Braz J Phys (2013) 43:172-181
DOI 10.1007/s13538-013-0129-y

PARTICLES AND FIELDS

B~

SOCIEDADE BRASILEIRA DE FISICA

Elementary Excitations of a Higgs—Yukawa System

E. R. Takano Natti - A. F. R. de Toledo Piza -
P. L. Natti - Chi-Yong Lin

Received: 13 October 2011 / Published online: 27 April 2013
© Sociedade Brasileira de Fisica 2013

Abstract This work investigates the physics of elemen-
tary excitations for the so-called relativistic quantum scalar
plasma system, also known as the Higgs—Yukawa system.
Following the Nemes—Piza—Kerman—Lin many-body pro-
cedure, the random-phase approximation (RPA) equations
were obtained for this model by linearizing the time-
dependent Hartree—Fock—-Bogoliubov equations of motion
around equilibrium. The resulting equations have a closed
solution, from which the spectrum of excitation modes are
studied. We show that the RPA oscillatory modes give the
one-boson and two-fermion states of the theory. The results
indicate the existence of bound states in certain regions in
the phase diagram. Applying these results to recent Large
Hadron Collider observations concerning the mass of the
Higgs boson, we determine limits for the intensity of the
coupling constant g of the Higgs—Yukawa model, in the
RPA mean-field approximation, for three decay channels
of the Higgs boson. Finally, we verify that, within our
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approximations, only Higgs bosons with masses larger than
190 GeV/c? can decay into top quarks.

Keywords Higgs—Yukawa system -
Nemes—Piza—Kerman-Lin procedure - Random-phase
approximation - Bound states

1 Introduction

Recent years have witnessed substantial progress towards
understanding the nonequilibrium time evolution of quan-
tum fields. Results have been obtained that proved impor-
tant in several applications. Examples are found in cos-
mology, such as the description of quantum-field expecta-
tion values in the early universe and subsequent hot stage
(big bang) [1, 2]; in high-energy particle physics, such as the
description of the dynamics in heavy-ion collision experi-
ments, which seeks to establish experimental signatures for
the nonequilibrium evolution of the quark—gluon system and
chiral phase transition [3-5]; and in complex many-body
quantum systems, such as the description of the dynam-
ics of the Bose—Einstein condensates [6, 7], among other
applications [8].

In a previous publication, we have developed a frame-
work to investigate the initial value problem in the context
of interacting fermion—scalar field theories [9]. This frame-
work had earlier been developed in the context of the
nonrelativistic nuclear many-body dynamics by de Toledo
Piza [10] and Nemes and de Toledo Piza [11]. The method
led to a set of self-consistent time-dependent equations for
the expectation values of linear and bilinear forms of field
operators. These dynamical equations acquire a kinetic type
structure in which the lowest-order approximation corre-
sponds to the usual Gaussian mean-field approximation. As
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an application, a zero-order calculation was implemented
within the simplest context of a relativistic quantum scalar
plasma system, nowadays also called the Higgs—Yukawa
system. The usual renormalization prescription was shown
to be also applicable to this nonperturbative calculation. In
particular, a finite expression for the energy density was
obtained, with the numerical results suggesting that the
system always has a single stable minimum.

Here, we report an application of the renormalized non-
linear dynamical equations obtained in our previous article
[9] and follow Kerman and Lin [12, 13] to investigate the
near-equilibrium dynamics around the stationary solution of
a Higgs—Yukawa system. We will show that one-boson and
two-fermion physics can be studied in the linear approx-
imation of the mean-field equations. We will solve those
equations in closed form and find the scattering amplitude,
as well as the conditions allowing a two-fermion bound
state.

The motivation for this work is the recent observation of
a possible Higgs boson around 125 Gev/c? [14-16]. Since
the early 1990s, the Higgs—Yukawa model has been used
to better understand the fermion mass generation via the
Higgs mechanism. Recently, the Higgs—Yukawa model has
been used to impose limits on the Higgs mass and on the
intensity of the Higgs—Yukawa coupling. It has also been
used to study the consequences of heavy extra-generation
fermions (mass > 600/c? GeV). An important consequence
of a fourth fermion generation is the possibility of forma-
tion of bound states that can replace the role of the Higgs
boson. Recently, these issues have been intensively stud-
ied on the lattice [17] or perturbatively—the 1/N-expansion
[18], for example. Our work carries out a nonperturbative
calculation of the ground state (vacuum) for an interacting
Higgs—Yukawa system.

For clarity and notational purposes, a few key equations
from [9] are repeated here. The dynamics of the relativistic
quantum scalar plasma model, or Higgs—Yukawa model, is
governed by the following lagrangian density [19-32]:

L= PGiy.d —myp + ghov
1 2 2,2
+ |00 1] - L. M

The model Hamiltonian is given by the equality

H=[n.

H=—yiy.0 —m)y — g¥oy
+ ] [(471)21'12 196 + /ﬁd)z] +H, @)
8

with the shorthand [, = [ d3x.
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In the Heisenberg picture, ¢(x) and Il(x) are scalar
spin-0 fields expanded as

1 ) )
d(x,t) = Z OV po) /2 [bp(t)e'p'x + b;(t)e_’p'x]
P

12
Mx, 1) =i Z (V;)O) [b;(t)e—"l’-x — bp(t)eip'x] , (3)
p

where b;(t) and by () are boson creation and annihilation

operators, pg = \/ p? + Q2 where Q is the mass parameter
of the bosonic fields, px = pot —p.x, and ¥ (x) and ¥ (x)
are fermionic spin-1/2 fields,
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where al((“g (t) and al(()z(t) [al(()z

(t) and a](fz (t)] are fer-
mion creation and annihilation operators associated with the
positive- (negative-) energy solutions u1(k, s) [ua(k, s)] of
Dirac’s equation. Likewise, kg = \/ k2 + M2 | where M
is the mass parameter of the fermionic fields, and k x =
kot —kx.

In (2), the parameters m and w are the masses of the
fermion and of the scalar particles, respectively, and g is
the coupling constant. The last term on the right-hand side,
which encompasses the counterterms necessary to remove
the later-occurring infinities, is given by the expression

Aot C D z

dHe= 9+ o 97+ 07+ 81 =00 )
where the coefficients A, 5/,L2, C, and D are infinite con-
stants, to be defined later. To study the dynamical random-
phase approximation (RPA) regime, we have to introduce
the wave function renormalization constant Z [25].

To deal with condensate and pairing dynamics of
the scalar and fermionic fields, we first define the uni-
tary Bogoliubov transformation for the bosonic sector as
follows [33]:

dp(1) coshkp + i nz" —sinhxp + i rzzp Bp(t)
') —sinhicp —i"" coship—i"® || BT,
(6)
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where dp is the shift boson operator defined by the
expression
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Here, F is the unitary many-body density operator [9]
describing the system state, and the symbol Try. denotes
a trace over both bosonic and fermionic variables. Partial
traces over bosonic or fermionic variables will be denoted
Try and Trg, respectively. For simplicity, we restrict our

dp(t) = bp(t) — Bp(t)dpo with treatment of the fermionic sector to the Nambu transfor-
mation [34], parameterized in the following form, which
Byp(1) = (bp() = Try [bp()F]. (7) " incorporates the unitarity constraints:
r M 7 . ro 0 7
%K, [ cos gk 0 0 —e Mesing | ks
e i 0
K,s 0 cosgk e ksin gk 0 Ok s
= . (8)
1 1 ol gj 1 T
a_y 0 eksingg  cos gk 0 aly
@ f | /7% sin g 0 0 oS gk @ f
—a—k,s - —a—k,s -

The procedure adopted in [9] to obtain the equations of
motion for the Nambu—Bogoliubov parameters ¢ (), Yk (?),
np (1), and kp(1); for the quasiparticle occupation numbers

vl(()‘s) = (a](és)'ozl(:‘s)) and vp = (ﬂ;ﬂp }; and for the conden-

sates (¢) and (IT) had been developed earlier in the context
of the nonrelativistic nuclear many-body dynamics by de
Toledo Piza [10] and Nemes and de Toledo Piza [11]. That
approach follows the line of thought of a time-dependent
projection technique proposed by Willis and Picard [35]
in the context of the master equation for coupled systems.
The method consists, essentially, of writing the correlation
information of the full density of the system F in terms
of a memory kernel acting on the uncorrelated density Fo,
with the help of a time-dependent projector. At this point,
a systematic mean-field expansion for two-point correla-
tions can be performed [10]. The lowest order corresponds
to the results of the usual Gaussian approximation [34, 36].
The higher orders describe the dynamical correlation effects
between the subsystems and are expressed by means of suit-
able memory integrals added to the mean-field dynamical
equations. The resulting equations acquire the structure of
kinetic equations, with the memory integrals playing the
role of collisional dynamics terms. This systematic expan-
sion scheme for memory effects, in which the mean energy
is conserved to all orders [37-40], was implemented, for
example, for the Jaynes—Cummings system [41].

In this context, to study the near-equilibrium dynamics
around the stationary solution of the Higgs—Yukawa system,
Takano Natti et al. [9] focused on a selected set of Gaussian
observables, which are related to the expectation values of
linear, ¢(x), I1(x), and bilinear forms of field operators,

@ Springer

such as ¢ (x)p(x) , &(x)l//(x) , (X)) (x), etc. The time
evolution of such quantities obeys the Heisenberg equation
of motion

i(O) = TrylO, H]F, C))

where O can be ¢ (x), ¢ (x)p(x), &(x)t//(x), etc. and F is
the state of the system, which is assumed to be spatially
uniform, in the Heisenberg picture. As an approximation,
we replace the full density F by a truncated ansatz Fo(t),
whose trace is also unitary and which implements the dou-
ble mean-field approximation [9]. By construction, Fy is
written as the most general Hermitian—Gaussian functional
of the field operators consistent with the assumed unifor-
mity of the system. It will thus be written as the exponential
of a general quadratic form in the field operators, which
can be reduced to diagonal form by a suitable canonical
transformation. In this way, Fo reproduces the correspond-
ing F averages for linear or bilinear field operators [34]. In
particular, we have used a formulation appropriate for the
many-body problem, where F is written in the momentum
basis as [34, 36, 41]

Fo = FoFy

5 l_[ 1 Vp ’Sgﬁl’
Fo < ) (10)
; I+vp \1+0p

»omt oo Ve ) oot
Fo= [ ey e + = oDale)]. an
k,s,\
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where « (af) and B (B7) stand for Nambu—Bogoliubov
quasiparticle annihilation (creation) operators for fermions
and bosons, respectively; vl(()‘s) ( vp) are the quasi-fermion
(quasi-boson) occupation numbers; and A = 1 (A = 2) is
associated with the positive- (negative-) energy solutions.

From (9)—(11), we can directly obtain the equation of
motion for the occupation numbers; for the Gaussian vari-
ables, now represented by the Nambu—Bogoliubov param-
eters; and for the condensates. The following expressions
result:

iy = 10 = 52 =0 1
. K| .
ok = , (M —m)siny (13)
ko
. . 2024 mM)
sin 2¢k Yk = sin 2@k
ko
2(M — m
+ ( K m)|k|cos2<pkcosyk (14)
0

1/2 1 (p>+u?
ﬁpefl(p — (p2+92) [47_[62/([,_ (p M )€2Kp:| (15)

47 (p>+Q2)

Fa— (p2 + 92)1/2 npe® (16)
@ = (17)
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1) = ! A CGQ
<>——4n[ +2()}

C
(#)?
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D 1
“o4n (P _gzg:/kko

X [M cos2¢k + | kK | sin 2¢k cos yk]<1 —vlgz—vlfz),

17, , D
- [M +5M+2G(Q)}(¢)—

(18)
where we have introduced the notation
14 2v
G(Q) = / L (19)
p 2V/p? + Q2

In (12)—(19), the quantities M and 2 are the mass parame-
ters of the fermionic ¢ and bosonic ¢ fields of the Hamilto-
nian (2), while m = m — g(¢) stands for the effective mass
of a fermion particle [9].
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Another physical quantity of interest is the mean-field
energy density of the system,

(H)

1
= TrHF
\% \%4

/ [(k2 +mM)
= — Z cos 2¢k
Tk ko

(m—-M) . .
+ & |K| sin 2¢k cos yk
0

X <1 — vl((ls) — Vl(;2§>

1 5 2,2 1 C
o (M2 +i202]+ [A+ 26(9)] (@)

1 [., D , C 4 D
o [au + 26(9)] @2+, @+ ()
L1, 2 D ,
o 12 +8u*] G + 1 (. 20)

The above equations describe the real-time evolution of
the Higgs—Yukawa system in the double-Gaussian mean-
field approximation. The results obtained in (12)-(20), as
discussed in [9], are consistent with those in the litera-
ture, obtained via different approaches, in particular with
those obtained in Ref. [24] on the basis of a Vlasov—Hartree
approximation.

Reference [9] showed, in detail, that the usual form of
renormalization [24] is applicable to the nonperturbative
procedure described in that paper. A simple numerical cal-
culation has also shown that the system always has a single
stable minimum, although, as it has been suggested [9],
additional investigation is necessary concerning oscillatory
modes. The standard approach to this question uses the RPA
analysis, with the resulting eigenvalues giving an indication
of stability [12, 13, 25].

Finally, we note that dynamical correlation corrections
can in principle be systematically added to the double-
Gaussian mean-field calculations with the help of a pro-
jection technique discussed in [10, 39, 41]. The occupation
numbers are then no longer constant, a modification that
affects the effective dynamics of the Gaussian observ-
ables. The framework presented in this paper also serves
as groundwork for finite-density and finite-temperature dis-
cussions [42]. In particular, a finite matter-density calcu-
lation beyond the mean-field approximation allows one to
study such collisional observables as the transport coef-
ficients. The extension of this procedure to nonuniform
systems is straightforward, albeit long. In this case, the spa-
tial dependence of the field is expanded in natural orbitals of
the extended one-body density. A more general Bogoliubov
transformation [33] would relate these orbitals to a momen-
tum expansion.

The results in (12)-(16) are nonlinear time-dependent
field equations. A closed solution is not easily constructed.
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Here, we consider those equations in the small oscilla-
tion regime and find a closed solution offering insight into
diverse properties of the theory.

The paper is structured as follows: In Section 2, the
RPA equations are derived for this model by considering
near-equilibrium dynamics around the stationary solutions
obtained in Ref. [9]. Section 3 finds analytical solutions for
the RPA equations by using a well-known procedure from
the scattering theory. Section 4 discusses renormalization
within the context of scattering amplitudes and discusses the
existence of bound state solutions. Finally, we apply these
results to find limits to the intensity of the coupling con-
stant g of the Higgs—Yukawa model, in the RPA mean-field
approximation, for three decay channels of the Higgs boson.
Section 5 presents our conclusions.

2 Near-Equilibrium Dynamics

The energy density (20) is a function of the Nambu—
Bogoliubov parameters @k (¢), Yk(t), np(t), and kp(¢), of the

. . . T
quasiparticle occupation numbers vl(()‘s) = (0‘195) 0‘1((/\5)> and

Vp = (ﬂ;ﬂp ), and of the condensates (¢) and (IT). The
minimum in (20) corresponds to the ground state of the sys-
tem. The small-amplitude motion around the minimum is
obtained by linearization of the Gaussian motion equations
(12)—(16), yielding a set of harmonic oscillators [43]. The
eigenvalues and the normal modes of these small oscilla-
tions are the RPA solutions. Physically, the RPA solutions
are seen as the energy and the wave functions of quan-
tum particles. This section derives the RPA equations of the
model, whose solutions are discussed in Section 3.

First, we have to consider the stationary problem [9]. We
only have to recall (12)—(16) to see that yx = @k = kp =
Np = (¢) = (IT) = 0 under stationary conditions. Refer-
ence [9] discussed the renormalization conditions and the
solutions for this set of stationary equations in detail. In
particular, for the renormalization coefficients of H., the
following self-consistency renormalization prescription was
chosen [9, 25]:

D = +487g*L(m) (21)

Su? = F24ng*L(m)G () F 167g>G(0)

+247m>g> L(m) (22)
C = F487wmg>L(m) (23)
A = +£247mg3 L(m)G (1) + 167mgG (m) (24)
with
b = /k 2 (2 i m2)1/2’ =
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where M = m, without loss of generality [9].

The substitution of such counterterms in the stationary
equations yields the appropriate cancelations, which makes
the equations finite, except for the combination of the type
L(m)[G(n) — G(R2)]. Since 2 is an arbitrary expansion
mass parameter, one can remove this divergence by setting
Q = u [9]. The resulting finite stationary equations for the
system can be regrouped as follows:

sin iy, =0 (26)
(K +mm)

cot 2(pk|6q - |k|(m _ I’I_’l) (27)
77p|eq - 0 (28)
kpla =0 with Q=pn (29)
(M, =0 (30)
T2 — e (™) + 1] =0 G1)
P P)leg —gm” | In " 5| =0

Equations (26)—(31) can be numerically solved for any
given p and g, in units of m, as shown by Takano Natti
et al. [9].

To obtain the near-equilibrium dynamics (RPA regime),
we examine the fluctuations around the stationary solution,
namely,

Pk = @kl + 00K

Yk = Ykl + 0

Np = Tpleg + S1p

Kp = Kpleg + Skp

(@) = (D) + 8(e)
(I) = (I, + o(I1), (32)
where @kle 5 Vkleg s Mpleg » Kpleg » (@)]e and (IT)], satisfy
(26)—(31) and the deviations 8¢k, 8yk, 6np, dkp, 5(¢) and
8(IT) are assumed to be small.

Next, we expand (12)—(16) to first order in the fluctua-
tions. The following equations result:

k|

Spk = g (D)l ko

Sk (33)

g (D)l K| Sy = —d ko (K + %) Sgk — 2 g |kl ko 8(¢)

(34)
sy = s (35)
T (1+2)
5(1T) = — (“2 L DG >)a<¢> = C s
T T g Tag T2 VW 4y P

~ P asi+ 48/ Kl o G6)
8 eq @m)3 Jy (k’2+r7£2)1/2 o
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In the RPA regime, the bosonic variables show no
dynamical evolution.

The quantities §yx and §(IT) can be eliminated by dif-
ferentiating (33) and (35) with respect to time, so that
(33)—(36) are rewritten as the second-order differential
equations

S¢x = —4k3dpx — 2g1k|3(¢) (37)

1+ 2)8(¢) = = (1*+3) 8(9) +167¢ fk 1K), (38)

with the notation

ey = X (39)
kO

where

ko = VK2 4m2 (40)
2 D D 2

T =02+ 4G +C@)l+ ) (PP (4D

The small oscillation dynamics of the Higgs—Yukawa
system is therefore described by coupled equations of linear
oscillators, as usual in the RPA treatment [43]. In particu-
lar, when g = 0, these modes are decoupled and yield two
equations describing simple oscillators.

To solve the problem (37, 38), we have to determine the
normal modes of the small oscillations and their frequen-
cies. Earlier studies have demonstrated that these elemen-
tary excitations can be interpreted as quantum particles. In
our case, gk can be seen as two-fermion spinless wave
function [44], while §(¢) provides the one-boson physics of
the system [12]. The relative momentum of the two-fermion
states is |K| [44], while in the scalar sector, the particles have
no momentum dependence.

3 RPA Equations as a Scattering Problem

Section 2 obtained the linear approximation for the
Gaussian equations of motion (37, 38). We will now show
that these coupled linear oscillator equations can be ana-
Iytically solved, to determine the wave functions and the
elementary excitation spectrum of our system.

We first consider the Fourier transform of the wave
functions in the energy representation, i.e., the standard
relations

So(t) = / do Spi(@) ¢
S(8) (1) = f doo §(9) (@) €', 42)

where dgk(w) and 8(¢)(w) are now energy-dependent
amplitudes.
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We then substitute (42) into (37, 38), to obtain the
following equations:

(@ = 48 doxc@) = 2g IKI () (@) “3)

(wz—uz—i-sz—Z)S(d))(w) = —l6ng / h(K)dpK ().
k/
(44)

Since the oscillation amplitudes in (43, 44) play the roles
of wave functions of quantum particles, it is more conve-
nient to treat this system as a coupled-channel scattering
problem with appropriate boundary conditions [13]. The
following discussion will focus on the scattering process,
where the source is a two-fermion wave. In this case, from
(44), we have that

—l6rg

5(9) (@) = <a)2 sz E) /k/h(k/) Sei ().
45)

Substitution of (45) into (43) then yields the result

w® — 4k} Son() = —327g? |k|/
ko prle) = 0 — i+ Zo* -2 ) ko Jx

k']
ko
where the Green’s function includes the effects of coupling

Sgk to 8(¢p).
The potential is separable [45], in the sense that

k| (K|
ko k)

In the general solution of (46), the two-fermion wave
function §¢k(w) will have two terms. The first one is the
free solution (g = 0), which represents an incident wave.
The second term is the nontrivial part, arising when g # 0,
which couples different momenta and is associated with the
scattered wave [44, 45]. Therefore,

S (w), (46)

(k|VIK) = v(k) v(K) = (47)

k| 1
- Sk, q;w) = adlq—Kk) + _
o ¢k, q; w) (q—-k) [0 — 412 + ic]
—327g?
X
[0 — u? + Zo? — 2]
X |l§|2 |}(| oK', q; w)
ko Jr ko T

(48)

where q is the relative momentum for two incident quasi-
fermions and « is an overall phase factor. The outgoing-
wave (+i€) boundary condition was used to solve (46), but
other conditions, e.g., the incoming-wave condition (—i€)
or Van Kampen wave condition [46], could alternatively
have been chosen.
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The integral equation (48) can be solved as usual [45].
We integrate both sides with respect to k to obtain the
expression

o
/ v(K)Se (K, g; ) = , ,
k 32rg
1 I+
+<a)2—u2—|—2w2—2> @)
49
where “9)
k|2
I (w) = / i, _ 50
@=J ko [@? — 4k2 +ie] 0

with ko = VK2 + m2 , while i = m — g{(®)|, stands for
the effective mass of a fermion particle and (¢)|., is given
by (31). Substitution of this last result in (48) yields the
equality

(k| ako
_ ok, qow) =adlq—k) — _
g YR E@ =@ o b e
UL B L 51)
ko At(@) ko
with

AT (@) = w* — p? + Zew? — 2) + M), (52)

o
32mg?

Finally, substitution of (49) in (44) determines the
oscillation frequencies

© =233 = 2,/ + 2, (53)

where q is the relative momentum for two incident quasi-
fermions with mass .

We have therefore found an analytical solution for
the elastic channel of the two-fermion scattering problem
defined by (43) and (44).

Thanks to the special form of the interacting potential,
the following closed expression for scattering matrix can
also be obtained [45]:

1oy —
Tk, k'; w) =v(k) A+ (@)
with A (w) given by (52).
In summary, this section discussed the solutions of the
RPA equations. These elementary excitations describe a
coupled-channel scattering problem. The particular case of
two-fermion elastic process was studied. Given the simple
interacting potential, we were able to obtain closed expres-
sions for the two-fermion wave function and the scattering
matrix. Several dynamical behaviors can be read off from
AT (w). The remaining problem is the divergent integral
I (w) in (52), which will be removed with the help of
counterterms.

v(k) (54)
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In Section 4, we will see that, in addition to the coun-
terterms used in the stationary-state calculation [9], a con-
venient wave function renormalization constant Z will have
to be chosen.

4 Renormalization and Bound State Solution

We now use the framework developed in Refs. [12, 13, 44]
to investigate the conditions for the existence of bound states
of Dirac spin-1/2 particles in a Higgs—Yukawa system. The
standard procedure is to analyze the positions of the poles of
the scattering matrix (54). Equation (52), however, contains
a divergent integral. We will next show that the divergent
terms can be kept directly under control with the help of
(21)—(24) and a convenient choice for Z, which yields a
finite expression for AT (w).

We therefore substitute the counterterms (21)—(24) in
(52) and, after some algebra, obtain the expression

At (w) = (1 + Z)w* — u* +167g>G(0)

1
32 g? [
—247tg2M2L(m)] F It (55

with I T (w) given by (50).

In the interval 0 < @ < 2m, the integral I, is well
defined, and we can let ¢ = 0. For w > 2m, on the other
hand, the spectrum defines a continuum. Straightforward
calculation yields the result

_o_ ! (2 a2 P2 42
I(w) =0 8712F(w) 0 (a) 4m ) o [w 4m ],
with (56)
2
0= : |:A2 + <a) — 3ﬁ12> log 2Ai| , (57)
47 2 m

where a regularizing momentum cutoff A was introduced,
and the finite term F'(w) is given by the relation

7 2 (42 — ?)?
Flw) = <w2—6n_12)10g<m)+ ( )
2m w
1 w? 2 =2
tan 42 — o2 0<w <4m (58)
A\ 2(w?—4m?)?
Flw) = (ﬁzz—6a)2)log<m)+ ( )
2m w
2 _4'2
log © " Vol —dm? o > 4. (59)
0 — N w? — 4?2

In (56), 6 is the Heaviside function, defined by the
relations

0 (a)2 - 4@2) =0 if w? < 45

0 (a)2 — 4@2) —1 if W? > 4in’. (60)
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From (55)—(57), we can immediately see that there is still a
logarithmic divergence. To cancel it, we choose the follow-
ing wave function renormalization [25]:

7= 471g2L(m) . (61)
The resulting finite expression is

Tu?

oy
AT (w) = T g2m?

+F(w)—6 (w - 4;1‘12) 8’;1 [a)2 - 4@2] .
(62)

The derivation of (62) fixed several counterterms, given
by (21)—(24), and (61), to eliminate the divergences. These
counterterms are not unique, since they are well defined
except for a finite additive constant. This makes the results
dependent on the renormalization scheme. The arbitrary
finite constants are usually determined by high-energy
experiments. The dependence on the renormalization scale
is therefore often used to estimate the accuracy of the the-
ory. In the case of a scalar plasma system, or Higgs—Yukawa
system, Takano Natti et al. [9] and Alonso and Hakim [24,
25] have discussed the determination of these arbitrary
finite constants to obtain the finite stationary (26)—(31) in
canonical form.

We next face the problem of obtaining the poles of the
scattering matrix when

AT(w)=0. (63)

Depending on w, the system has different dynamical
behaviors [44]. For w? < 0, the system is unstable, since
the exponentials on the right-hand sides of (42) become
real. For w? > 0, by contrast, the system is in the scat-
tering regime. The solution of interest lies in the interval
0 < w? < 4m?>. In this interval, the system may have a
stable bound state if there exist w, such that AT (w,) = 0.
Figure 1 shows AT(w) as a function of w/m, when
g = 1, for three combinations of w, in unit of m. Also for
g = 1, AT(w) has a single (no) zero when u/m < 1.794
(u/m > 1.794). A natural interpretation considers that, at
fixed coupling, the boson mass determines the range of the
Yukawa potential. When p is large, it is more difficult for
the fermions to interact, and consequently, the probability
of forming a bound state decreases. This behavior is, how-
ever, compensated by increases in g, as shown in Fig. 2,
which plots the condition (63) in the (u/m , g) plane.

Figure 2 shows that the behavior of ;t/m x g becomes
nearly linear for g > 50. We can apply these results,
obtained from the Higgs—Yukawa model in the RPA mean-
field approximation, to recent observations at the Large
Hadron Collider (LHC, ATLAS and CMS collaborations),
which led to the announcement of a possible observation of
a Higgs boson [14—16]. In the experiments, five decay chan-
nels of the Higgs boson ¢ were observed, i.e., ¢ — yy,
¢ — bb,¢p — ttt, ¢ - WW, and ¢ — ZZ.

10.0
0.0 ) |
| e ~ /
:<T -10.0 ///// ,/7 7
-20.0 + - ! 7
>/>/z/‘ VVVVVVVVVVVV wm=1.0, g=1
- T Wm=1794, g=1
—-— Wm=2.5, g=1
-30.0 | ‘ ‘
0.0 05 1.0 1.5 2.0
®/m

Fig. 1 The behavior of the function AT (w) as a function of energy w,
in unit of m, for several values of the p/m, when g = 1 is fixed

The production of Higgs bosons in proton—proton colli-
sions is known to occur through multiple channels, with
branching ratios dependent on the mass of the Higgs boson.
Reference [47] presents the branching ratios of the Higgs
decay channels as a function of its mass. For Higgs masses
below 130 GeV/c?, the Higgs boson is expected to decay
mainly in the following fermions: bottom quarks b, charmed
quarks c, and tau leptons t.

From Fig. 2, we can determine limits to the intensity of
the coupling constant g of the Higgs—Yukawa model, in the
RPA mean-field approximation, for each decay channel of
the Higgs boson. Let us consider a Higgs boson mass of
my = 125 GeV/c? and masses my = 4.2 GeV/c?, my =
1.8 GeV/c?, and me = 1.3 GeV/c? for the botton quarks
b, tau leptons 7, and charmed quarks c, respectively [47].

6.0

50

a0l No Bound State Region

3.0

wm

2.0

1.0 Bound State Region g
0.0 ‘
0.0 50.0 10.00
g

Fig. 2 Existence of bound state of two fermion as a function of
parameters (/m and g
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We then have the following ratios between the Higgs boson
mass and the masses of the three fermions:

Mo ~30 . M0 M

np mq me

~ 95. (64)

Therefore, for these mass ratios and no bound states
of fermions (decay channels), the intensity of the Higgs—
Yukawa coupling for the decay channel ¢ — bb is limited
by the condition g(¢, b) < 570. Similarly, for the decay
channel ¢ — t77~, one obtains g(¢, ) < 1,300, and for
the decay channel ¢ — cc, one obtains g(¢, ¢) < 1,800.

Figure 2 shows that, in our approach, only two-fermion
bound states can exist for u/m < 1.1. These results con-
tradict the predictions of the Higgs boson decaying into
top quarks, since m;, = 173 GeV/c? yields me/m; =
125/173 = 0.7. Our calculations indicate that only Higgs
bosons with masses larger than 190 GeV/c? can decay into
top quarks. These results are consistent with those in the
literature [47].

Finally, we want to emphasize that the phase diagram
in Fig. 2 was obtained in RPA mean-field approximation.
As discussed in Refs. [41, 48-50], the contribution of the
collisional effects grows with the coupling constant g. For
large g, one finds large nonunitary contributions from the
collisional effects. For coupling constants in the range 0 <
g < 100, the corrections, i.e., the collisional terms, can-
not be neglected. Systematic corrections adding dynamical
correlation effects to the RPA mean-field calculations can
in principle be readily obtained with the help of a projec-
tion technique discussed in Refs. [9, 39, 41]. The resulting
occupation numbers are no longer constant and affect the
effective dynamics of the Gaussian observables. In particu-
lar, a finite matter-density calculation beyond the mean-field
approximation would allow the study of such collisional
observables as the transport coefficients.

5 Conclusions

Takano Natti et al. [9] treated the initial value problem in
a quantum-field theory of interacting fermion—scalar field
theories in the Gaussian approximation. Although quite gen-
eral, the procedure was implemented for the vacuum of an
uniform (3 + 1) dimensional relativistic quantum Higgs—
Yukawa model. The TDHF renormalized kinetic equations
describing the effective dynamics of the Gaussian observ-
ables in the mean-field approximation were obtained.

The present work has adapted a nonperturbative frame-
work, the Kerman—Lin procedure [10—12], to investigate the
near-equilibrium dynamics close to the stationary solution
of arbitrary interacting fermion—scalar field theories. As an
application, we have chosen to describe the RPA excitation
of the Higgs—Yukawa system at zero temperature.

@ Springer
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We have studied the linearized form of the mean-field
kinetic equations in Ref. [9] around the stationary (vacuum)
solution. In this context, the RPA oscillation amplitudes of
excitations were identified with the wave functions of quan-
tum particles and the resulting equations enabled us to study
scattering processes, nonperturbatively. These RPA equa-
tions were solved analytically by well-known scattering-
theory procedures, which yielded a simple form for the
scattering amplitude. We have also shown that the usual
definitions of counterterms can be applied to the resulting
expression, from which relevant physical aspects of the sys-
tem excitations can be obtained. In particular, the results
indicate that bound states exist in a certain region of the
phase diagram.

We have applied our results to recent observations at the
LHC ATLAS and CMS collaborations. We have obtained
limits for the intensity of the coupling constant g of the
Higgs—Yukawa model, in the RPA mean-field approxima-
tion, for three decay channels of the Higgs boson.

Finally, we comment that, in principle, systematic correc-
tions can readily be added to the RPA mean-field treatment
with the help of a projection technique discussed in Refs.
[9, 39, 41]. The no longer constant occupation numbers will
affect the effective dynamics of the Gaussian observables.
The framework in this paper also serves as groundwork to
discussions of finite densities and finite temperatures [42].
In particular, a finite matter-density calculation beyond the
mean-field approximation allows one to study collisional
observables, such as transport coefficients. The extension
of this procedure to explore nonuniform systems is straight-
forward; unfortunately, it is tedious. In this case, the spatial
dependence of the field is expanded in natural orbitals of the
extended one-body density. These orbitals can be expressed
in terms of a momentum expansion by means of a more
general Bogoliubov transformation [33, 35].

Acknowledgments The author P. L. Natti thanks the State Univer-
sity of Londrina for the financial support received from the FAEPE
programs.

References

1. J. Berges, Introduction to nonequilibrium quantum field theory.
AIP Contf. Proc. 739, 3 (2004)

2. M. Garny, A. Hohenegger, A. Kartavtsev, M. Lindner, Systematic
approach to leptogenesis in nonequilibrium QFT: self-energy con-
tribution to the CP-violating parameter. Phys. Rev. D 81, 085027
(2010)

3. A. Chodos, F. Cooper, W. Mao, A. Singh, Equilibrium and
nonequilibrium properties associated with the chiral phase transi-
tion at finite density in the Gross-Neveu model. Phys. Rev. D 63,
096010 (2001)

4. B. Mohanty, J. Serreau, Disoriented chiral condensate: theory and
experiment. Phys. Rep. 414, 263 (2005)



Braz J Phys (2013) 43:172-181

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. R.L.S. Farias, N.C. Cassol-Seewald, G. Krein, R.O. Ramos,

Nonequilibrium dynamics of quantum fields. Nucl. Phys. A 782,
33 (2007)

. C.Y. Lin, E.J.V. Passos, A.FR. de Toledo Piza, D.S. Lee, M.S.

Hussein, Bogoliubov theory for mutually coherent hybrid atomic
molecular condensates: quasiparticles and superchemistry. Phys.
Rev. A 73, 013615 (2006)

. S. Gopalakrishnan, B.L. Lev, PM. Goldbart, Atom-light crystal-

lization of BECs in multimode cavities: nonequilibrium classical
and quantum phase transitions, emergent lattices, supersolidity,
and frustration. Phys. Rev. A 82, 043612 (2010)

. M. Eckstein, A. Hackl, S. Kehrein, M. Kollar, M. Moeckel, P.

Werner, F.A. Wolf, New theoretical approaches for correlated sys-
tems in nonequilibrium. Eur. Phys. J. Special Topics 180, 217
(2010)

. E.R. Takano Natti, C.Y. Lin, A.ER. de Toledo Piza, P.L.

Natti, Initial-value problem in quantum field theory: an appli-
cation to the relativistic scalar plasma. Phys. Rev. D 60,
125013 (1999)

A.FR. de Toledo Piza, in Lectures Notes in Physics, vol 171, ed.
by K. Goeke, P.G. Reinhardt. Time-dependent Hartree-Fock and
Beyond (Springer, Berlin, 1982)

M.C. Nemes, A.ER. de Toledo Piza, Effective dynamics of quan-
tum systems. Phys. A 137, 367 (1986)

A. Kerman, C.Y. Lin, Time-dependent variational principle for
¢* field theory: 1. RPA approximation and renormalization. Ann.
Phys. (N.Y.) 241, 185 (1995)

A. Kerman, C.Y. Lin, Time-dependent variational principle for ¢*
field theory: RPA approximation and renormalization (II). Ann.
Phys. (N.Y.) 269, 55 (1998)

F. Gianotti, CERN seminar: update on the Standard Model Higgs
searches in ATLAS (2012). http://cdsweb.cern.ch/record/1460439/
files/ATLAS-CONF-2012-093.pdf. Accessed 1 Apr 2013

J. Incandela, CERN seminar: update on the Standard Model Higgs
searches in CMS (2012). http://cdsweb.cern.ch/record/1460438/
files/HIG-12-020-pas.pdf. Accessed 1 Apr 2013

D. Carmia, A. Falkowskib, E. Kuflik, T. Volanskya, J. Zupand,
Higgs after the discovery: a status report (2012). http://arxiv.org/
pdf/1207.1718.pdf. Accessed 1 Apr 2013

P. Gerhold, K. Jansen, J. Kallarackal, The Higgs boson resonance
width from a chiral Higgs-Yukawa model on the lattice. Phys. Lett.
B 710, 697-702 (2012)

P. Gerhold, K. Jansen, J. Kallarackal, Higgs boson mass bounds
in the presence of a very heavy fourth generation quark. J. High
Energy Phys. 1101, article 143 (2011)

G. Kalman, Equilibrium and linear response of a classical scalar
plasma. Phys. Rev. 161, 156 (1967)

G. Kalman, Relativistic fermion gas interacting through a scalar
field. I. Hartree approximation. Phys. Rev. D 9, 1656 (1974)

J.D. Walecka, A theory of highly condensed matter. Ann. Phys.
(N.Y.) 83, 491 (1974)

R. Hakim, Statistical-mechanics of relativistic dense matter. Riv.
Nuovo Cim. 1, 1 (1978)

M. Wakamatsu, A. Hayashi, Phase-transition to abnormal nuclear-
matter at finite temperature and finite barion density. Prog. Theor.
Phys. 63, 1688 (1980)

J.D. Alonso, R. Hakim, Quantum fluctuations of the relativistic
scalar plasma in the Hartree-Vlasov approximation. Phys. Rev. D
29, 2690 (1984)

J.D. Alonso, R. Hakim, Quasiboson excitation spectrum of the
relativistic quantum scalar plasma in the Hartree-Vlasov approxi-
mation. Phys. Rev. D 38, 1780 (1988)

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

181

J.D. Alonso, A.P. Canyellas, Field theoretical-model for nuclear
and neutron matter. 5. Slowly rotating warm cores in neutron-stars.
Astrophys. J. 395, 612 (1992)

J. Baacke, K. Heitmann, C. Patzold, Nonequilibrium dynamics
of fermions in a spatially homogeneous scalar background field.
Phys. Rev. D 58, 125013 (1998)

D. Boyanovsky, H.J. Vega, D.S. Lee, Y.J. Ng, S.Y. Wang, Fermion
damping in a fermion-scalar plasma. Phys. Rev. D 59, 105001
(1999)

J. Baacke, D. Boyanovsky, H.J. Vega, Initial time singularities in
nonequilibrium evolution of condensates and their resolution in
the linearized approximation. Phys. Rev. D 63, 045023 (2001)

O. Scavenius, A. Mécsy, I.N. Mishustin, D.H. Rischke, Chiral
phase transition within effective models with constituent quarks.
Phys. Rev. C 64, 045202 (2001)

J. Berges, S. Borsnyi, J. Serreau, Thermalization of fermionic
quantum fields. Nucl. Phys. B 660, 5180 (2003)

E.S. Fraga, L.F. Palhares, M.B. Pinto, Nonperturbative Yukawa
theory at finite density and temperature. Phys. Rev. D 79, 065026
(2009)

P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer,
New York, 1980)

PL. Natti, A.FR. de Toledo Piza, Initial-condition problem for a
chiral Gross-Neveu system. Phys. Rev. D 54, 7867 (1996)

C.R. Willis, R.H. Picard, Time-dependent projection-operator
approach to master equations for coupled systems. Phys. Rev. A
9, 1343 (1974)

L.C. Yong, A.FR. de Toledo Piza, Kinetic approach to the initial-
value problem in ¢ field theory. Phys. Rev. D 46, 742 (1992)
J.M. Luttinger, J.C. Ward, Ground-state energy of a many-fermion
system. II. Phys. Rev. 118, 1417 (1960)

G. Baym, Self-consistent approximations in many-body systems.
Phys. Rev. 127, 1391 (1962)

P. Buck, H. Feldmeier, M.C. Nemes, On energy conservation in
the presence of collision terms. Ann. Phys. 185, 170 (1988)

Y.B. Ivanov, J. Knoll, D.N. Voskresensky, Self-consistent approxi-
mations to non-equilibrium many-body theory. Nucl. Phys. A 657,
413 (1999)

E.R. Takano Natti, A.FR. de Toledo Piza, Mean field and colli-
sional dynamics of interacting fermion-boson system: the Jaynes-
Cummings model. Phys. A 236, 321 (1997)

P. Tommasini, A.F.R. de Toledo Piza, Non-ideal boson system in
the gaussian approximation. Ann. Phys. (N.Y.) 253, 198 (1997)
A. Kerman, S.E. Koonin, Hamiltonian formulation of time-
dependent principles for many-body system. Ann. Phys. (N.Y.)
100, 332 (1976)

P.L. Natti, A.ER. de Toledo Piza, Small oscillations of a chiral
Gross-Neveu system. Phys. Rev. D 55, 3403 (1997)

R. Newton, Scattering Theory of Waves and Particles (Springer,
New York, 1982)

M.C. Nemes, A.FR. de Toledo Piza, J. Providéncia, Van
Kampen waves in extended fermion systems and the random
phase approximation. Phys. A 146, 282 (1987)

J. Beringer et al. (Particle Data Group), Review of particle
physics. Phys. Rev. D 86, 010001 (2012) [1528 pages]

M.C. Nemes, A.F.R. de Toledo Piza, Nonunitary effects in the time
evolution of one-body observables. Phys. Rev. C 27, 862 (1983)
M.C. Nemes, A.F.R. de Toledo Piza, Dynamics of the nuclear one-
body density: small amplitude regime. Phys. Rev. C 31, 613 (1985)
B.V. Carlson, M.C. Nemes, A.FR. de Toledo Piza, Quantum
collisional evolution of a one-dimensional fermi gas: numerical
solution. Nucl. Phys. A 457, 261 (1986)

@ Springer


http://cdsweb.cern.ch/record/1460439/files/ATLAS-CONF-2012-093.pdf
http://cdsweb.cern.ch/record/1460439/files/ATLAS-CONF-2012-093.pdf
http://cdsweb.cern.ch/record/1460438/files/HIG-12-020-pas.pdf
http://cdsweb.cern.ch/record/1460438/files/HIG-12-020-pas.pdf
http://arxiv.org/pdf/1207.1718.pdf
http://arxiv.org/pdf/1207.1718.pdf

	Elementary Excitations of a Higgs–Yukawa System
	Abstract
	Introduction
	Near-Equilibrium Dynamics
	RPA Equations as a Scattering Problem
	Renormalization and Bound State Solution
	Conclusions
	References


