 1.19 (Komorowski—-Tomczak-Jaegermann, [35]). Every Banach space contains
either a subspace without unconditional basis, or an isomorphic copy of {5.

Theorem 1.20 (Gowers’ first dichotomy, [25]). Every Banach space contains either a
subspace with an unconditional basis, or an HI subspace.

We refer to [35] for a more precise statement of Theorem 1.19. Gowers’ first
dichotomy is especially important, since it allows one to restrict the homogeneous space
problem to two special cases, the case of spaces with an unconditional basis and the case
of HI spaces. In both of these radically opposite cases, we have at our disposed specific
tools allowing us to solve the problem more efficiently. Based on this remark, Gowers [25]
suggested a classification program for separable Banach spaces “up to subspace”. The
goal is to build a list of classes of separable Banach spaces, as fine as possible, satisfying
the following requirements:

(1) the classes are hereditary: if X belongs to a class € then all subspaces of X also
belong to € (or, in the case of classes defined by properties of bases, all block-
subspaces of X belong to €);

(2) the classes are pairwise disjoint;

(3) knowing that a space belongs to a class gives much information about the structure of
this space;
(4) every Banach space contains a subspace belonging to one of these classes.

Such a list is in general called a Gowers list. The most difficult property to prove is in
general (4); Gowers’ first dichotomy proves this property for the two classes of spaces
with an unconditional basis and HI spaces, thus showing that these two classes form
a Gowers list. In the same paper [25], Gowers suggests that this list could be refined
by proving new dichotomies in the same spirit, and himself proves a second dichotomy.
Three other dichotomies were then proved by Ferenczi and Rosendal [22], leading to a
Gowers list with six classes (all of which are now known to be non-empty) and 19 possible
subclasses.

All of these dichotomies draw a border between “regular” spaces (spaces sharing
many properties with classical spaces such as the £,’s, 1 < p < 00, or ¢¢), and a class of
“pathological” or “exotic” spaces. These dichotomies are often important in studying the
complexity of the isomorphism relation between subspaces of a space X; when X is on
the “pathological” side, we expect this relation to be rather complex. We present below the
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most important of the dichotomies by Ferenczi and Rosendal (called “third dichotomy”
in [22]), which will be particularly relevant in this paper.

Definition 1.21 (Ferenczi—Rosendal). (1) Let (e, ),en be a basis of some Banach space.
A Banach space X is tight in the basis (ey) if there is an infinite sequence of non-
empty intervals Iy < Iy < --- of integers such that for every infinite A C N, we have
X & [en |” ¢ Uiea Ii']'

(2) Abasis (e,)nenN is said to be tight if every Banach space is tight in it. A Banach space
X is tight if it has a tight basis.

For reflexive Banach spaces, it is known that all bases are tight if one of them is
[22, Corollary 3.5]. Note that there is a more intuitive characterization of tightness [18]:
X is tight in (e,) exactly when the set of A € N such that X embeds into [e, | n € A]
is meager (in the natural topology on #(N) obtained by identifying it with the Cantor
space). However, the definition with the intervals I; is more operational, allowing for
example to distinguish forms of tightness according to the dependence between X and
the sequence (I;).

Theorem 1.22 (Ferenczi—Rosendal). Every Banach space has either a minimal subspace,
or a tight subspace.

This dichotomy will be referred as the minimal/tight dichotomy. Here, the “regular”
class is the class of minimal spaces, and the “pathological” class is the class of tight
spaces: these spaces are isomorphic to very few of their own subspaces. An example of
a tight space is Tsirelson’s space [22]. The minimal/tight dichotomy is a generalization
of Theorem 1.11 (which itself improved the main result of [43]): indeed, it can be shown
quite easily that tight spaces are ergodic, which, combined with the dichotomy, shows that
non-ergodic separable spaces should have a minimal subspace.

Ferenczi—Rosendal’s definition of tightness is restricted to Schauder bases. This
was not a relevant loss of generality for Theorem 1.22. For our local versions of this
dichotomy, however, it will be important to extend the notion to FDD’s. To give a concrete
example of our need to use FDD’s, note that one may force a space to be non-Hilbertian
just by imposing restrictions on the summands of an FDD, without any condition on the
way they “add up”; this would of course not be possible with bases. The definition is
straightforward, and properties of tight bases extend without difficulty to tight FDD’s:

Definition 1.23 (Tight FDD’s). (1) Let (F,)nen be an FDD of some Banach space.
A Banach space X is tight in (F,) if there is an infinite sequence of non-empty
intervals Ip < I < --- of integers such that for every infinite A € N, we have

XZ[Fy|n¢ UieAIi]-
(2) An FDD (Fy)seN is said to be tight if every Banach space is tight in it.

It is clear from the definition that if a space is spanned by a tight FDD, then it has a
tight subspace.
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1.3. Local Ramsey theory

Dichotomies such as Gowers’ or Ferenczi—Rosendal’s present drawbacks if one wants
to deal with problems related to ergodicity. Indeed, £, always belongs to the “regular”
class defined by those dichotomies, which makes them useless for spaces containing an
isomorphic copy of £,. Typically, if a space is £,-saturated, but non-Hilbertian, then these
dichotomies do not provide information on the structure of the space itself.

For this reason, it would be interesting to have dichotomies similar to Gowers’ or
Ferenczi—Rosendal’s, but which avoid 5, that is, dichotomies of the form “every non-
Hilbertian Banach space X contains a non-Hilbertian subspace either in R, or in P,
where R is a class of “regular” spaces, and # is a class of “pathological” spaces. Proving
such dichotomies is the main goal of this paper.

Gowers’ and Ferenczi—Rosendal’s dichotomies are proved using combinatorial meth-
ods, and especially Ramsey theory. Here, for an infinite M C N, we denote by [M]*° the
set of infinite subsets of M ; we see [N]* as a subset of the Cantor space, endowed with
the induced topology.

Theorem 1.24 (Silver, [55]). Let X C [N]* be analytic. Then there exists an infinite
M < N such that either [M]*° C X, or [M]*® C X°.

A topological proof of Silver’s theorem was obtained by E. Ellentuck [14]. Similar
topologies to those introduced by Ellentuck will be considered in Section 3.1.

The proofs of both Gowers’ dichotomies in [25] are based on a version of Theo-
rem 1.24 in the context of Banach spaces, known as Gowers’ Ramsey-type theorem for
Banach spaces. Here, N is replaced with a separable Banach space X, the set X’ becomes
a set of normalized sequences in X, and the monochromatic set M becomes a subspace
of X. In this context, a result exactly similar to Theorem 1.24 does not hold, and the
conclusion has to be weakened, using a game-theoretic framework. The exact statement
of Gowers’ Ramsey-type theorem is a bit technical and will be given in Section 2 (Theo-
rem 2.10); a more comprehensive presentation of this theory can be found in [7, Part B,
Chapter IV]. The proofs of the dichotomies of Ferenczi and Rosendal in [22] use either
Gowers’ Ramsey-type theorem, or similar methods based on Ramsey theory and games.

If one wants to prove Banach-space dichotomies where the outcome space lies in
some prescribed family of subspaces (for instance, non-Hilbertian subspaces), one needs
adapted Ramsey-theoretic results. Fortunately, such results exist in classical Ramsey the-
ory; they form a topic usually called local Ramsey theory. Here, the word local refers to
the fact that we want to find a monochromatic subset locally, that is, in a prescribed
family of subsets. We present below the local version of Silver’s Theorem 1.24, due
to Mathias [40]. A complete presentation of local Ramsey theory can be found in [59,
Chapter 7].

Definition 1.25. (1) A coideal on N is a non-empty subset # < [N]°° such that, for all
A, B € P(N),
(a) if A€ # and A C B, then B € #,;
(b) if AU B € J, then either A € # or B € J.
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(2) The coideal J is said to be P if for every decreasing sequence (4,),eN of elements
of #, there exists Ao € J such that foreveryn € N, Ao, C* A, (meaning here that
Aco \ Ay is finite).

(3) The coideal # is said to be selective if for every decreasing sequence (Ay,)nen Of
elements of J, there exists Ao € J such that forevery n € N, A, \ [0, 1] C Ap.

Theorem 1.26 (Mathias, [40]). Let # be a selective coideal on N, and let X C [N]* be
analytic. Then there exists M € J such that either [M]*° C X, or [M]*®° C X*.

A local Ramsey theory in Banach spaces has already been developed by Smythe [57].
He proves an analogue of Gowers’ Ramsey-type theorem where the outcome space is
ensured to lie in some prescribed family J of subspaces of the space X in which we work.
The conditions on the family # are similar to those in the definition of a selective coideal.
However, in the context of Banach spaces, these conditions become quite restrictive and
it is not clear that they are met by “natural” families in a Banach-space-theoretic sense.
Smythe’s theory seems to be more adapted to dealing with problems of genericity, as
illustrated in [57].

In this paper, we shall prove a local version of Gowers’ Ramsey-type theorem for
families # satisfying weaker conditions, which are closer to the definition of P*-coideals
(Theorem 4.1). This theorem has a weaker conclusion than Smythe’s theorem; however,
the range of families J¢ to which it applies is much broader and includes “natural” families
in a Banach-space-theoretic sense, for instance the family of non-Hilbertian subspaces of
a given space. These families, called D-families, will be defined and studied in Section 3.
In order to motivate their definition, we state a sufficient condition for being a P *-coideal
which is well-known to set-theoreticians. This fact is folklore; it is, for instance, an easy
consequence of [42, Lemma 1.2].

Lemma 1.27. Let ¥ be a coideal on N. If ¥ is Gg when seen as a subset of the Cantor
space, then K is pt.

1.4. Organization of the paper

After the introductory Section 1, Section 2 is still mainly a background section, presenting
the formalism of Gowers spaces, as well as their approximate versions, developed by de
Rancourt [13] as a generalization of Gowers Ramsey-type theory in Banach spaces, and
necessary to prove local dichotomies.

In Section 3 we define and study the notion of D-family (Definition 3.2). By analogy
to Lemma 1.27, a set of subspaces of a Banach space X will be called a D-family if it is
closed under finite-dimensional modifications and is Gg for a certain rather fine topology
on the set of subspaces of X. This will ensure on the one hand that such families have
a diagonalization property similar to the P -property, and on the other hand that they
have a good behavior relative to FDD’s, so that “local” Ramsey theorems, i.e. restricted
to subspaces in the D-family, may be hoped for. The concrete examples of D-families are
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associated to the important notion of degree d (Definition 3.15) allows us to formalize
quantitative estimates relating the finite-dimensional subspaces F of a space X, and X
itself, by assigning to them a positive real number d(X, F). A subspace Y of X is d-
small (Definition 3.16), when the degrees d(Y, F') are uniformly bounded for F C Y,
and d -large otherwise; the conditions on the definition of degree imply that the family of
d-large subspaces of X is a D-family (Proposition 3.25). Several classical properties of
Banach spaces are equivalent to being d-small for a well-chosen degree d, for instance
being Hilbertian, having a certain fixed type or cotype, or having Gordon—Lewis local
unconditional structure [24], Examples 3.17.

In Section 4, we concentrate on the formalism of approximate Gowers spaces to prove
our local version of Gowers’ Ramsey-type theorem (Theorem 4.1) for analytic games.
Then we deduce from it a local version of Gowers’ first dichotomy (Theorem 4.4). This
“first dichotomy” in the case of a D-family induced by a degree d may be stated as fol-
lows:

Theorem 1.28 (see Theorem 4.5). Let X be a d-large Banach space. Then X has a d -
large subspace Y such that either

(1) Y is spanned by a UFDD, or

(2) Y contains no direct sum of two d-large subspaces.

The first alternative is stronger than containing an unconditional basic sequence, and
the second one, a “pathological” property, is weaker than the HI property.

In Section 5, we will then prove a local version of the minimal/tight dichotomy (The-
orem 5.5). In the case of a degree d, this dichotomy may be stated as follows:

Theorem 1.29 (see Theorem 5.6). Let X be a d-large Banach space. Then X has a d -
large subspace Y such that either

(1) Y isomorphically embeds into all of its d -large subspaces, or

(2) Y is spanned by an FDD in which every d-large Banach space is tight.

The property satisfied by Y in the first alternative will be called d-minimality. Note
that the word “minimal” here refers to a minimal element, among d -large spaces, for the
relation of embedding between subspaces. So a d -minimal space should not be thought of
as small in this context; it is a d -large space. The proof of Theorem 1.29 is more delicate
than for the first local dichotomy; it is inspired by a proof by Rosendal of a variant of
the classical minimal/tight dichotomy [52] and relies on the formalism of Gowers spaces.
Quite importantly towards the questions of Godefroy and Johnson, we prove that the
relation between tightness and ergodicity still holds in the local version. Our precise result,
in the case of a degree d, is the following:

Theorem 1.30 (see Theorem 5.16). Let X be a d-large Banach space spanned by an
FDD in which every d-large Banach space is tight. Then X is ergodic.
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Consequently, a d-large and non-ergodic separable space must contain a ¢-minimal
subspace (Corollary 5.17), and the study of d-minimal spaces turns out to be quite rel-
evant. We end the section with additional observations about the d-minimality prop-
erty, and some consequences. For example, we generalize the result by Anisca that non-
Hilbertian spaces which are asymptotically Hilbertian must be ergodic (Theorem 1.13) to
the case of d-large spaces which are “asymptotically d-small” (Theorem 5.25).

Finally, in Section 6, we consider the Hilbertian degree d, (F), defined as the Banach—
Mazur distance of F to the Euclidean space of the same dimension, and for which the
class of d-small spaces is exactly the class of Hilbertian spaces. In this case the two
dichotomies immediately translate as (to avoid confusion let us stress that each of (1) and
(2) states a dichotomy, but (1) versus (2) is not):

Theorem 1.31. Every non-Hilbertian Banach space contains a non-Hilbertian subspace
which:

(1) either is spanned by a UFDD, or does not contain any direct sum of non-Hilbertian
subspaces,

(2) either isomorphically embeds into all of its non-Hilbertian subspaces, or has an FDD
in which every non-Hilbertian space is tight.

We therefore give some applications of the theory developed in the previous sections
for the study of ergodicity and Johnson’s question, applying these new dichotomies using
only non-Hilbertian subspaces. We reproduce two of our results below as an illustration:

Theorem 1.32 (see Corollary 6.16). Let X be a Johnson space. Then X has a Schauder
basis; moreover, X has an unconditional basis if and only if it is isomorphic to its square.

Theorem 1.33 (see Theorems 6.5 and 6.23). Let X be a separable, non-Hilbertian, non-
ergodic Banach space. Then X has a non-Hilbertian subspace Y which isomorphically
embeds into all of its non-Hilbertian subspaces, and which moreover satisfies one of the
following two properties:

(1) Y has an unconditional basis;

(2) Y contains no direct sum of two non-Hilbertian subspaces.

We moreover conjecture that the second alternative in Theorem 1.33 cannot actu-
ally happen (Conjecture 6.26). We end the section by identifying non-trivial examples of
spaces which do not contain direct sums of non-Hilbertian subspaces, Examples 6.21 and
6.22, and giving a list of open problems.

1.5. Definitions and notation

This subsection lists the main classical definitions and notation that will be needed in
this work. We denote by N the set of non-negative integers, and by R the set of non-
negative real numbers. We denote by Ban® the class of all (infinite-dimensional) Banach
spaces, by Ban=% the class of finite-dimensional normed spaces, and we let Ban =
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Ban® U Ban=%°. Given a Banach space X, we denote by Sub®(X) the set of (infinite-
dimensional, closed) subspaces of X, by Sub~*°(X) the set of finite-dimensional sub-
spaces of X, and we let Sub(X) = Sub=*°(X) U Sub®(X). For Y, Z € Sub(X), we will
say that Y is almost contained in Z, and write Y C* Z, when a finite-codimensional
subspace of Y is contained in Z.

When writing about a Banach space X, we will in general assume that it comes with
a fixed norm, which we will usually denote by || - ||. The unit sphere of X for this norm
will be denoted by Sy, and if necessary we will denote by §|. the distance induced by
this norm. For x € X and r > 0, we denote by B(x, r) the open ball centered at x with
radius r (which is just the empty set when r = 0).

Given two finite- or infinite-dimensional Banach spaces X and Y, the space of contin-
uous linear operators from X to Y will be denoted by £(X, Y), or simply by £(X) when
X =Y. It will be equipped with the operator norm coming from the norms of X and Y,
and this norm will also be usually denoted by || - ||. For C = 1, a C -isomorphism between
X and Y is an isomorphism 7 : X — Y such that |T|| - ||T~!| < C. The Banach-Mazur
distance between X and Y, denoted by dpas (X, Y) is the infimum of the C = 1 such
that there exists a C-isomorphism between X and Y (if X and Y are not isomorphic,
then dppr (X, Y) = o0). A space will be called Hilbertian if it is at finite Banach—-Mazur
distance to a Hilbert space, and {,-saturated if every subspace of X has a Hilbertian
subspace. A C-embedding from X into Y is an embedding which is a C-isomorphism
onto its image. We write X C Y if X isomorphically embeds into Y, and X C¢c Y if X
C-embeds into Y.

Two families (x;);er and (y;)ies of elements of a Banach space X are said to be C-
equivalent, for C = 1, if for every family (a;);ey of real numbers with finite support, we

have 1
L] < [ S| < c] S
iel iel iel

In this case, there is a unique C2-isomorphism 7 : span(x; | i € 1) — span(y; |i € 1)
such that for every i, we have T(x;) = y;. The families (x;) and (y;) are simply said to
be equivalent if they are C-equivalent for some C > 1.

In this paper, we will often use the notion of finite-dimensional decomposition (FDD).
Recall that an FDD of a space X is a sequence (Fy),en of non-zero finite-dimensional
subspaces of X such that every x € X can be written in a unique way as Z?:o Xn, Where
X, € F, for all n € N. In this case there exists a constant C such that for all x € X
and all n € N, we have || ), _, xi|| < C||x|. The smallest such C is called the con-
stant of the FDD (F;). A sequence of finite-dimensional subspaces which is an FDD
of the closed subspace it generates will simply be called an FDD, without more specifi-
cation. An unconditional finite-dimensional decomposition (UFDD) is an FDD (F}),eN
such that for every sequence (x,)n,eny With x, € F, for all n, if Z;o:(, X, converges,
then this convergence is unconditional. In this case, there is a constant K such that for
all such sequences (x,), and for every sequence of signs (g,)nen € {—1, 1}, we have
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1> i<n Xnll < K| Y, <, €nXnll. The smallest such K is called the unconditional constant
of the UFDD (F},).

Fix an FDD (Fy)nen of a space X. For x = Y ;2 x, € X, the support of x is
supp(x) = {n € N | x, # 0}. For A C X, we let supp(4) = |J, 4 supp(x). A blocking
of (Fy) is asequence (G,,),eN of finite-dimensional subspaces of X for which there exists
a partition of N into non-empty successive intervals /o < I; < --- such that for every n,
Gn = D, 1, Fi (here, for two non-empty sets A and B of integers, we write A < B
if Vie AVj e Bi < j). A block-FDD of (Fy,) is a sequence (G,)nen of non-zero
finite-dimensional subspaces of X such that supp(Gg) < supp(G1) < ---. A blocking is a
particular case of a block-FDD. A block-FDD of (F},) is itself an FDD, and its constant is
less than or equal to the constant of (F},); moreover, if (F},) is a UFDD, then a block-FDD
of (F,) is also a UFDD, and its unconditional constant is less than or equal to that of (F},).
A block-sequence of (Fy) is a sequence (x,),eN of vectors of X such that (Rx,),en is a
block-FDD of (F,). Such a sequence is a basic sequence, with constant less than or equal
to the constant of the FDD (F},).

If (F;)iey is a family of finite-dimensional subspaces of a Banach space X, we will let
[F; |i € Il =) ;c; Fi. This notation will often (but not only) be used in the case where
(F;) is a (finite or infinite) subsequence of an FDD.

For C = 1, a C-bounded minimal system in a Banach space X is a family (x;);e; of
non-zero elements of X such that for every family (a;);ey of real numbers with finite sup-
port and for every ig € I, we have |la;,x;, || < C|| > ;s aixi|. Every separable Banach
space contains a countable bounded minimal system whose closed span is the whole
space; several more precise results by Terenzi show that such a system can be chosen
to have properties that are very close to those of a Schauder basis (see for example [58]).
A normalized, 1-bounded minimal system is called an Auerbach system; by Auerbach’s
lemma [27, Theorem 1.16], every finite-dimensional normed space has an Auerbach basis
(that is, a basis which is an Auerbach system). A basic sequence with constant < C is
a 2C-bounded minimal system. But there are other interesting examples. For instance,
let (Fp)nen be an FDD with constant C. Let, forn € N, d, = ), _, dim(F,), and let
(ei)dnsi<d,,+1 be an Auerbach basis of F;,. Then the sequence (¢;);en is a 2C -bounded
minimal system.

Given two families (x;);ey and (y;);es that are K-equivalent, if (x;) is a C-bounded
minimal system, then (y;) is a CK?-bounded minimal system. We will also often use the
following small perturbation principle for bounded minimal systems:

Lemma 1.34. For every C = 1 and every ¢ > 0, there exists § > 0 with the following
property: if (x;)ier is a C-bounded minimal system in a Banach space X and (y;)iey is
a family of elements of X, and if

Z lx; — yill
< ’
[l |

iel

then (x;) and (y;) are (1 + &)-equivalent.
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The proof is routine. This is a classical result for basic sequences (see for example
[1, Theorem 1.3.9]), and the proof is exactly the same for bounded minimal systems.

2. Gowers spaces

In this section, we present the formalism of Gowers spaces. This formalism will be our
main tool to prove dichotomies. It has been developed by de Rancourt [13] as a general-
ization of Gowers’ Ramsey-type theory in Banach spaces developed in [25]. The proofs
of all the results presented in this section can be found in [13].

2.1. Gowers spaces

For a set I1, denote by IT<N the set of all finite sequences of elements of IT. A sequence
of length n will usually be denoted by s = (sg, ..., S,—1), and the unique sequence of
length 0 will be denoted by @. Let Seq(IT) = IT<N \ {@#}. For s € IT=N and x € II, the
concatenation of s and x will be denoted by s~ x.

Definition 2.1. A Gowers space is a quintuple § = (P, I, <, <*, <), where PP is a non-
empty set (the set of subspaces), I1 is an at most countable non-empty set (the set of
points), < and <* are two quasiorders on PP (i.e. reflexive and transitive binary relations),
and <1 C Seq(IT) x P is a binary relation, satisfying the following properties:

(1) forall p,q € P,if p <gq,then p <* ¢;

(2) forall p,g € P,if p <* g, then there exists r € P suchthatr < p,r <gand p <*r;

(3) for every <-decreasing sequence (p;);en of elements of IP, there exists p* € P such
that for alli € N, p* <* p;;

(4) forevery p € P and s € IT=N, there exists x € IT such that s"x <1 p;
(5) foralls € Seq(IT) and p,q € P,if s < pand p < ¢, thens < gq.

We say that p, g € P are compatible if there exists r € P such thatr < pandr < gq.
For brevity, we will often write p < ¢ when p < ¢ and g <* p.

The prototypical example of a Gowers space is the following. Let K be an at most
countable field. The Rosendal space over K is Rg = (P, I1, C, C*, <), where
e I is a countably infinite-dimensional K -vector space;
e PP is the set of all infinite-dimensional subspaces of IT;
e C is inclusion between subspaces;

e C* is almost inclusion, defined by Y C* Z iff Z contains a finite-codimensional sub-
space of ¥;

o (Xg,...,xp) <Y iffx, €Y.

Here, Z § Y iff Z is a finite-codimensional subspace of ¥, and Y and Z are compatible
iff Y N Z is infinite-dimensional.
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In the case of the Rosendal space, whether s <1 p actually only depends on p and on
the last term of s. This is the case in most usual examples of Gowers spaces; spaces satis-
fying this property will be called forgetful Gowers spaces. In these spaces, we will allow
ourselves to view <1 as a binary relation on IT x P. However, in the proof of Theorem 5.5,
we will use a Gowers space which is not forgetful.

In the rest of this subsection, we fix a Gowers space § = (P, I, <, <*, <0). To every
p € P, we associate the following four games:

Definition 2.2. Let p € P.

(1) Gowers’ game below p, denoted by G, is defined in the following way:
I po P1
11 X0 X1
where the x;’s are elements of I1, and the p;’s are elements of P. The rules are the
following:

e forI: foralli € N, p; < p;
e forIl: foralli € N, (xg,...,x;) < p;.

The outcome of the game is the sequence (x;);en € ITN.

(2) The asymptotic game below p, denoted by F,, is defined in the same way as G,
except that this time we moreover require that p;  p.

(3) The adversarial Gowers games below p, denoted by A, and B, are obtained by mix-
ing Gowers’ game and the asymptotic game. The game A, is defined in the following
way:

I X0, 40 X1,41
I po Yo, P1 Y1, P2

where the x;’s and the y;’s are elements of I1, and the p;’s and the ¢;’s are elements
of P. The rules are the following:

e forL: foralli € N, (xo,...,x;) < p; and ¢q; 5 p;
o forIl: foralli e N, (yg...,y;) <g; and p; < p.

The outcome of the game is the pair of sequences ((x;)ien, (i )ien) € (ITV)2.

(4) The game B, is defined in the same way as A, except that this time we require
Pi X P, whereas we only require ¢; < p.

In this paper, when dealing with games, we shall use a convention introduced by
Rosendal: we associate an outcome to the game, and define a winning condition in terms
of the outcome belonging or not to a determined set. For example, saying that player II
has a strategy to reach a set X, C ITY in the game G, means that she has a winning
strategy in the game whose rules are those of G, and whose winning condition is that the
outcome belongs to X.
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We endow IT with the discrete topology and ITN with the product topology. The two
main results about Gowers spaces, proved by de Rancourt [13], are the following:

Theorem 2.3 (Abstract Rosendal theorem, [13]). Let X C N pe analytic, and let p € P.
Then there exists ¢ < p such that either

o player I has a strategy to reach X in Fy, or

o player Il has a strategy to reach X in Gg.

Theorem 2.4 (Adversarial Ramsey principle, [13]). Let X C (HN)2 be Borel, and let
p € P. Then there exists ¢ < p such that either

e player I has a strategy to reach X in Ag, or

o player II has a strategy to reach X in By.

Remark 2.5. The definition of the games A, and B, we give here is slightly different
from the original definition in [13]. This is to save notation in the rest of the paper, and
in particular in the proof of Theorem 5.5, which will be quite technical. The version of
Theorem 2.4 we state above is thus slightly weaker than the original one.

Theorem 2.3 has been stated and proved by Rosendal [51] in the special case of the
Rosendal space, as a discrete version of Gowers’ Ramsey-type theorem in Banach spaces.
Theorem 2.4 has been proved by Rosendal [53] for X § and TI} subsets, in the case of the
Rosendal space; he also conjectured the result for Borel sets, which has been proved by
de Rancourt [13].

2.2. Approximate Gowers spaces

Approximate Gowers spaces are a version of Gowers spaces where the set of points is not
anymore a countable set, but a Polish metric space. This formalism is more convenient to
obtain approximate Ramsey-type theorems in Banach spaces, for example.

In this section and in the rest of this paper, we use the following notation: if (IT, §) is
a metric space, if X C MY and if A = (An)nenN is a sequence of positive real numbers,
then we let (X)a = {(Xp)neN € N | A(yn)nen € X Vi € N 6(xp, yu) < Ap}.

Definition 2.6. An approximate Gowers space is a sextuple § = (P, I, §, <, <*, <),
where PP is a non-empty set, IT is a non-empty Polish space, § is a compatible distance on
I1, < and <* are two quasiorders on IP, and <1 C IT x P is a binary relation, satisfying
axioms (1)—(3) as in the definition of a Gowers space and moreover the following two
axioms:

(4) for every p € IP, there exists x € IT such that x <1 p;
(5) forallx e [Tand p,q € P,if x < pand p < g, thenx < q.

The relation $ and the compatibility relation on P are defined in the same way as for a
Gowers space.
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With this definition, approximate Gowers spaces are always forgetful, that is, the rela-
tion <7 is defined as a subset of IT x P and not as a subset of Seq(IT) x P (this technical
restriction seems to be needed to prove approximate versions of Theorems 2.3 and 2.4).
In all cases we will encounter in this paper, <1 will actually be the membership relation.

The prototypical example of an approximate Gowers space is the following. Let
X be a separable Banach space. The canonical approximate Gowers space over X is
S = (P, Sx, 3||.||, C,C*, €), where

= =

e P is the set of all (infinite-dimensional) subspaces of X;

Sx is the unit sphere of X;

8|y is the distance on Sy induced by the norm of X;

e C is inclusion between subspaces;

e C* is almost inclusion between subspaces, as defined in Section 1.5;
e c is the membership relation between points and subspaces.

Here, Z 5 Y iff Z is a finite-codimensional subspace of Y, and Y and Z are compatible
iff Y N Z is infinite-dimensional.

In the context of approximate Gowers spaces, de Rancourt [13] proved an approximate
version of Theorem 2.4, but we will not use it in this paper. However, we will introduce
an approximate version of Theorem 2.3. In the rest of this subsection, we fix an approxi-
mate Gowers space § = (P, I1, §, <, <*, <0). In this space, Gowers’ game G, is defined
in the same way as in Gowers spaces (Definition 2.2), apart from the fact that the rule
(xo,...,x;) < p; is obviously replaced with x; <1 p;. We will also define a strengthening
of the asymptotic game. Recall that a subset of IT is said to be relatively compact if its
closure in IT is compact. In what follows, for K C IT and p € PP, we abusively write
K <1 p to mean that the set {x € K | x < p} isdense in K.

Definition 2.7. A system of relatively compact sets for the approximate Gowers space
9 is a set K of relatively compact subsets of II, equipped with an associative binary
operation @, satisfying the following property: forall p €e P and K, L € X,if K < p
and L < p,then K & L < p.

If (K, @) is a system of relatively compact sets for & and if (K,),eN is a sequence
of elements of K, then

o for A C N finite, denote by P, c 4 K, thesum K,, & --- & Ky, ,whereny, ... ny are
the elements of A taken in increasing order;

e a block-sequence of (K,) is, by definition, a sequence (x;);en € IIY for which there
exists an increasing sequence Ag < A; < A, < --- of non-empty sets of integers such
that for every i € N, we have x; € B4, Kn-

Denote by bs((K,)ren) the set of all block-sequences of (Kj,).

In the canonical approximate Gowers space §x over a separable Banach space X, we
can define a natural system of relatively compact sets, (Ky, Dy ), as follows: the elements
of Jx are the unit spheres of finite-dimensional subspaces of X and the operation @y
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on Ky is defined by Sp ®x Sg = Sr+g. Observe that, given an FDD (F,),en of a
subspace of X, the block-sequences of (SF, ),en in the sense given by the latter definition
are exactly the normalized block-sequences of (F,) in the Banach-theoretic sense.

Definition 2.8. Let (K, @) be a system of relatively compact sets for &, and p € P. The
strong asymptotic game below p, denoted by SF),, is defined as follows:

I po P1

I Ky K,
where the K,,’s are elements of K, and the p,’s are elements of P. The rules are the
following:

e forLforalln € N, p, S ps
o forIl: foralln e N, K,, < p,.

The outcome of the game is the sequence (Ky)nen € KN.

We endow ITN with the product topology. The following result, proved by de Ran-
court [13], is the approximate version of Theorem 2.3.

Theorem 2.9 (Abstract Gowers theorem, [13]). Let (K, @) be a system of relatively
compact sets for §. Let X C TIN be analytic, let p € P and let A be a sequence of
positive real numbers. Then there exists ¢ < p such that either

o player I has a strategy in SFy to build a sequence (Ky)nen such that bs((Ky)nen)
C X¢, or

o player II has a strategy in G4 to reach (X)A.

From this abstract result, we can easily recover the original Ramsey-type theorem
proved by Gowers [25], and used to deduce his first dichotomy (Theorem 1.20) along
with another dichotomy:

Theorem 2.10 (Gowers). Let X be a separable Banach space, X, C (SX)N be analytic
and A be a sequence of positive real numbers. Then there exists a subspace Y of X such
that either

o Y has a basis (yn)neN such that all normalized block-sequences of (y,) belong to X¢,
or

e player Il has a strategy in Gy to reach (X)a.

In the statement of this theorem, Gy denotes the Gowers game relative to the canon-
ical approximate Gowers space §x. The original statement proved by Gowers is a bit
different in its formulation, but both are easily seen to be equivalent. As an illustration of
the formalism of approximate Gowers spaces, we now prove Theorem 2.10.

Proof of Theorem 2.10. Work in the canonical approximate Gowers space Fy, with the
system of relatively compact sets (Kx, @x) defined above. Apply Theorem 2.9 to X,
p = X, and A. Then either we get a subspace ¥ C X such that player II has a strategy
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in Gy to reach (X)a, and we are done, or we get a subspace ¥ C X such that player I
has a strategy 7 in SFy to build a sequence (K} ),en With bs((K)nen) € X¢. We can
assume that the strategy 7 is such that for every run of the game SFy,

I Y Y

I SF, SF
played according to t, the natural projection [F; | i <n] @ Y, — [F; | i < n]has norm at
most 2. Now consider any run of the game where I plays according to v and II plays unit

spheres of subspaces of dimension 1: Sry,, Sry,, .... Then by construction, (¥n)neN
is a basic sequence with constant at most 2, and because I played according to t, all
normalized block-sequences of (y,) belong to X°. |

The main goal of the next section is to investigate conditions on families # of sub-
spaces of X for which a local version of Theorem 2.10 can be proved, that is, a version
of Theorem 2.10 where we can ensure that the subspace Y given by the theorem is in Jf.
Such a result will be proved in Section 4.

3. D-families: definition and examples

In this section, we introduce the notion of a D-family: these families will be those for
which we will be able to prove local Banach-space dichotomies. The “D” in the name of
D-families refers both to the possibility of proving such dichotomies, and to the funda-
mental property that one can diagonalize among such families (see Lemma 3.5 below).
We will then give sufficient conditions for being a D-family, and examples.

3.1. Definition and first properties

As seen in the previous section, the main ingredient in proving dichotomies of a Ramsey-
theoretic nature in a given family of subspaces is the possibility of diagonalizing among
elements of this family. Inspired by Lemma 1.27, we will define D-families as families
of subspaces that are G for a certain topology. This will ensure, on the one hand, that a
diagonalization property similar to that in the definition of a P *-coideal will be satisfied
by these families, and on the other hand that they have a good behavior relative to FDD’s.

Fix a Banach space X. For F € Sub~*°(X) and Y € Sub(X) such that F C Y, let
[F.Y]:={Z eSub(X)| F S Z CY};andfore >0, let [F, Y]g( be the set of Z € Sub(X)
for which there exist Z’ € [F, Y] and an isomorphism T : Z' — Z with |T —Idz/|| < ¢
(the latter set will be simply denoted by [F, Y], when there is no ambiguity about the
ambient space X). To avoid any misunderstanding, we stress that the notation [F, Y]
should not be confused with the one used to denote the closed linear span of a sequence
of vectors or of finite-dimensional subspaces.

Lemma 3.1. The sets [F, Y], for e >0, F € Sub~*°(X) and Y € Sub(X) such that
F C Y, form a basis for a topology on Sub(X). Given Y € Sub(X), a basis of neighbor-
hoods of Y for this topology is given by the [F,Y|.’s fore > 0and F C Y.
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Proof. What we have to show is that given & > 0, ¥; € Sub(X), and F; € Sub=*°(X)
such that F; € Y; for 1 <i < n, and given Z € ﬂ:’zl[Fi, Y;]s, , there exist ¢ > 0 and a
finite-dimensional subspace F C Z such that [F, Z], C ﬂ;’zl[Fi, Y;]s, . For each i, fix
Z; € [F;,Y;] and an isomorphism T; : Z; — Z such that ||7; —Idz, || < &. Fixe > 0
such that forevery i, |T; —Idz, || + (1 + &) < &, and let F = Z?:l T; (F;). Then we
have FF € Z. Now let W € [F, Z],, and fix 1 < i < n; we show that W € [F;, Y;],.
Fix W’ € [F, Z] and an isomorphism T : W’ — W such that |7 — Idw-|| < &. Then the
map 7T o (T;) ST is an isomorphism from 7' (W') to W, and T, ' (W’) € [F;, Y;].
Moreover,

7 o (T:) bty T IdTl_—l(W/) | < (T —1dw) o (T}) FT,-_I(W/)” +|T; — dz ||
se(l+&) + (T —ldz; || <&,
concluding the proof. ]

The topology on Sub(X) defined in Lemma 3.1 will be called the Ellentuck topology.
It does not depend on the choice of the equivalent norm on X. This name was given
because of the similarity between this topology and other topologies that arise in the
context of Ramsey spaces, and that are also called Ellentuck. See [59] for more details.

Definition 3.2. A D-family of subspaces of X is a family #¢ C Sub®(X) satisfying the
following two properties:

(1) J is stable under finite-dimensional modifications, i.e. for every ¥ € Sub®(X) and
every F € Sub~*°(X), wehave Y € # ifandonlyif Y + F € ¥;

(2) #, seen as a subset of Sub(X), is G for the Ellentuck topology.

We now prove a few properties of D-families. In what follows, we fix a D-family
of subspaces of X.

Definition 3.3. LetY € Sub(X). The restriction of # to Y is the set #y = # N Sub(Y).

Lemma 34. Let Y € Sub®™(X). The Ellentuck topology on Sub(Y) coincides with the
topology induced on Sub(Y') by the Ellentuck topology on Sub(X). In particular, #\y is
a D-family of subspaces of Y .

Proof. Observe that for every ¢ > 0, every Z € Sub(Y') and every finite-dimensional sub-
space F C Z, we have [F, Z]Y = [F, Z]X N Sub(Y). The left-hand side of this equality
is the general form of a basic neighborhood of Z in the Ellentuck topology on Sub(Y),
and the right-hand side is the general form of a basic neighborhood of Z in the topol-
ogy induced on Sub(Y) by the Ellentuck topology on Sub(X). Thus, these topologies
coincide.

Therefore, since J is Gg for the Ellentuck topology on Sub(X), its intersection with
Sub(Y) is G for the Ellentuck topology on Sub(Y'), proving the second part. |

Lemma 3.5. Let (Y;,)nen be a decreasing family of elements of J. Then there exists
Yoo € H such that for everyn € N, Yoo C* Y.
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Proof. Let (Uyn)nen be a decreasing family of Ellentuck-open subsets of Sub(X) such
that # = (),,cy Un. We define inductively an increasing sequence (Fy)nen of finite-
dimensional subspaces of X in the following way. Let Fy = {0}. The space F, being
defined, by axiom (1) in the definition of a D-family, the subspace Y, + F}, is in J,
so in U,; thus there exists a finite-dimensional subspace F,4+; C Y, + F, such that
[Fr+1, Yn + F,] € Uy. We can even assume that Fy, € F, 41 and dim(F,4+1) = n + 1.
This completes the construction.

Now let Yoo = UneN F,,. By construction, for every n € N we have Yoo C F,, + Y,
50 Yoo C€* Y},. This also implies that Yoo € [Fy41, Yn + Fn] € Uy, sofinally Yoo € . =

Corollary 3.6. §% = (#, Sx.§).|. C. C*, €) is an approximate Gowers space.

Definition 3.7. An #-good FDD is an FDD (F,),en of a subspace of X such that for
every infinite A C N, the subspace [F},, | n € A]isin J.

This terminology is motivated by the fact that we want to prove dichotomies where the
outcome space is in the family J (for instance, non-Hilbertian). In our dichotomies, good
FDD’s will play a similar role to the basis (y,),eN in the statement of Theorem 2.10.

Lemma 3.8. Let (Fy),enN be an FDD of a subspace of X . Suppose that [F, | n € N] € J.
Then there exists a blocking (Gp)nen of (Fy) which is #-good.

Proof. Let (U,)nen be a decreasing family of Ellentuck-open subsets of Sub(X) such
that # = (),eny Un. For every k € N, let Yx = [F; | [ = k]. We build (G,) by
induction as follows. Suppose that the G,,’s have been built for m < n, and let k,, =
max supp(G,—1) + 1 if n = 1, k, = 0 otherwise. By axiom (1) in the definition of a
D-family, for every A C {0,...,n — 1}, we have [G,, | m € A] @ Yi, € U,, so there
exists a finite-dimensional subspace KA C [G,, | m € A] @ Yy, and &2 > 0 such that
(KA, [Gm | m € Al ® Ykn]s;;l C U,. We can assume that K = [G,,, |m € A] @ HZ
for some finite-dimensional subspace H2 C Yj,. Now let H, be the finite-dimensional
subspace of Y, generated by all the H,f"s, A C{0,...,n—1}, and let &, = min {8;:1 |
A CH{0,...,n—1}}. Forevery A € {0,...,n — 1}, we have

[[Gm |m € A@ Hy, [Gr |m € A]® Yi,]. S Un.

&n
Now consider an isomorphism 73, : Yo — Yy such that

e T, is equal to the identity on [Fy | k < ky];

Th(Yk,) = Yk,;

Ta(Hy) C [Fi | kn < k < kp1] for some kpy1 > kn;

|T% —Idy, || < én.

We let G, = [Fy | kn <k < kp+1], and this completes the construction.

It is clear that (G,,) is a blocking of (F},). We show that it is #-good. Let A € N be
infinite and n € A; it is enough to show that [G,, | m € A] € U,. We know that T, fixes
[Gp | m € A, m < n], and we have Ty, (H,,) € Gy, thus (T,,) " ([G,, | m € A]) contains
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[Gm | m € A, m < n] @ H,. Moreover, (T,)~! stabilizes Yk,,» which contains the Gp,’s
form = n, so (T,) "' ([Gm | m € A]) is contained in [G, | m € A, m < n] @ Yy, . Hence,

(T)) " ([Gm |me A) €[[Gm|meA m<n|® Hy, [Gn|meA m<n]®Yy,].
and since |7, — Idy, || < &,, we finally get

[Gm|m€A]E[[Gm|m€A,m<n]EBH,,, [Gm|m€A,m<n]@Ykn] < Uy,

&n

as desired. [

Lemma 3.9. For every Y € # and every ¢ > 0, there exists a subspace of Y having an
H-good FDD (Fy),eN with constant at most 1 + &.

Proof. By Lemma 3.8, it is enough to build an FDD (F},) in such a way that [F}, | n € N]
€ J; passing to a blocking, we can turn it into an #-good FDD having the same constant.
Let (U, )nen be a decreasing family of Ellentuck-open subsets of Sub(X) such that # =
(Mpen Un. We build the FDD (F;,),en by induction on nn. Suppose that Fy, . . ., F,_; have
been built. Let ¥}, be a finite-codimensional subspace of Y with Y, N [F; |i <n]={0} and
such that the natural projection from [F; | i < n] ® Y, onto [F; | i < n] has norm at most
1+e.Ifn>1, wecaneven assume that Y, CY,_;. We have [F; |i <n]® Y, € U,, sowe
can find a finite-dimensional subspace F,, C Y, suchthat [F; | i <n], [F; |i <n] ® Yy]
C Up. This completes the construction.

By construction, for every n € N, we have [F; | i = n] C Yy, so the natural projection
from [F; |i <n] @ [F; |i = n] onto [F; | i < n] has norm at most 1 + &. This shows
that (F,) is an FDD with constant at most 1 + . Moreover, for every n € N, we have
[F;|ieN]e[[F;i|i<n],[Fili<n]l®Y,] < Ups0[F|ieN]eH. (]

The next lemma is an J-good version of Bessaga—Pelczynski’s selection principle.

Lemma 3.10. Let Y be a subspace of X having an FDD (Fy)ueN, and let U € JH be
such that U C Y. Then there exists a subspace Z of Y spanned by an J#-good block-
FDD (Gp)nen of (Fy) such that Z isomorphically embeds into U.

Lemma 3.10 was stated in this form for greater clarity, but for several applications in
this paper, we will need a more general and more precise version of it, stated and proven
below. It can be seen as an amalgamation of Lemmas 3.10 and 3.5.

Lemma 3.11. Let (Yi)ren be a family of subspaces of X such that for every k € N,
Yy has an FDD (F,i‘)neN. Assume that for every k € N, (F,f'"l)neN is a block-FDD of
(F;/{C)nEN- Let (Up)ren be a decreasing family of elements of # and let (Ay)ren be a
sequence of positive real numbers. Assume that for every k € N, we have Uy C Y.

Then there exists a subspace Z C X generated by an H-good FDD (Gy)reN Such
that for every k € N, (Gy);zk is a block-FDD of (F,f‘)neN; and there exists an iso-
morphic embedding T : Z — X such that for every k € N, we have T (Gy) C Uy and
(T —1dz) i, 1=k | < Ak, and the FDD (T (Gi))ken of T(Z) is H-good.
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Moreover, if we are given, for every k € N, a subset Dy C Sy such that, for every
finite A € N, Dy N [E¥ | n € A is dense in the unit sphere of [F¥ | n € A], then we can
ensure that for every k € N, the space Gy has a basis made up of elements of Dy.

Proof. Without loss of generality, we can assume that Ag < 1/2 and A4 < Ag/2 for
all k € N. Let (Ug)ren be a decreasing family of Ellentuck-open subsets of Sub(X)
such that # = (< Uk- Let C be the constant of the FDD (F,?). We build by induction
on k an FDD (Gy,), along with an FDD (Hy)ren of a subspace of X, such that for all
k € N, dim(Gy) = dim(Hy). We also build, at the same time, a sequence of isomorphisms
Ty : Gy — Hy; the embedding T will be defined as the unique bounded linear mapping
on Z extending all the T} ’s.

Suppose that the G;’s, the H;’s and the T;’s are built for [ < k. Let ry € N be
defined as follows: if k = 0, then ry = 0, and otherwise ry is such that supp(Gx—_1) <
supp(Fr’Z), where the supports are taken with respect to the FDD (F¥~1),cn. Let Y, =
[FF|n = rg], and let U, be a finite-codimensional subspace of Uy such that U; C Y/
and U, N [H; | I < k] ={0};if k = 1, we moreover suppose that U; C U, _,. For every
A C{0,....k — 1}, the subspaces [G; || € A] ® U] and [H; | | € A] @ U, are in #,
so as in the proof of Lemma 3.8, we can find ¢ > 0 and a non-zero finite-dimensional
subspace Hy C U, ,é such that for all A4, both basic open sets

[(G1 |1 € Al @ Hy, G | 1 € A] @ U],

and
[(Hi |l € Al® Hi [Hy |1 € AJ@ U],

are contained in Uy. We can even assume that for all [ < k, e < /2K, Since Hy <
Y, = [FF | n = ri], we can find a finite-dimensional subspace Gj C Y, having finite
support relative to the FDD (F, k)n>rk of ¥}/, and a linear mapping T : Gy — Hj such
that | T —Idg, || < 4C and || T~ ' —Tdg, || < m We can even ensure that G has
a basis made up of elements of Dy. This finishes the induction.

As desired, for every k € N, (Gj);>¢ is a block-FDD of (Fk)neN In particular,
(Gk)keN is a block-FDD of (F?) and hence has constant at most C.. Let Z = [Gy | k € N]
and Z = @Dr.cn Gk, a dense vector subspace of Z. Define T:Z — X as the unique lin-
ear mapping extending all the Tj’s on their domains. For every eventually null sequence
(x7)1en Wwith x; € Gy for all ] € N and for every k € N, we have

[T =14 (3 x)| < X1 —1e) 0l < 3 25l < Y g !
=k I=k I=k I=
A
<5 i e[Sl < S

This shows that || (T —1d3)@,-4 G, | < A In particular, T is a bounded operator on Z,
so it extends to a bounded operator 7' : Z — X still satisfying ||(T —Idz) )i, 1=kl < Ak
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for every k € N. In particular, since Ay < 1/2, the latter inequality shows that 7" is an
isomorphic embedding, with || T'|| < 3/2 and ||T~!|| < 2. In particular, (Hy)ren is an
FDD of a subspace of X, with constant at most 3C.

It remains to show that the FDD’s (G ) and (Hy) are J€-good. For (Hy), the proof is
similar to that of Lemma 3.8: given A C N infinite and k € A, we have

[H |l eA =k CU,.

SO
[Hy |l eAle[[H |l €Al <kl®H,[H |leA |l <kaU

and by construction, the set on the right-hand side is contained in Uy, as desired.
For (G), we need one more estimate. For all k, let Ky = [G; || < k], Vi = [H] |
[ = k], and W = Kj & V. Define S; : Wy — Z as the unique operator which is equal
to the identity on Ky, and to T~! on V. For all [ = k, we have
€] ek

77 —Idy, || < < )
17 i | 24C(C + 1) ~ 217k .24C(C + 1)

Thus, knowing that (H;);>x is an FDD of Vj with constant at most 3C, and using the
same proof as for 7', we can show that

Ek 6C — Ek
21=k .24C(C + 1) C2(C+1)

Ty — Tyl <

1=k

Now recall that, by construction, supp(Ky) < supp(Y}), where the supports are taken with
respect to the FDD (F?), and moreover Vj, € Y, Since the FDD (F?) has constant C, the
natural projection Wy — Vi has norm at most C + 1. Since Si — Idy, is the composition
of this projection and (T~')y, — Idy, , we deduce that || Sy — Idw, || < & /2.

We are now ready to prove that the FDD (G ) is #-good. Let A be an infinite subset
of N, and let k € A; we want to prove that [G; | [ € A] € Uy. We have

(G |1 eAl=Sk([Gi |l €Al <kl®Hc®[H |l €A l>k]),
and
Gi|leAl <kl Hy®[H |l €Al >k
e[[G1|leA,l<k]€BHk, [Gy |leA,l<k]€BU,é],
so using the fact that ||Sx — Idw, || < e, we get
(G|l eAl€[lG |l €A | <k]l® Hy, [G |leA,l<k]€BU,é]8k.
By construction, the latter basic open set is contained in Uy, as desired. [

In the rest of this section, we introduce sufficient conditions for being a D-family,
which will be convenient for applications.
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3.2. Wijsman and slice topologies

Let X be a Banach space with a fixed norm || - ||. For N an equivalent norm on X, for
Y € Sub(X) and for x € X, we denote by Nx,y (x) the norm of the class of x in the
quotient X /Y, when this quotient is equipped with the corresponding quotient norm.
Thus, we have an injective mapping

on :Sub(X) — R¥, ¥ > Nyy.

The Wijsman topology associated to N on Sub(X) is the topology obtained by pulling
back through ¢ the product topology on R . For this topology, a net (Y3 ) of elements of
Sub(X) converges to Y € Sub(X) if and only if for every x € X, Ny,y, (x) — Nx/y (x).
In general, this topology depends on the choice of the equivalent norm N (see [8, Sec-
tion 2.4]).

The slice topology on Sub(X) is the topology generated by sets of the form
{Y eSub(X) | Y NU # @} and {Y € Sub(X) | §.4(Y,C) > 0}, where U ranges over
open subsets of X, C ranges over non-empty bounded closed convex subsets of X, and
81 (Y, C) = infyec, yey ||x — y||. The name slice topology comes from the fact that in
the previous definition, it is actually enough to make C range over slices of closed balls,
that is, non-empty sets of the form {x € X | ||x|| <r, x*(x) = a}, where r > 0, x* € X*,
and a € R (see [8, Lemma 2.4.4]). It is easy to see that the slice topology on Sub(X') only
depends on the isomorphic structure of X, but not on the norm.

The main properties of the Wijsman and the slice topologies can be found in [8]. We
gather some useful ones below.

Theorem 3.12 (see [8]). (1) If X is separable, then all the Wijsman topologies on
Sub(X) associated to equivalent norms are Polish.

(2) If X is separable and has separable dual, then the slice topology on Sub(X) is Polish.

(3) The slice topology on Sub(X) is the coarsest topology refining all the Wijsman topolo-
gies associated to equivalent norms on X.

(4) (Hess’ theorem) If X is separable, then the Borel o-algebra associated with any
Wijsman topology on Sub(X) coincides with the Effros Borel structure on this set.

(5) If X is separable and has separable dual, then the Borel o-algebra associated with
the slice topology on Sub(X) coincides with the Effros Borel structure on this set.

These topologies are easier to manipulate than the Ellentuck topology. However, we
have the following result:

Proposition 3.13. The Ellentuck topology on Sub(X) is finer than the slice topology. In
particular, it is finer than all the Wijsman topologies associated to equivalent norms.

Proof. Fix a non-empty open subset U of X. We will show that U = {Y € Sub(X) |
Y NU # @} is Ellentuck-open. For this, consider Y € U. We fix xo e U NY and e > 0
such that B(xg, ||xo||) € U; we will show that [Rxg, Y], € U. Let Z € [Rxg, Y], and
fix Z’ € [Rxg, Y] and an isomorphism 7' : Z" — Z with |T —Idz/|| < e. If xo # 0, then
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IIT (x0) — X0l < €llxo]|, so by the choice of &, we have T'(x¢) € U N Z; this remains true
if xo = 0. This shows that Z € U.

Now fix a non-empty bounded closed convex subset C of X. We will show that V =
{Y € Sub(X) | 8 (Y, C) > 0} is Ellentuck-open. For this, we fix Y € 'V and we show that
[{0},Y]s €V for small enough e. More precisely, let n = §. (Y, C) and let R = 1 be such
that C € B(0, R — n). Then we take ¢ = 7% (so in particular ¢ < 1/2). Let Z € [{0}, Y],
and fix Z’ € [{0}, Y] and an isomorphism T : Z' — Z with |T — Idz/| < &. For any
x € Z’,itis enough to show that 8. (7'(x),C) = n/2.1f || x|| > 2R, then | T (x)|| = ||x|| —
I7Ge) = x| = 1x]1/2 > R. 50 8j(T(x). C) = 1. If ||| < 2R, then | T(x) — x|| < n/2.
And since x € Y, we have ). (x,C) = n, so 8 (T'(x),C) = n/2. L]

Corollary 3.14. Consider # C Sub™(X) satisfying the following two properties:

(1) for every Y € Sub®™(X) and every F € Sub~*®°(X), we have Y € ¥ if and only if
Y+ FedH

(2) K, seen as a subset of Sub(X), is Gy for one of the Wijsman topologies, or for the
slice topology.

Then # is a D-family of subspaces of X.

3.3. Degrees

Degrees will be our main way of defining D-families throughout this paper. A degree
allows one to define a notion of largeness on the class of all Banach spaces, and this
notion gives rise to a D-family when restricted to the set of subspaces of some fixed
Banach space.

We define an approximation pair as a pair (X, F) where X is a (finite- or infinite-
dimensional) Banach space, and F is a finite-dimensional subspace of X. We denote by
AP the class of approximation pairs. If (X, F), (Y, G) € AP, a morphism from (X, F) to
(Y,G)isapairg = (S,T), where S : G — F and T : X — Y are operators that make
the following diagram commute:

F %X
S
G——Y
where the ¢’s stand for inclusions. The norm of the morphism ¢ is defined as ||¢| =
ISI- T G # {0}, and [l¢|| = 1if G = {0}.
Definition 3.15. A degree is a mapping d : AP — R, for which there exists K  :
[1,00) x Ry — R4 such that
e K, is non-decreasing in each variable;
o forallz € Ry, limy_; Ky(s,1) =¢;
and for every (X, F), (Y, G) € AP and every morphism ¢ : (X, F) — (Y, G), we have
d(Y.G) < Kq(llell. d(X, F)).
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Definition 3.16. Given a degree d, we say that a Banach space X is d-small if
SUP g esup<oe(x) (X, F) < oo, while X is d-large otherwise.

For most degrees we will consider, the value of d(X, F) will actually only depend
on F. Degrees satisfying this property will be called internal degrees, and d(X, F') will
simply be denoted by d(F). To verify that d : Ban=*° — R is an internal degree, it
is enough to find Ky : [1,00) x R1 — R as above such that for every embedding S :
G — F between two finite-dimensional spaces, we have d(G) < Kz (||S||- |S1.d(F))
(where S™! is defined on S(G), and with the convention that ||S|| - ||[S™'|| = 1 when
G = {0}).

Examples 3.17. (1) Let d(F) = dim(F). Then d is an internal degree, witnessed by
K4(s,t) = t. A space is d-small if and only if it is finite-dimensional.

(2) Letd(F) =dpm(F, Kgim(F)). Then d is an internal degree, witnessed by K4 (s,t) =
st. A space is d-small if and only if it is Hilbertian (a consequence of Kwapieri’s
theorem [36]).

(3) Fix1 < p<2<q <oo.Letd(F) be the type p constant (resp. the cotype ¢ constant)
of F. Then d is an internal degree, witnessed by K;(s,?) = st. A space is d -small if
and only if it has type p (resp. cotype g). If X is d-small, then sup g cgyp<c0(x) d(F)
is the type p constant (resp. the cotype ¢ constant) of X.

(4) Fix 1 < p < o0. For (X, F) € AP, define d(X, F) as the infimum of the M’s for
which the canonical inclusion of F into X M -factorizes through some ¢, meaning
there existn € N and operators U : F — {7 and V : {7 — X with |U|| - |V = M,
making the following diagram commute:

&
7N
Fe—— " X

Then d is a degree, witnessed by K;(s,t) = st. By [38, Theorem 4.3] (and the clas-
sical fact that £’s are uniformly complemented in L,, 1 < p < 00),

e if | < p < 00, a space is d-small if and only if it is either an &£,-space, or a
Hilbertian space;
e if p =1 or p = oo, a space is d-small if and only if it is an & ,-space.
(5) For (X, F) € AP, define d(X, F) as the infimum of the M’s for which there exist a

space Z with a 1-unconditional basis and operators U : F — Z and V : Z — X with
Ul - IV] = M, making the following diagram commute:



Local Banach-space dichotomies and ergodic spaces 29

Then d is a degree, witnessed by K4 (s,t) = st. A space is d-small if and only if it
has Gordon-Lewis local unconditional structure (GL-lust) [24]. If X is d-small, then
SUP esub<c0(x) 4 (X, F) is the GL-lust constant of X.

(6) For (X, F) € AP, define d(X, F) as the infimum of the K’s such that F is K-
complemented in X. Then d is not a degree. To see this, pick F =G C X CY
in such a way that F' is 1-complemented in X but not n-complemented in Y, so
that d(X, F) = 1 and d(Y, G) = n; and take S = Idr, T the canonical inclusion
of X into Y. This may be surprising, in view of the fact that a space is Hilbertian
if and only if there exists K > 1 such that all its finite-dimensional subspaces are
K-complemented in it (see [1, Theorem 12.42]), i.e., the Hilbertian spaces would be
characterized as the d-small spaces if d were a degree.

Remark 3.18. The notion of degree is closely related to Pietsch’s classical theory of
operator ideals [47]. Recall [47, Chapter 6] that a quasi-norm on an operator ideal 2 is a
mapping A : A — R such that

(1) A(Idy) = 1 whenever X is 1-dimensional,

(2) there exists a constant K = 1 such that A(S + T) < K(A(S) + A(T)) whenever S, T
belong to 2 and S + T makes sense,

(3) A(UoT oS8) < ||UJ|-A(T)-||S| whenever T belongs to A and U o T o S makes
sense.

Hence, to every quasi-normed operator ideal (2[, A), we can associate a degree d4 defined
by da(X, F) = A(tp,x) for every approximation pair (X, F), where (f x denotes the
inclusion map of F into X. It is interesting to observe that all examples of degrees given
in Examples 3.17 come in this fashion:

(1) The dimension is the degree associated to the ideal of nuclear operators (see [47,
§6.3.1]); this is a consequence of Auerbach’s lemma.

(2) The internal degree d(F) = dpy (F, Zcznm(F)) is the degree associated to the ideal of
Hilbert operators (see [47, §6.6.1]).

(3) The type p and cotype g constants are the degrees associated to the ideals of fype p
and cotype q operators, normed with the type p and cotype g constants, respectively
(see [48, Section 3.a]).

(4) The degree defined in Examples 3.17 (4) is the degree associated to the ideal of dis-
cretely p-factorable operators (see [47, §19.3.11]).

(5) The degree defined in Examples 3.17 (5) is the degree associated to the ideal of o-
nuclear operators (see [47, §23.2.1]); this is a consequence of [47, Theorem 23.2.5].

We warn the reader that given a quasi-normed operator ideal (2, A), the class of d4-small
spaces does not in general coincide with the space ideal associated to 2 (see [47, §2.1.2]).
This is so for instance for examples (4) and (5) above.

We will not further develop the link between degrees and quasi-normed operator ideals
in this paper, as this would be of limited practical use. Indeed, exhibiting a degree adapted
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to a given situation is in general much easier than exhibiting a quasi-normed operator
ideal, as shown by the examples above.

We can also define a notion of asymptotic smallness:

Definition 3.19. Let d be a degree. A Banach space X is said to be asymprotically
d-small if there exists a constant K such that for every n € N, there exists a finite-

codimensional subspace X,, € X such that every n-dimensional subspace F € X, satis-
fiesd(X,F) < K.

When d(X, F) =dpp (F, Z(zhm(F)), asymptotically d -small Banach spaces are exactly
asymptotically Hilbertian Banach spaces (see Definition 1.12).

If d is an internal degree, then a subspace of a d-small space is itself d-small, and a
subspace of an asymptotically d-small space is itself asymptotically d-small. This is not
true in general; for example, L, ([0, 1]) is an £,-space, and for 1 < p # 2 < oo, the only
non-Hilbertian subspaces of L, ([0, 1]) which are &£, are the complemented ones [38].
Similarly, the property of having Gordon—Lewis local unconditional structure is not stable
under passing to subspaces; consider £, spaces for 1 < p # 2 < 0o, a consequence of,
e.g., [35].

Remark 3.20. A useful property of degrees is that for F € G C Y C X, where the spaces
F and G are finite-dimensional and X and Y are arbitrary, we have d(X, F) < d(Y, G).
To see this, just consider the morphism (Idr, Idy) from (Y, G) to (X, F).

In the rest of this subsection, we fix a degree d.

Lemma 3.21. Foreveryn € N, there exists a constant Cg(n) such that for every (X, F) €
AP with dim(F) = n, we have d(X, F) < C4(n). In particular, every finite-dimensional
space is d-small.

Proof. Let (X, F) € AP with dim(F) =n. If n > 1, then let T : {] — F be an n-
isomorphism. Then (7!, T') is a morphism from (¢%, %) to (X, F), with norm at most .
So, letting Cy(n) = Kq(n,d({],£})), it follows that d(X, F) < C4(n). The proof of the
case n = 0 is similar, replacing £ by {0}. ]

Lemma 3.22. The properties of being d-small, d-large, and asymptotically d-small are
invariant under isomorphism.

Proof. Let X and Y be Banach spaces, and 7 : X — Y be an isomorphism. First sup-
pose that X is d-small, and let K = sup g g p<co(x) d(X, F). Let G € Sub~*(Y). Then
((T™Y g, T) is a morphism from (X, 7~ (G)) to the pair (¥, G), so

d(Y.G) < Ka(I(T™ 6l - TN d(X. T7H(G)) < Ka(IT M- IT]. K).

This bound does not depend on G, so Y is d-small.
Now suppose that X is asymptotically d-small and fix a constant K witnessing
it. We will show that Y is asymptotically d-small, witnessed by the constant L =
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Ki(IT7Y - IT|l, K). Let n € N. There exists a finite-codimensional subspace X, € X
such that for every n-dimensional subspace F C X,,, we have d(X, F) < K. Let Y, =
T(Xy), and let G C Y, be an n-dimensional subspace. Then ((T~1)g, T) is a mor-
phism from (X, T7Y(G)) to (Y, G), so d(Y,G) < Kg(|T7 - IT|.d(X, T~1(G))).
Since T~1(G) € X,, we have d(X, T~1(G)) < K,sod(Y,G) < L, as desired. [

Lemma 3.23. (1) A complemented subspace of a d-small space is d-small.

(2) A complemented subspace of an asymptotically d-small space is asymptotically d -
small.

Proof. Fix a Banach space X, a complemented subspace Y of X, and a projection P :
X —>Y.

(1) Suppose X is d-small, and let K = suppegyp<co(x) d(X, F). Let F C Y be a
finite-dimensional subspace. Then (Idfr, P) is a morphism from (X, F) to (Y, F), so we
have d(Y, F) < K4(||P|l,d(X, F)) < Kz(|| P||, K). Hence Y is d-small.

(2) Suppose X is asymptotically d-small, witnessed by a constant K. We will show
that Y is asymptotically d-small, witnessed by the constant K (|| P||, K). Let n € N,
and fix a finite-codimensional subspace X;,, € X such that for every n-dimensional sub-
space F C X,, we have d(X, F) < K. Let Y, = X, NY. For an n-dimensional sub-
space F C Y,, (Idr, P) is a morphism from (X, F) to (Y, F), so we have d(Y, F) <
Ki(|P],d(X, F)) < Kg(|| P||, K), as desired. |

Lemma 3.24. Let X be a Banach space, and Y be a finite-codimensional subspace of X .
Then:

(1) X isd-small iff Y is d-small;
(2) X is asymptotically d-small iff Y is asymptotically d-small.

Proof. Since Y is complemented in X, we know by Lemma 3.23 that if X is d-small
(resp. asymptotically d-small), then so is Y. So in both cases, we just have one direction
to show.

(1) Suppose that Y is d-small, and let K = supgegyp<coy) d(Y, G). By Lemma 3.21,
we can suppose that X is infinite-dimensional. We denote by k the codimension of Y in X.
Recall that by [21, Lemma 3], every k-codimensional subspace of X is A(k)-isomorphic
to Y, where the constant A(k) only depends on k.

Let F' C X be finite-dimensional; we want to bound d (X, F). Find a subspace Z C X
with codimension k containing F. Let T : Z — Y be an A(k)-isomorphism. We have
d(Y,T(F)) < K. Moreover, (Tf, T™!) is a morphism from (¥, T(F)) to (X, F), so
d(X,F) < Kg(|IT| - IT7Y, K) < Kq(A(k), K), as desired.

(2) Suppose that Y is asymptotically d -small. Then there exist a constant K and finite-
codimensional subspaces Y, € Y for all n such that for every n-dimensional subspace
F CY,,wehave d(Y, F) < K. In particular, for such an F, we also have d(X, F) < K,
showing that X is asymptotically d-small. ]
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Proposition 3.25. Let X be a Banach space, and J be the set of subspaces of X that are
d-large. Then ¥ is a D-family.

Proof. Lemma 3.21 shows that J¢ contains only infinite-dimensional subspaces. The sta-
bility of J¢ under finite-dimensional modifications comes from Lemma 3.24. Now we
need to prove that J# is Ellentuck-Gg. For every n € N, let U, = {Y € Sub(X) | 3F €
Sub=*°(Y) d(Y, F) > n}, so that # = (),ey Un. We will show that all the U,’s are
open.

Fixn e Nand Y € U,. Let F € Sub=*°(Y) be such that d(Y, F) > n. We know
that limg—.1 Kg(s,n) = n, so there exists ¢ € (0, 1) such that Kd(%,n) <d(Y,F).
We will show that [F,Y]. C U,.Let Z € [F,Y],,andlet Z' € [F,Y]and T : Z' — Z
be an isomorphism such that |7 —Idz/|| < &. Then ||T|| < 1+ ¢ and | T7!| < ﬁ
So (Tyr, T™') is a morphism of norm at most % from (Z, T (F)) to (Y, F). Thus,
d(Y,F) < Kd(%,d(z, T(F))).lf wehad d(Z,T(F)) <n,we would have d(Y, F) <

Kd(i—fj, n), contradicting the choice of €. So d(Z, T(F)) > n, witnessing Z € U,,. =

Corollary 3.26. Given a sequence (dy)neN of degrees and a space X, the family of sub-
spaces of X that are large for all the dy,’s is a D-family, and in the same way, for fixed
N € N, the family of subspaces of X that are large for at least one dy, n < N, is also a
D-family.

Proof. Since the class of G subsets of a topological space is closed under countable
intersections and under finite unions, this is a consequence of Proposition 3.25. ]

For instance, for 2 < go < oo fixed, the family of subspaces of X that do not have any
cotype ¢ < qo is a D-family.

If d is a degree and X a Banach space, the D-family defined in Proposition 3.25
will be denoted by #%X, or by #; when there is no ambiguity. An #;-good FDD will
simply be called d-good. In the case of families defined by a degree, we have a useful
strengthening of the notion of good FDD’s:

Definition 3.27. An FDD (F,),en of a Banach space X is d-better if d(X, F,) — 00.
n—oQ

This implies that (F,) is a d-good FDD. Indeed, if A C N is infinite, then for every
n € A, we have d([Fy,, | m € A], F,) = d(X, Fy,). Below we prove a weak converse to
this; it can be seen as the d-better version of Lemma 3.8.

Lemma 3.28. Let (F,;)nen be an FDD of a d-large Banach space X. Then there exists
a blocking (Gy)nen of (Fy) which is a d-better FDD.

Proof. Let C be the constant of the FDD (F,,). Foreach k € N, let X; = [F; | [ = k] and
let Py : X — X the projection associated to the FDD. We build (G, ) by induction as fol-
lows. Suppose that the G,’s have been built for m < n, and let k,, = max supp(G,—1) + 1
if n > 1, and k, = 0 otherwise. The space Xy, is d-large, so there exists H, €
Sub~*°(Xg,,) such that d(Xk,,. H,) = n. Now consider an isomorphism 7}, : X, — Xk,
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such that | T, || - || T, <2 and T,,(Hy,) C [Fx | kn < k < ky+1] for some ky11. Let
G, = [Fy | kn <k < ky4+1]. This finishes the construction of (Gy,).

To prove that (G,) is d-better, fix n and consider the morphism ((7,,)+#,,, T,, ' © Px,,)
from (X, G,) to (Xg,,, Hx). It has norm at most 2(1 4+ C), so

n < d(Xg,, Hn) < Ka(2(1 + C),d(X, Gp)).

In particular, for every constant K, as long asn > K;(2(1 + C), K), we have d(X, G,)
> K. This shows that d(X, G,,) ——> o0. |
n—>00

As an illustration, note that if d(F) is the dimension of F, then any FDD is d-good,
while a d-better FDD is an FDD where the dimensions of the summands tend to infinity.

4. The first dichotomy

In this section, we generalize Gowers’ Ramsey-type Theorem 2.10 to D-families. As an
application, we prove our first dichotomy (Theorem 4.4), a local version of Gowers’ first
dichotomy (Theorem 1.20).

4.1. A local version of Gowers’ Ramsey-type theorem

In this subsection, we fix a Banach space X, and a D-family # of subspaces of X. We
work in the approximate Gowers space 93 = (#, Sx, .|, S, C*, €) defined in the last
section (see Corollary 3.6). Each time we will mention Gowers’ game or the asymptotic
game, we will be referring to the games relative to this space. Note that Gowers’ game
relative to this space is in general different from the original game defined by Gowers. For
Y e ¥, the game Gy has the following form:

I Y Y

I Yo i
where the y,’s are elements of Sy, and the Y},’s are elements of J¢, with the con-
straint that for alln € N, ¥,, C Y and y, € Y,. The outcome is, as usual, the sequence

(Yn)nen € (SN
Our local version of Gowers’ Theorem 2.10 is the following:

Theorem 4.1. Let X, C (Sx)N be analytic, let Y € ¥, let A be a sequence of positive
real numbers and let ¢ > 0. Then there exists Z € H\y such that either

e 7 has an #H-good FDD (Gy)neN, with constant at most 1 + ¢, and all of whose nor-
malized block-sequences belong to X, or

o player Il has a strategy in Gz to reach (X)a.
Moreover,

o if J = Hy for some degree d, then we can even assume that the FDD (Gy) is d-
better;
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o if Y comes with a fixed FDD (Fy),eN, then we can also assume that (Gy) is a block-
FDD of (Fy).

Gowers’ Theorem 2.10 is just the special case of the last theorem when # = Sub® (X)
(which is a D-family, the family of d-large subspaces of X for the internal degree d(F) =
dim(F)).

Proof of Theorem 4.1. We start with the general case; the “moreover” part will be dealt
with separately at the end of the proof. We proceed as in the proof of Theorem 2.10: we
apply the abstract Gowers Theorem 2.9 to the approximate Gowers space ¥z, endowed
with the system of relatively compact sets (Ky, @x) defined in Section 2.2 (recall that
the elements of Ky are the unit spheres of finite-dimensional subspaces of X, and that
SF ®x S¢ = Sr+6). Incase we get Z € # )y such that player II has a strategy in Gz
to reach (X)a, we are done. So we now suppose that there exists U € J\y such that
player I has a strategy 7 in SFy to build a sequence (Kj;)yen With bs((K;)nen) € X°€.
We can assume that the strategy 7 is such that for every run of the game S Fy,

I U U

I SG, Sa,
played according to t, we have [G; | i < n] N U, = {0} and the natural projection
[Gi |i <n]® U, — [G; | i < n] has norm at most 1 + . By Lemma 3.8, it is enough
to build an FDD (G, ),en of a subspace of U, with constant at most 1 + &, such that
[G, | n € N] € #, and all of whose normalized block-sequences belong to X¢.

Let (Uy)nen be a decreasing sequence of Ellentuck-open subsets of Sub(X) such that
Npeny Un = H. We describe arun (U, Sg,, U1, Sg,, . . .) of the game SFy where I plays
according to 7, by describing the moves of II. Suppose that Uy, Sg,. ..., Un—1, SG,,_,
have just been played. According to the strategy t, player I plays U,, a finite-codimen-
sional subspace of U. Since U € J, we have [G; |i <n] & U, € # < U,. So we can find
a finite-dimensional subspace G, C U, such that [[G; | i <n],[G; |i <n] @ U,] € Uy.
We make II play S, , finishing the construction.

Exactly as in the proof of Lemma 3.9, we can show that (G,),en is an FDD of a
subspace Z € #)y, with constant at most 1 + ¢. Since the game SFy has been played
according to 7, we have bs((Sg,, )nen) € X, which exactly means that every normalized
block-sequence of the FDD (Gj,,) is in X°.

If # = H; for some degree d, then by Lemma 3.28, we can replace the FDD (G,,)
with one of its blockings which is d -better, and this blocking will still satisfy the conclu-
sion of the theorem.

We now prove the refinement of the theorem in the case where Y has a fixed FDD
(Fp)nen. Without loss of generality, we assume that the sequence A = (A,)neN iS
decreasing, Ag < 1, and (1 + ¢/ Z)t—ﬁg < 1 4 &. The general case applied to X' =
(X)a/2 (which is still analytic) and to the sequence A" = A/2 gives a U € #,y such
that either player II has a strategy in Gy to reach (X')as, or U has an #-good FDD
(K»)nen with constant at most 1 4 ¢/2 all of whose normalized block-sequences belong
to (X')¢. In the first case, we are done, since (X')as € Xa. In the second case, we apply
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Lemma3.11to Y, =Y, (F,{‘)neN = (Fy)nen, Ux = [K;, | n = k] for every k € N. This
gives us a Z € Jy spanned by an #-good block-FDD (G, )nen of (Fy), and an isomor-
phic embedding 7' : Z — U such that for every n € N, |(T —Idz) (g, jk=n]ll < A, /2
and T(Gp,) C U,. Modifying T if necessary, we can even assume that for every n, T(G,)
has finite support on the FDD (K}) (of course, doing a modification does not necessarily
preserve the FDD (7' (Gp,)),en being #-good, but this fact will not matter in this proof).
Since T(G,) C U, for every n, we have lim,_, o, min supp(G,) = oo (the supports being
taken with respect to the FDD (K},)). Thus, extracting a subsequence if necessary, we can
assume that (7(G)) is a block-FDD of (K},).

We now prove that the FDD (G,,) is as desired. Recall that |7 — Idz]| < Ay, so
IT| <14 Agand [T < 1—1A0- Since (T(G,)) is a block-FDD of (K,), which has
constant at most 1 4+ ¢/2, we deduce that (7(G,)) also has constant at most 1 + &/2.
Hence, (G) has constant at most (1 + &/ 2)?:—28 < 1 + &, as desired. Now let (x;);eN
be a normalized block-sequence of (G,,) ; we prove that (x;) € X¢. Forevery i, x; € [G,, |
n =i]so |T(x;) — x;|| < A]/2. Hence, letting y; = %, we have ||x; — y; || < Al
Observe that (y;);eN is a normalized block-sequence of (T (Gy)), so of (K} ); hence, it is
in (X)¢. Thus, (x;) is in ((X")¢) A+, which is contained in X ¢. This finishes the proof. =

Remark 4.2. The essential difference between Theorem 4.1 and Smythe’s local version
of Gowers’ Ramsey-type theorem proved in [57] is that, in Smythe’s theorem, the original
Gowers game appears: player I is allowed to play whatever subspace he wants, not only
elements of #. The cost is that the conditions on the family # in Smythe’s theorem
are much more restrictive than in ours. Thus, it is not clear at all that Smythe’s theorem
could apply to the families we shall consider (for instance, the family of non-Hilbertian
subspaces of a given Banach space).

4.2. The dichotomy

We now want to prove a local version of Gowers’ first dichotomy (Theorem 1.20), that
is, a similar dichotomy where we moreover ensure that the resulting subspace will be in
a fixed D-family. To do this, we will need local versions of the two possible conclusions.
In particular, we will need a weakening of the notion of HI space.

Definition 4.3. Let X be a Banach space and let J be a D-family of subspaces of X.
We say that a subspace of X is JH-decomposable if it is equal to the direct sum of two
elements of J¢. The space X is hereditarily J-indecomposable, or H-HI, if X € H# and
X contains no J-decomposable subspace.

If d is a degree, we call a space X hereditarily d-indecomposable, or d-HI, if it is
hereditarily # ZJX -indecomposable; in other words, if it is d-large and no subspace of it is
a direct sum of two d-large subspaces.

In the case where # = Sub®°(X), i.e. where d is the dimension, we recover the notion
of HI spaces.
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Theorem 4.4 (The first dichotomy). Let X be a Banach space, and let J be a D-family
of subspaces of X, containing X. Then there exists Y € JH such that either

e Y has an #-good UFDD, or

o Y is hereditarily #\y -indecomposable.

Moreover, if X comes with a fixed FDD, then in the first case, the UFDD of Y can be
taken as a block-FDD of the FDD of X.

This is a true dichotomy in the sense that both classes it defines are, in some way,
hereditary with respect to # (every block-FDD of a UFDD is a UFDD, and if Y is
hereditarily #¢\y-indecomposable, then every subspace Z € Hy is hereditarily #}z-
indecomposable); and these classes are obviously disjoint, since a subspace Y with an
J-good UFDD has continuum-many decompositions as a direct sum of elements of #.

We spell out the version of the dichotomy when the D-family is induced by a degree d,
taking into account Lemma 3.28.

Theorem 4.5 (The first dichotomy for degrees). Let X be a Banach space, and let d be a
degree such that X is d-large. Then there exists a d-large subspace Y C X which either
has a d-better UFDD, or is hereditarily d-indecomposable.

Proof of Theorem 4.4. We fix a sequence A = (A;);en of positive real numbers satisfy-
ing the following property: for every normalized basic sequence (x;);en in X with con-
stant at most 2, and for every normalized sequence (y;);en in X such that ||x; — y; || < A;
for all i € N, the sequences (x;) and (y;) are 2-equivalent. Let X be the set of sequences
(x1)ien € (Sx)N satisfying the following property: for every N € N, there exists an even-
tually null sequence (a;);en € RN such that | 3, .on @i Xill > N || Y en @ixi||- The set
X is a G subset of (Sx)YN. We apply Theorem 4.1 to X, to the set X, to the sequence A,
andtoe = 1.

First case: There exists Y € J with an H-good FDD (Fy)neN such that no normalized
block-sequence of (Fy,) belongs to X;. Moreover, if X comes with a fixed FDD, then (Fy)
is a block-FDD of the FDD of X .

We then show that (F,) is a UFDD. For every n, let y, € Fy, and let A € N be
infinite and coinfinite, and suppose that ) ", .n; y» converges; we will show that )", . 4 v
converges. Without loss of generality, we can assume that 0 € A. Consider a sequence
0=ng <n; <np <--- of integers such that A = | J; .o, [7i.ni+1 — 1]. Forevery i € N,
consider x; € [Fy, | n; <n <njy1] with ||x;|| = 1 and ¢; € R such that Zn,—$n<n,—+1 Vn =
a;x;. Then (x;);eN is a normalized block-sequence of (F}), so it does not belong to X.
Hence, there exists N € N such that for every k < [,

Z a;x; §NH Z a; X
1 k /

k<i< <i<
L even

We show that ), . 4 y» converges using Cauchy’s criterion. Fix & > 0; there is n, € N
such that for every ¢ = p = n,, we have || Zpsn<q vu|l < &; we can moreover assume
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that n, is one of the ny’s. Fix ¢ = p = n,. Fixing k and [ such that ny_; < p < ny and
ny <q <njq1, we have

H >
p<n<q

neA

/

+H >
<

ni<n<n;

<H >
<<k

ps<n<n

+ H D
n;<n<q

ne
§2£+NH Z a; x;
k 1

<i<

< 2e+ H Z a; x;
I

k<i<

1 even

=28+NH Z Yn

nr<n<nj

< (N + 2)e,

settling this first case.

Second case: There exists Y € J such that player II has a strategy in Gy to reach (X)a.
We then show that Y is hereditarily #y-indecomposable. Fix U, V € J,y and
N € N. It is enough to construct u € U and v € V such that |u| > %Hu + v|. Con-
sider a run of the game Gy:
I ZyonU Zinv Z,NU ZzNV
1I Zo zZ1 Z5 z3
where II plays using a strategy to reach (X)), and where I plays as follows:

e if n is even, I plays Z, N U where Z, is a finite-codimensional subspace of ¥ such
that the natural projection [z; | i < n] ® Z, — [z; | i < n] has norm at most 2, and
Zy, < Zy_q1forn=1;

e ifnis odd, I plays Z, NV for Z, as above.

At the end of the game, player II will have built a normalized basic sequence (zj)neN
with constant at most 2, which is in (X) A, and such that z, € U for n even, while z,, € V
for n odd.

Now choose a sequence (z;,),en € X such that for every n € N, ||z}, — z,|| < A,.
Choose (an)nen € RY eventually null such that || Y, cen @nZall > NI Y pen @nzhll- By
the choice of A, the sequences (z,,) and (z},) are 2-equivalent, so we have

| Z aneel 251 Z > S anit| = 12 o
n even n even neN neN

Thus,u = ) anzp and v = ), 44 anZy satisfy the desired property. L]

n even

5. The second dichotomy

In this section, we prove our second dichotomy, a local version of Ferenczi—-Rosendal’s
dichotomy between minimal and tight spaces (Theorem 1.22). We also discuss some con-
sequences, in particular concerning ergodicity.
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5.1. The statement of the dichotomy

In this subsection, we state our second dichotomy. Just as for the first one, we first need to
provide appropriate local versions of the notions of minimality and tightness. In the whole
section, we fix a Banach space X, a D-family # of subspaces of X, and a degree d.

Definition 5.1. We say that X is K -minimal if X € J and X isomorphically embeds into
every element of #. If # is induced by the degree d, then we say that X is d-minimal.

So X is d-minimal if it is d -large and embeds into any of its d -large subspaces — again
note that d-minimality is not a notion of “smallness”. In particular, if d is the dimen-
sion (or equivalently # = Sub* (X)), we recover the usual notion of minimality. Also
observe that if X is #-minimal, then it is separable; this is for instance a consequence of
Lemma 3.9.

Definition 5.2. Let (F},),en be an FDD of a subspace of X.

(1) The FDD (F},) is said to be J-tight if every Y € J is tight in (F},).
(2) The space X is said to be J-tight if X € J and X has an J-tight FDD.

If # is induced by the degree d, then we say that the FDD (F,) is d-tight, and the
space X is d-tight.

So X is d-tight if it is d-large and has an FDD in which every d-large Banach space
is tight. When d(F) is the dimension of F, we recover the usual notion of tight FDD.

Note that J#-minimality is a hereditary notion in the sense that if X is Jf-minimal,
then every ¥ € H is J{)y-minimal. The notion of J-tightness is also hereditary in the
following sense:

Lemma 5.3. Let (Fy,)enN be an FDD of a subspace of X .

(1) If a Banach space Y is tight in (Fy,), then it is also tight in all of its block-FDD’s.

(2) If (Fy) is H-tight, then all of its block-FDD'’s are J-tight. In particular, if the FDD
(Fy) witnesses that X is J-tight, then every Y € J generated by a block-FDD of
(Fpn) is Hyy-tight.

Proof. We only prove (1), since (2) is an immediate consequence. Let (G,)meN be a
block-FDD of (Fy), and let Iy < I; < I, < --- be a sequence of non-empty successive
intervals witnessing the tightness of Y in (F,). Observe that every infinite subsequence
of (I;) still witnesses the tightness of Y in (F}). Thus, without loss of generality, we can
assume that for every m € N, there is at most one i € N such that /; N supp(Gn,) # 9. If
there are infinitely many /;’s that intersect no set of the form supp(G, ), then by tightness,
Y Z [Gy, | m € N] so Y is tight in (G,,). Otherwise, passing again to a subsequence if
necessary, we can assume that for every i € N, [; intersects at least one of the supp(Gy,)’s.
Forevery i € N, let J; = {m € N | I; N supp(G,,) # @}. Then the J;’s are non-empty
intervals and Jy < J; < J» < ---; moreover, by construction, for every infinite A € N
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we have [Gy | m & Ujeq Jil S [Fu I n & Uieq Iil, s0 Y Z [Gm | m ¢ ;e Jil- This
shows that Y is tight in (G,). |

Corollary 5.4. If X is J-tight (resp. d-tight), then it has an FDD which is J#-tight and
H-good (resp. d-tight and d-better).

Proof. In the case of a D-family, starting from any #-tight FDD (F},),en of X, we can
find a blocking (G,),en of this FDD which is J#f-good, using Lemma 3.8. The FDD (G,,)
is still F-tight, by Lemma 5.3. In the case of a degree, the proof is the same, using this
time Lemma 3.28 to pass to a better blocking. ]

Theorem 5.5 (The second dichotomy). Suppose that X € H. Then X has a subspace
Y € H such that either

o Y is H\y-minimal, or

o Y is Hy-tight.

Moreover, if X comes with a fixed FDD, then in the latter case, the J-tight FDD of Y
can be taken as a block-FDD of the FDD of X .

This is a true dichotomy: indeed, as we already saw, the notions of J -minimality and
J-tightness are hereditary in a certain sense, and obviously an J¢-tight space cannot be
J¢-minimal.

It is worth spelling out the version of the second dichotomy for degrees:

Theorem 5.6 (The second dichotomy for degrees). Suppose that X is d-large. Then X
has a d-large subspace Y which is either d-minimal or d-tight.

In the case where d(F) = dim(F), we get back Theorem 1.22.

The rest of this section is organized as follows. In Section 5.2, we prove Theorem 5.5.
Then, in Section 5.3, we study the properties of J¢-minimal and J#-tight spaces, and we
deduce some consequences of Theorem 5.5.

5.2. The proof of Theorem 5.5

This proof is inspired by the proof by Rosendal [52] of a variant of the minimal/tight
dichotomy. This dichotomy will again be proved using combinatorial methods, but its
proof is quite delicate and cannot be done in the formalism of approximate Gowers spaces.
We will, instead, use the formalism of Gowers spaces, and work with countable vector
spaces instead of Banach spaces.

In the general case, we can reduce to the case where X has an #-good FDD, using
Lemma 3.9. If X already comes with a fixed FDD, we can assume that this FDD is #-
good, using Lemma 3.8. So, in what follows, we will assume that X comes with a fixed
H-good FDD (E,)neN, and we will prove that either X has a subspace Y which is #}y -
minimal, or (E,) has an #-tight block-FDD.
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Let C be the constant of the FDD (E,). For every n € N, let d, = Y, _,, dim(E,)
and fix a normalized basis (e;)4, <i<d, 4+ Of E,. Let K be a countable subfield of R
having the following property: for every eventually null sequence (x;)ien € K, we have
| > ;en Xieill € K. Such a field can be built in the following way: we fix Ko = Q, for
every n € N, we let K, be the subfield of R generated by K, and by all reals of the form
| >";en Xieill, where (x;);en is an eventually null sequence of elements of K,,, and finally
we let K = UneN K. In the rest of this subsection, vector spaces over K will be denoted
by script letters, and closed R-vector subspaces of E (of finite or infinite dimension) will
be denoted by italic letters. Let 2" be the K-vector subspace of X generated by all the
e;’s. For % a (finite- or infinite-dimensional) K-vector subspace of 2", we let % be its
closure in X . This is an R-vector subspace of X, and we have 2 = X. Also let So be
the set of normalized vectors of Z/. Since, for x € # \ {0}, we have ”i—” € %, we deduce
that Sy is dense in Sz

Lemma 5.7. Let % be a K-vector subspace of 2. Then % is R-finite-dimensional if
and only if ' is K-finite-dimensional, and in this case, their dimensions are equal.

Proof. Let (fo,..., fxr—1) be a K-free family in %#". Let N € N be such that all the f;’s
are in spang (e, ..., en—1), and let M be the matrix of the family (f1,..., fx) in the
basis (eg, ..., enx—1). Then, over the field K, the matrix M has at least one non-zero
k x k minor. But the determinant does not depend on the field, so this is also true over R.
Hence, the family (f, ..., fr—1) is R-free. We deduce that dimg (%) > dimg (%).
Conversely, if (fo,. .., fx—1) is a K-generating family in ¢/, then it is an R-generating
family in spang (%), which is equal to % since it is finite-dimensional. So dimg (%) <
dimg (%). L]

All along this subsection, we will use the following notation: if (%});ey is a sequence
of finite-dimensional vector subspaces of 2", we let [%; | i € ] be the K-vector subspace
of 2 spanned by the %;’s. For every n € N, we let &, be the K-vector subspace of Ej,
generated by the ¢;’s for d, <i < dy41, and we let & = (&,)nen. Obviously we have
&, = E,and 2" = [&, | n € N]. For (%,)nen a sequence of non-zero finite-dimensional
K -vector subspaces of 2~ whose sum is a direct sum, we define a block-FDD of (%) as
a sequence (%, )menN of non-zero finite-dimensional K -vector subspaces of 2~ for which
there exists a sequence Ag < A; < --- of finite sets of integers such that for every m,
we have ¥, C D,,c4,, Fn- In what follows, we will only consider block-FDD’s of &
A block-FDD (%, ) men of & will often be denoted by .%; thus, when we speak about a
block-FDD .# without further explanation, it will be supposed that its terms are denoted
by F,, and we will also let [#] = [%,, | m € N]. Observe that if .% is a block-FDD
of &, then (JTm)meN is a block-FDD of (E;). So we will say that .# is good if and only
if (%) is an #-good block-FDD of (E,). If .Z is a block-FDD of & and mq € N, we
will denote by .# 0 the block-FDD (Fm+mo)men. If F is good, then F# (mo) s also
good.

We now define the Gowers space in which we will work. We let P be the set of good
block-FDD’sof &. If % ,%4 € P, welet % < ¥4 if ¥ isablock-FDD of 4. We let % <* ¥
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if there exists m € N such that .Z ) < 4. We let IT be the set of pairs (%, x) where %
is a non-zero finite-dimensional subspace of 2" and x is an element of .Z". For .% € P
and a sequence (%, Xo, - - . , %, Xx) € Seq(I1), we write (%, Xo, - - -, U, xx) < F if
U C[Fland xg € [2 || < k).

Lemma 5.8. § = (P, I1, <, <*, <) is a Gowers space.

Proof. The only non-trivial thing to verify is that the diagonalization axiom is satisfied.
So let (# k)kibe a <-decreasing sequence of elements of . We apply Lemma 3.11 to
Ue = Yx = [F¥], F¥ = Zk, and D = S{z«;. We get an J-good FDD (G )nen of a
subspace of X such that for every k € N, (G, 4+x)neN is a block-FDD of (F,f)neN, and
Gy, has a basis in Dg. This last condition shows that Gy can be written as %, where 9
is a finite-dimensional subspace of [.% k ] Since (G4 )nen is a block-FDD of (ZF),en,
and since all of the ¥, s, for n € N, are vector subspaces of [.#¥], we deduce that
(%, 4% )neN is a block-FDD of Zk Thus, 4 = (%,)pen isin P, and ¢4 <* .ZF for every
k € N, as desired. [

From now on, we work in the Gowers space ¥. The asymptotic game F g, Gowers’
game G z, or the adversarial Gowers games A & and B &, will always be considered with
respect to this space. To save writing, we will make the following abuse of notation: in a
play of Fz or G & played as follows:

| G F!

1I %0, X0 %1, X1
the outcome will be considered to be the sequence (xg, X1, . . .) (according to the definition
given in Section 2, this should be (%4, x¢, %1, X1, - - .)). Similarly, in a play of A4 or B4
played as follows:

| Y, Xo, @0 U, xu1, @1

n 70 Y. yo. F! N, v, F2

the outcome will be considered to be the pair of sequences ((x¢, X1, --..), (Yo, V1, --.))-
Hence, for instance saying that player II has a strategy in B & to produce two equivalent
sequences means that player II has a strategy to ensure that the sequences (x;);en and
(7i)ien produced during the game are equivalent, for the usual notion of equivalence
between sequences in a Banach space.

Observe that in this Gowers space, for .#,¥ € P, if # § ¢, then there exist m,n € N
such that Z(™ = @

Lemma 5.9. There exists . € P having the following property: either player I has a
strategy in A z to produce two inequivalent sequences, or player Il has a strategy in B#
to produce two equivalent sequences.

Proof. The set of pairs ((x;)ien, (7i)ien) € (2 N)? that are equivalent is an Fy; subset
of (Z'N)?2 for the product of the discrete topologies on 2. Thus, this result is a direct
consequence of Theorem 2.4. [ ]
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We now fix an .# € PP as given by Lemma 5.9. We say that a sequence (u;);jen € 2
is Z -correct if there exist 4 < . and a partition of N into non-empty successive intervals
Iy < I < --- such that for every m € N, the finite sequence (u;);er,, is a basis of ¥,.
The next proposition contains the combinatorial content of Theorem 5.5.

Proposition 5.10. At least one of the following statements is satisfied:

(1) For every F-correct sequence (ui)ien, player I has a strategy in Fg to build a
sequence (x;)ieN that is not equivalent to (u;).

(2) There exists an % -correct sequence (U;)ieN such that player IT has a strategy in G g
to build a sequence (x;);eN that is equivalent to (u;).

Proof. We assume that (1) is not satisfied and we prove (2). We fix an .# -correct sequence
(u;)ien such that player I has no strategy in F ¢ to build a sequence that is not equivalent
to (u;). By the determinacy of this game (for the fundamentals on the theory of determi-
nacy, see [34, Section 20]), player II has a strategy t in F & to build a sequence which
is equivalent to (u;). By correctness of the sequence (u;), we can also fix ¥ < .% and
a partition of N into non-empty successive intervals Iop < I; < --- such that for every
m € N, (4;)ier,, is a basis of &,,.

First step: Player II has a strategy in Az to build two equivalent sequences.

We describe this strategy on a play (4, %, xo, #°, %. 0.9, ...) of Az, in which
the FDD’s played by II will always be equal to ¢. This game will be played at the same
time as an auxiliary play (J#°, %4, zo, ', #1, z1. ...) of Fg during which player II
always plays according to her strategy t. Actually, the %;’s played by I in A & will not
matter at all in this proof, so we will omit them in the notation; the only thing to observe
is that for every i € N, we will necessarily have x; € [¢]. At the same time as the games
are played, a sequence of integers 0 = ko < k; < --- will be constructed. The idea is that
turn i of the game A &z will be played at the same time as turns k;, k; + 1, ..., ki1 — 1
of the game Fz. Suppose that we are just before turn i of 4.z, so the x;’s, the F/’s,
the ¥;’s, and the y;’s have been defined for all j < i. Also suppose that the integers k;
have been defined for all j < i, and that we are just before turn k; of Fg, so the 57 kg,
the #4’s and the z;’s have been played for all k < k;. In the diagram below we represent

turni of Ag, and turns k;, ..., kj+1 — 1 of Fg.
I T F
Fg
11 Wki’ Zk; Wki—&-lfl’ Zki-!—l*l
| Xi, yi
Az

II Y Vi Vi oo
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We now describe how these turns are played. In A &, the strategy of player II will
first consist in playing ¢. Then player I answers with a vector x; € [¢] and an FDD
F ~ 7. Thus, x; can be decomposed in the basis (uy)gen: we can find k;j4+; € N
and (azk)k<ki+1 € Kki+1 guch that x; = Zk<ki+1 al’.‘uk. Moreover, we can assume that
ki+1 > k,’.

Now, during the k;4; — k; following turns of the game Fg, we will let player I
play .Z* (so for every k; < k < k;4+1 we have /% = .Z'). According to the strategy 7,
player II will answer with #g,;, zg;,.... #k; 115 Zk;—1- We now let ¥ = ¥, +
o+ Wi —1,and yi = Zk<ki+1 alkzk. Since all the #4’s, for k; < k < k;41 are finite-
dimensional subspaces of [#'], so is ¥;. And since all the z;’s for k; < k < k;4; are
elements of #p + -+ #k; ,—1 = Yo +--- + Vi, yi is also an element of %y + - -+ + ¥;.
So we can let I play ¥; and y; in A &, which finishes the description of the strategy.

The fact that in F &, player II always plays according to the strategy 7, ensures that
the sequences (Ux)ren and (zx)ren are equivalent. Observe that the sequence (x;);eN is
built from (uy) in exactly the same way as (y;);eN is built from (zz); this ensures that
(xi)ien and (y;);eN are equivalent, concluding this step of the proof.

Second step: Player II has a strategy o in B g to build two equivalent sequences.
Indeed, by the first step, I has no strategy in A & to build two inequivalent sequences;
so the conclusion immediately follows from the choice of .%.

Third step: Player II has a strategy in G g to build a sequence (y;);eN that is equivalent
to (u;).

This is the conclusion of the proof. We describe this strategy on a play of G that
will be played simultaneously with a play of B where II will play according to her
strategy o, and a play of F.z where II will play according to her strategy t (for a fixed
i € N, turns i of all of these three games will be played at the same time). The moves of
the players during turn i of the games are described in the diagram below.

I T
Fg
11 @/,-,xi
I U, xi, H"
B
1I .”’yi 7/1', Vi, --.
I I
Gz

1I 7/, Vi
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We now describe these moves more precisely. Suppose that in G &, player I plays 77" .
We look at the move .%* made by I in B according to her strategy o, and we let I copy
this move in F¢. In this game, according to her strategy 7, player II will answer with some
%; and x;. Now, in Bz, we can let I answer with %, x; and 7" . In this game, according
to her strategy o, player II answers with some ¥; and some y;. Then the strategy of
player Il in G &z will consist in answering with %; and y;.

Let us verify that this strategy is successful. The outcome of the game Fg is the
sequence (x;);eN; the use of the strategy t by II ensures that this sequence is equivalent
to (u;). The outcome of the game B & is the pair of sequences ((x;);eN, (Vi)ien); the use
by II of her strategy o ensures that these two sequences are equivalent. We deduce that
the sequences (u;) and (y;) are equivalent, concluding the proof. |

Now, for every m € N, let Fy,, = JTm The sequence (F,)menN is an H-good block-
FDD of (E,) and we can let Y = [F,, | m € N]. By Proposition 5.10, Theorem 5.5 will
be proved once we have proved the following two lemmas:

Lemma 5.11. Suppose that there exists an % -correct sequence (U;)ien Ssuch that
player II has a strategy in G g to build a sequence (X;)ieN that is equivalent to (u;).
Let Z = [u; | i € N]. Then Z is #\z-minimal.

Lemma 5.12. Suppose that for every .7 -correct sequence (u;);en, player I has a strat-
egy in Fg to build a sequence (x;)ieN that is not equivalent to (u;). Then the FDD
(Fi)ieN is H-tight.

We start with the following technical lemma:

Lemma 5.13. For every U € H\y, there exists a ¥ < .F such that [ isomorphically
embeds into U.

Proof. This is a consequence of Lemma 3.11. Indeed, apply itto Yz =Y, to F,f‘ =F,,
Ur = U, and Dy = S|.#]. Then Lemma 3.11 gives a subspace Z C Y generated by an J-
good block-FDD (G, ),en of (Fy) such that Z can be isomorphically embedded into U'.
Moreover, for every n € N, G, has a basis made up of elements of S}, so G, = @, for
some finite-dimensional subspace ¥, of [.%#]. Hence, 4 = (¥,)nen is a good block-FDD

of .Z, and [¢] isomorphically embeds into U, as desired. L]

Proof of Lemma 5.11. By the definition of correctness, we have Z € J. We want to prove
that Z isomorphically embeds into every element of #)z; by Lemma 5.13, it is enough to
prove that Z isomorphically embeds into @ for every 4 < .Z. For this, consider a play
of G # where player I always plays ¢, and II plays using her strategy. The outcome will
be a sequence (x;);en of elements of & which is equivalent to (u;). Thus the mapping
u; + x; uniquely extends to an isomorphic embedding Z — @ ]

Proof of Lemma 5.12. By Lemma 5.13, it is enough to prove that every subspace of the
form [¢], for ¥ < .Z, is tight in (F,). So we fix such a & and we let Z = [¥].
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First step: For every K = 1, there exists an infinite sequence IOK < IIK < .-+ of non-
empty intervals of integers such that for every infinite A C N with 0 € A, we have Z Zg
[Fu [ ¢ Ugea IE)

Foreveryn € N, letd, =}, _, dim(¥,), and fix a normalized basis (4;) 4, <i<d, ,
of ¢, that is also a 2-bounded minimal system (see Section 1.5); this can be done by
taking first an Auerbach basis of 4,, and then a small perturbation of it. The sequence
(u;)ien we have just built is .% -correct and is a 4C-bounded minimal system. Thus, we
can fix a strategy t for player I in F& to build a sequence (x;);en that is not equivalent
to (u;). In the game Fg, we will consider that player II is allowed to play against the
rules, but immediately loses if she does; hence, we can assume that the strategy t is a
mapping defined on the whole set IT<N of finite sequences of elements of IT. For every
such sequence s, t(s) is an element of P such that 7(s) $ .%; hence without loss of
generality, we can assume that 7(s) = .% ®) for some 7(s) € N. This defines a mapping
7:I<N - N,

Let R={x € X |1<|x| < K}.Letd > 0 have the following property: for every
4CK?-bounded minimal system (x;);c; and for every family (y;);es in X, if

Z lxi — yill <.

|

then the families (x;) and (y;) are equivalent. For every finite-dimensional subspace %/
of [.#] and for every i € N, we let N; (%) be a finite (2~¢*2§)-net in N R. Given
n € N, we say that a sequence (%, Xo, . .., %1, xi—1) € II=N is n-small if it has the
following properties:

o there exists a sequence of successive non-empty intervals of integers Jo < -+ < J;_y
< n such that forevery j <i, % = [Fm |m € Ji];

o forevery j <i,wehavex; € (% | k < j)).

For n fixed, there are only finitely many n-small sequences. Hence we can define a
sequence (ng)xen of integers in the following way: let ng = 0, and for k € N, choose
ng41 > ng such that for every ny-small sequence s € TI<N, we have nj; > T(s). We
now let, forevery k € N, [ K — [k, ng+1 — 1], and show that the sequence of intervals
1K < 1K < ... is as desired.

Suppose not. Then there exists an infinite A € N with 0 € A, and there exists an
isomorphic embedding 7 : Z — [Fy | n & Ugea IkK] suchthat |[T7!|=1and |T|| < K
In particular, the sequence (T (u;));eN is K-equivalent to (u;), so it is a 4C K 2-bounded
minimal system. We also know that, foreveryi € N, 1 < ||T(u;)|| < K. Foreveryi € N,
we fix y; € [Zn | n ¢ Ugea IE]I N R such that |ly; — T'(u;)|| < 27¢F2)§. Since A is
infinite, we can find k;+; € A such that supp(y;) < Ik,-+1 (here, the support is taken
with respect to the FDD .%#). We can also let kg = 0; hence, we have defined a sequence
(ki)ien of elements of A. We can even assume that for every i, we have k; 11 = k; + 2.
We let, for every i € N, J; = [ng; 41,1k, ., — 1] and % = [F, | n € J;]. Hence, we
have a partition of N into an infinite sequence I,X < Jo < IX < Ji <--- of non-empty
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successive intervals. Since all the k;’s are in A, we have [%, | n ¢ | ieqy IkK] C [Fn |
n € |J;en Jil; so all the y;’s are in [#, | n € | ;e Ji]- Thus, for every i € N, we
have y; € [Fy |n € U, Jj] = [%; | j <i]. Hence, we can find x; € N;([%; | j <i])
satisfying || x; — ;|| <2728 In particular, ||x; — T (u;)|| < 2-¢+D§. So we have

i = Tl -
Y e TaonY <Yl =T <38,

ieN ieN

so since (T'(u;)) is a 4C K2-bounded minimal system, and by the choice of §, we deduce
that the sequences (7' (u;)) and (x;) are equivalent. In particular, the sequences (u;) and
(x;) are equivalent.

Towards a contradiction, we now prove that (#;) and (x;) are not equivalent. For this,
we first observe that for every i € N, the sequence (%, Xo, . .., %i—1, Xi—1) is nj,-small.
Thus, letting p; = T(%. Xo. ..., %—1,Xxi—1), we deduce that p; < ny, 1 = minJ;. In
particular, %; C [.% (P)]. Since moreover x; € (%; | j <i], we deduce that in the following
play of Fz:

1 ZWo) Z (1)

11 02/0, X0 62/1, X1 ..
player II always respects the rules. Since moreover player I plays according his strategy ,
we deduce that he wins the game and that the outcome (xx;) is not equivalent to (u;). This
is a contradiction.

Second step: Z is tight in (Fy).

This is the conclusion of the proof. We keep the sequences of intervals (Il.K )ieN
built in the previous step. We recall the following classical result: for every d € N,
there exists a constant c(d) = 1 such that for every Banach space U and for any two
subspaces V, W C U both having codimension d, V and W are c(d)-isomorphic (see
[21, Lemma 3]) — incidentally, an upper bound ¢(d) < 4d(1 + Jd )? may be obtained,
through the fact that any d-codimensional subspace is (Vd +1+ g)-complemented for
any ¢ > 0 (a consequence of local reflexivity and the Kadets—Snobar theorem [1, The-
orem 12.1.6] and John’s result that all d-dimensional spaces are NZ] -isomorphic to @g
[1, Theorem 12.1.4].

We build a sequence I} < I, < --- of non-empty successive intervals of integers in
the following way. Once all the /;’s for / < k are defined, we can choose i such that

e for every positive integer N < k, I} contains at least one interval of (IiN )ieN;

e max [ = dj + max(max ]évk,min It), where dy = dim([F;, | n < min I;]) and Ny =
[ke(dr)].

We show that the sequence (I )r>1 witnesses the tightness of Z in (F},).

Claim 5.14. For every infinite A C N \ {0} and every ko € A, we have

N,
I:F,, n ¢ U Ik:| Ec(dko) [Fn n¢l, ko U Ik]-
keA

keA
k>k0
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Proof. Let ng = min Iy, so that dg,, = dim[F, | n < ng]. It is enough to prove that

N

ngl, U | Ik].
keA
k>k()

[Fu | n <o) & [ F

n=ng,n¢ U Ik] Ee(diy) [Fn
keA

. N . . .
Since max Iy, = di, + max(max [ 0 min Ik,), in particular
. Nk .
dim [F, | max(max [, "°,min [,) <n < max I,] = dg,.

So we can find a finite-dimensional subspace H C [F, | n € Ix,] with Iévk" < supp(H)
and dim(H ) = di, (here, the supports are taken with respect to the FDD (F)). Since
ko € A, we have

HN [F,,

n>no,n¢U1k]={0}.

keA

Thus, both subspaces

[Fn|n<no]@[Fn nzno,n¢Ulk]

keA

and
Ho [Fn

nZno,ngéUIk]

keA

have codimension d, in

[Fn|n<n0]®HeB[Fn

nzno,ngéUIk],

keA

so they are c¢(dy, )-isomorphic. Hence, to conclude the proof, it is enough to see that

N
nZno,ngz‘Ulk]g[Fn n¢IOkOUUIk]~
keA keA

k>k0

H@[Fn

The inclusion
HC [F,,

N,

nglpou | Ik]
keA
k>k0

N,
is a consequence of the fact that supp(H) C I, and I, o < supp(H ). And to prove the

inclusion N
nZno,ngéUIk]g[Fn ng:‘IOkOUUIk]’
keA keA

k>k0

g

.. . N, ..
itis enough to see that for all n = ng, if n € I 0 thenn e Ukeu Ik This is a consequence

. Ny
of the fact that n9 = min I}, and max I ko < max Iy,. [
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We now conclude the proof of the lemma. Let A € N \ {0} be infinite and assume,
towards a contradiction, that Z T [F, | n ¢ | 4 Ik]. Then we can choose ko € A such
that Z Ty, [Fu | n & Ugeq Ik]- Using Claim 5.14 and the fact that koc(dk,) < Ni,, we

get
N,
nglyou | k.
keA
k>k0

Z ENkO [Fn

. N N . .
But by construction, [, koy U ]fe 124 I}, contains infinitely many intervals of the sequence
>kKo

N . o N . . .. N,
; X0y, en, including its initial term I, ¥ This contradicts the definition of ; 0)ien.
m

5.3. J-minimal and H -tight spaces

In this section, we prove several properties of J¢-minimal and J¢-tight spaces. We deduce
consequences of Theorem 5.5. We start by studying # -tight spaces.

Definition 5.15. We say that the D-family # is invariant under isomorphism if for every
Y, Z € Sub®(X) such that Y and Z are isomorphic, we have Y € # < Z € J.

Theorem 5.16. (1) If X is H-tight and K is invariant under isomorphism, then X is
ergodic.

(2) If X is d-tight, then X is ergodic.
An important consequence of Theorems 5.5 and 5.16 is the following:

Corollary 5.17. (1) If X € H is non-ergodic and ¥ is invariant under isomorphism,
then there exists Y € H which is # |y -minimal.

(2) If X is d-large and non-ergodic, then X has a d-minimal subspace.

To prove Theorem 5.16, we will use a sufficient condition for the reducibility of Eq
proved by Rosendal [50, Theorem 15]. Let E;, be the equivalence relation on & (N) (iden-
tified with the Cantor space) defined as follows: if 4, B € #£(N), we say that AE(,B if
there exists n € N such that |[A N [0,n]]| = |B N [0,n]| and A \ [0,n] = B \ [0, n]. The
result proved by Rosendal is the following:

Proposition 5.18. Let E be a meager equivalence relation on $ (N) with By € E. Then
Ey <p E.

To prove Theorem 5.16, we will combine Proposition 5.18 with ideas developed by
Ferenczi and Godefroy [18]. They proved that if (e;);en is a basis and X a Banach space,
then X is tight in (e;) if and only if the set of A € N such that X T [¢; | i € A] is meager
in (N). This extends immediately to the case when (e;) is replaced by an FDD (F;).

Proof of Theorem 5.16. As usual, we only prove the result for D-families. By Corol-
lary 5.4, we can find an J#-good, J-tight FDD (F},),eN of X. We fix a sequence (¢;);ieN
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of elements of X, and a partition of N into non-empty successive intervals Jo < J; < ---
such that for every n € N, (e;);es, is a basis of F,. For every infinite A € N, we let
X4 = [e; | i € A], and we define the equivalence relation £ on #(N) by AEB if and
only if X4 and Xp are isomorphic. Since the mapping A4 +— X4 from £ (N) to Sub(X) is
Borel (see Lemma 1.5), it is enough to prove that Eg <p E.

‘We have E{) C E:indeed, if AE{,B , then fixing n € N witnessing it, we have X4 =
X 4\[0,1] D Xan[o,n]) and Xp = X 4\[0,n] ® XBN[0,n]> and dim(Xgn[o,n]) =dim(Xpn[o,n])
is finite, so X4 and Xp are isomorphic. So, by Proposition 5.18, it is enough to prove that
E is meager. Since E is analytic, it has the Baire property, so by Kuratowski—Ulam’s
theorem [34, Theorem 8.41], it is enough to prove that for every A € S (N), the E-
equivalence class of A is meager. We distinguish two cases.

First case: H\x, = 0.

Forall N e N,let Uy ={B € #(N) |3n = N J, C B}. This is a dense open subset
of P(N), s0 € := (| yeny Un is comeager in L (N). For B € €, the space Xp contains
infinitely many F,’s. Since (F}) is an J#(-good FDD, this implies that #x, # @. Since
Hyrx, = 9 and H is invariant under isomorphism, this implies that X4 and Xp are not
isomorphic. Hence, the set of B € #(N) such that Xp is isomorphic to X4 is meager
in P(N).

Second case: Hyx, # 0.

In this case, X4 has a subspace which is tight in (F,), so X4 itself is tight in (F).
Let Iy < I; < --- be a sequence of intervals witnessing it. For all k € N, let K; =
Uner, Jn- For every infinite D € N, we have X4 Z [e; | i ¢ Ugep Kkl Forall N € N,
let Uy ={B € P(N) | Ik = N K N B = @}. This is a dense open subset of $(N), so
€ :=\yen Un is comeager in P (N). If B € €, then there exists an infinite D € N
such that Xp C [¢; | i ¢ |iep Ki]. In particular, Xp cannot be isomorphic to X4. Hence,
the set of B € #(N) such that Xp is isomorphic to X4 is meager in P (N). ]

We now study the properties of J-minimal spaces.

Definition 5.19. We say that X is uniformly #-minimal if X € J€ and there exists a
constant C such that X C-embeds into every element of J. We say that X is uniformly
d-minimal if it is uniformly #;-minimal.

The statement of the following proposition was improved from a previous version of
this paper thanks to an observation of O. Kurka.
Proposition 5.20. (1) Suppose that the D-family K is invariant under isomorphisms. If
X is H -minimal, then it is uniformly J-minimal.
(2) If X is d-minimal, then it is uniformly d-minimal.

Proof. (2) is a consequence of (1) and the fact that ¢4 is invariant under isomorphisms.
To prove (1), we start with the following claim:
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Claim 5.21. There exists Y € H which is uniformly #\y-minimal.

Proof. Let (U,)neN be a decreasing sequence of Ellentuck-open subsets of Sub(X) such
that # = (),,eny Un- The hyperplanes of X are in J, and they are pairwise isomorphic
with a uniform constant. Thus, there exists a constant K > 1 such that X K-embeds into
all of its hyperplanes. As a consequence, for every m € N, X K™-embeds into all of its
subspaces of codimension m.

Suppose that (1) is not satisfied. We inductively build a decreasing sequence (Y5 )neN
of elements of J and an increasing sequence (F,),en of finite-dimensional subspaces
of X in the following way. Let Yo = X and Fy = {0}. If ¥, and F, have been defined,
then by assumption, Y, is not uniformly #\y,-minimal, so there exists Y, 41 € #,y,
such that Y, does not (anim(F”))-embed into Y, +1. The subspace Y, +1 + Fj, is also
in #, so in U,; thus, we can choose F, 41 such that F,, C F,4+1 C Y,4+1 + F,, and
[Fr+1, Yn+1 + Fu] S U,. This completes the induction.

We now let Y = UneN F,. For every n € N, we have Y C Y,y + F,, so that
Y € [Fut1, Yuy1 + Fn] € U,; hence, Y € H#. Since X is J-minimal, there exists a
C-embedding T : X — Y for some constant C. Foralln € N,let X,, = T71(Y N Yy 41).
Recall that Y C Y, 41 + Fj,; we deduce that X, has codimension at most dim(F) in X.
Hence, X K9m(F»)_embeds into X, so X (CKU™(Fn))_embeds into Y, ;. In particular,
Y, (CK4m(Fn))_embeds into Y,41. For n = C, this contradicts the definition of Y, ;. =

We now prove that X is uniformly #-minimal. Let ¥ € # be uniformly #,y-
minimal, with constant K, given by Claim 5.21. Let C be such that X C-embeds into Y.
If Z is an arbitrary element of J¢, then Z also C-embeds into Y, so the uniformly
J\y-minimal space Y CK-embeds into Z, and therefore X C 2 K-embeds into Z. [

An interesting consequence of Proposition 5.20 in the case of internal degrees is that
if X is d-minimal, then d-large subspaces of X are uniformly d-large, in the following
sense:

Lemma 5.22. Suppose that d is an internal degree, and X is d -minimal. Then there exists
amapping I' : N — R withlimy,_, o I'(n) = o0 having the following property: for every
d-large subspace Y C X and every n € N, there exists an n-dimensional subspace F C Y
with d(F) = I'(n).

Proof. Recall that if d is an internal degree, writing d(F) for F € Ban=%°, we actually
mean d(X, F) for any X € Ban such that F € X. In particular, if S : G — F is an
isomorphism for F, G € Ban=%, then (S, S71)isa morphism from (F, F) to (G, G), so
we have d(G) < Kq(|IS] - |S7 ]l d(F)).

By Proposition 5.20, there exists a constant C such that X C-embeds into all of its
d-large subspaces. Foralln € N, let y(n) = sup {d(F) | F € Sub~*°(X), dim(F) = n},
which is finite by Lemma 3.21. By Remark 3.20, y is non-decreasing, and since X is
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d-large, it tends to infinity. Now for all n € N, let
[(n) = sup{r € Ry | K4(C.1) < y(n)/2},

with the convention that sup @ = 0. This defines a mapping I : N — [0, co]; we will see
later that it actually only takes finite values.

We first show that lim, oo ['(7) = co. Fix K = 0. There is n¢ € N such that y(n¢) =
2K4(C,K).Now fixn = ng.Forallt < K, wehave K;(C,1) < K4(C,K) < y(ng)/2<
y(n)/2, so by definition of I"(n), we have I'(n) = K, as desired.

Now, we fix a d-large subspace Y of X, and n € N, and we build an n-dimensional
subspace F C Y such that d(F) = I'(n) (this will in particular show that I"(n) is finite).
Let T : X — Y be a C-embedding. Fix an n-dimensional subspace G C X with d(G) >
y(n)/2. Let F = T(G). Then by the remark at the beginning of the proof, y(n)/2 <
d(G) < K;4(C,d(F)). In particular, if 1 € Ry is such that K;(C,t) < y(n)/2, then
t <d(F). Thus, I'(n) < d(F), as desired. L]

A d-minimal space that is not minimal has to be saturated with d-small subspaces.
If d is an internal degree, then for such a space X, Lemma 5.22 is quite surprising: it
implies that for subspaces ¥ C X, either the degrees of finite-dimensional subspaces
of Y are bounded, or their maximal value grows quite fast to infinity (at least at the same
speed as I'), but no intermediate growth is possible. This suggests that the structure of
finite-dimensional subspaces of such a space X must be rather peculiar. We do not know
any example of a d-minimal space that is not minimal, and this last remark makes us
think that maybe such spaces do not exist when the degree d is internal.

Question 5.23. Does there exist an internal degree d such that some infinite-dimensional
spaces are d-large, and for which all d-minimal Banach spaces are minimal? Does there
exist one for which there exist d-minimal, non-minimal Banach spaces?

An immediate consequence of Lemma 5.22 is the following:

Corollary 5.24. If d is an internal degree, then d-minimal spaces cannot be asymptoti-
cally d-small.

As a consequence, we obtain:

Theorem 5.25. If d is an internal degree, then d-large, asymptotically d-small Banach
spaces are ergodic.

Proof. Suppose X is a d-large, asymptotically d-small Banach space. Then all subspaces
of X are asymptotically d-small, so X has no d-minimal subspaces. By Corollary 5.17,
X is ergodic. |

Theorem 5.25 is a generalization of Anisca’s Theorem 1.13, which corresponds to the
case of the degree defined by dpys (F, Edzlm(F)). This degree is studied in detail in the next
section.
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6. The Hilbertian degree

In this last section, we study the consequences of all the previous results in the special case
of the Hilbertian degree, that is, the internal degree defined by dps (F, Kdzim(F)), for which
small spaces are exactly Hilbertian spaces, as a consequence of Kwapieni’s theorem [36].
We shall denote this degree d:

dy(F) := dpp (F. €3y,

For brevity, d,-better FDD’s will sometimes be called better FDD'’s. Let us spell out that
a non-Hilbertian space is a d,-HI space if it contains no direct sum of two non-Hilbertian
subspaces, and d,-minimal if it embeds into all of its non-Hilbertian subspaces (“minimal
among non-Hilbertian spaces™). An FDD is d,-tight if all non-Hilbertian spaces are tight
in it. In the case of the Hilbertian degree, our two dichotomies can be summarized as
follows:

Theorem 6.1. Let X be a non-Hilbertian Banach space. Then X has a non-Hilbertian
subspace Y satisfying one of the following mutually exclusive properties:

(1) Y is dy-minimal and has a d,-better UFDD;
(2) Y has a dy-better d-tight UFDD;
(3) Y is dy-minimal and d,-hereditarily indecomposable;

(4) Y is dy-tight and d,-hereditarily indecomposable.

It is clear from the definitions that if a Banach space X does not contain any isomor-
phic copy of {5, then the d»-HI property is just the HI property and d-minimality is just
classical minimality. It is also easy to check that if X is not £,-saturated, then our two
local dichotomies do not provide more information than the original ones.

In the case of £,-saturated Banach spaces, Theorem 6.1 is more interesting and can
be seen as the starting point of a Gowers list for {,-saturated, non-Hilbertian spaces. It
would be interesting to extend this list and to study it more carefully (this could also be
done in the case of other degrees). In particular, in the case of £,-saturated spaces, the
only class of those defined by Theorem 6.1 that we know to be non-empty is (2), as will
be seen in Corollary 6.11.

Question 6.2. Which classes of those defined by Theorem 6.1 contain {,-saturated
Banach spaces?

It would also be interesting to know where the classical £,-saturated spaces lie in this
classification. Perhaps the most iconic example of such a space is James’ quasi-reflexive
space [29]. Another important one is Kalton—Peck’s [32] twisted Hilbert space Z,. Since
Z> has a 2-dimensional UFDD which is symmetric and therefore is a good UFDD, the
cases (3) and (4) are excluded for subspaces of Z,. Of course other twisted Hilbert spaces
than Z, are also relevant. Note that Kalton proved that (non-trivial) twisted Hilbert spaces
fail to have an unconditional basis [31]. Another £,-saturated space of interest could be
G. Petsoulas’ space [46], whose properties have some similarities to (but are weaker
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than) those of d,-HI spaces. Another example was announced very recently by Argy-
ros, Manoussakis and Motakis and will be commented upon in the subsection on d5-HI
spaces.

Question 6.3. Does James’ space belong to one of the classes defined by Theorem 6.17
If not, in which of those classes can we find subspaces of James’ space?

Question 6.4. Does Kalton—Peck’s space contain a non-Hilbertian d-minimal sub-
space?

6.1. The property of minimality among non-Hilbertian spaces

In this subsection, we study basic properties of minimality among non-Hilbertian spaces
(or d>-minimality). This property is particularly important in the study of ergodicity, since
in the case of the Hilbertian degree, Corollary 5.17 takes the following form:

Theorem 6.5. Every non-ergodic, non-Hilbertian separable Banach space contains a
dy-minimal subspace.

In particular, Ferenczi—Rosendal’s Conjecture 1.9 reduces to the special case of d,-
minimal spaces.

Concerning their relationship to Johnson’s Question 1.2, we can say even more.
Indeed, the following result has been proved by Anisca [2] (originally under a finite cotype
hypothesis which may be removed due to, e.g., Theorem 1.14).

Theorem 6.6 (Anisca). A separable Banach space having finitely many different sub-
spaces, up to isomorphism, contains an isomorphic copy of £,.

The result of Anisca is based on the construction, in unconditional spaces with finite
cotype not containing copies of £,, and for each n, of a subspace having n-dimensional
UFDD’s but no UFDD of smaller dimension.

In particular, this applies to Johnson spaces and we get:

Proposition 6.7. Every Johnson space is d-minimal.

In the rest of this paper, d>-minimal spaces that are not minimal will be called non-
trivial dy-minimal; these spaces are necessarily £,-saturated. We do not know of any
example of a non-trivial d-minimal space. If X is such a space, then Lemma 5.22
shows that there is a uniform lower bound on the growth rates of the functions n
sup{dpp (F,£3) | F € Sub~*®(Y), dim(F) = n}, where Y ranges over non-Hilbertian
subspaces of X . This very surprising property suggests that either non-trivial d,-minimal
spaces do not exist, or the structure of their finite-dimensional subspaces is rather peculiar.
Note that, however, this uniform growth property holds for the spaces L, for2 < p < oo,
which are not £,-saturated (nor d,-minimal) but contain copies of £,. This is a conse-
quence of the fact that the spaces L, for 2 < p < oo are finitely representable in all of
their non-Hilbertian subspaces (this can be deduced from [45, Proposition 3.1]).
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Question 6.8. Does there exist a non-trivial dy-minimal space?

We now study additional properties of d>-minimal spaces, in particular those related
to the existence of basic sequences. In the case of the Hilbertian degree, Corollary 5.24
takes the following form:

Proposition 6.9. An asymptotically Hilbertian Banach space cannot be d,-minimal.

Example 6.10. Let (p,),en be a sequence of real numbers greater than 1 and tend-
ing to 2, and let (k,),en be a sequence of natural numbers tending to oo such that
limy, 00 dpar (€57, €5") = 0o. Consider the space X = (6D, cx £7)¢,. It has a better
UFDD and is non-Hilbertian, £,-saturated and asymptotically Hilbertian (this last prop-
erty follows from [37, Corollary 5]). In particular, it cannot have a d,-minimal subspace.

So by Theorem 5.6, some block-FDD of its UFDD is d-tight.
Example 6.10 shows:

Corollary 6.11. The class of non-Hilbertian, {,-saturated Banach spaces having a better
dy-tight UFDD is non-empty.

The property of being asymptotically Hilbertian is closely related to property (H) of
Pisier.

Definition 6.12 (Pisier, [49]). A Banach space X is said to have property (H) if for every
A = 1, there exists a constant K (A) such that for every finite, normalized, A-unconditional
basic sequence (x;);<, of elements of X, we have

R < |2

Recall that all normalized A-unconditional basic sequences in Hilbert spaces are
A-equivalent to the canonical basis of £, (see for instance [1, Theorem 8.3.5]). A con-
sequence is that every Hilbertian space has property (H). Thus, property (H) is a property
of proximity to Hilbertian spaces. The proof of the following result of Johnson (unpub-
lished) can be found in Pisier’s paper [49].

< K()/n.

Proposition 6.13 (Johnson). Every space with property (H) is asymptotically Hilbertian.
In particular, d,-minimal spaces fail property (H). A consequence is the following:

Lemma 6.14. Let X be a dy-minimal space. Then there exists Ao = 1 with the follow-
ing property: in every non-Hilbertian subspace Y of X, one can find finite-dimensional
subspaces F with a normalized Ao-unconditional basis for which the Banach—-Mazur dis-
tance dgpy (F, Edzim(F)) is arbitrarily large.

Proof. By Proposition 5.20, X uniformly embeds into all of its non-Hilbertian subspaces.
In particular, it is enough to prove the result for ¥ = X. Let Ay witness that X fails
property (H). Towards a contradiction, suppose there is a constant C such that every finite-
dimensional subspace of X with a normalized A¢-unconditional basis is C -isomorphic to
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a Euclidean space. Let F be such a subspace and (x;);<, be its unconditional basis.
Choose an isomorphism T : F — {2 with |T|| < C and | T~!|| = 1, and let y; = T(x;)
and z; = y;/|yi| for all i < n. Then (y;);<n is C Ag-unconditional, and so is (z;);i<z-
Hence, (z;) is C Ag-equivalent to the canonical basis of £}. Since, for all i < n, we have
1 <|yill < C,and (z;) is C Ap-unconditional, we have, for every sequence (a;)i<» € R",

1
C_AHZaiZi < Hzai%’ < CzkoHZaizi
0 i<n i<n i<n

hence (y;) and (z;) are C2?Xg-equivalent. Moreover, we know that (x;) and (y;) are
C-equivalent. We deduce that (x;) is C*A3-equivalent to the canonical basis of £3. In
particular, for K = C 422 we have

2T

1<n

)

< K+/n,

contradicting the choice of 4. ]

Theorem 6.15. (1) Every dy-minimal space has a non-Hilbertian subspace with a
Schauder basis.

(2) Every dy-minimal space having an unconditional FDD has a non-Hilbertian sub-
space with an unconditional basis.

A consequence of this theorem is that alternative (1) in Theorem 6.1 can be replaced
with “Y is d>-minimal and has an unconditional basis”.

Knowing that every non-Hilbertian subspace of a Johnson space is isomorphic to the
space itself, another consequence is:

Corollary 6.16. Every Johnson space has a Schauder basis. Moreover, it has an uncon-
ditional basis if and only if it is isomorphic to its square.

Proof. 1f it has an unconditional basis then it is isomorphic to its square by Theorem 1.7.
Conversely, if it is isomorphic to its square then it is not d>-HI and by the first local
dichotomy (Theorem 4.5), it must have a UFDD. It follows from Theorem 6.15 that the
space has an unconditional basis. ]

A few additional restrictions on the existence of Johnson spaces follow from Corol-
lary 6.16. Every Johnson space is HAPpy (every subspace has the Approximation Prop-
erty). If a Johnson space X has an unconditional basis then it is reflexive, all of its
subspaces have GL-lust and therefore the GL-property, so X has weak cotype 2 [39, The-
orem 40]. On the other hand, since X is not weak Hilbert, X cannot have weak type 2 in
this case (see [49] for these notions). For non-Hilbertian examples of HAPpy spaces with
a symmetric basis (and therefore also non-asymptotically-Hilbertian), see [30].

Theorem 6.15 naturally raises the following two questions (the first one had already
been asked by Petczynski [44]):
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Question 6.17. (1) Does every non-Hilbertian space have a non-Hilbertian subspace
with a Schauder basis?

(2) Does every non-Hilbertian space with unconditional FDD have a non-Hilbertian sub-
space with an unconditional basis?

Proof of Theorem 6.15. (1) Let X be a d-minimal space, and fix Ay as given by
Lemma 6.14 for X . Build an FDD (F},),eN of a subspace of X, along with a decreasing
sequence (Y )nen of finite-codimensional subspaces of X, by induction as follows. Let
Yo = X. If the subspace Y, and all the F},’s, for m < n, are built, we can find F;, C Y,
with a normalized Ag-unconditional basis such that dgas (Fy,, Zczﬁm(F")) > n. We then find
a finite-codimensional subspace Y, +1 C Y, with Y, 1 N [F, | m < n] = {0} such that the
first projection [Fy, | m < n] ® Y,4+1 — [Fim | m < n] has norm at most 2. This finishes
the induction.

The sequence (F},)nen We just built is an FDD of a non-Hilbertian subspace Y of X.
It has constant at most 2, and all the F,,’s have a basis with constant at most Aq. Thus,
concatenating these bases, we get a basis of ¥ with constant at most 2 + 44, as desired.

(2) Let X be a dy-minimal space with a UFDD (F,),en. If (Fy) has a normalized
block-sequence spanning a non-Hilbertian subspace, then we are done. So from now on,
we assume that every normalized block-sequence of (F},) spans a Hilbertian subspace.
Since normalized block-sequences of (F},) are unconditional, we deduce that all of them
are equivalent to the canonical basis of £,. Our first step is to prove that this holds uni-
formly.

Claim 6.18. There exists a constant C satisfying the following property: every normal-
ized block-sequence of (Fy) is C-equivalent to the canonical basis of £5.

Proof. We prove the formally weaker, but actually equivalent, statement: there exist
no € N and a constant C such that every normalized block-sequence of (Fy;)nzn, is
C-equivalent to the canonical basis of £,. Suppose that this does not hold. Then for every
no, N € N we can find a finite normalized block-sequence (X;); <i, of (F)n=n, Which is
not N -equivalent to the canonical basis of Kéo. Applying this for successive values of N,
we can build by induction a normalized block-sequence (x;);en of (F3) and a sequence
0 =iy < iy <ip <--- such that for every N € N, the sequence (X;);y <i<iy, is not
N -equivalent to the canonical basis of Z'ZN 1IN In particular, (x;);en is not equivalent
to the canonical basis of £,, a contradiction. [

We now finish the proof of Theorem 6.15, proceeding as in (1). Fix A¢ as given by
Lemma 6.14 for X. Observe that for every ng € N, we can find a finite-dimensional
subspace G C [Fy, | n = ny], finitely supported on the FDD (F},), having a normal-
ized 2A¢-unconditional basis and such that dgys (G, Egim(c)) is arbitrarily large: indeed,
it is enough to take a small perturbation of a (not necessarily finitely supported) finite-
dimensional subspace G’ C [F, | n = no] with a normalized A¢-unconditional basis and
large dpp (G', Egim(G/)). Using this remark, we can build a better block-FDD (G )xenN
of (F,) such that all the Gg’s have a 2A¢-unconditional basis. Let iy = Y ; ; dim(Gy)
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for every k € N, and denote by (x;);; <i<i,,, the unconditional basis of G . To conclude
the proof, it is enough to prove that the sequence (x;);en is unconditional.

So let (a;)ien be a finitely supported sequence of real numbers and (g;);en be a
sequence of signs. For every k € N, let b, cx = 0 and yi, zx € Sg, be such that br yx =
Ziksi<ik+] a;x; and ¢z = Zik$i<ik+1 eia; x;. In particular, by = || Ziksi<ik+1 aixi||
and ¢x = || Zik$i<ik+1 gia;xil|, so since the sequence (X;)i;<i<i;, 15 2Ao-uncondi-
tional, we have c; < 2A¢by. Now, since (yx)ren and (zx)ren are normalized block-
sequences of (Fy), they are C-equivalent to the canonical basis of £,. Thus, we have

HZ&iaixi = H Z CkaH <C /Z c,%
ieN keN keN

<240C [y b2 < ZAOCZHmei ;
keN ieN

proving that the sequence (x;);enN is 240 C ?-unconditional. |

6.2. Properties of d-HI spaces

Recall that d-HI spaces are non-Hilbertian Banach spaces that do not contain any direct
sum of two non-Hilbertian subspaces. HI spaces are of course d,-HI. We could only
discover two other examples of d,-HI spaces. Before presenting them, we recall a basic
result in operator theory (see [41, Proposition 3.2]). The terminology of the next definition
is from [26].

Definition 6.19. An operator 7 : X — Y between two Banach spaces is infinitely singular
if there is no finite-codimensional subspace Xo € X such that T x, : Xo — T(Xp) is an
isomorphism.

Proposition 6.20 (Folklore). An operator T : X — Y between two Banach spaces is
infinitely singular if and only if for every € > 0, there exists a subspace X, € X such that
IThx |l < e

Example 6.21. Let Y be an HI space. Then X = Y & £, is d,-HI. Indeed, denote by
py : X — Y and py, : X — {, the two projections. Suppose that two non-Hilbertian
subspaces U, IV € X are such that the sum U + V is direct. Then (p¢,) v and (pg,) v
are infinitely singular, so by Proposition 6.20, we can find subspaces U’ C U and V' C V
on which py, has arbitrarily small norm. In particular, U’ and ¥’ can be chosen in such a
way that ||(pe,) ru7e@v || < 1/2. Thus, py induces an isomorphism between U’ @ V'’ and
py (U’ & V). In particular, the sum py (U’) + py (V") is direct, contradicting the fact
that Y is HI.

Example 6.22. In [6], Argyros and Raikoftsalis build, for every 1 < p < oo (resp. for
p = 00), aspace X, having the following properties: X, = X, ®{, (resp. X, = X, B co),
and for every decomposition as a directsum X, =Y @ Z,wehave Y = X, and Z = {,
(resp. Z = cy), or vice versa. The space X, is built as an HI Schauder sum of copies of £,
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(resp. cp); the construction of such a sum is quite involved and is given in [4, Section 7].
In [6], the following results are proved:

(1) X, does not contain any direct sum of two HI subspaces (see [6, proof of Lemma 1]);

(2) for every subspace ¥ C X, not containing any HI subspace, and every ¢ > 0, there
exists a projection P of X, with image isomorphic to £, (resp. to c¢) such that
|(Idz, — P)y | < & (see [6, Lemma 3]).

This implies that X, is d,-HI. Indeed, if two subspaces Y, Z C X, are such that the
sum Y + Z is direct, then by (1), one of them does not contain any HI subspace, for
example Y. Choosing a projection P as given by (2) for ¢ = 1/2, we find that Py is
an isomorphism onto its image, which is contained in an isomorphic copy of £5; so Y is
Hilbertian.

The interest of d,-HI spaces in the study of ergodicity, and in particular of our Con-
jectures 1.15 and 1.16, comes from the following result:

Theorem 6.23. Let X be a non-ergodic, non-Hilbertian separable Banach space. Then
X has a non-Hilbertian subspace Y such that either

e Y has an unconditional basis, or

o Y is simultaneously d,-minimal and d»-HI.

Proof. By Corollary 5.17, we can assume that X is d,-minimal. By Theorem 4.5, X has
either a subspace with a better UFDD, or a d,-HI subspace. In the first case, Theorem 6.15
shows that we can find a further non-Hilbertian subspace having an unconditional basis.

|

It would of course be interesting to remove the second alternative, thus reducing
somehow the problem to spaces with unconditional bases. This motivates the following
question:

Question 6.24. Does there exist a non-ergodic Banach space which is simultaneously
dr-minimal and d,-HI?

Both examples of d»-HI spaces given above contain an HI subspace. In particular, they
are ergodic, and they cannot be d,-minimal. Thus, Question 6.24 reduces to the special
case of d,-HI spaces that do not contain any HI subspace. The latter spaces are exactly
those d,-HI spaces that are £,-saturated. We know of no examples of such spaces.

Question 6.25. Do there exist £,-saturated d,-HI spaces?

After this article was submitted, Argyros, Manoussakis and Motakis [5] announced
that they were able to build an £,-saturated d»-HI space, thus giving an affirmative answer
to Question 6.25. The construction will be published in a forthcoming paper, and the
paper [5] gives the construction of analogues of that space.

We now come back to Question 6.24. We conjecture that the answer to this question
is negative, and we actually have the following stronger conjecture:
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Conjecture 6.26. A Banach space cannot be simultaneously d,-minimal and d»-HI.

This conjecture is motivated by the fact that the d,-HI property is a weakening of
the HI property, and it is known that HI spaces have many different subspaces, up to
isomorphism. For example, Gowers—Maurey’s Theorem 1.18 says that HI spaces cannot
be isomorphic to any proper subspace of themselves. This implies, in particular, that they
cannot be minimal. It would be tempting to adapt Gowers—Maurey’s approach to d,-HI
spaces. Note, however, that in the case of d,-HI spaces, we cannot hope to have a result as
strong as Gowers—Maurey’s, since the spaces presented in Examples 6.21 and in 6.22 are
both isomorphic to their hyperplanes, and even to their direct sum with £,. However, we
can hope that these spaces cannot be isomorphic to “too deep” subspaces of themselves.
This is at least the case for our first example, as shown by the following lemma:

Lemma 6.27. Let Y be an HI space and let X =Y @ {5. Then every subspace of X that
is isomorphic to X is complemented in X by a ( finite- or infinite-dimensional) Hilbertian
subspace.

Proof. Denote by Py : X — Y and Py, : X — {5 the projections. Let U € X be an iso-
morphic copy of X; we canwrite U =V @ W, where V' = Y and W = {,. Suppose that
(Py) v is infinitely singular. Then by Proposition 6.20, we can find a subspace V" C V
on which Py has small norm. In particular, Py, would induce an isomorphism between
V" and a subspace of £, a contradiction. Thus, (Py)y is not infinitely singular: we
can find a finite-codimensional subspace V' of V such that Py induces an isomorphism
between V’ and Py (V).

Observe that V' = Py (V'), and V' and Py (V') are subspaces of respectively V and
Y that are HI and isomorphic. By Gowers—Maurey’s Theorem 1.18, we deduce that the
codimension of Py(V’) in Y is equal to the codimension of V' in V, so is finite. So
write Y = Py (V') @ F, where F has finite dimension. We have Py (V') C V + {5, so
YCTV +4,+ F,s0

X=V+4b+F=U-+4{,+F.

Letting Z be a complement of U N (€, + F) in £, + F, we see that Z is Hilbertian and
X=U®~Z. [

Question 6.28. Let X be dy-HI and let Y be a subspace of X which is isomorphic to X.
Does it follow that Y is complemented by a (finite- or infinite-dimensional) Hilbertian
subspace?
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