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ABSTRACT
Determining fluid pressure in Monte Carlo simulations can be a challenging task due to the reduced arsenal of computational tools available
to perform such measurements. In addition, none of these tools is general enough to calculate the equilibrium pressure for a wide variety
of models. The Gibbs–Duhem method, for example, is a very useful option, but only for pure (one component) systems. To enrich this
arsenal, we propose here a direct method to calculate pressure in the canonical ensemble, which could easily be extended to mixtures at low
densities. In analogy with the Widom method, our approach is based on the free energy variation with volume, described in terms of the
removal of an empty or particle-occupied lattice column. We tested our approach for the lattice gas model and compared the results with
exact Onsager solutions. Furthermore, the appearance of thermodynamic instabilities (loops) in the pressure isotherms during the phase
transition and their relationship with interface effects are discussed. Finally, a phase diagram is obtained from these isotherms using the Hill
construction.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0187585

I. INTRODUCTION

The pressure P is a fundamental quantity for the study of
the thermodynamic properties of macroscopic systems and can be
measured experimentally with relative ease. However, when dealing
with numerical simulations, pressure estimation can be a challeng-
ing task. This occurs because we do not currently have methods
with sufficient generality to be applied to any and all models of
interest, so it is necessary to analyze each case to choose the
best approach. For lattice models, practically all available meth-
ods were developed for simple systems (one-component fluids)
and do not work or are impractical when applied to mixtures, for
example.

In general, we can classify these methods into two categories:
direct and indirect. In the first one, pressure is expressed in terms
of certain quantities that can be calculated directly by Monte Carlo
(MC) as averages of state functions. This is the case of a method
proposed by Meirovitch1–3 (1977), which was able to calculate for
the first time the pressure of a lattice gas using MC. In fact, his
approach initially consisted of a proposal for the direct calculation
of the entropy S, which can then be combined with the chemical
potential μ through basic thermodynamic relations to determine the

pressure. Another example of a direct method is the one developed
by Sauerwein and de Oliveira4,5 (1995/7), based on the probabil-
ity of finding two successive lattice lines in the same configuration.
As with the previous method, the authors originally conceived it
to obtain entropy, but they easily extended the technique to cal-
culate the pressure in the grand canonical ensemble, obtaining
good results for the hard square model. However, their method
only applies to models that can be written in terms of a transfer
matrix.

Indirect methods, in turn, are those in which the pressure is
determined through the integration of some quantity that can be cal-
culated by MC. In the standard thermodynamic integration method,
the density function ρ(μ) is obtained in terms of the chemical poten-
tial through simulations in the grand canonical ensemble. Then,
the Gibbs–Duhem relation at a constant temperature, dP = ρdμ, is
used to integrate the density and, consequently, obtain the pressure.
Although quite simple, this technique is time-consuming and runs
into difficulties when there is a phase transition in the middle of the
integration. The method proposed by Dickman6 (1987), in turn, is
analogous to the well-known Widom’s method7 (1963) for the direct
calculation of the chemical potential in the canonical ensemble since
it is derived from the variation of free energy caused by inserting a
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wall of volume ΔV into the system. The quantity that will be later
integrated is the average number of particles, ΔN, that will occupy
this volume increment, and the integration variable corresponds to
an artificial parameter that energetically penalizes the inclusion of
a particle there. More recently, Sellitto8 (2020) proposed an algo-
rithm that improves the Dickman technique and overcomes some of
its limitations, such as (i) the difficulty of dealing with systems with
inhomogeneous density profiles and (ii) the preservation of bound-
ary conditions, since the author replaces the insertion of a wall at
the edge of the lattice by the punctual insertion of phantom sites
distributed throughout the lattice.

To partially fill some of these gaps pointed out in the current
methodological arsenal, we propose here some new methods for
the direct calculation of pressure, in particular for systems in the
canonical ensemble. Our approach is also inspired by the Widom
method, but here we seek to find occupancy probabilities at the
edge of the system, so we must distinguish two situations from the
outset: (i) edges without periodic boundary conditions (p.b.c.) and
(ii) edges with p.b.c. The expressions found have a wide applicabil-
ity for simple fluids and, in some cases, can be easily generalized
for mixtures. In particular, when we look for the probability of
finding a completely unoccupied edge, i.e., without particles, the
equations take on a remarkably simple and useful form in low con-
centration regimes. To test our proposal, we performed Monte Carlo
simulations with the standard Metropolis algorithm for the lattice
fluid model, comparing the results when possible with known exact
solutions.

II. METHOD
Theoretical Approach. The pressure of a fluid composed of N

identical particles in a volume V at an absolute temperature T is
given by

P = −(
∂F
∂V
)

N,T
, (1)

where F = −β−1 ln Z is the Helmholtz free-energy. If we consider a
small volume change δV ≪ V in the system, the partial derivative
can be approximated by

P ≈ −
F(N, V + δV , T) − F(N, V , T)

δV
, (2)

leading us to the formula,

ePβδV
=

Z(N, V + δV , T)
Z(N, V , T)

, (3)

which relates pressure to a ratio of partition functions. Let us assume
further that this volume change is produced on one side of the lat-
tice, so we have to be aware while using or not periodic boundary
conditions (p.b.c.) on it.

Next, let us estimate the canonical probability pn of finding this
border segment with n particles. For convenience, let us assume that
it has L sites and the rest of the lattice has V sites, i.e., a total volume
equals V + L. We are thus interested in the following probability:

pn(N, V + L, T) = ∑
ν(N,V+L)

e−βEν(N,V+L)

Z(N, V + L, T)
, (4)

where the sum covers all configurations ν(N, V + L) with n par-
ticles in the chosen border segment. From now on, we will
omit the temperature dependence on the partition functions to
save notation.

A. Border without p.b.c.
Since the number of particles in each sub-lattice is kept con-

stant, we can split the previous sum into two parts: one over all
configuration ν(N − n, V) of the larger sublattice V with N − n par-
ticles, and the other over the configurations ν(n, L) of the smaller
sublattice L with n particles. The total energy can also be writ-
ten as the sum of each sub-lattice energy, seen as isolated from
one another, and a term δE of interaction between them: Eν(N,V+L)
= Eν(N−n,V) + Eν(n,L) + δE. Then, Eq. (4) becomes

pn = ∑
ν(N−n,V)

∑
ν(n,L)

e−β(Eν(N−n,V)+Eν(n,L)+δE)

Z(N, V + L)
. (5)

Using the Boltzmann distribution function, pν = e−βEν/Z for the
ensembles (N − n, V , T) and (n, L, T), one obtains

pn =
Z(N − n, V)
Z(N, V + L)

Z(n, L)⟨e−βδE
⟩, (6)

where

⟨e−βδE
⟩ = ∑

ν(N−n,V)
∑

ν(n,L)
pν(N−n,V)pν(n,L)e

−βδE (7)

is the average of the coupling energy e−βδE between these two ensem-
bles. The fraction in Eq. (6) can be readily written in terms of the
pressure and the chemical potential by means of Eq. (3) and its
analog for the chemical potential, eβμn

≈ Z(N − n, V)/Z(N, V),

pn = eβ(μn−PL)Z(n, L)⟨e−βδE
⟩. (8)

Finally, isolating pressure in Eq. (8),

P = μ
n
L
+ f +

1
βL

ln
⟨e−βδE

⟩

pn
, (9)

in which f = −(βL)−1 ln Z(n, L, T) represents the free-energy per
volume of the sub-lattice L with n particles, viewed as an indepen-
dent system. In addition, it should be noted that the pressure and
the chemical potential in Eq. (9) are both calculated in the ensem-
ble (N, V , T), while the probability pn was defined at first in the
ensemble (N, V + L, T).

A special case of Eq. (9) is obtained for n = 0, which reduces the
problem to that of evaluating the probability of finding one lattice
border empty,

P = −
1

βL
ln p0. (10)

B. Border with p.b.c.
As we saw before, the total energy of a configuration ν(N,

V + L) is given by Eν(N,V+L) = Eν(N−n,V) + Eν(n,L) + δE. However,
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FIG. 1. Sketch of a 4 × 4 lattice with periodic contour. In this example, the third
column represents the volume increment L. The dashed gray lines are the interac-
tions between the particles in L with the particles in the larger sub-lattice, the sum
of which gives δE. The solid lines in red are the boundary interactions if column L
were removed; the sum of these interactions gives δE′.

when we separate the energies like this, the term Eν(N−n,V) will refer
to the energy of the configuration ν(N − n, V) without p.b.c. This
was not an issue in Sec. II A, but now, to maintain consistency in the
calculations, we want to preserve the boundary conditions in both
(N, V + L) and (N − n, V) lattices.

To do this, we will add and subtract in the previous expression
the term δE′, which corresponds to the boundary energy of the sub-
lattice (N − n, V): Eν(N,V+L) = E∗ν(N−n,V) + Eν(n,L) + δE − δE′, where
E∗ν(N−n,V) = Eν(N−n,V) + δE′ is the energy of the configuration
ν(N − n, V)with p.b.c. An illustration of the interactions δE and δE′

is sketched in Fig. 1. Taking this difference into account, it is easy to
obtain an analogous expression for Eq. (9),

P = μ
n
L
+ f +

1
βL

ln
⟨e−β(δE−δE′)

⟩

pn
. (11)

In this case, for n = 0, we must have

P =
1

βL
ln
⟨eβδE′

⟩

p0
, (12)

which, in comparison with Eq. (10), also contains an average of the
contour energy.

Note that no assumptions have been made here about the lat-
tice dimensions. Moreover, although our deduction is restricted to
a simple fluid, it should not be difficult to extend Eqs. (9) and (11)
to mixtures too. In addition, since Eqs. (10) and (12) are indepen-
dent of the particle type, they apply in principle to both simple and
compound fluids.

III. RESULTS
A. 1D lattice gas—Deduction of an analytical solution
for pressure

As a first application of the formulas derived above, we will
deduce the exact expression for the pressure of a one-dimensional
lattice fluid without p.b.c. Consider that this lattice has V sites
and N particles, with first-neighbor interactions equal to −ϵ < 0.
In this basic two-state model, we only have two possibilities for
occupying a site located at the edge of the lattice: either it will
be empty or with a particle. The probability of it being empty is
related to the pressure by the formula (10), whereas the probabil-
ity p1 of it being occupied with one particle is given by Eq. (9),
with n = 1,

P = μ +
1
β

ln
⟨e−βδE

⟩n=1

p1
, (13)

where, obviously, L = 1, since it is a single-site increment, and f = 0
since there is only one possible configuration for it when it is full.
The average in the previous equation can be easily written in terms
of the probabilities p0 and p1 through Eq. (7),

⟨e−βδE
⟩n=1 = ∑

ν(N−1,V)
pν(N−1,V)e

−βδE
= p0e0

+ p1eβϵ, (14)

where we used the fact that pν(1,1) = 1, and then we decomposed the
sum above into two, one over the configurations of the largest sub-
lattice whose last site is empty (which results in δE = 0) and another
over configurations where this site is occupied (therefore, δE = −ϵ).
Replacing Eq. (14), we can rewrite Eq. (13) as follows:

p0 + [eβϵ
− eβ(P−μ)

]p1 = 0. (15)

Strictly speaking, the probability p1 in Eq. (13) refers to the
ensemble (N, V + 1, T), whereas in Eq. (14), it is a function of
(N − 1, V , T); however, considering the thermodynamic limit, we
can consider them practically identical. The same argument will
also hold for the probability p0. Now, we can set up the follow-
ing linear system with Eq. (15) and the probability normalization
condition:

⎧⎪⎪
⎨
⎪⎪⎩

p0 + p1 = 1,

p0 + ap1 = 0,
(16)

where we defined a = eβϵ
− eβ(P−μ). By Cramer’s rule, the solution to

this system will be given by

p0 =

det
⎛
⎜
⎝

1 1

0 a

⎞
⎟
⎠

det
⎛
⎜
⎝

1 1

1 a

⎞
⎟
⎠

=
a

a − 1
. (17)
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Now, Eq. (10) allows us to directly relate p0 to pressure. There-
fore, substituting p0 and a in the above expression, we obtain the
following equation of state:

1
eβP =

eβϵ
− eβ(P−μ)

eβϵ
− eβ(P−μ)

− 1
. (18)

To isolate the pressure, we can define the variable x = eβP so that
(18) becomes a quadratic equation in x,

x2
− [1 + eβ(ϵ+μ)

]x + eβμ
(eβϵ
− 1) = 0. (19)

Taking the positive root (x+) of this equation and knowing
that, by definition, P = β−1 ln x+, we will have that the analytical
solution of one-dimensional lattice gas pressure will be

P(μ, β) =
1
β

ln

⎡
⎢
⎢
⎢
⎢
⎢
⎣

eβ(μ+ϵ)
+ 1

2

+

¿
Á
Á
ÁÀ(

eβ(μ+ϵ)
+ 1

2
)

2

+ eβμ
(1 − eβϵ

)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (20)

which agrees with the known result and which can be obtained by
other means, such as the transfer matrix technique, for example.

B. 2D lattice gas—Comparison with Onsager’s exact
solution

As we know, the solution of Onsager9 for the free energy of the
two-dimensional Ising model can be mapped to the lattice gas pres-
sure through the appropriate changes of variables.10 Thus, we know
exactly how the pressure of the 2D lattice gas varies with temper-
ature when its density is specifically ρ = 0.5 (or, equivalently, when
μ = −2ϵ),

P(ρ = 0.5)
ϵ

= −
1
2
+ t ln [2 cosh(

1
2t
)]

+
t
π∫

π/2

0
ln [

1
2
+

1
2

√

1 − k2 sin2 x]dx, (21)

where we defined t = kBT/ϵ as the reduced temperature and k
= 2 tanh(1/2t)/cosh(1/2t). Therefore, this formula allows us to test
the proposed method with an exact analytical result.

For simplicity, we decided to calculate, through Monte Carlo
simulations, the pressure of the 2D model using the probability of
finding empty columns. We tested both Eq. (10), in a lattice without
a periodic boundary on one of the edges, and Eq. (12), with p.b.c. on
all edges. In the first case, p0 was calculated for a lattice of size 50× 51
(V = 50 × 50 + L = 50) and N = 1250 particles. It is important to
highlight that p0 must be calculated in the ensemble (N, V + L), cf.
Eq. (4), to obtain the pressure in the ensemble (N, V). In the second
case, we used a 30 × 61 grid with N = 900 particles, where p0 was
calculated for the smaller columns of size L = 30, as this reduces the
number of MC steps needed to obtain a good estimate of probability.
The term ⟨eβδE′

⟩, present in Eq. (12), was obtained in the 30 × 60 lat-
tice, where δE′ is the interaction energy between the particles of two
adjacent columns. All simulations were done with 5 × 107 MC steps

FIG. 2. 2D lattice gas pressure as a function of reduced temperature t = kbT/ϵ.
Solid black curve: exact Onsager solution for density N/V = 0.5. The triangles and
circles represent the simulated pressures through Eqs. (10) and (12), respectively.
Error bars are not visible as they are smaller than the symbol size.

after a thermalization process with 105 steps. The results are shown
in Fig. 2, along with Onsager’s solution.

In both cases, we achieved a good agreement with the expected
result in the thermodynamic limit (Onsager), even with the finite
lattice sizes V = 2500 and 1800 for systems without and with p.b.c.,
respectively. Furthermore, we see that the approximation of the
derivative in Eq. (2) did not result in significant deviations in
the pressure for the volume increments in question: δV/V = 2%
and 1.7%, respectively. Previous tests performed with smaller grid
sizes—10 × 10, 20 × 20, 10 × 20, etc.—showed small deviations from
the exact solution, but these converged as we increased the size of the
system. In short, the method seems to be quite effective in reproduc-
ing the expected curve of pressure vs temperature, but it is necessary
to choose the proper dimensions of the lattice so that it is neither
too small, to the point where the result does not converge, nor too
large so that the estimates of p0 or ⟨eβδE′

⟩ are still computationally
feasible.

C. Isotherms, coexistence pressure, and phase
diagram

In Sec. III B, we obtained the pressure curve at constant density
(D = 0.5) for various temperatures. Now we are interested in calcu-
lating the pressure isotherms at different densities and seeing what
information we can extract from them. In this case, we will see that
it will be possible to easily construct the phase diagram of the system
from the isotherms, as well as compare it with another known exact
result from Onsager. However, to justify our construction of the dia-
gram, we will make use of an interesting theoretical discussion raised
recently by Alves and Henriques.11

First, we calculated the pressure isotherms using Eq. (11), i.e.,
in a lattice with p.b.c. (V = 30 × 60), with n = 0 when densities were
less than 0.5 and n = L for densities greater than 0.5. Thus, in the
first case, we look for the probability of finding empty columns in
the lattice and, in the second case, of finding fully occupied columns
(in addition to the chemical potential, which was obtained by the
standard Widom method7). This separation was made to optimize
the search process since finding empty columns becomes an increas-
ingly rare event at high densities and vice versa. An example of an
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FIG. 3. 2D lattice gas pressure as a function of density for a fixed temperature: t/tc

= 0.75. The points were calculated from Eq. (11) with n = 0 for densities D < 0.5
and n = L for D > 0.5. The inset shows a zoom of the loop in the low density
region. The dashed line is the extension of the coexistence plateau to both sides
of the graph.

isotherm calculated in this way is illustrated in Fig. 3 for t/tc = 0.75,
where tc = −0.5/ ln (

√
2 − 1) is the reduced critical temperature of

the model.
Below the critical temperature (t < tc), as expected, the pres-

sure isotherms exhibit a plateau typical of the liquid–gas phase tran-
sition. However, some characteristics of these functions obtained by
simulation immediately draw attention: they present regions with
thermodynamic instability, that is, that violate the second law of
thermodynamics. In fact, note that in certain parts of the isotherm,
the pressure decreases with increasing density (or rather, with the
number of particles, since the volume was kept fixed in the simula-
tions), which is counterintuitive in itself. In these regions, we would
have

(
∂P
∂N
)

V ,T
=

N
V
(
∂μ
∂N
)

V ,T
=

N
V
(
∂2 F
∂N2 )

V ,T
< 0, (22)

which is a clear violation of stability since the Helmholtz free-energy
must be a convex function of the extensive variable N. In addi-
tion, the graph also displays unrealistic negative pressure values.
Could this be a flaw in our calculation method or a mere artifact
of simulations in finite systems?

Far from being an isolated case, the presence of instability
regions in thermodynamic potentials obtained via computational
simulations (in particular those performed on ensembles of exten-
sive variables) is a problem known for a long time.12–14 Some authors
suggest that these regions (or loops, in reference to the concavity
change they exhibit) are just an unwanted effect of systems outside
the thermodynamic limit since they tend to disappear as the lat-
tice size increases. Others, however, maintain that they are actually
due to interface effects between the liquid and gas phases.15 In this
last direction, Alves and Henriques11 proposed a theory to explain
the emergence of loops in chemical potential isotherms through an
adaptation of Hill’s theory15–17 with the inclusion of the free-energy
of the interface Fint = γAint in total free-energy,

F = Fbulk + Fint, (23)

where Fbulk is the sum of the free-energies of the homogeneous
phases, γ(T) is the surface tension, and Aint is the area of the inter-
face. With this approach, the authors were able to recover the correct
convexity of the chemical potential and derive a simple method for
obtaining the surface tension through an integration in the loop area.

We will apply similar reasoning here to understand the appear-
ance of loops in pressure isotherms. Taking the partial derivative
of Eq. (23) with respect to N, the authors obtained the following
relationship:

μ̃ = μ + γ
∂Aint

∂N
, (24)

i.e., the (pseudo)chemical potential μ̃, which is the one obtained
through computer simulations, is equal to the true chemical poten-
tial μ plus the contribution of the contact surface, which is respon-
sible for the observed changes in the pressure concavity. Taking
the derivative again in Eq. (24) and multiplying both sides by
the density N/V , we obtain the derivatives of the pressure with
respect to N,

∂P̃
∂N
=

∂P
∂N
+

Nγ
V

∂2Aint

∂N2 . (25)

Now, a simple calculus exercise allows us to eliminate some partial
derivatives and write Eq. (25) directly in terms of pressures,

P̃ = P +
γ
V
(N

∂Aint

∂N
− Aint). (26)

We can now interpret the pressure isotherm in the lattice gas
model, below the critical temperature, as follows: for very low den-
sities (N ≈ 0), we only have the presence of the gaseous phase and,
therefore, Aint = 0, so the simulated pressure will correspond to the
real model pressure (P̃ = P). However, as the density increases, the
system begins to phase separate, and a small liquid–gas surface
forms and starts to increase in size, that is, ∂Aint/∂N > 0. If this
increased rate is greater than Aint/N, we will obtain a simulated pres-
sure greater than the real coexistence pressure (P̃ > Pcx), which may
explain the loop above the coexistence plateau on the left side of the
isotherm.

After a certain density, the area of the interface stops grow-
ing (∂Aint/∂N = 0) and reaches its maximum value. In the case of a
square lattice with V = L1 × L2 and p.b.c., this area will be twice the
length of the smallest side, 2L1, since the system tends to organize
itself in the shape of a strip. During a certain range of densities, the
width of this strip increases while always keeping the interface size
constant.11,13 Under these conditions, the simulated pressure will
form a plateau, whose value will be different from the coexistence
pressure up to a negative constant (P̃ = Pcx − 2γ/L2). It is worth not-
ing that this constant can be made as small as you like by making the
side L2 of the lattice large enough.

Eventually, at higher densities, the interface area will begin to
shrink, forming a small bubble of remnant gas, until it disappears
completely. During this process, we will have a negative variation
of the area, ∂Aint/∂N < 0, necessarily leading to the formation of a
second loop with values below the coexistence pressure. Note that
since this rate of change is multiplied by the number of particles
in Eq. (26), the loop at high densities should be larger than the
loop at low densities, which actually happens in Fig. 3. When the
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system fully reaches the liquid phase, the coexistence interface dis-
appears again, and the simulated pressure returns to equal the true
pressure.

We have just analyzed the behavior of the curve P(D) at con-
stant temperature and volume in the light of Eq. (26), but we
could also have analyzed the isotherm P(V) with a fixed N. In this
case, deriving Eq. (24) with respect to V and using the thermody-
namic identity ∂μ̃/∂V = −∂P̃/∂N, it is easy to derive an expression
analogous to Eq. (24) for the pressure,

P̃ = P − γ
∂Aint

∂V
. (27)

The advantage of working with the P(V) isotherm is that we can
calculate the surface tension through integration in the region of one
of the loops, as Alves and Henriques11 did in the case of the chemical
potential, that is,

γ = −
1

ΔAint
∫

loop
(P̃ − P)dV , (28)

where ΔAint is the total change in the area along the loop, which is
equivalent to the constant area in the plateau region. However, we
will not delve deeper into surface tension, as the subject is outside
the main scope of our study.

Having made these observations about the origin of thermody-
namic instability (loops) in pressure isotherms, we can now discuss
how to eliminate it and how to obtain the coexistence densities of
the liquid and gaseous phases: Dl and Dg , respectively. Historically,
the so-called Maxwell construction was the first proposal to restore
the convexity of the isotherms P(V) for the mean field model of the
van der Waals fluid. In this case, the loops appear due to the erro-
neous assumption that the fluid is always homogeneous, which is
not true during the phase transition. Maxwell proposed to eliminate
them by connecting two points on the curve by a horizontal line so
that the area of the loops above and below that line is equal. The
extreme points of this plateau would thus provide the coexistence
volumes.

In the case of pressures calculated through “exact” simula-
tions in the canonical, the loops, as we have seen, originate from
interface effects and can be eliminated in a simpler way without
resorting to Maxwell’s equal area rule. Instead, we will use Hill’s
construction15–17 to restore the convexity. As we have seen, both the
chemical potential and pressure isotherms show plateaus in phase
coexistence when the interface area remains constant [Eqs. (24) and
(26), respectively]. In these regions, the simulations coincide with
the real values of the quantities in the coexistence (in the case of
pressure, this coincidence occurs with less than a negative con-
stant that can eventually be reduced to zero). Now, according to
Hill’s theory, if we extend horizontally a coexistence plateau, then
the points of intersection with the isotherm will occur precisely in
the densities (or volumes) of coexistence of the liquid and gaseous
phases.

This happens because the isotherms obtained in the canonical
ensemble (N, V , T) are the locus of the maximum and minimum of
the probabilities P(N; μ̃, V , T) of finding N particles in the grand-
canonical ensemble (in the case of the chemical potential isotherm)
or of the probabilities P(V ; P̃, N, T) of finding the system with

FIG. 4. Phase diagram of the 2D lattice fluid. The points (black circles and tri-
angles) were obtained by extending the plateaus of the pressure isotherms, as
shown in Fig. 3, and represent the coexistence densities of the gaseous and liq-
uid phases, respectively. The pressure curves had been calculated using Eq. (11)
with n = 0 (for D < 0.5) and n = L (for D > 0.5). The solid black line represents
Onsager’s exact solution.

volume V in the isothermal–isobaric ensemble (in the case of the
pressure isotherm), that is,

dP(N)
dN

= 0 ⇐⇒ μ̃ = (
∂F
∂N
)

V ,T
, (29)

dP(V)
dV

= 0 ⇐⇒ P̃ = −(
∂F
∂V
)

N,T
. (30)

Thus, the plateaus in the isotherms of the canonical ensemble rep-
resent minimum regions in the respective probability functions P,
and the other two intersection points locate the maximums of these
functions, which must occur in the two coexistence densities. For
a more detailed argument, check out the cited studies by Hill and
Alves et al.11,15–17

Figure 4 shows the phase diagram obtained with the Hill
construction applied to the pressure isotherms at the following tem-
peratures: t/tc = 0.75, 0.8, 0.85, 0.9, 0.94, 0.97, and 0.99. As we can
see, there is excellent agreement between the simulation values and
Onsager’s theoretical prediction. Only a small deviation can be
observed when we are very close to the critical temperature, which
is perfectly reasonable in view of the finite size of the lattice used in
the simulations (V = 30 × 60). These results once again validate the
method we are proposing for the direct calculation of pressures in
the canonical ensemble, as well as its usefulness for obtaining phase
diagrams through the Hill construction.

IV. CONCLUSION
The main point of our study was to present a new methodol-

ogy for the computational calculation of pressure, considering the
few methods available for this in the literature, especially in the
canonical ensemble. Our approach is based on estimating the prob-
ability pn of finding a column (or row) with n particles, where n
can be chosen as desired. Among the advantages of our approach,
we can highlight that: (i) because it is a direct method, it is faster
and requires less data processing than the so-called indirect meth-
ods (cf. Introduction); (ii) in the case where n = 0, that is, when we
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search for empty columns/rows, the formulas acquire a very sim-
ple and broad generality form [Eqs. (10) and (12)], which can be
applied to mixtures, for example, which the usual methods were not
capable of or had extreme difficulty in achieving; (iii) the method
remains valid during phase transitions, with the caveat that we
must reinterpret the simulated pressure to take interface effects into
account. In this case, we saw that canonical pressure isotherms
can provide very useful information, such as surface tension
and coexistence densities, facilitating the construction of a phase
diagram.

The method also proved to be an interesting alternative for
the exact resolution of models in one dimension. In two dimen-
sions, we compared the numerical results for the lattice fluid model
with Onsager’s analytical solutions for the function P(T; D = 0.5)
and the coexistence densities functions, obtaining a good agree-
ment with them. It should be noted that, to be more efficient, the
method requires an adequate choice of the number of particles n
that facilitates the estimation of pn. It is much more computationally
expensive to estimate the probability of a column having few par-
ticles in a very dense lattice, and vice versa. Furthermore, another
limitation that we can point out is the fact that these probabili-
ties also become increasingly costly to estimate as the column size
increases. However, in this case, it is possible to keep the column
smaller and increase the other dimension of the lattice. Thus, the
probabilities remain possible to calculate without changing the total
volume of the system.
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