

31st RAU

Annual Users Meeting LNLS | CNPEM

ABSTRACT BOOK

Poster Presentation

Interrogating sedimentary silica-rich rocks using a multi-technique approach: first insights on preservation of organic molecules in heterogeneous geological systems.

Patrício Munoz^{*1}, Cristiano Oliveira¹, Jan Ilavsky², Marcelo Barbosa¹,
Rafael Lourenço¹, Raissa Oblitas¹, Eder Cavalheiro¹, Fabio Andrade¹

¹University of São Paulo, Brazil
²X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, USA

^{*}patrício.m.munoz@usp.br

In recent years, experimental silicification of microorganisms proved organic molecules (OMs) preservation under its early entombment and subsequent induration of silica [1]. Thus, sedimentary silica-rich rocks (chert) are considered a record of life in past geological times. The occurrence of OMs has been advocated as evidence of biogenic origin for microfossils founded on Archean chert [2]. Contrarily, such OMs could have also been sourced by abiotic processes [3].

During its precipitation, silica interacts with OMs via adsorption controlled by electrostatic interactions [4]. Such OM-silica composites undergo low-temperature processes (diagenesis), leading to both porosity reduction as the crystallization of more stable SiO₂ polymorphs [5] to become sedimentary rock. Reduction of permeability occurs as the pore throat closes, isolating the porosity network from exogenous fluids [6] and precluding mobility of OMs [7]. However, studies dealing with chert do not address the structural control of silica – porosity system as a potential preservation mechanism for OMs. Thus, we have characterized chert using (U)SAXS, WAXS, Raman, mass spectrometry, TGA, SEM and XRD. Samples were collected from Pacific Ocean's locations.

Samples are composed of microcrystalline quartz spheres supporting a network of sub-micrometrical pores, which have a fractal geometry as SAXS data exhibit a power-law behaviour. GC-MS shows aliphatic carbons suggesting veritable preserved OMs [3]. Raman and MALDI-TOF suggest amide, lipids, and peptide occurrences. OMs are adsorbed onto quartz spheres [TGA data].

Geochemical homogeneity points to the microspheres-pore network as the source of X-ray scattering. (U)SAXS data show spatial heterogeneities suggesting dissimilar diagenetic effects. Accordingly, shifts in I(q) shown by sample 27c could reveal a nanopore control on mineral precipitation. A similar shift was reported for OMs-mediated carbonate precipitation on amorphous silica substrates [8].

References:

- [1] Alleon, J. et al. 2016. Chemical Geology, DOI: 10.1016/j.chemgeo.2016.05.034 0009-2541
- [2] Schopf, J.W. and Kudryavtsev, A.B. 2012. Gondwana Research, DOI: 10.1016/j.gr.2012.07.003
- [3] Brasier, M. et al. 2002. Nature 416, 76-81.
- [4] van den Heuvel, D.B. et al., 2018. Frontiers in Materials. DOI: 10.3389/fmats.2018.00019
- [5] Williams, L. A., Parks, G., Crerar, D.A. 1985. J. Sedimentary Petrology, 55(3), 301-311.
- [6] Ledevin, M. et al. 2014. Precambrian Research. DOI: 10.1016/j.precamres.2014.10.009
- [7] Stack, A. 2015. Reviews in Mineralogy and Geochemistry. DOI: 10.2138/rmg.2015.80.05
- [8] Stack, A., et al. 2014. Environ. Sci. Technol. DOI:10.1021/es405574a

Acknowledgements:

PM acknowledges U. da Silva, I. Y. Sayeg, and IGc-USP for support. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Keywords:

Silica-rich sedimentary rocks, SAXS, WAXS, Raman, GCMS, MALDI-TOF, TGA, XRD, SEM, porosity, fractal geometry, hierarchical materials