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RESUMO
Uma empresa da área siderúrgica necessita cortar placas de aço em itens diversos, pro-

curando atender ao pedido do cliente e utilizando a menor quantidade possı́vel de placas, a fim de
diminuir custos e descarte de material. Os itens são irregulares e podem rotacionar livremente. Tal
problema é chamado de corte de itens irregulares, que consiste em arranjar itens irregulares, con-
vexos ou não convexos, em qualquer rotação, em recipientes retangulares. Por ser um problema
NP-difı́cil, encontrar uma solução ótima pode ser muito custoso, o que nos fez optar por encontrar
uma solução aproximada. Usando como inspiração essa aplicação, um problema foi resolvido uti-
lizando uma metaheurı́stica evolutiva chamada Biased Random-Key Genetic Algorithm, que utiliza
de uma heurı́stica construtiva chamada Bottom-left. O método de solução utilizado apresentou bons
resultados para as instâncias adaptadas da literatura, se mostrando promissor para ser usado para
resolver problemas reais da indústria siderúrgica.

PALAVRAS CHAVE. Problema bidimensional de corte de itens irregulares, Metaheurı́sticas,
Indústria.

Tópicos: POI - PO na Indústria, MH - Metaheurı́stica

ABSTRACT
A company in the steel industry needs to cut steel plates into different items, trying to

meet the customer’s request and using the smallest possible amount of plates, in order to reduce
costs and material disposal. Items are irregular and can rotate freely. Such a problem is called
irregular item cutting, which consists of arranging irregular items, convex or non-convex, in any
rotation, in rectangular containers. As it is an NP-hard problem, finding an optimal solution can
be very costly, which made us choose to find an approximate solution. Using this application as
inspiration, the problem was solved using an evolutionary metaheuristic called Biased Random-
Key Genetic Algorithm, that uses a constructive heuristic called Bottom-left. The solution method
used showed good results for the instances adapted from the literature, showing it can be used to
solve real problems in the steel industry.
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1. Introdução

A otimização do processo de corte de materiais desempenha um papel fundamental na
eficiência e redução de custos em diversos setores industriais. Na indústria siderúrgica, em parti-
cular, a maximização do aproveitamento do aço e a minimização do desperdı́cio são importantes
para aumentar a competitividade e sustentabilidade das empresas. Neste contexto, o problema de
corte de itens irregulares surge para atender essa demanda do setor industrial siderúrgico, pois en-
volve a alocação eficiente de itens com formas e tamanhos variados em uma placa retangular, como
chapas de aço, visando minimizar o desperdı́cio da placa. Por serem irregulares, a alocação desses
itens pode ser um pouco mais complexa, tornando a busca por soluções ótimas algo muito exigente
computacionalmente.

Nesse artigo, exploramos um método de solução para o problema de corte de itens irregu-
lares semelhante ao problema da indústria siderúrgica, o método metaheurı́stico BRKGA (Biased
Random-Key Genetic Algorithm), que utiliza a heurı́stica do Bottom-left para encontrar soluções.
Por se tratar de um problema de difı́cil solução e por estarmos interessados em resolver instâncias
maiores do problema, optamos por essa abordagem heurı́stica no lugar de uma abordagem exata.

A metaheurı́stica BRKGA, proposta por Gonçalves e Resende [2011], é um algoritmo
genético, que utiliza uma abordagem baseada na evolução biológica para buscar melhores soluções
aproximadas do problema. Já a heurı́stica construtiva Bottom-left é empregada para encontrar uma
solução em si, visando otimizar a utilização da placa disponı́vel.

O objetivo deste trabalho é comparar a eficiência das soluções obtidas pelo método, con-
siderando como critério o aproveitamento do espaço da placa e o tempo de resolução, para que
possamos avaliar a viabilidade desse método ser utilizado na indústria siderúrgica, uma vez que
esse setor industrial é muito antigo e, em alguns casos, pouco desenvolvido tecnologicamente para
o corte otimizado de placas de aço.

Esperamos que os resultados deste trabalho contribuam para a compreensão e o avan-
ço dos métodos de solução para o problema de corte de itens irregulares, principalmente para a
indústria siderúrgica e abrindo caminho para novas pesquisas na área.

Este trabalho está organizando da seguinte forma. Na Seção 2, temos a definição do pro-
blema que buscamos resolver. Na Seção 3, apresentamos alguns métodos de solução presentes
na literatura para resolver problemas similares e o método proposto para o problema definido na
Seção 2. Na Seção 4 apresentamos os resultados obtidos na aplicação do método proposto para
resolver algumas instâncias da literatura. Na Seção 5 apresentamos as considerações finais e pro-
postas de trabalhos futuros.

2. Definição do problema

Várias indústrias, como as de papel, têxtil e siderúrgica, buscam cortar seus materiais (pa-
pel, tecido e aço) da melhor forma possı́vel, ou seja, procuram diminuir o desperdı́cio de material.
No nosso caso, uma empresa do estado de São Paulo da área siderúrgica necessita cortar placas
de aço em itens diversos, dependendo do pedido de um dado cliente. Os itens podem ter qualquer
tipo de formato, inclusive podem ter buracos, e podem ser rotacionados livremente. As placas são
retangulares de tamanho e espessuras fixos e, ao fazer o corte, a perda de material (chamada de
sangria) é proporcional à espessura da placa. O objetivo é fazer o corte dos itens nas placas de
modo a otimizar o espaço, para que, posteriormente, possa se utilizar o que sobrou da placa para
novos pedidos, trazendo sustentabilidade à empresa e diminuição de custos. A Figura 1 mostra um
exemplo de como é feita a distribuição dos itens em uma placa de aço.
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Figura 1: Ilustração de um exemplo de corte de itens em uma placa de aço.

Assim, seu objetivo é cortar as placas de aço de tamanho fixo, procurando atender ao
pedido do cliente e utilizando o mı́nimo possı́vel de material.

Pela complexidade de se resolver esse problema, o simplificamos considerando que os
itens serão apenas polı́gonos convexos e não convexos. Cada polı́gono não convexo é particionado e
representado como um conjunto de polı́gonos convexos. Além disso, cada item tem uma quantidade
de cópias a serem alocadas e rotações fixas dadas. Supomos que os polı́gonos representam o item a
ser cortado, já considerando a sangria.

Como possuem uma espessura predefinida, cada item pode ser cortado apenas de um tipo
de placa. Por isso, sem perda de generalidade, podemos supor que todos os itens a serem cortados
tem a mesma espessura e todas as placas são iguais (caso haja itens de espessuras diferentes, basta
resolver vários subproblemas, cada um com itens e placas de espessuras iguais).

Consideramos que temos um conjunto de placas (recipientes) retangulares iguais, com
largura e altura fixos, e o objetivo é minimizar o espaço utilizado desses recipientes, fazendo o
corte de todos os itens, sem sobreposição entre si. Assim, definimos nossa função objetivo como
minimizar a quantidade de recipientes usados para cortar todos os itens.

Este problema é conhecido na literatura como Single Stock Size Cutting Stock Problem
(SSSCSP) chamado de problema de corte de tamanho de estoque único que pode ser encontrado
em Wäscher et al. [2007]. No SSSCSP, temos um conjunto dado de m itens, cada um com sua
quantidade de cópias, e um estoque de recipientes retangulares de largura W e altura H fixos. O
objetivo é minimizar a quantidade de recipientes utilizados para cortar todos os itens.

Para nossa implementação, cada item i é representado por um conjunto Pi de polı́gonos
convexos, e possui, além de uma quantidade de cópia, um conjunto finito Ri de possı́veis rotações.
Consideramos que os recipientes retangulares estão no plano cartesiano, com seu canto inferior
esquerdo posicionado em (0, 0).

O SSSCSP é um problema NP-difı́cil, então não se conhece um algoritmo em tempo
polinomial que o resolva. Por isso, optamos por resolvê-lo usando uma metaheurı́stica. Na seção a
seguir, faremos uma pequena revisão da literatura sobre métodos para resolver problemas similares
a este e, em seguida, apresentamos o método escolhido para resolvê-lo.

3. Método de Solução
Vários trabalhos resolveram problemas semelhantes ao SSSCSP, com itens irregulares que

permitem ser rotacionados para serem cortados ou alocados em um ou mais recipientes. Em Peralta
et al. [2018] e Cherri et al. [2018], são resolvidos problemas de empacotamento de itens irregulares
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a partir de métodos exatos em que é permitida a rotação livre dos itens. Por outro lado, temos
em Abeysooriya et al. [2017], Martinez-Sykora et al. [2016] e Mundim et al. [2017] abordagens
heurı́sticas para resolver um problema de empacotamento de itens irregulares com rotação livre, a
partir do algoritmo Jostle, de uma math-heurı́stica, e de uma metaheurı́stica, respectivamente.

Embora os métodos exatos sejam capazes de encontrar uma melhor solução, essa busca
pode demandar muito tempo e memória computacional quando lidamos com problemas NP-difı́ceis.
Por isso, para resolver o SSSCSP, optamos por implementar a metaheurı́stica Biased Random-Key
Genetic Algorithms (BRKGA), proposta por Gonçalves e Resende [2011]. Esta metaheurı́stica já
foi utilizada com sucesso em outros trabalhos para resolver problemas de corte de itens irregula-
res Mundim et al. [2017]; Pinheiro et al. [2016]. Para criar o decodificador exigido pelo BRKGA,
utilizamos a heurı́stica Bottom-left, uma das heurı́sticas construtivas mais usadas para resolver pro-
blemas de corte irregular Baker et al. [1980]. A seguir, detalhamos cada um destes métodos.

3.1. Heurı́stica Bottom-left

Como mencionado anteriormente, para construir uma solução do problema SSSCSP, uti-
lizamos uma heurı́stica Bottom-left Baker et al. [1980], que é uma das mais usadas (em diferentes
variações) para encontrar soluções para problemas de corte de itens irregulares.

Desenvolvida para resolver problemas em que o objetivo é minimizar a largura utilizada
do recipiente para alocar todos os itens, a ideia básica desta heurı́stica é, dada uma lista de itens, em
uma certa ordem, inserir os itens no recipiente um a um, sempre na posição mais à esquerda e abaixo
possı́vel. No nosso caso, dada uma ordenação para todas as cópias de todos os itens, cada uma com
uma rotação definida, tentamos inserir cada item no primeiro recipiente o mais à esquerda e abaixo
possı́vel. Se um item não cabe no recipiente, ele é pulado e passamos para o próximo. Depois de
percorrer a lista toda de itens e inserir o que foi possı́vel no primeiro recipiente, passamos para o
segundo recipiente e repetimos o processo com os itens ainda não inseridos. Repetimos estes passos
até que todos os itens sejam inseridos em algum recipiente.

Para inserir os itens no recipiente, precisamos garantir que todos eles fiquem inteiramente
contidos no recipiente e não haja sobreposições. Neste trabalho, cada item possui um de seus
vértices como ponto de referência, e este ponto é usado para alocar o item no recipiente. Para
garantir a contenção dos itens, usamos o conceito de IFP (Inner-Fit Polygon), que consiste no lugar
geométrico dos pontos do recipiente em que um dado item pode ter seu ponto de referência alocado,
de forma que o item fique inteiramente contido no recipiente. O IFP é facilmente calculado, mas é
diferente para cada rotação do item.

Para evitar a sobreposição entre itens, usamos o conceito de NFP (No-Fit Polygon). Para
cada par de itens i e j, com o item i já alocado no recipiente, o NFPij é um polı́gono tal que, se o
ponto de referência de j está na borda do NFPij , o item j está encostado no item i; se o ponto de
referência de j está no interior de NFPij , o item j está sobreposto ao item i; se o ponto de referência
de j está fora do NFPij , o item j está separado do item i. O cálculo do NFP é custoso e, por isso,
é feito em uma etapa de pré-processamento. Vale também ressaltar que, em geral, quando um dos
itens é rotacionado, o NFP correspondente muda. Por isso, precisamos construir um NFP diferente
para cada par de itens i e j, em cada uma de suas rotações permitidas. Para mais detalhes sobre IFP
e NFP, veja Bennell e Oliveira [2008].

Como sempre que vamos inserir um item ele tocará a borda do recipiente e/ou de outros
itens, podemos usar os próprios IFPs e NFPs para determinar o ponto mais à esquerda e abaixo em
que o ponto de referência de um item deve ser inserido.

O Algoritmo 1 sintetiza os passos da heurı́stica Bottom-left utilizada.
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Algorithm 1 Bottom-left utilizando NFP e IFP para o SSSCSP

Require: Lista I = (i1, . . . , in) de n itens na ordem de inserção, cada um na rotação em que será
empacotado; lista R = (r1, . . . , rn) de recipientes vazios, com largura W e altura H

Ensure: Lista S com os recipientes usados e itens posicionados em cada um deles; a quantidade de
recipientes utilizados np = |S|; a menor largura lmin necessária dentre as placas para posicionar
os itens

1: Defina np = 0 e lmin = W
2: while lista I não for vazia do
3: Selecione r o primeiro recipiente da lista R
4: for cada elemento i da lista I do
5: Calcule, com base no IFP e NFP e i com todos os itens já empacotados em r, o ponto p

mais à esquerda e abaixo de r em que i pode ser inserido
6: if foi possı́vel calcular p then
7: Insira i na posição p de r
8: Remova i da lista L
9: end if

10: end for
11: Remova r da lista R e o insira na lista S
12: Some um ao valor de np

13: Atualize lmin considerando o valor da largura usada de r
14: end while

3.2. Biased Random-Key Genetic Algorithm (BRKGA)
O BRKGA, proposto em Toso e Resende [2015], é uma metaheurı́stica bio-inspirada ba-

seada no Algoritmo Genético (GA) de Holland [1975] para encontrar uma boa solução. Por ser
uma heurı́stica evolutiva, a cada iteração, busca-se melhorar cada vez mais as soluções a partir de
perturbações nas soluções obtidas anteriormente. Essa evolução é baseada em uma analogia com a
teoria da evolução das espécies iniciada pelo inglês Charles Darwin. Utilizaremos uma versão do
BRKGA baseada na proposta em Mundim et al. [2017].

Para a resolução do SSSCSP, a analogia é feita da seguinte forma:

• Tem-se uma população P de indivı́duos (soluções) de uma mesma espécie em que cada in-
divı́duo é composto por um conjunto de n cromossomos (ordem para alocar n itens).

• Cada indivı́duo possui um fitness (um valor que representa a solução) tal que, quanto melhor
for esse fitness, maiores as chances daquele indivı́duo (solução) ser o mais apto a sobreviver
da sua população. Dessa forma, os indivı́duos da população são classificados em populações
elite Pe e não-elite Pne, a partir dos valores de fitness de cada um.

• Há, então, a necessidade de formar uma nova geração para que a espécie perpetue. Essa
necessidade pode ser satisfeita por: mutação, em que se muda a posição de um ou mais
cromossomos de indivı́duos, dando origem a novos, formando a população de mutantes Pm;
ou por cruzamento de dois indivı́duos, que forma um novo indivı́duo a partir da combinação
de cromossomos dos dois indivı́duos, dando origem à população Pc.

• Em seguida, os indivı́duos da geração que possuem melhores fitness permanecem na nova
geração, enquanto os outros são descartados para que novos filhos sejam gerados sem au-
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mento da população. Repete-se o processo até que o critério de parada do algoritmo seja
satisfeito.

Detalhamos a seguir cada aspecto do BRKGA e como cada indivı́duo de cada população
são gerados.

• População Inicial. Conjunto de indivı́duos em que cada indivı́duo i possui um conjunto de
n cromossomos que vão representar os n itens, cada um com uma dada rotação, que serão
alocados no recipiente. A ordem que cada cromossomo aparece em um dado indivı́duo é a
ordem codificada a partir de uma chave que será explicada a seguir.

• Decodificação de um indivı́duo. Para cada cromossomo j de um indivı́duo i, teremos uma
chave kij ∈ [0, 1] que será utilizada para decodificar a ordem em que os itens serão alocados.
A decodificação é feita ordenando os itens seguindo a ordem crescente das chaves aleatórias
a eles associadas. A partir dessa ordem, a decodificação para encontrar o valor do fitness é
feita pela heurı́stica Bottom-Left, explicada na Seção 3.1. Na Figura 2 temos um exemplo de
um indivı́duo i, as chaves kij de cada cromossomo j e sua decodificação.

Figura 2: Ilustração de um exemplo de decodificação de um indivı́duo

• Fitness. É um valor que classifica cada indivı́duo como uma boa solução ou não em relação
aos outros indivı́duos. Em Mundim et al. [2017], o valor do fitness para o problema de
duas dimensões aberto é a área do menor retângulo que envolve os itens. No nosso caso,
o fitness é a quantidade de placas que são utilizadas para alocar todos os itens (np). Assim,
indivı́duos com menor fitness são melhores soluções. Caso exista mais de um indivı́duo com a
mesma quantidade de placas usadas na sua solução, o critério de desempate é a menor largura
utilizada entre as placas ocupadas (lmin). O fitness foi escolhido dessa forma, pois a intenção
é utilizarmos a menor quantidade de placas para fazer o corte dos itens, mas sabendo que
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placas podem ser utilizadas para outros pedidos, diminuindo custos e a quantidade de sucata
produzida pela empresa. Não consideramos o reaproveitamento de placas já usadas neste
trabalho, mas o método aqui proposto pode ser facilmente adaptado para considerar este caso,
bastando considerar que itens já cortados estão alocados nas respectivas placas e não podem
ter suas posições mudadas.

• Populações elite e não-elite. A população total P de uma dada geração é dividida em
duas populações a partir do fitness de cada indivı́duo: Pe e Pne. Assim como em Mundim
et al. [2017], a população elite Pe será 20% da população dada dos indivı́duos que possuem
melhores fitness, enquanto a população não-elite Pne será os 80% restantes de P . Os in-
divı́duos de Pe geralmente são os mais aptos a terem filhos de melhores soluções para as
novas gerações. Posteriormente, os indivı́duos de Pne serão descartados e não participarão da
próxima geração.

• Mutação. Para geração de novos filhos, realiza-se uma mutação com uma taxa de 10% da
população da geração, como em Mundim et al. [2017]. No entanto, em vez de gerar in-
divı́duos mutantes de forma aleatória (como em Mundim et al. [2017]), os indivı́duos mutan-
tes são gerados da seguinte forma: é escolhido aleatoriamente um indivı́duo em Pe e escolhe-
se (também aleatoriamente) dois cromossomos desse indivı́duo para serem permutados. Essa
mudança na ordem cromossômica gera um novo indivı́duo que fará parte da população de
mutantes Pm que será adicionada à nova população Pnova.

• Biased Parametrized Uniform Crossover. Ainda para gerar novos filhos, tem-se o processo
de cruzamento (crossover), em que escolhemos dois indivı́duos, um de Pe e outro de Pne,
e os combinamos para formar um novo indivı́duo. O cruzamento utilizado nesse algoritmo
é o Biased Parametrized Uniform Crossover, como em Mundim et al. [2017]. Ele funciona
da seguinte forma: escolhemos aleatoriamente um indivı́duo de Pe e outro de Pne e, com
uma probabilidade ρ, escolhemos de qual dos indivı́duos escolheremos um cromossomo para
fazer parte do novo indı́viduo que fará parte da população Pc (que é 70% do tamanho de P ).
Dessa forma, teremos novos indivı́duos que serão uma combinação de indivı́duos de melhor
e pior fitness, dando iguais chances de se escolher um cromossomo deles, para termos maior
variabilidade genética. O valores de ρ usados por Mundim et al. [2017] foram 0.5 e 0.7. Aqui
utilizamos apenas ρ = 0.5.

• Nova população. A população Pnova será formada por Pe, Pm e Pc. Todos os indivı́duos que
foram formados nessa geração serão decodificados e serão classificados novamente para que
outra geração possa ser formada, visando sempre a evolução das gerações para se encontrar
soluções cada vez melhores para o problema.

A seguir temos o Algoritmo 2, que sintetiza como o BRKGA é usado.
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Algorithm 2 BRKGA para o SSSCSP

Require: População P inicial de indivı́duos codificados; tamanho da população tpop; quantidade
máxima de gerações gmax; probabilidade ρ utilizada no Biased Parametrized Uniform Crosso-
ver

Ensure: Solução x∗ de melhor fitness encontrada
1: Defina g = 1
2: while g ≤ gmax do
3: Decodifique P e encontre o fitness de cada indivı́duo a partir da solução encontrada pela

heurı́stica Bottom-left descrita no Algoritmo 1
4: Divida P em dois grupos: Pe com 20% de P de indivı́duos com melhores fitness e o restante

em Pne

5: Forme um novo grupo Pm a partir de 10% dos indivı́duos de Pe, permutando dois cromos-
somos aleatórios do indivı́duo escolhido

6: Adicione a uma nova população Pnova os indivı́duos dos grupos Pe e Pm

7: Forme um novo grupo Pc de tamanho |P − Pm − Pe| de indivı́duos a partir do Biased
Parametrized Uniform Crossover com uma probabilidade ρ

8: Adicione a Pnova os novos indivı́duos gerados de Pc

9: Encontre o indivı́duo xnova de melhor fitness de Pnova

10: if fitness(xnova) < fitness(x∗) then
11: Atualize x∗ com xnova
12: end if
13: Some um ao valor de g
14: end while

4. Experimentos numéricos
Implementamos a metaheurı́stica descrita no Algoritmo 2 em linguagem Python 3.8.8.

Escolhemos o Jupyter Notebook (https://jupyter.org/) como ambiente de execução para
o algoritmo. Todos os experimentos foram realizados em um computador com processador Intel
CoreTM i7-2600 de 3.40 GHz, com 16 GB de memória RAM e sistema operacional Ubuntu 20.04.4
LTS.

Pela linguagem de programação escolhida, em experimentos preliminares verificamos que
os tempos de execução do método implementado podem ser relativamente altos. Por isso optamos
por usar o tamanho da população do BRKGA como 30 e um máximo de 5 gerações. Para cada
instância, a metaheurı́stica foi repetida 5 vezes devido à aleatoriedade que o método possui e re-
portamos a melhor solução encontrada, a pior e a solução média, bem como a média do tempo de
execução (em segundos).

Para verificar a eficácia do método implementado para encontrar soluções boas para o pro-
blema em questão, foram utilizadas algumas instâncias da coleção presente no ESICUP (https:
//www.euro-online.org/websites/esicup/data-sets/), com 6 a 30 itens para se-
rem alocados. A quantidade de cópias de cada item e suas respectivas rotações fixadas fazem parte
das instâncias originais. Os NFPs de cada combinação dos itens e rotações foram calculados em
uma fase de pré-processamento. Os recipientes possuem uma das dimensões H fixa fornecida por
cada instância. Para escolher a outra dimensão W , fizemos de duas formas. Seja A = HW a área
da placa. Assim, temos:

1. A = S, com S sendo a soma das áreas de todos os itens a serem alocados (inclusive suas
cópias). Assim, definimos uma dimensão a = S/H . Como podem existir instâncias em que
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Tabela 1: Detalhes das instâncias utilizadas

Total de Possı́veis Dimensões
Instância Itens rotações da placa

dos itens (W ×H)
Threep2w9-1 6 0 7.7×9
Threep2w9-2 6 0 15.3×9

Dighe2-1 10 0 99.9×100
Dighe2-2 10 0 199.8×100

Fu-1 12 0, 90 28.5×38
Fu-2 12 0, 90 57×38

Poly1A-1 15 0, 90, 180, 270 13×40
Poly1A-2 15 0, 90, 180, 270 20.6×40
Dighe1-1 16 0 100×100
Dighe1-2 16 0 200×100
Blaze2-1 16 0, 180 15.1×15
Blaze2-2 16 0, 180 30.1×15
Jakobs1-1 25 0, 90, 180, 270 9.8×40
Jakobs1-2 25 0, 90, 180, 270 19.6×40
Blaze1-1 28 0, 180 21.6×15
Blaze1-2 28 0, 180 43.2×15
Poly2A-1 30 0, 90, 180, 270 20.6×40
Poly2A-2 30 0, 90, 180, 270 41.2×40
Dagli-1 30 0, 180 50.7×60
Dagli-2 30 0, 180 101.4×60

um ou mais itens podem não caber nessa dimensão em uma rotação especı́fica, definimos
também uma dimensão b como sendo a maior largura (dentre todas as rotações) dentre o
conjunto de itens a serem alocados. Assim, definimos que W = max(a, b);

2. A = 2S, com S sendo a soma das áreas de todos os itens a serem alocados (inclusive suas
cópias). Logo, temos que W = 2S/H .

A Tabela 1 mostra as caracterı́sticas das instâncias usadas. A Tabela 2 apresenta as
soluções obtidas para cada instância utilizando tanto o BRKGA, como a heurı́stica Bottom-left em
que a ordem é feita de forma decrescente em relação à área dos itens, todos com a rotação origi-
nal. Para a heurı́stica Bottom-left, reportamos a solução encontrada (número de placas usadas np e
largura mı́nima entre as placas lmin) e o tempo gasto, em segundos. Para o BRKGA, reportamos a
melhor, pior e média das soluções encontradas em suas 5 execuções, bem como o tempo médio de
execução (em segundos).

Embora o tempo para encontrar uma solução com o BRKGA seja muito maior que usando
o Bottom-left, ao comparar os resultados, para a maioria das instâncias, a metaheurı́stica encontrou
soluções melhores que a heurı́stica construtiva. Para três instâncias (Dighe2-1, Poly1A-1 e Poly1A-
2), o BRKGA foi capaz de encontrar uma solução com uma placa a menos que a heurı́stica Bottom-
left. Para as 17 instâncias restantes, o BRKGA encontrou soluções com a mesma quantidade de
placas, porém com menor largura (considerando sua pior solução) em 16 delas. Apenas no caso
da instância Jakobs1-2 ambos métodos encontraram uma solução de qualidade similar. A Figura 3
ilustra as soluções encontradas pelos métodos para as instâncias Poly1A-1, Dighe2-2 e Blaze1-1.
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Tabela 2: Resultados para as instâncias da ESICUP - recipiente original

Bottom-left BRKGA
Melhor Média Pior Tempo

Total de Solução Tempo solução solução solução médio
Instância Itens (np, lmin) (s) (np, lmin) (np, lmin) (np, lmin) (s)

Threep2w9-1 6 (2, 6.67) 0.02 (2, 6) (2, 6) (2, 6) 4.85
Threep2w9-2 6 (1, 12) 0.05 (1, 11.3) (1, 11.4) (1, 11.5) 12.07

Dighe2-1 10 (3, 40) 0.06 (2, 52) (2, 54.14) (2, 62.71) 13.1
Dighe2-2 10 (1, 172.4) 0.13 (1, 134.55) (1, 138) (1, 142.43) 34.19

Fu-1 12 (2, 15.2) 0.13 (2, 12) (2, 13.16) (2, 14) 10.63
Fu-2 12 (1, 42) 0.18 (1, 36) (1, 36.56) (1, 37.41) 23.91

Poly1A-1 15 (3, 9) 1.13 (2, 7.67) (2, 8.03) (2, 9) 103.2
Poly1A-2 15 (2, 9) 1.87 (1, 16.56) (1, 17.3) (1, 17.97) 302.71
Dighe1-1 16 (2, 79.06) 0.21 (2, 48.92) (2, 58.24) (2, 67.58) 39.27
Dighe1-2 16 (1, 175.82) 0.38 (1, 144.15) (1, 146.53) (1, 149.4) 115.55
Blaze2-1 16 (2, 13.5) 1.16 (2, 7.25) (2, 7.43) (2, 7.6) 388.84
Blaze2-2 16 (1, 26.17) 5.46 (1, 21.2) (1, 21.51) (1, 21.8) 1189.92
Jakobs1-1 25 (2, 8) 3.46 (2, 6) (2, 6) (2, 6) 344.29
Jakobs1-2 25 (1, 13) 5.1 (1, 13) (1, 13.27) (1, 13.69) 1196.4
Blaze1-1 28 (2, 13.9) 6.08 (2, 9.67) (2, 10.18) (2, 10.7) 2184.3
Blaze1-2 28 (1, 32.18) 24.79 (1, 30) (1, 30.14) (1, 30.43) 6999.6
Poly2A-1 30 (2, 20.08) 5.31 (2, 13.9) (2, 15.5) (2, 16) 871.94
Poly2A-2 30 (1, 36.11) 13.3 (1, 31.75) (1, 32.37) (1, 33.35) 3669.43
Dagli-1 30 (2, 34.19) 24.88 (2, 21.36) (2, 22.31) (2, 23.1) 2958.46
Dagli-2 30 (1, 73.12) 39.89 (1, 67.41) (1, 67.94) (1, 68.89) 8692.74

Figura 3: Ilustração de soluções obtidas para as instâncias Poly1A-1, Blaze1-1 e Dighe2-2 pelos métodos
propostos
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5. Considerações finais e trabalhos futuros
Neste trabalho, realizamos uma investigação sobre métodos de solução para o SSSCSP,

com foco na sua aplicação na indústria siderúrgica. Nossa análise fez uso de um método me-
taheurı́stico BRKGA, que utilizou a heurı́stica do Bottom-left para encontrar soluções.

O BRKGA mostrou-se interessante para encontrar soluções com boa qualidade para as
instâncias resolvidas quando comparado ao uso apenas da heurı́stica Bottom-left, apesar de ter um
tempo de execução muito mais elevado. Das 20 instâncias testadas, em apenas 1 caso ambos os
métodos obtiveram solução com qualidade equivalente. Nas 19 restantes, o BRKGA encontrou
uma solução que utilizou menor quantidade de placas (3 instâncias) ou menor largura utilizada.
Isso aponta que este método é promissor para resolver este problema.

Como trabalhos futuros, pretendemos realizar mais experimentos numéricos, com um
número maior e mais variado de instâncias, a fim de identificar os pontos fortes e fracos do método.
Faremos experimentos também com instâncias baseadas em casos reais, para analisar o quanto o
método proposto é adequado para uso na indústria siderúrgica. Procuraremos também adaptar o
método para permitir o uso, como recipientes, outras placas que já foram utilizadas para empacotar
outras instâncias, acrescentando uma lista de placas já usadas para que sejam reaproveitadas, a fim
de trazer menos desperdı́cio de material à indústria e, consequentemente, maior sustentabilidade.

Além disso, pretendemos aperfeiçoar a implementação do método, usando estruturas de
dados mais eficientes e uma linguagem como C/C++, pois isso fará com que o tempo de execução
do BRKGA diminua significativamente.
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