

Structural and Spectroscopic Properties of ND Doped YAG Microsize Single Crystals

Publisher: IEEE[Cite This](#)[PDF](#)Tomaz Catunda ; Antonio Ricardo Zanatta ; Thiago Augusto Lodi ; Leonardo Vieira Albino ; Marcelo Nalin [All Authors](#)**Abstract**[Document Sections](#)[I. Introduction](#)[II. Results](#)[III. Concludind Remarks](#)[Authors](#)[Figures](#)[References](#)[Keywords](#)[More Like This](#)**Abstract:**

Micro size single crystals of doped YAG were obtained regulated cooling of supersaturated glass solutions. In this work we investigate Raman and optical spectroscopic properties of these micro-crystals. Most of the measurements were obtaining selecting a single micro-crystal using microscope. All results indicated nearly identical properties compared to a reference bulk crystal grown by the Czochralski method.

Published in: 2025 SBFoton International Optics and Photonics Conference (SBFoton IOPC)**Date of Conference:** 21-24 September 2025**Date Added to IEEE Xplore:** 31 October 2025**ISBN Information:****Electronic ISBN:** 979-8-3315-9497-8**Print on Demand(PoD) ISBN:** 979-8-3315-9498-5**ISSN Information:****Electronic ISSN:** 2837-4967**Print on Demand(PoD) ISSN:** 2837-4959**DOI:** [10.1109/SBFotonIOPC66433.2025.11218524](https://doi.org/10.1109/SBFotonIOPC66433.2025.11218524)**Publisher:** IEEE**Conference Location:** São Pedro/SP, Brazil**Funding Agency:**

Structural and Spectroscopic Properties of Nd doped YAG microsize Single Crystals

Tomaz Catunda

Instituto de Física de São Carlos
Universidade de São Paulo
São Carlos, Brazil
tomaz@ifsc.usp.br

Leonardo Vieira Albino

Sao Paulo State University (UNESP)
Araraquara, Brasil
leonardoalbino63@gmail.com

Antonio Ricardo Zanatta

Instituto de Física de São Carlos
Universidade de São Paulo São São
São Carlos, Brazil
zanatta@ifsc.usp.br

Thiago Augusto Lodi

Sao Paulo State University (UNESP)
Araraquara, Brasil
lodithiagoaugusto@gmail.com

Marcelo Nalin

Sao Paulo State University (UNESP)
Araraquara, Brasil
marcelo.nalin@unesp.br

Abstract— Micro size single crystals of doped YAG were obtained regulated cooling of supersaturated glass solutions. In this work we investigate Raman and optical spectroscopic properties of these micro-crystals. Most of the measurements were obtaining selecting a single micro-crystal using microscope. All results indicated nearly identical properties compared to a reference bulk crystal grown by the Czochralski method.

Keywords— Nd-YAG micro-crystal, Optical spectroscopy

I. INTRODUCTION

In a recent publication, we reported a new methodology capable of synthesizing micro-metric single-crystal garnets containing rare earth ions on a large scale using heavy metal glass as a reaction medium [1]. In this methodology, a glass containing GeO_2 , Bi_2O_3 , PbO , Ga_2O_3 (and/or Al_2O_3 and/or Fe_2O_3), in addition to the desired rare earth, is melted at $\sim 1200^\circ\text{C}$. During the cooling process, micrometer-size cubic crystals precipitate and grow from the supercooled liquid. In this work we report structural and spectroscopic properties of these Nd:YAG microcrystals compared to a Nd:YAG bulk crystal, grown by Czochralski method. Other samples (in the form of bulk crystals and crystalline ceramics) with different Nd^{3+} concentration were also considered in the study for reference in the spectroscopic measurements.

II. RESULTS

Further details regarding the production of the Nd:YAG μ -cubes can be found in ref. [1,2]. All optical measurements were performed at room-temperature and followed the same experimental conditions.

The Raman measurements (non-polarized and resulting from back-scattering geometry) employed an optical microscope and 632.8 nm laser radiation as described in [3]. A spot size of typically $1 \mu\text{m}^2$ was adopted during the measurements and great care was taken to avoid accidental sample heating. Figure 1 shows the results obtained from a single Nd:YAG micro-cube: (a) the Raman spectra of a μ -cube and of a reference (bulk) 0.4% doped Nd:YAG grown by the Czochralski method, (b) the optical micrograph of the considered μ -cube, and (c) its corresponding Raman image, as obtained from the scattering signal at $\sim 400 \text{ cm}^{-1}$. In Fig.

1(a) the signal at 520 cm^{-1} is due to the crystalline Si wafer, over which the μ -cubes are positioned. The observed Raman spectra are in excellent agreement with previous data observed in Nd:YAG single crystals [4].

The fluorescence spectrum was also obtained in a microscope from a single μ -crystal under 632.8nm excitation. All NIR characteristic Stark lines of Nd:YAG, emissions from ${}^4\text{F}_{5/2}$, ${}^2\text{H}_{9/2}$ and ${}^4\text{F}_{3/2}$ levels, were observed [5,6]. The spectra the μ -crystal was compared with the reference bulk crystal and no difference was observed. Figure 2.(a) shows the partial Nd:YAG energy level diagram with the main NIR emission lines: ${}^2\text{H}_{9/2}, {}^2\text{F}_{5/2} \rightarrow {}^4\text{I}_{11/2}$ (A), ${}^4\text{F}_{3/2} \rightarrow {}^4\text{I}_{11/2}$ (B) and ${}^4\text{F}_{3/2} \rightarrow {}^4\text{I}_{9/2}$ (C). Figure 2.(b) shows a comparison of the B lines obtained in a bulk crystal and a single μ -crystal microcrystal.

Figure 3 shows the optical absorption spectrum (as obtained from reflectance measurements) of a mixture consisting of single Nd:YAG μ -cubes and the residuals of

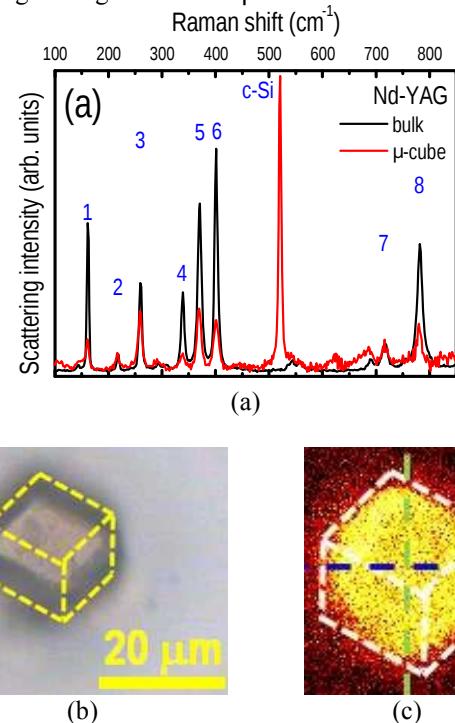


Fig. 1— Experimental results obtained from a single Nd:YAG μ -cube: (a) Raman scattering spectrum in a μ -cube compared to a reference bulk crystal; (b) optical micrograph (500x magnification) and (c) Raman imaging

(scattering signal at 400 cm^{-1}), making evident the typical shape and homogeneity of the μ -cube. The dashed lines in (b) and in (c) are just guides to the eye.

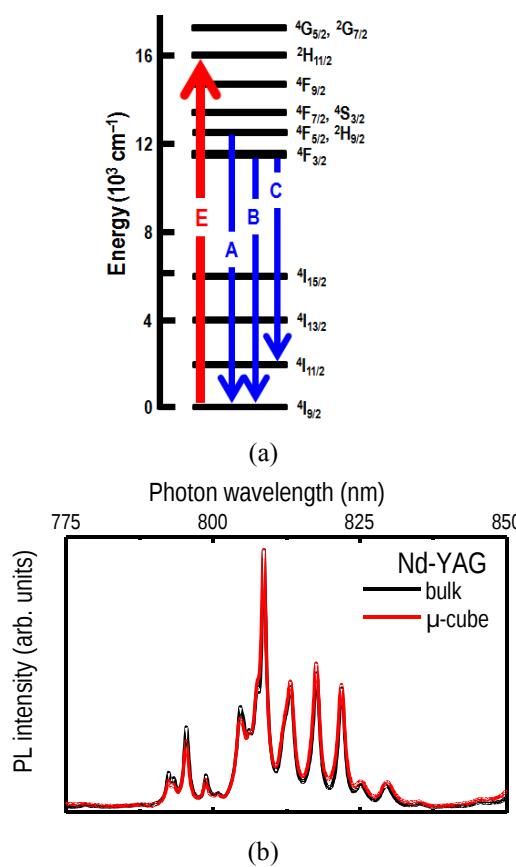


Fig. 2-(a) Nd³⁺:YAG energy level diagram. Under 808 nm excitation (E), the main emission lines are indicated by A, B and C (b) optical emission spectra (at room-temperature and with 632.8nm photon excitation), in the 775–850 nm range (A), as obtained from a bulk Nd:YAG crystal and from single Nd:YAG μ -cube.

their former glass matrix. According to the spectrum, the effect of the glass residuals is evident by the increasing absorption at shorter wavelengths. For comparison reasons, Fig. 3 also shows the optical absorption spectrum of the Nd:YAG bulk sample.

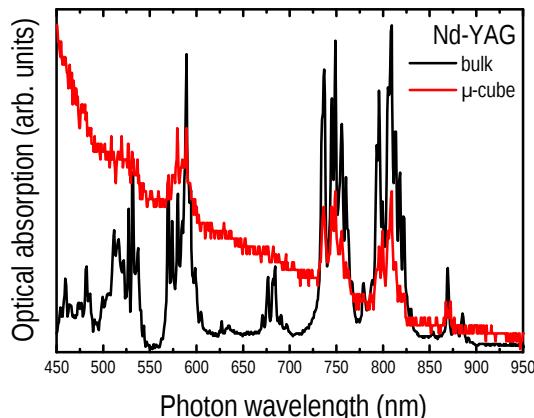


Fig. 3– Optical absorption spectrum of Nd:YAG μ -cube (mixed with the glass remains) and of bulk Nd:YAG reference (bulk) crystal.

concentration due to a cross-relaxation process leading to a decrease in the fluorescence quantum efficiency. In fact, the value $\tau \sim 133\text{ }\mu\text{s}$ is expected for a crystal or microcrystalline

ceramic with Nd concentration ~ 3 at.%. The longer lifetime ($\tau \sim 217\text{ }\mu\text{s}$) shown in Fig.4(b) indicates a Nd concentration ~ 1 at.%. Therefore, the fluorescence decay data suggests that the μ -cubes grown by this processes present a Nd³⁺ concentration smaller than the concentration of the precursor glass-ceramic. In fact, this hypothesis was corroborated by x-ray spectroscopic data.

III. CONCLUDING REMARKS

In spite of their very small dimensions (typically in the 10–15 μm range) the present study confirms the presence of optically active Nd³⁺ ions in the μ -cubes. Likewise, the Raman results confirm on the effect of different Nd concentrations as well as eventual practical applications (random laser, temperature probes, etc.).

ACKNOWLEDGMENT

The authors would like to thank the Brazilian funding agencies São Paulo Research Foundation (FAPESP), CNPq and CAPES, for financial support.

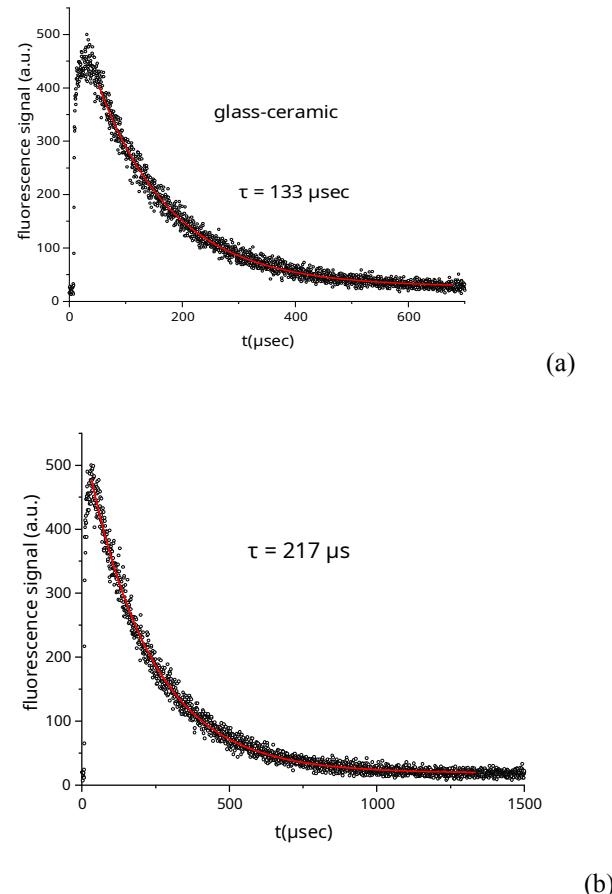


Fig. 4– Fluorescence decay time due to Nd³⁺ ions, as obtained from a glass-ceramic sample (a) and from the μ -cubes (b). The measurements were made at room-temperature by exciting the samples with 808 nm photons. The fit curves indicate a good agreement with a single exponential behavior.

REFERENCES

- [1] M. Nalin, L. V. Albino, T. A. Lodi, J. R. Orives, L. M. Marcondes, a. A. Habib, M. H. R. Costa, E. D. Zampittp and D.F. Franco, “Novel scalable synthesis of luminescent and magnetic single crystal garnets”, Materials Horizons, vol. 12, 2025, 4709-4713.
- [2] L.V. Albino, A. Delendatti, F.J. Caixeta, T.A. Lodi, D.F. Franco, C.B. Pinto, J.A. Ellena and M. Nalin, “Innovative synthesis of Tm³⁺/Er³⁺-doped Yb-YGG single crystals for upconversion-based white light emission”, Ceramics International, vol. 51, 2025, pp. 16700-16709.
- [3] A.R. Zanatta, C.T.M. Ribeiro, “Laser-induced generation of micrometer-sized luminescent patterns on rare-earth-doped amorphous films” J. Appl Phys, vol. 96, 2004, pp. 5977-5981.
- [4] S. Skotic et.al., “Study of structural and optical properties of YAG and Nd:YAG single crystals”, Mat. Res. Bull. Vol.63, 2015, 80 – 87.
- [5] W. Q. Santos, A. Benayas, D. Jaque, J. Gacrcia-Solé, T. Catunda and C. Jacinto, “Thermo-optical and spectroscopic properties of Nd:YAG fine grain ceramics: towards a better performance than the Nd:YAG laser crystals”, Laser Phys. Lett., vol. 13, 2016, 025004.
- [6] A. Ikesue, Y. L. Aung, “Ceramic Laser Materials”, Nature Photonics, vol. 2, 2008, pp.721-727.