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Abstract
We use Lie-theoretic methods to explicitly compute
the full spectrum of the Laplace–Beltrami operator on
homogeneous spheres which occur as geodesic distance
spheres in (compact or non-compact) symmetric spaces
of rank one, and provide a single unified formula for all
cases. As an application, we find all resonant radii for
distance spheres in the compact case, that is, radii where
there is bifurcation of embedded constant mean curva-
ture spheres, and show that distance spheres are stable
and locally rigid in the non-compact case.
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1 INTRODUCTION

The family of (simply connected) symmetric spaces of rank one consists of spheres and projective
spaces 𝕊𝑛, ℂ𝑃𝑛, ℍ𝑃𝑛, ℂa𝑃2, together with their non-compact duals, the hyperbolic spaces 𝐻𝑛,
ℂ𝐻𝑛, ℍ𝐻𝑛, ℂa𝐻2. As Riemannian manifolds, these are two-point homogeneous spaces, that is,
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any two pairs of points at the same distance can be mapped to one another by an isometry. In
particular, their distance spheres

𝑆(𝑟) =
{
𝑥 ∈ 𝑀 ∶ dist(𝑥0, 𝑥) = 𝑟

}
,

are homogeneous spaces themselves, and two distance spheres are isometric if and only if they
have the same radius, regardless of their centers. These homogeneous spheres are the main
object of study in this paper; in which we shall use Lie theory to explicitly compute their entire
Laplace spectrum, and determine their stability (or lack thereof) as constant mean curvature
(CMC) hypersurfaces.
While distance spheres 𝑆(𝑟) in 𝕊𝑛 and 𝐻𝑛 have constant curvature, that is, are isometric to

round spheres, just like in ℝ𝑛, this is no longer the case in projective and hyperbolic spaces. Geo-
metrically, 𝑆(𝑟) ⊂ 𝑀 are obtained by rescaling the unit roundmetric in the vertical direction(s) of
the corresponding Hopf bundle by 𝑡 > 0:

𝕊1𝑡 ⟶
(
𝕊2𝑛+1, 𝐠(𝑡)

)
⟶ℂ𝑃𝑛, if𝑀 = ℂ𝑃𝑛+1 or ℂ𝐻𝑛+1;

𝕊3𝑡 ⟶
(
𝕊4𝑛+3, 𝐡(𝑡)

)
⟶ℍ𝑃𝑛, if𝑀 = ℍ𝑃𝑛+1 or ℍ𝐻𝑛+1;

𝕊7𝑡 ⟶
(
𝕊15, 𝐤(𝑡)

)
⟶𝕊8

1∕2
, if𝑀 = ℂa𝑃2 or ℂa𝐻2;

(1.1)

where 𝕊𝓁𝑡 denotes the 𝓁-dimensional sphere of constant curvature sec = 1∕𝑡2, and then glob-
ally rescaling all directions by 𝛼 > 0. With the convention (used throughout this paper) that the
above projective and hyperbolic spaces with their canonical metrics have sectional curvatures
1 ⩽ sec𝑀 ⩽ 4 and −4 ⩽ sec𝑀 ⩽ −1, respectively, the values of 𝑡 and 𝛼 for 𝑆(𝑟) ⊂ 𝑀 are related to
its geodesic radius 𝑟 as follows:

𝑡 = cos 𝑟 and 𝛼 = sin 𝑟, 0 < 𝑟 < 𝜋∕2, if𝑀 is a projective space;

𝑡 = cosh 𝑟 and 𝛼 = sinh 𝑟, 𝑟 > 0, if𝑀 is a hyperbolic space.
(1.2)

Note that, with these conventions, the above projective spaces have diameter 𝜋∕2. Of course, all
𝑆(𝑟) become asymptotically round as 𝑟 ↘ 0, that is, they converge (up to homothety by 𝛼) to the
unit roundmetric, which corresponds to 𝑡 = 1 in each of the families 𝐠(𝑡), 𝐡(𝑡), and 𝐤(𝑡). Further-
more, only the metrics with either 𝑡 < 1 or 𝑡 > 1 appear (up to homotheties) as distance spheres
𝑆(𝑟) ⊂ 𝑀, according to whether𝑀 is projective or hyperbolic.
It is convenient to refer to the Riemannian submersions (1.1) collectively as

𝕊2𝑑−1𝑡 ⟶
(
𝕊𝑁−1, g(𝑡)

)
⟶𝕂𝑃𝑛, (1.3)

where 𝕂 ∈ {ℂ, ℍ, ℂa}, 𝑑 = dimℂ 𝕂 ∈ {1, 2, 4}, 𝑛 ⩾ 1, and 𝑁 = 2𝑑(𝑛 + 1) = dim𝑀 is the (real)
dimension of the ambient space 𝕂𝑃𝑛+1 or 𝕂𝐻𝑛+1. Recall that if 𝕂 = ℂa, that is, 𝑑 = 4, only 𝑛 = 1
is possible due to the non-associativity of Cayley numbers [2, 19], and (1.3) is not a homogeneous
fibration [14, 16].
Since the fibers of (1.3) are totally geodesic, the projection map “commutes” the Laplace–

Beltrami operators of total space and base. In particular, lifting a Laplace eigenfunction of 𝕂𝑃𝑛
produces a Laplace eigenfunction of (𝕊𝑁−1, g(𝑡)), with the same eigenvalue. Such eigenvalues
are called basic, and are independent of 𝑡. Although it has been known for a long time that all
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eigenvalues are sums of basic eigenvalueswith certain Laplace eigenvalues of the fiber [5, 6], deter-
mining exactly which sums of eigenvalues from 𝕂𝑃𝑛 and 𝕊2𝑑−1 indeed appear in the spectrum of
the total space can be somewhat impractical. We circumvent this with an alternative Lie-theoretic
approach based on [21], recently used in [7, 20] and expanded in Section 2 below, which yields our
first main result.

Theorem A. The spectrum of the Laplace–Beltrami operator on the homogeneous sphere
(𝕊𝑁−1, g(𝑡)),𝑁 = 2𝑑(𝑛 + 1), as in (1.3), consists of the eigenvalues

𝜆(𝑝,𝑞)(𝑡) = 4𝑝(𝑝 + 𝑞 + 𝑑(𝑛 + 1) − 1) + 2𝑑𝑛𝑞 + 𝑞(𝑞 + 2𝑑 − 2) 1
𝑡2
, 𝑝, 𝑞 ∈ ℕ0, (1.4)

which are basic if 𝑞 = 0, and have multiplicity

𝑚𝑝,𝑞 =
2𝑝 + 𝑞 + 𝑑(𝑛 + 1) − 1

𝑑(𝑛 + 1) − 1

(𝑝+𝑞+𝑑(𝑛+1)−2
𝑝+𝑞

)(𝑝+𝑑𝑛−1
𝑝

)
(𝑝+𝑞+𝑑−1

𝑝+𝑞

) 𝜒(𝑑, 𝑞), (1.5)

where𝜒(𝑑, 𝑞) = (1 + 𝑞
𝑑−1

) Γ(𝑞+2𝑑−2)
Γ(𝑞+1)Γ(2𝑑−2)

. If different pairs (𝑝, 𝑞) give the same value 𝜆(𝑝,𝑞)(𝑡), themul-
tiplicity of that eigenvalue is the sum of all the corresponding𝑚𝑝,𝑞 .

We take the convention that 𝜒(𝑑, 𝑞) is extended by continuity to its removable singularity at
𝑑 = 1, that is,

𝜒(1, 𝑞) = lim
𝑑→1

(
1 +

𝑞

𝑑 − 1

) Γ(𝑞 + 2𝑑 − 2)

Γ(𝑞 + 1)Γ(2𝑑 − 2)
=

{
1 if 𝑞 = 0

2 if 𝑞 ⩾ 1,

sinceΓ(𝑧)has a simple pole at 𝑧 = 0 of residue 1, andΓ(𝑎) = (𝑎 − 1)! for all 𝑎 ∈ ℕ. Moreover, if 𝑑 ⩾

2, note that 𝜒(𝑑, 𝑞) = (1 + 𝑞
𝑑−1

)
(𝑞+2𝑑−3

𝑞

)
for all 𝑞 ∈ ℕ0. As usual, we agree that

(𝑎
𝑏

)
= 0 if 𝑎 < 𝑏.

Despite the convenient unified formulae (1.4) and (1.5), the proof of Theorem A is done analyzing
each case 𝕂 ∈ {ℂ, ℍ, ℂa} separately, and corresponding formulae can be found in Section 6.
Note that setting 𝑡 = 1 in (1.4), the eigenvalues 𝜆(𝑝,𝑞)(1) = 𝑘(𝑘 + 𝑁 − 2), 𝑘 ∈ ℕ0, of the unit

round sphere 𝕊𝑁−1 are recovered, with 𝑘 = 2𝑝 + 𝑞. Moreover, (1.5) and combinatorial identities
show that its multiplicity

(𝑘+𝑁−1
𝑁−1

)
−
(𝑘+𝑁−3

𝑁−1

)
is equal to the sum of 𝑚𝑝,𝑞 over all 𝑝, 𝑞 ∈ ℕ0 satis-

fying 2𝑝 + 𝑞 = 𝑘. Similarly, setting 𝑞 = 0, one recovers the eigenvalues 𝜆(𝑝,0)(𝑡) = 4𝑝(𝑝 + 𝑑(𝑛 +
1) − 1), 𝑝 ∈ ℕ0, of the projective space 𝕂𝑃𝑛 and the corresponding multiplicities.
Several partial descriptions of the spectra in TheoremAappear in the literature, for example, [4,

8, 23, 24]; in particular, the first (non-zero) eigenvalue was computed in [8], see also [7]. However,
to the best of our knowledge, the full Laplace spectrum cannot be directly extracted from these
earlier results.
Using TheoremA and (1.2), the full spectrum of the Laplace–Beltrami operator on any distance

sphere 𝑆(𝑟) in a rank one symmetric space𝑀 can be easily computed, sinceΔ𝛼g =
1
𝛼
Δg. Although

the lowest dimensional cases are excluded as 𝑛 ⩾ 1 in (1.1), these are trivial sinceℂ𝑃1 ≅ 𝕊2( 1
2
) and

ℍ𝑃1 ≅ 𝕊4( 1
2
) are isometric to round spheres with sec𝑀 = 4; and ℂ𝐻1 ≅ 𝐻2(1

2
) and ℍ𝐻1 ≅ 𝐻4(1

2
)

are isometric to real hyperbolic spaces with sec𝑀 = −4, so distance spheres 𝑆(𝑟) ⊂ 𝑀 in any of
these spaces are just round spheres.
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The spectrum of distance spheres is closely related to the local ambient geometry, for example,
it detects whether a harmonic space is locally symmetric [1]. One of its global consequences is
explored in our second main result, concerning the existence of other embedded CMC spheres
near distance spheres. More precisely, a distance sphere 𝑆(𝑟∗) ⊂ 𝑀 is resonant if there exists a
sequence 𝑟𝑗 of radii converging to 𝑟∗ and a sequence Σ𝑗 ⊂ 𝑀 of embedded spheres converging
to 𝑆(𝑟∗), with CMC 𝐻(Σ𝑗) = 𝐻(𝑆(𝑟𝑗)), which are not congruent to 𝑆(𝑟𝑗). Note that 𝑆(𝑟∗) is non-
resonant if and only if, up to ambient isometries, 𝑆(𝑟) are locally the only embedded CMC spheres
with theirmean curvature if 𝑟 is sufficiently close to 𝑟∗. Recall that a hypersurfaceΣ ⊂ 𝑀 has CMC
𝐻 if and only if it is a stationary point for the functional Area(Σ) + 𝐻 Vol(Σ), where Area(Σ) is
the (𝑁 − 1)-volume of Σ and Vol(Σ) is the 𝑁-volume of the region enclosed by Σ in 𝑀, and Σ is
stable if it is locally a minimum.

Theorem B. The distance spheres 𝑆(𝑟) in the projective spaces ℂ𝑃𝑛+1, ℍ𝑃𝑛+1, 𝑛 ⩾ 1, and ℂa𝑃2 are
resonant if and only if 𝑟 = 𝑟𝑝 for some 𝑝 ∈ ℕ, where

𝑟𝑝 ∶= arctan

√
4𝑝(𝑝 − 1) + 𝑁(2𝑝 − 1) + 1

2𝑑 − 1
,

𝑑 = dimℂ 𝕂 ∈{1, 2, 4} per 𝕂 ∈ {ℂ, ℍ, ℂa}, and𝑁 = dim𝕂𝑃𝑛+1 = 2𝑑(𝑛 + 1). On the other hand, for
all 𝑟 > 0, the distance spheres 𝑆(𝑟) in the hyperbolic spaces ℂ𝐻𝑛+1, ℍ𝐻𝑛+1, 𝑛 ⩾ 1, and ℂa𝐻2 are
stable and non-resonant.

The existence of infinitelymany resonant distance spheres inℂ𝑃𝑛+1 andℍ𝑃𝑛+1 with radii accu-
mulating at 𝜋∕2 had been established in [9]. Nevertheless, the coarser equivariant spectral meth-
ods used there do not allow one to explicitly determine which radii 0 < 𝑟 < 𝜋∕2 are resonant, nor
to handle the case of ℂa𝑃2, since (1.3) is not a homogeneous fibration if 𝕂 = ℂa. Moreover, it was
known that 𝑆(𝑟) ⊂ 𝕂𝑃𝑛+1 is stable if and only if 0 < 𝑟 < 𝑟1 = arctan

√
𝑁+1
2𝑑−1

, see [4, Theorems 1.3
and 1.4], and that 𝑆(𝑟) ⊂ 𝕂𝐻𝑛+1 are stable for all 𝑟 > 0, see [22, Theorem 2].
The path leading from Theorem A to Theorem B is that the stability operator (or Jacobi opera-

tor) for a CMC hypersurface Σ ⊂ 𝑀 is 𝐽Σ = ΔΣ − (Ric(𝑛Σ) + ‖𝐴Σ‖2); hence, its spectrum is a shift
of the Laplace spectrum of Σ by a curvature term, which is constant if Σ is a distance sphere 𝑆(𝑟)
as above. Stability of 𝑆(𝑟) is equivalent to non-negativity of the first eigenvalue of 𝐽𝑆(𝑟), while res-
onance of 𝑆(𝑟∗) is detected by eigenvalues of 𝐽𝑆(𝑟) crossing zero at 𝑟 = 𝑟∗, see Section 7 for details.
This paper is organized as follows. Section 2 describes a Lie-theoretic approach tailored to com-

pute the Laplace spectrum on the total space of Riemannian submersions such as (1.1). The out-
come for the first families in (1.1) is given in Sections 3 and 4, respectively, while Section 5 deals
with the third case. These results are unified in Section 6, with the proof of TheoremA. The appli-
cations regarding resonance and rigidity are discussed in Section 7, where Theorem B is proven.

2 COMPUTING THE LAPLACE SPECTRUMOF AHOMOGENEOUS
SPACE

2.1 Basic setting

Let 𝖧 ⊂ 𝖪 ⊂ 𝖦 be compact Lie groups, with Lie algebras 𝔥 ⊂ 𝔨 ⊂ 𝔤. Fix a bi-invariant metric on 𝖦,
that is, anAd(𝖦)-invariant inner product ⟨⋅, ⋅⟩0 on 𝔤. For instance, a natural choice onmostmatrix
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Lie groups is

⟨𝑋,𝑌⟩0 = −1
2
Re(tr(𝑋𝑌)). (2.1)

Let 𝔭 and 𝔮 be the ⟨⋅, ⋅⟩0-orthogonal complements of 𝔥 in 𝔨, and 𝔨 in 𝔤, so that 𝔨 = 𝔥 ⊕ 𝔭 and
𝔤 = 𝔨 ⊕ 𝔮 = 𝔥 ⊕ (𝔭 ⊕ 𝔮) are Cartan decompositions. In particular, the 𝖧-action on 𝔭 ⊕ 𝔮 via
the adjoint representation of 𝖦 is identified with the isotropy representation of 𝖦∕𝖧. Note that
although 𝔭 and 𝔮 are subrepresentations, they need not be irreducible. Consider the family of
Ad(𝖧)-invariant inner products

⟨⋅, ⋅⟩(𝑟,𝑠) = 1
𝑟2
⟨⋅, ⋅⟩0||𝔭 + 1

𝑠2
⟨⋅, ⋅⟩0||𝔮, 𝑟, 𝑠 > 0, (2.2)

on 𝔭 ⊕ 𝔮, which induces a corresponding family of 𝖦-invariant metrics g(𝑟,𝑠) on 𝖦∕𝖧.
Up to homotheties, this is the canonical variation of the Riemannian submersion

𝖪∕𝖧⟶ 𝖦∕𝖧⟶ 𝖦∕𝖪, (2.3)

where all spaces are endowed with normal homogeneous metrics induced by ⟨⋅, ⋅⟩0. In geometric
terms, g(𝑟,𝑠) is obtained by rescaling the vertical and horizontal directions of (2.3) by 1∕𝑟 and 1∕𝑠,
respectively. If 𝔭 and 𝔮 are irreducible and non-equivalent as 𝖧-modules, then any 𝖦-invariant
metric on 𝖦∕𝖧 is isometric to some g(𝑟,𝑠).

2.2 The Lie-theoretic method

In this section, we describe the Lie-theoretic procedure to compute the Laplace–Beltrami spec-
trum of (𝖦∕𝖧, g(𝑟,𝑠)), which relies on knowledge of representation branching rules involving 𝖦, 𝖪,
and 𝖧. The discussion below is based on [21] and our earlier work [7, §2], and provides a compu-
tationally efficient alternative to more classical methods in [5, 6].

Notation 2.1. Given a compact Lie group 𝖩, let 𝖩̂ be its unitary dual, that is, the set of equiva-
lence classes of irreducible unitary representations of 𝖩. We shall consider elements of 𝖩̂ as repre-
sentations (𝜋, 𝑉𝜋), that is, homomorphisms 𝜋∶ 𝖩 → 𝖦𝖫(𝑉𝜋). Given 𝖩-representations (𝜎, 𝑉𝜎) and
(𝜏, 𝑉𝜏), set [𝜎 ∶ 𝜏] ∶= dimHom𝖩(𝑉𝜎, 𝑉𝜏). Note that if 𝜎 is irreducible, then [𝜎 ∶ 𝜏] is the multi-
plicity of 𝜎 in the decomposition of 𝜏 in irreducible components. In particular, [𝜎 ∶ 𝜏] > 0 for only
finitely many 𝜎 ∈ 𝖩̂.

Definition 2.2. The set of spherical representations associated to (𝖦, 𝖧) is

𝖦̂𝖧 ∶=
{
(𝜋, 𝑉𝜋) ∈ 𝖦̂ ∶ 𝑉𝖧

𝜋 ≠ 0
}
=
{
𝜋 ∈ 𝖦̂ ∶ [1𝖧 ∶ 𝜋|𝖧] > 0

}
,

where𝑉𝖧
𝜋 is the subspace of𝑉𝜋 given by 𝖧-invariant elements, and 1𝖧 is the trivial representation

of 𝖧. The Casimir element of 𝔤 with respect to ⟨⋅, ⋅⟩0 is the element Cas𝔤,⟨⋅,⋅⟩0 ∶= 𝑋2
1 +⋯ + 𝑋2

dim𝔤
of the universal enveloping algebra  (𝔤ℂ), where {𝑋1, … , 𝑋dim𝔤} is any ⟨⋅, ⋅⟩0-orthonormal basis
of 𝔤. Since we fixed an Ad(𝖦)-invariant inner product ⟨⋅, ⋅⟩0, we denote Cas𝔤,⟨⋅,⋅⟩0 by Cas𝔤, and
similarly for the Casimir elements Cas𝔨 and Cas𝔥 of (𝔨, ⟨⋅, ⋅⟩0|𝔨) and (𝔥, ⟨⋅, ⋅⟩0|𝔥).
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Notation 2.3. Let (𝜑, 𝑉𝜑) be a unitary representation of a compact Lie group 𝖩. We shall
also denote by 𝜑 the induced representations of the Lie algebra 𝔧 of 𝖩, of its complexification
𝔧ℂ ∶= 𝔧 ⊗ℝ ℂ, and of its universal enveloping algebra  (𝔧ℂ). Since 𝜑(𝑎)∶ 𝑉𝜑 → 𝑉𝜑 is unitary
for all 𝑎 ∈ 𝖩, it follows that 𝜑(𝑋) is skew-symmetric for all 𝑋 ∈ 𝔤, and, consequently, 𝜑(−𝑋2) is
self-adjoint for all 𝑋 ∈ 𝔤.

For𝜋 ∈ 𝖦̂, the operator𝜋(Cas𝔤)∶ 𝑉𝜋 → 𝑉𝜋 commuteswith𝜋(𝑎) for all 𝑎 ∈ 𝖦. Thus, by Schur’s
lemma,𝜋(−Cas𝔤) = 𝜆𝜋 Id𝑉𝜋 for some 𝜆

𝜋 > 0. Analogously, 𝜏(−Cas𝔨) = 𝜆𝜏 Id𝑉𝜏 and𝜎(−Cas𝔥) =
𝜆𝜎 Id𝑉𝜎 for 𝜏 ∈ 𝖪̂ and 𝜎 ∈ 𝖧̂. The constants 𝜆𝜋 and 𝜆𝜏 can be computed explicitly using Lie-
theoretic objects, see Subsection 2.3.

Theorem 2.4. The spectrum of the Laplace–Beltrami operator on the homogeneous space
(𝖦∕𝖧, g(𝑟,𝑠)) consists of the eigenvalues

𝜆𝜋,𝜏(𝑟, 𝑠) = (𝑟2 − 𝑠2) 𝜆𝜏 + 𝑠2𝜆𝜋, (2.4)

where (𝜋, 𝜏) ∈ 𝖦̂𝖧 × 𝖪̂ is such that [𝜏 ∶ 𝜋|𝖪] > 0, with multiplicity

𝑚𝜋,𝜏 = [1𝖧 ∶ 𝜏|𝖧][𝜏 ∶ 𝜋|𝖪] dim𝑉𝜋.

Moreover, (2.4) is basic for the Riemannian submersion (𝖦∕𝖧, g(𝑟,𝑠)) → 𝖦∕𝖪 if 𝜋 ∈ 𝖦̂𝖪 and 𝜏 = 1𝖪,
in which case 𝜆𝜋,𝜏(𝑟, 𝑠) = 𝑠2𝜆𝜋 and𝑚𝜋,𝜏 = [1𝖪 ∶ 𝜋|𝖪] dim𝑉𝜋 .

Proof. Let {𝑋1, … , 𝑋dim𝔭} and {𝑌1, … , 𝑌dim𝔮} be ⟨⋅, ⋅⟩0-orthonormal bases of 𝔭 and 𝔮, respectively,
and note that {𝑟𝑋1, … , 𝑟𝑋dim𝔭, 𝑠𝑌1, … , 𝑠𝑌dim𝔮} is an orthonormal basis of 𝔭 ⊕ 𝔮 with respect to⟨⋅, ⋅⟩(𝑟,𝑠). Set 𝐶𝔭 = 𝑋2

1 +⋯ + 𝑋2
dim𝔭

, 𝐶𝔮 = 𝑌2
1 +⋯ + 𝑌2

dim𝔮
, and 𝐶(𝑟,𝑠) = 𝑡2 𝐶𝔭 + 𝑠2 𝐶𝔮. According

to [7, Proposition 2.2], the spectrum of the Laplace–Beltrami operator on (𝖦∕𝖧, g(𝑟,𝑠)) is the union
of eigenvalues of 𝜋(−𝐶(𝑟,𝑠))|𝑉𝖧𝜋 , where 𝜋 ∈ 𝖦̂𝖧, each with multiplicity dim𝑉𝜋.
We need to show that (2.4) appears in the spectrum of 𝜋(−𝐶(𝑟,𝑠))|𝑉𝖧𝜋 with multiplicity [1𝖧 ∶

𝜏|𝖧][𝜏 ∶ 𝜋|𝖪] for any 𝜏 ∈ 𝖪̂ satisfying [𝜏 ∶ 𝜋|𝖪] > 0, and that these eigenvalues exhaust the spec-
trum. For 𝑣 ∈ 𝑉𝖧

𝜋 , we have that

𝜋(−𝐶(𝑟,𝑠)) ⋅ 𝑣 = 𝑟2 𝜋(−𝐶𝔭) ⋅ 𝑣 + 𝑠2 𝜋(−𝐶𝔮) ⋅ 𝑣

= (𝑟2 − 𝑠2) 𝜋(−𝐶𝔭) ⋅ 𝑣 + 𝑠2 𝜋(−𝐶𝔭 − 𝐶𝔮) ⋅ 𝑣

= (𝑟2 − 𝑠2) 𝜋(−Cas𝔥 −𝐶𝔭) ⋅ 𝑣 + 𝑠2 𝜋(−Cas𝔥 −𝐶𝔭 − 𝐶𝔮) ⋅ 𝑣

= (𝑟2 − 𝑠2) 𝜋(−Cas𝔨) ⋅ 𝑣 + 𝑠2 𝜋(−Cas𝔤) ⋅ 𝑣.

(2.5)

The third equality follows from 𝜋(Cas𝔥) ⋅ 𝑣 = 0, since 𝑣 is 𝖧-invariant. While clearly 𝜋(−Cas𝔤) ⋅
𝑣 = 𝜆𝜋𝑣, the computation of the term 𝜋(−Cas𝔨) ⋅ 𝑣 is more involved.
Consider the decomposition

𝑉𝜋 =
⨁

𝜏∈𝖪̂, [𝜏∶𝜋|𝖪]>0
𝑉𝜋(𝜏),
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where the subspace 𝑉𝜋(𝜏) is given by the sum of all 𝖪-submodules of 𝑉𝜋 equivalent to 𝜏. As a
𝖪-module, 𝑉𝜋(𝜏) is equivalent to [𝜏 ∶ 𝜋|𝖪] copies of 𝜏. Since 𝑉𝜋(𝜏) is obviously invariant under
the action of 𝖧, we conclude that

𝑉𝖧
𝜋 =

⨁
𝜏∈𝖪̂, [𝜏∶𝜋|𝖪]>0

𝑉𝜋(𝜏)
𝖧.

For 𝑣 ∈ 𝑉𝜋(𝜏)
𝖧, it follows that 𝜋(−Cas𝔨) ⋅ 𝑣 = 𝜆𝜏𝑣, and, consequently, from (2.5),

𝜋(−𝐶(𝑟,𝑠)) ⋅ 𝑣 =
(
(𝑟2 − 𝑠2) 𝜆𝜏 + 𝑠2𝜆𝜋

)
𝑣 = 𝜆𝜋,𝜏(𝑟, 𝑠) 𝑣.

Moreover, these eigenvalues exhaust the spectrum of 𝜋(−𝐶(𝑟,𝑠))|𝑉𝖧𝜋 , since
dim𝑉𝖧

𝜋 =
∑

𝜏∈𝖪̂, [𝜏∶𝜋|𝜋]>0
dim𝑉𝜋(𝜏)

𝖧 = [𝜏 ∶ 𝜋|𝖪] dim𝑉𝖧
𝜏 = [1𝖧 ∶ 𝜏|𝖧][𝜏 ∶ 𝜋|𝖪].

Finally, by definition, (2.4) is basic for the submersion (𝖦∕𝖧, g(𝑟,𝑠)) → 𝖦∕𝖪 if the associated
eigenfunctions are constant along the fibers 𝖪∕𝖧. In this case, they descend to eigenfunctions
of the Laplace–Beltrami operator on the base 𝖦∕𝖪. Applying [7, Proposition 2.2] to 𝖦∕𝖪, this cor-
responds to 𝜋 ∈ 𝖦̂𝖪 and 𝜏 = 1𝖪. □

Following themethod described in Theorem 2.4, the ingredients needed to explicitly determine
the Laplace spectrum of the homogeneous space (𝖦∕𝖧, g(𝑟,𝑠)) are:

(i) the set 𝖦̂𝖧 of spherical representations associated to (𝖦, 𝖧);
(ii) the integers [1𝖧 ∶ 𝜏|𝖧] and [𝜏 ∶ 𝜋|𝖪] for 𝜏 ∈ 𝖪̂ satisfying [𝜏 ∶ 𝜋|𝖪] > 0;
(iii) the coefficients 𝜆𝜋 and 𝜆𝜏 for all 𝜋 ∈ 𝖦̂𝖧, 𝜏 ∈ 𝖪̂ with [1𝖧 ∶ 𝜏|𝖧][𝜏 ∶ 𝜋|𝖪] > 0.

All the above are Lie-theoretic in nature. While the first is known in many cases, the second
depends on branching rules that are typically rather intricate, making this the most difficult part
of the computation, see Subsection 2.4. Fortunately, the scalars 𝜆𝜋 and 𝜆𝜏 are easily computed
using Freudenthal’s formula, as follows.

2.3 Freudenthal’s formula

Fix a maximal torus 𝖳 in 𝖦 such that 𝖳 ∩ 𝖪 and 𝖳 ∩ 𝖧 are maximal tori in 𝖪 and 𝖧, respectively.
Then 𝔱ℂ = 𝔱 ⊗ℝ ℂ is a Cartan subalgebra of 𝔤ℂ = 𝔤 ⊗ℝ ℂ, and we denote by Φ(𝔤ℂ, 𝔱ℂ) its root
system. If 𝔤 is not semisimple (but necessarily reductive), thenΦ(𝔤ℂ, 𝔱ℂ) is the root system associ-
ated to the semisimple part [𝔤, 𝔤] with respect to [𝔤, 𝔤] ∩ 𝔱. Fix an order on i𝔱∗ inducing a positive
root system Φ+(𝔤ℂ, 𝔱ℂ). By the highest weight theorem (see, for example, [17, Theorem 9.4, 9.5]
or [18, Theorem 5.110]), irreducible 𝖦-representations correspond to elements in the set 𝑃+(𝖦) of
dominant 𝖦-integral weights. Analogous objects are defined for 𝖪 and 𝖧, provided that the orders
are compatible. For Λ ∈ 𝑃+(𝖦), we denote by 𝜋Λ the unique (up to equivalences) irreducible rep-
resentation of𝖦with the highest weightΛ. Analogously, for 𝜇 ∈ 𝑃+(𝖪) and 𝜈 ∈ 𝑃+(𝖧), we denote
by 𝜏𝜇 and 𝜎𝜈 the representations with highest weight 𝜇 and 𝜈, respectively.
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Freudenthal’s formula (see [25, Lemma 5.6.4] or [17, Proposition 10.6]) applied to Λ ∈ 𝑃+(𝖦)
and 𝜇 ∈ 𝑃+(𝖪) gives, respectively,

𝜆𝜋Λ = ⟨Λ,Λ + 2𝜌𝔤⟩0, and 𝜆𝜏𝜇 = ⟨𝜇, 𝜇 + 2𝜌𝔨⟩0, (2.6)

where 𝜌𝔤 and 𝜌𝔨 are half the sum of positive roots inΦ+(𝔤ℂ, 𝔱ℂ) andΦ+(𝔨ℂ, (𝔱 ∩ 𝔨)ℂ), respectively,
and ⟨⋅, ⋅⟩0 is the Hermitian extension of ⟨⋅, ⋅⟩0|𝔱 to 𝔱∗ℂ.
2.4 Product group

The branching problem needed to compute ingredient (ii) above has an important simplification
if 𝖪 = 𝖧𝖫 ≃ 𝖧 × 𝖫, where 𝖫 is a closed subgroup of 𝖦 that commutes with 𝖧. In this case, the
submersion (2.3) becomes

𝖫⟶ 𝖦∕𝖧⟶ 𝖦∕(𝖧 × 𝖫).

It is well known that every irreducible 𝖪-representation is of the form 𝜎 ⊗ 𝜙 for some 𝜎 ∈ 𝖧̂ and
𝜙 ∈ 𝖫̂. Since (𝜎 ⊗ 𝜙)|𝖧 = 𝜎, any 𝜏 ∈ 𝖪̂ contributing to Spec(𝖦∕𝖧, g(𝑟,𝑠)) in Theorem 2.4 must be of
the form 𝜏 = 1𝖧 ⊗ 𝜙, and also, [1𝖧 ∶ 𝜏|𝖧] = 1. Moreover,

[𝜏 ∶ 𝜋|𝖪] = [1𝖧 ⊗ 𝜙 ∶ 𝜋|𝖪] = dim𝖧×𝖫(𝑉1𝖧 ⊗ 𝑉𝜙, 𝑉𝜋) = dim𝖫(𝑉𝜙, 𝑉
𝖧
𝜋) =∶ [𝜙 ∶ 𝑉

𝖧
𝜋].

In other words, since 𝖧 and 𝖫 commute, the 𝖫-action leaves 𝑉𝖧
𝜋 invariant, and [1𝖧 ⊗ 𝜙 ∶ 𝜋|𝖪] is

the multiplicity of 𝜙 in the decomposition of 𝑉𝖧
𝜋 as an 𝖫-module. Furthermore, by Freudenthal’s

formula, for any 𝜂 ∈ 𝑃+(𝖫),

𝜆1𝖧⊗𝜙𝜂 = ⟨𝜇1𝖧⊗𝜙𝜂 , 𝜇1𝖧⊗𝜙𝜂 + 2𝜌𝔥⊕𝔩⟩0 = ⟨𝜂, 𝜂 + 2𝜌𝔩⟩0, (2.7)

where 𝔩 is the Lie algebra of 𝖫, and, as before, 𝜌𝔩 =
1
2

∑
𝛼∈Φ+(𝔩ℂ,(𝔱∩𝔩)ℂ)

𝛼. Therefore, we may restate
Theorem 2.4 in this case as follows.

Corollary 2.5. If𝖪 = 𝖧𝖫 as above, then the spectrumof the Laplace–Beltrami operator on the homo-
geneous space (𝖦∕𝖧, g(𝑟,𝑠)) consists of the eigenvalues

𝜆𝜋,1𝖧⊗𝜙𝜂 (𝑟, 𝑠) = (𝑟2 − 𝑠2) ⟨𝜂, 𝜂 + 2𝜌𝔩⟩0 + 𝑠2𝜆𝜋, (2.8)

where (𝜋, 𝜙𝜂) ∈ 𝖦̂𝖧 × 𝖫̂ is such that [𝜙𝜂 ∶ 𝑉𝖧
𝜋] > 0, with multiplicity

𝑚𝜋,𝜙𝜂
= [𝜙𝜂 ∶ 𝑉

𝖧
𝜋] dim𝑉𝜋.

Moreover, (2.8) is basic for the Riemannian submersion (𝖦∕𝖧, g(𝑟,𝑠)) → 𝖦∕𝖪 if 𝜂 = 0, in which case
𝜆𝜋,1𝖧⊗𝜙𝜂 (𝑟, 𝑠) = 𝑠2𝜆𝜋 and𝑚𝜋,𝜙𝜂

= dim𝑉𝜋 .
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3 EIGENVALUES OF THE LAPLACIAN ON 𝕊𝟐𝒏+𝟏

In this section, we determine the full Laplace spectrum of the homogeneous spheres (𝕊2𝑛+1, 𝐠(𝑡)),
𝑛 ⩾ 1, as in (1.1). Although there are several partial results in the literature, for example, this is
done for all odd 𝑛 in [7, Theorem 3.9, Remark 3.10], we include a complete argument below to
illustrate the method in Section 2.
A homogeneous metric on 𝕊2𝑛+1 is 𝖲𝖴(𝑛 + 1)-invariant if and only if it is 𝖴(𝑛 + 1)-invariant.

Although the 𝖴(𝑛 + 1)-action on 𝕊2𝑛+1 is not effective, we shall use it since it simplifies some
computations. Throughout this section, we set:

𝖦 = 𝖴(𝑛 + 1), 𝖫 =

{(
𝐼 0
0 𝑧

)
∶ 𝑧 ∈ 𝖴(1)

}
,

𝖧 =

{(
𝐴 0
0 1

)
∶ 𝐴 ∈ 𝖴(𝑛)

}
, 𝖪 =

{(
𝐴 0
0 𝑧

)
∶ 𝐴 ∈ 𝖴(𝑛), 𝑧 ∈ 𝖴(1)

}
.

(3.1)

Clearly, 𝖧 ≃ 𝖴(𝑛), 𝖫 ≃ 𝖴(1), and 𝖪 = 𝖧𝖫 ≃ 𝖴(𝑛)𝖴(1), as in Subsection 2.4, and it is well known
that 𝖦∕𝖧 ≅ 𝕊2𝑛+1 and 𝖦∕𝖪 ≅ ℂ𝑃𝑛. It is easy to check that

𝔭 =

{(
0 0
0 i𝜃

)
∶ 𝜃 ∈ ℝ

}
, 𝔮 =

{(
0 𝑣

−𝑣∗ 0

)
∶ 𝑣 ∈ ℂ𝑛

}
(3.2)

satisfy 𝔨 = 𝔥 ⊕ 𝔭 and 𝔤 = 𝔨 ⊕ 𝔮 = 𝔥 ⊕ (𝔭 ⊕ 𝔮). Moreover, as subrepresentations of the isotropy
representation of 𝖧, 𝔭 is trivial and 𝔮 is the standard representation.
Consider the𝖦-invariantmetrics g(𝑟,𝑠) on𝖦∕𝖧 as in Subsection 2.1. Since 𝔭 and 𝔮 are irreducible

and non-equivalent, every 𝖦-invariant metric on 𝖦∕𝖧 is isometric to some g(𝑟,𝑠); for example, for
all 𝑡 > 0, the metric 𝐠(𝑡) in (1.1) is isometric to g( 1

𝑡
√
2
,1).

Proposition 3.1. For all 𝑛 ⩾ 1, the spectrum of the Laplace–Beltrami operator on (𝕊2𝑛+1, g(𝑟,𝑠))
consists of the eigenvalues

𝜆(𝑝,𝑞)(𝑟, 𝑠) = (4𝑝(𝑝 + 𝑞 + 𝑛) + 2𝑛𝑞)𝑠2 + 2𝑞2𝑟2, 𝑝, 𝑞 ∈ ℕ0, (3.3)

which are basic if 𝑞 = 0, and have multiplicity

𝑚𝑝,𝑞 = (2 − 𝛿𝑞0)
2𝑝 + 𝑞 + 𝑛

𝑛

(
𝑝 + 𝑞 + 𝑛 − 1

𝑝 + 𝑞

)(
𝑝 + 𝑛 − 1

𝑝

)
. (3.4)

Proof. Since the groups (3.1) satisfy 𝖪 = 𝖧𝖫, we may apply Corollary 2.5. Fix the maximal torus
of 𝖦 given by 𝖳 = {diag(𝑒i𝜃1 , … , 𝑒i𝜃𝑛+1) ∶ 𝜃1, … , 𝜃𝑛+1 ∈ ℝ}. Note that 𝖳 ∩ 𝖪, 𝖳 ∩ 𝖧, and 𝖳 ∩ 𝖫 are
maximal tori in 𝖪, 𝖧, and 𝖫 respectively. The Lie algebra 𝔱 and its complexification 𝔱ℂ consist
of elements 𝑌 = diag(i𝜃1, … , i𝜃𝑛+1), where 𝜃𝑗 are in ℝ and ℂ, respectively. Define 𝜀𝑗 ∶ 𝔱∗ℂ → ℂ as
𝜀𝑗(𝑌) = i𝜃𝑗 , for 𝑌 as above, and note that { 1√

2
𝜀1, … ,

1√
2
𝜀𝑛+1} is a ⟨⋅, ⋅⟩0-orthonormal basis of 𝔱∗ℂ.

With the standard order, we have Φ+(𝔤ℂ, 𝔱ℂ) = {𝜀𝑖 − 𝜀𝑗 ∶ 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 + 1}, so half the sum
of positive roots is 𝜌𝔤 =

∑𝑛+1
𝑗=1

𝑛+2−𝑗
2

𝜀𝑗 , and the set of dominant integral weights is 𝑃+(𝖦) =
{
∑𝑛+1

𝑗=1 𝑎𝑗𝜀𝑗 ∈
⨁𝑛+1

𝑗=1 ℤ𝜀𝑗 ∶ 𝑎1 ⩾ 𝑎2 ⩾ ⋯ ⩾ 𝑎𝑛+1}.
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The classical branching rule from 𝖦 to 𝖧 (see, for example, [18, Theorem 9.14]) states that,
if Λ =

∑𝑛+1
𝑖=1 𝑎𝑖𝜀𝑖 ∈ 𝑃+(𝖦) and 𝜈 =

∑𝑛
𝑖=1 𝑏𝑖𝜀𝑖 ∈ 𝑃+(𝖧), then [𝜎𝜈 ∶ 𝜋|Λ] > 0 if and only if 𝑎1 ⩾

𝑏1 ⩾ 𝑎2 ⩾ ⋯ ⩾ 𝑎𝑛 ⩾ 𝑏𝑛 ⩾ 𝑎𝑛+1; in which case [𝜎𝜈 ∶ 𝜋|Λ] = 1. We conclude that 𝜋Λ ∈ 𝖦̂𝖧, that is,
dim𝑉𝖧

𝜋 = [1𝖧 ∶ 𝜋|Λ] > 0, if and only if 𝑎𝑖 = 0 for all 2 ⩽ 𝑖 ⩽ 𝑛 and 𝑎1 ⩾ 0 ⩾ 𝑎𝑛+1. Therefore, the
set of spherical representations is:

𝖦̂𝖧 = {𝜋𝑘,𝑙 ∶= 𝜋𝑙𝜀1−𝑘𝜀𝑛+1 ∶ 𝑘, 𝑙 ∈ ℕ0}.

We henceforth abbreviate 𝑉𝑘,𝑙 ∶= 𝑉𝜋𝑘,𝑙 . It is a simple matter to check that

dim𝑉𝑘,𝑙 =
𝑘 + 𝑙 + 𝑛

𝑛

(
𝑘 + 𝑛 − 1

𝑘

)(
𝑙 + 𝑛 − 1

𝑙

)
, (3.5)

by the Weyl dimension formula, see, for example, [18, Theorem 5.84].
Note that 𝖫 ≃ 𝖴(1) is abelian and (𝔩 ∩ 𝔱)∗

ℂ
= ℂ𝜀𝑛+1. Thus, its root system is empty, that is,

𝜌𝔩 = 0, and every 𝖫-integral weight is dominant, that is, 𝑃+(𝖫) = {𝜙𝑚 ∶= 𝜙𝑚𝜀𝑛+1 ∶ 𝑚 ∈ ℤ}. It is
well known that 𝑉𝖧

𝑘,𝑙
≃ 𝜙𝑙−𝑘 as 𝖫-modules; more precisely, 𝜋𝑘,𝑙((

𝐼𝑛 0
0 𝑧)) ⋅ 𝑣 = 𝑧𝑙−𝑘 𝑣 for 𝑣 ∈ 𝑉𝖧

𝑘,𝑙
and

𝑧 ∈ 𝖴(1), see, for example, [15, Theorem 8.1.2].
From Corollary 2.5, the eigenvalues of (𝕊2𝑛+1, g(𝑟,𝑠)) are 𝜆𝜋𝑘,𝑙 ,1𝖧⊗𝜙𝑙−𝑘 (𝑟, 𝑠) for all 𝑘, 𝑙 ∈ ℕ0, with

multiplicity dim𝑉𝑘,𝑙. Moreover, by (2.6) and (2.7), we have that

𝜆1𝖧⊗𝜙𝑚 = ⟨𝑚𝜀𝑛+1,𝑚𝜀𝑛+1⟩0 = 2𝑚2,

𝜆𝜋𝑘,𝑙 = ⟨𝑙𝜀1 − 𝑘𝜀𝑛+1 + 2𝜌𝔤, 𝑙𝜀1 − 𝑘𝜀𝑛+1⟩0 = 2𝑙(𝑛 + 𝑙) + 2𝑘(𝑛 + 𝑘).

We conclude from (2.8) that the corresponding eigenvalue is

𝜆𝜋𝑘,𝑙 ,1𝖧⊗𝜙𝑙−𝑘 (𝑟, 𝑠) = (𝑟2 − 𝑠2) 𝜆1𝖧⊗𝜙𝑘−𝑙 + 𝑠2𝜆𝜋𝑘,𝑙

= 2(𝑘 − 𝑙)2(𝑟2 − 𝑠2) + (2𝑙(𝑛 + 𝑙) + 2𝑘(𝑛 + 𝑘))𝑠2

= (4𝑘𝑙 + 2𝑛(𝑘 + 𝑙))𝑠2 + 2(𝑘 − 𝑙)2𝑟2.

(3.6)

For convenience of notation, let us reindex (𝑘, 𝑙) ∈ ℕ20 as (𝑝, 𝑞) ∈ ℕ20,

𝑝 ∶= min{𝑘, 𝑙}, 𝑞 ∶= max{𝑘, 𝑙} − min{𝑘, 𝑙} = |𝑘 − 𝑙|. (3.7)

Since 𝑘𝑙 = 𝑝(𝑝 + 𝑞), 𝑘 + 𝑙 = 2𝑝 + 𝑞, and (𝑘 − 𝑙)2 = 𝑞2, (3.6) is equal to (3.3). Moreover, 𝑞 = 0 if
and only if 𝑘 = 𝑙, which is equivalent to 𝜙𝑙−𝑘 = 1𝖫, proving the claim regarding basic eigenvalues.
We conclude by determining the contribution 𝑚𝑝,𝑞 to the multiplicity of the eigen-

value 𝜆(𝑝,𝑞)(𝑟, 𝑠) ∈ Spec(𝕊2𝑛+1, g(𝑟,𝑠)). On the one hand, if 𝑞 = 0, the only solution to (3.7)
is (𝑘, 𝑙) = (𝑝, 𝑝), so this contribution is 𝑚𝑝,0 = dim𝑉𝑝,𝑝. On the other hand, if 𝑞 > 0, then
there are two solutions to (3.7), namely, (𝑘, 𝑙) = (𝑝 + 𝑞, 𝑝) and (𝑘, 𝑙) = (𝑝, 𝑝 + 𝑞), yielding a
contribution of 𝑚𝑝,𝑞 = dim𝑉𝑝+𝑞,𝑝 + dim𝑉𝑝,𝑝+𝑞 = 2 dim𝑉𝑝+𝑞,𝑝. Therefore, (3.4) now follows
from (3.5). □
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4 EIGENVALUES OF THE LAPLACIAN ON 𝕊𝟒𝒏+𝟑

This short section gives the full Laplace spectrumof the homogeneous spheres (𝕊4𝑛+3, 𝐡(𝑡)),𝑛 ⩾ 1,
based on [7]. Following the same notation as above, we set

𝖦 = 𝖲𝗉(𝑛 + 1), 𝖫 =

{(
𝐼 0
0 𝑧

)
∶ 𝑧 ∈ 𝖲𝗉(1)

}
,

𝖧 =

{(
𝐴 0
0 1

)
∶ 𝐴 ∈ 𝖲𝗉(𝑛)

}
, 𝖪 =

{(
𝐴 0
0 𝑧

)
∶ 𝐴 ∈ 𝖲𝗉(𝑛), 𝑧 ∈ 𝖲𝗉(1)

}
.

(4.1)

Clearly,𝖧 ≃ 𝖲𝗉(𝑛), 𝖫 ≃ 𝖲𝗉(1), and 𝖪 = 𝖧𝖫 ≃ 𝖲𝗉(𝑛)𝖲𝗉(1), as in Subsection 2.4, and it is well known
that 𝖦∕𝖧 ≅ 𝕊4𝑛+3 and 𝖦∕𝖪 ≅ ℍ𝑃𝑛. It is easy to check that

𝔭 =

{(
0 0
0 𝑎

)
∶ 𝑎 ∈ Imℍ

}
, 𝔮 =

{(
0 𝑣

−𝑣∗ 0

)
∶ 𝑣 ∈ ℍ𝑛

}
. (4.2)

They satisfy 𝔨 = 𝔥 ⊕ 𝔭 and 𝔤 = 𝔨 ⊕ 𝔮 = 𝔥 ⊕ (𝔭 ⊕ 𝔮). As subrepresentations of the isotropy rep-
resentation of 𝖧, 𝔭 is equivalent to three copies of the trivial representation, and 𝔮 is the stan-
dard representation.
Consider again the 𝖦-invariant metrics g(𝑟,𝑠) on 𝖦∕𝖧, as in Subsection 2.1. This is a 2-parameter

subfamily of the 4-parameter family of 𝖦-invariant metrics on 𝖦∕𝖧, see, for example, [7, Sec-
tion 3.2]. For all 𝑡 > 0, the metric 𝐡(𝑡) in (1.1) is isometric to g( 1

𝑡
,1).

Proposition 4.1. For all 𝑛 ⩾ 1, the spectrum of the Laplace–Beltrami operator on (𝕊4𝑛+3, g(𝑟,𝑠))
consists of eigenvalues

𝜆(𝑝,𝑞)(𝑟, 𝑠) = (4𝑝(𝑝 + 𝑞 + 2𝑛 + 1) + 4𝑞𝑛)𝑠2 + 𝑞(𝑞 + 2)𝑟2, 𝑝, 𝑞 ∈ ℕ0, (4.3)

which are basic if 𝑞 = 0, and have multiplicity

𝑚𝑝,𝑞 =
(2𝑝 + 𝑞 + 2𝑛 + 1)(𝑞 + 1)2

(2𝑛 + 1)(𝑝 + 𝑞 + 1)

(
𝑝 + 𝑞 + 2𝑛
𝑝 + 𝑞

)(
𝑝 + 2𝑛 − 1

𝑝

)
. (4.4)

Proof. This follows from Corollary 2.5, analogously to Proposition 3.1, using the appropriate
branching law. Alternatively, it follows from [7, Lemma 3.2, Remark 3.3] replacing (𝑝, 𝑞) with
(𝑝 + 𝑞, 𝑝), and setting 𝑎 = 𝑏 = 𝑐 = 𝑟∕

√
2, which implies that 𝜈(𝑞)

𝑗
(𝑎, 𝑏, 𝑐) = 1

2
𝑟2𝑞(𝑞 + 2) for all

1 ⩽ 𝑗 ⩽ 𝑞 + 1. Accordingly, the multiplicity (4.4) is 𝑞 + 1 times that in [7, (3.11)], since 𝜈(𝑞)
𝑗

does
not depend on 𝑗 in this case. □

5 EIGENVALUES OF THE LAPLACIAN ON 𝕊𝟏𝟓

In this section, we determine the full Laplace spectrum of (𝕊15, 𝐤(𝑡)). The Lie groups 𝖧 ⊂ 𝖪 ⊂ 𝖦
in this case do not follow the pattern (3.1) and (4.1) of the previous sections. Namely, the inclusion
𝖧 ⊂ 𝖪 is not given by a block embedding, and there is no Lie subgroup 𝖫 ⊂ 𝖪 such that 𝖪 = 𝖧𝖫. In
particular, Corollary 2.5 no longer applies.
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Let 𝖦 = 𝖲𝗉𝗂𝗇(9), and identify its Lie algebra 𝔤 = 𝔰𝔭𝔦𝔫(9) with 𝔰𝔬(9) in the standard way. Let 𝖪
be the subgroup of 𝖦 isomorphic to 𝖲𝗉𝗂𝗇(8) with Lie algebra

𝔨 = {diag(𝑋, 0) ∈ 𝔤 ∶ 𝑋 ∈ 𝔰𝔬(8)} ≃ 𝔰𝔬(8).

Clearly, 𝖦∕𝖪 ≅ 𝕊8. In order to define the subgroup 𝖧 ⊂ 𝖪, which is isomorphic to 𝖲𝗉𝗂𝗇(7), but
whose Lie algebra 𝔥 ⊂ 𝔨 is not a block inclusion as 𝔨 ⊂ 𝔤 above, we follow an approach tailored to
apply the branching law of Baldoni–Silva [3, §6].
Let 𝖥 ≅ 𝖥−204 be the simply connected Lie group associated to the real simple Lie algebra 𝔣 of

type FII. The maximal compact subgroup of 𝖥 (which is unique up to conjugation) is isomorphic
to 𝖦, and 𝖥∕𝖦 ≅ ℂa𝐻2. Fix the maximal torus 𝖳 ⊂ 𝖦 ⊂ 𝖥 with Lie algebra

𝔱 =

{
diag

((
0 i𝜃1

−i𝜃1 0

)
, … ,

(
0 i𝜃4

−i𝜃4 0

)
, 1

)
∈ 𝔤 ∶ 𝜃1, … , 𝜃4 ∈ ℝ

}
. (5.1)

Its complexification 𝔱ℂ is a Cartan subalgebra of 𝔤ℂ, with elements as in (5.1) where 𝜃1, … , 𝜃4 ∈ ℂ.
The functionals 𝜀𝑗 ∶ 𝔱∗ℂ → ℂ that map such an element to 𝜃𝑗 form a ℂ-basis of 𝔱∗

ℂ
. Fix an order on

i𝔱 such that the corresponding positive root systems of 𝔤ℂ and 𝔣ℂ with respect to 𝔱ℂ are

Φ+(𝔤ℂ, 𝔱ℂ) = {𝜀𝑖 ∶ 1 ⩽ 𝑖 ⩽ 4} ∪ {𝜀𝑖 ± 𝜀𝑗 ∶ 1 ⩽ 𝑖 < 𝑗 ⩽ 4},

Φ+(𝔣ℂ, 𝔱ℂ) = Φ+(𝔤ℂ, 𝔱ℂ) ∪
{
1
2
(𝜀1 ± 𝜀2 ± 𝜀3 ± 𝜀4)

}
.

Let𝔪 be the orthogonal complement of 𝔤 on 𝔣with respect to the Killing form of 𝔣, so that 𝔣 = 𝔤 ⊕
𝔪 is a Cartan decomposition. Set 𝛼 = 1

2
(𝜀1 − 𝜀2 − 𝜀3 − 𝜀4) ∈ Φ+(𝔣ℂ, 𝔱ℂ), and choose root vectors

𝑋𝛼 ∈ (𝔣ℂ)𝛼 and 𝑋−𝛼 ∈ (𝔣ℂ)−𝛼 satisfying [𝑋𝛼, 𝑋−𝛼] ∈ 𝔭. Then 𝔞 ∶= ℝ(𝑋𝛼4 + 𝑋−𝛼4) is a maximal
abelian subalgebra of 𝔭. Finally, define 𝖧 as the centralizer of 𝔞 in 𝖪, that is,

𝖧 = {𝑘 ∈ 𝖪 ∶ Ad(𝑘) ⋅ 𝔞 = 0}.

It can be checked that its Lie algebra 𝔥 = {𝑋 ∈ 𝔨 ∶ [𝑋, 𝔞] = 0} is isomorphic to 𝔰𝔬(7), and 𝖧 ≃
𝖲𝗉𝗂𝗇(7), 𝖦∕𝖧 ≅ 𝕊15, and 𝖪∕𝖧 ≅ 𝕊7.
Consider the ⟨⋅, ⋅⟩0-orthogonal complements 𝔭 and 𝔮, and 𝖦-invariant metrics g(𝑟,𝑠), as in Sub-

section 2.1. As subrepresentations of the isotropy representation of 𝖧, 𝔭 is the standard repre-
sentation, and 𝔮 is the spin representation. Since they are irreducible and non-equivalent, every
𝖦-invariant metric on 𝖦∕𝖧 is isometric to some g(𝑟,𝑠); for example, for all 𝑡 > 0, the metric 𝐤(𝑡) in
(1.1) is isometric to g( 1

𝑡
,2).

Proposition 5.1. The spectrum of the Laplace–Beltrami operator on (𝕊15, g(𝑟,𝑠)) consists of eigen-
values

𝜆(𝑝,𝑞)(𝑟, 𝑠) =
(
𝑝2 + 𝑝(𝑞 + 7) + 2𝑞

)
𝑠2 + 𝑞(𝑞 + 6)𝑟2, 𝑝, 𝑞 ∈ ℕ0, (5.2)

which are basic if 𝑞 = 0, and have multiplicity

𝑚𝑝,𝑞 =
2𝑝 + 𝑞 + 7

7

(
1 +

𝑞

3

)(𝑝+𝑞+6
𝑝+𝑞

)(𝑝+3
𝑝

)(𝑞+5
𝑞

)
(𝑝+𝑞+3

𝑝+𝑞

) . (5.3)
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Proof. In order to apply Theorem 2.4, we first state the branching law from 𝖦 to 𝖧 in order to
determine 𝖦̂𝖧 and the integers [1𝖧 ∶ 𝜏|𝖧] and [𝜏 ∶ 𝜋|𝖪] for 𝜏 ∈ 𝖪̂ satisfying [𝜏 ∶ 𝜋|𝖪] > 0. Note
that 𝖳 ∩ 𝖪 is amaximal torus in𝖪, and the corresponding positive root system isΦ+(𝔨ℂ, (𝔱 ∩ 𝔨)ℂ) =
{𝜀𝑖 ± 𝜀𝑗 ∶ 1 ⩽ 𝑖 < 𝑗 ⩽ 4} with simple roots 𝜀1 − 𝜀2, 𝜀2 − 𝜀3, 𝜀3 − 𝜀4, 𝜀3 + 𝜀4. We have that

𝑃+(𝖦) =

{
4∑
𝑖=1

𝑎𝑖𝜀𝑖 ∶
𝑎1 ⩾ 𝑎2 ⩾ 𝑎3 ⩾ 𝑎4 ⩾ 0,

2𝑎𝑖 ∈ ℤ, 𝑎𝑖 − 𝑎𝑗 ∈ ℤ for 1 ⩽ 𝑖, 𝑗 ⩽ 4

}
,

𝑃+(𝖪) =

{
4∑
𝑖=1

𝑎𝑖𝜀𝑖 ∶
𝑎1 ⩾ 𝑎2 ⩾ 𝑎3 ⩾ |𝑎4|,
2𝑎𝑖 ∈ ℤ, 𝑎𝑖 − 𝑎𝑗 ∈ ℤ for 1 ⩽ 𝑖, 𝑗 ⩽ 4

}
.

The fundamental weights of Φ+(𝔤ℂ, 𝔱ℂ) are 𝜔1 = 𝜀1, 𝜔2 = 𝜀1 + 𝜀2, 𝜔3 = 𝜀1 + 𝜀2 + 𝜀3, and 𝜔4 =
1
2
(𝜀1 + 𝜀2 + 𝜀3 + 𝜀4), and they satisfy 𝑃+(𝖦) =

⨁4
𝑖=1 ℕ0𝜔𝑖 .

We define 𝜑∶ 𝔱∗
ℂ
→ 𝔱∗

ℂ
to be the linear map determined by

𝜑(𝜀1) =
1
2
(+𝜀1 + 𝜀2 + 𝜀3 − 𝜀4),

𝜑(𝜀2) =
1
2
(+𝜀1 + 𝜀2 − 𝜀3 + 𝜀4),

𝜑(𝜀3) =
1
2
(+𝜀1 − 𝜀2 + 𝜀3 + 𝜀4),

𝜑(𝜀4) =
1
2
(−𝜀1 + 𝜀2 + 𝜀3 + 𝜀4).

One can check that 𝜑2 = Id. Since 𝜑 permutes the simple roots of Φ+(𝔨ℂ, (𝔱 ∩ 𝔨)ℂ), namely,
𝜑(𝜀1 − 𝜀2) = 𝜀3 − 𝜀4, 𝜑(𝜀2 − 𝜀3) = 𝜀2 − 𝜀3, 𝜑(𝜀3 − 𝜀4) = 𝜀1 − 𝜀2, and 𝜑(𝜀3 + 𝜀4) = 𝜀3 + 𝜀4, we have
that 𝜑 is an automorphism of Φ+(𝔨ℂ, (𝔱 ∩ 𝔨)ℂ), which extends to an automorphism of 𝔨ℂ that
we denote again by 𝜑. It turns out (see [3, p. 248]) that 𝜑(𝔥) is a copy of 𝔰𝔬(7) embedded in
𝔨 ≃ 𝔰𝔬(8).More precisely,𝜑(𝔥) = {diag(𝑋, 0, 0) ∈ 𝔤 ∶ 𝑋 ∈ 𝔰𝔬(7)}, so the simple roots are: 𝜀1 − 𝜀2 =
𝜑(𝜀3 − 𝜀4), 𝜀2 − 𝜀3 = 𝜑(𝜀2 − 𝜀3), 𝜀3 = 𝜑(1

2
(+𝜀1 − 𝜀2 + 𝜀3 + 𝜀4)), and Φ+(𝜑(𝔥)ℂ, (𝔱 ∩ 𝜑(𝔥))ℂ) = {𝜀𝑖 ∶

1 ⩽ 𝑖 ⩽ 3} ∪ {𝜀𝑖 ± 𝜀𝑗 ∶ 1 ⩽ 𝑖 < 𝑗 ⩽ 3}, hence

𝑃+(𝖧′) =

{
3∑
𝑖=1

𝑐𝑖𝜀𝑖 ∶
𝑐1 ⩾ 𝑐2 ⩾ 𝑐3 ⩾ 0,

2𝑐𝑖 ∈ ℤ, 𝑐𝑖 − 𝑐𝑗 ∈ ℤ for 1 ⩽ 𝑖, 𝑗 ⩽ 3

}
,

where 𝖧′ denotes the only connected Lie subgroup of 𝖪 with Lie algebra 𝜑(𝔥).
We are now in position to state the branching law from 𝖦 to 𝖧 established by Baldoni–Silva [3,

Theorem 6.3]. For Λ =
∑4

𝑖=1 𝑎𝑖𝜀𝑖 ∈ 𝑃+(𝖦),

𝜋Λ|𝖧 = ∑
𝑏1𝜀1+𝑏2𝜀2+𝑏3𝜀3+𝑏4𝜀4∈𝑃

+(𝖪)∶
𝑎1⩾𝑏1⩾𝑎2⩾𝑏2⩾𝑎3⩾𝑏3⩾𝑎4⩾|𝑏4|,

𝑎1−𝑏1∈ℤ,
𝑏′1𝜀1+⋯+𝑏′4𝜀4∶=𝜑(𝑏1𝜀1+⋯+𝑏4𝜀4),

∑
𝜈∶=𝑐1𝜀1+𝑐2𝜀2+𝑐3𝜀3∈𝑃

+(𝖧′)∶
𝑏′1⩾𝑐1⩾𝑏

′
2⩾𝑐2⩾𝑏

′
3⩾𝑐3⩾|𝑏′4|,

𝑏′1−𝑐1∈ℤ

𝜎𝜈◦𝜑. (5.4)

We claim that

𝖦̂𝖧 = {𝜋𝑝,𝑞 ∶= 𝜋𝑝𝜔1+𝑞𝜔4 ∶ 𝑝, 𝑞 ∈ ℕ0}.
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Recall that𝜔1 = 𝜀1 and𝜔4 =
1
2
(𝜀1 + 𝜀2 + 𝜀3 + 𝜀4). LetΛ =

∑4
𝑖=1 𝑎𝑖𝜀𝑖 ∈ 𝑃+(𝖦). Of course, the trivial

𝖧-representation 1𝖧 coincides with 𝜎𝜈 with 𝜈 = 0, that is, 𝑐1 = 𝑐2 = 𝑐3 = 0. Therefore, if [1𝖧 ∶
𝜋Λ|𝖧] > 0, then the coefficients in (5.4) satisfy 𝑏′2 = 𝑏′3 = 𝑏′4 = 0 and 𝑏′1 ∈ ℕ0, which gives 𝑏1 =
𝑏2 = 𝑏3 = −𝑏4 = 𝑏′1∕2, and consequently 𝑎2 = 𝑎3 = 𝑎4 = 𝑏′1∕2 and 𝑎1 − 𝑏′1∕2 ∈ ℕ0. We conclude
that Λ = 𝑏′1𝜔4 + (𝑎1 − 𝑏′1∕2)𝜔1, as claimed.
Moreover, for Λ = 𝑝𝜔1 + 𝑞𝜔4 with 𝑝, 𝑞 ∈ ℕ0, we have that [1𝖧 ∶ 𝜋Λ|𝖧] = 1 (that is, 1𝖧 occurs

exactly once in 𝜋Λ|𝖧) since the coefficients 𝑏𝑖, 𝑏′𝑖 for 1 ⩽ 𝑖 ⩽ 4 in (5.4) are uniquely determined in
terms of 𝑝 and 𝑞; indeed, 𝑏′1 = 2𝑏1 = 2𝑏2 = 2𝑏3 = −2𝑏4 = 𝑞 and 𝑏′2 = 𝑏′3 = 𝑏′4 = 0. This implies
that there exists only one 𝜇 ∈ 𝑃+(𝖪) satisfying [1𝖧 ∶ 𝜏𝜇|𝖧] = [𝜏𝜇 ∶ 𝜋Λ|𝖪] = 1, which is given by
𝜇𝑞 ∶=

∑4
𝑖=1 𝑏𝑖𝜀𝑖 =

𝑞
2
(𝜀1 + 𝜀2 + 𝜀3 − 𝜀4).

By the above and Theorem 2.4, the eigenvalues of (𝕊15, g(𝑟,𝑠)) are

𝜆(𝑝,𝑞)(𝑟, 𝑠) = 𝜆𝜋𝑝,𝑞,𝜏𝑞 (𝑟, 𝑠) = (𝑟2 − 𝑠2) 𝜆𝜏𝑞 + 𝑠2𝜆𝜋𝑝,𝑞 , 𝑝, 𝑞 ∈ ℕ0,

where 𝜏𝑞 ∈ 𝖪̂ has the highest weight 𝜇𝑞 =
𝑞
2
(𝜀1 + 𝜀2 + 𝜀3 − 𝜀4), withmultiplicity𝑚𝑝,𝑞 = dim𝑉𝜋𝑝,𝑞

equal to (5.3) by the Weyl dimension formula, see, for example, [18, Theorem 5.84]. Moreover,
𝖦̂𝖪 = {𝜋𝑝,0 = 𝜋𝑝𝜀1 ∶ 𝑝 ∈ ℕ0} by the classical branching law from 𝖲𝗉𝗂𝗇(9) to 𝖲𝗉𝗂𝗇(8), so 𝜆(𝑝,𝑞)(𝑟, 𝑠)
is basic if 𝑞 = 0.
The only remaining step is to determine the scalars 𝜆𝜏𝑞 and 𝜆𝜋𝑝,𝑞 . It is easy to check that⟨𝜀𝑖, 𝜀𝑗⟩0 = 𝛿𝑖𝑗 for all 1 ⩽ 𝑖, 𝑗 ⩽ 4. Freudenthal’s formula (2.6) gives

𝜆𝜏𝑞 = ⟨𝜇𝑞, 𝜇𝑞 + 2𝜌𝔨⟩
=

⟨
𝑞
2
(𝜀1 + 𝜀2 + 𝜀3 − 𝜀4),

𝑞
2
(𝜀1 + 𝜀2 + 𝜀3 − 𝜀4) +

4∑
𝑖=1
(8 − 2𝑖)𝜀𝑖

⟩

= 𝑞
2
( 𝑞
2
+ 6) + 𝑞

2
( 𝑞
2
+ 4) + 𝑞

2
( 𝑞
2
+ 2) + 𝑞2

4

= 𝑞(𝑞 + 6).

Similarly, since 2𝜌𝔤 =
∑4

𝑖=1(9 − 2𝑖)𝜀𝑖 , we have that

𝜆𝜋𝑝,𝑞 = ⟨𝑝𝜔1 + 𝑞𝜔4, 𝑝𝜔1 + 𝑘𝜔4 + 2𝜌𝔤⟩
= (𝑝 + 𝑞

2
)(𝑝 + 𝑞

2
+ 7) + 𝑞

2
( 𝑞
2
+ 5) + 𝑞

2
( 𝑞
2
+ 3) + 𝑞

2
( 𝑞
2
+ 1)

= 𝑝2 + 𝑝(𝑞 + 7) + 𝑞2 + 8𝑞.

Combining the above, one obtains (5.2), which concludes the proof. □

6 UNIFIED FORMULAE

In order to prove Theorem A in the Introduction, we collect in Table 1 the Laplace spectra of the
homogeneous spheres (𝕊𝑁−1, g(𝑡)) in (1.3), as computed in Propositions 3.1, 4.1, and 5.1, keeping in
mind the isometries relating homogeneous metrics in their geometric description (1.1) with their
algebraic description (2.2).
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TABLE 1 Eigenvalues of the homogeneous spheres (𝕊𝑁−1, g(𝑡)) in (1.3), where 𝑁 = 2𝑑(𝑛 + 1),
𝑑 = dimℂ 𝕂 ∈ {1, 2, 4}, and 𝑝, 𝑞 ∈ ℕ0

𝕂 (𝕊𝑵−𝟏, g(t)) Parameters (𝒓, 𝒔) and Laplace–Beltrami spectrum

ℂ

𝑑 = 1
(𝕊2𝑛+1, 𝐠(𝑡))

(𝑟, 𝑠) = ( 1

𝑡
√
2
, 1)

𝜆(𝑝,𝑞)(𝑡) = 4𝑝(𝑝 + 𝑞 + 𝑛) + 2𝑛𝑞 + 𝑞2 1

𝑡2

𝑚𝑝,𝑞 = (2 − 𝛿𝑞0)
2𝑝+𝑞+𝑛

𝑛

(𝑝+𝑞+𝑛−1
𝑝+𝑞

)(𝑝+𝑛−1
𝑝

)
ℍ

𝑑 = 2
(𝕊4𝑛+3, 𝐡(𝑡))

(𝑟, 𝑠) = ( 1
𝑡
, 1)

𝜆(𝑝,𝑞)(𝑡) = 4𝑝(𝑝 + 𝑞 + 2𝑛 + 1) + 4𝑛𝑞 + 𝑞(𝑞 + 2) 1
𝑡2

𝑚𝑝,𝑞 =
(2𝑝+𝑞+2𝑛+1)(𝑞+1)2

(2𝑛+1)(𝑝+𝑞+1)

(𝑝+𝑞+2𝑛
𝑝+𝑞

)(𝑝+2𝑛−1
𝑝

)
ℂa

𝑑 = 4
(𝕊15, 𝐤(𝑡))

(𝑟, 𝑠) = ( 1
𝑡
, 2)

𝜆(𝑝,𝑞)(𝑡) = 4𝑝(𝑝 + 𝑞 + 7) + 8𝑞 + 𝑞(𝑞 + 6) 1
𝑡2

𝑚𝑝,𝑞 =
2𝑝+𝑞+7

7
(1 + 𝑞

3
)
(𝑝+𝑞+6

𝑝+𝑞

)(𝑝+3
𝑝

)(𝑞+5
𝑞

)
∕
(𝑝+𝑞+3

𝑝+𝑞

)

Proof of TheoremA. Replacing 𝑑 ∈ {1, 2, 4} in (1.4) and (1.5), one obtains 𝜆(𝑝,𝑞)(𝑡) and𝑚𝑝,𝑞 as listed
in Table 1. By Propositions 3.1, 4.1, and 5.1, these are the eigenvalues and respective multiplicities
of the Laplace–Beltrami operator on the corresponding sphere (𝕊𝑁−1, g(𝑡)), and 𝜆(𝑝,𝑞)(𝑡) is basic
if 𝑞 = 0. □

Recall that the distance sphere 𝑆(𝑟) ⊂ 𝑀 is isometric to (𝕊𝑁−1, 𝛼2 g(𝑡)), where (𝛼, 𝑡) is
(sin 𝑟, cos 𝑟) or (sinh 𝑟, cosh 𝑟) according to𝑀 = 𝕂𝑃𝑛+1 or𝑀 = 𝕂𝐻𝑛+1, cf. (1.2), and𝑁 = dim𝑀 =
2𝑑(𝑛 + 1). Rescaling all spaces in the Riemannian submersion (1.3) by 𝛼, since its fibers are totally
geodesic, one obtains the inclusions of spectra

1
𝛼2
Spec(𝕂𝑃𝑛) ⊂ Spec(𝑆(𝑟)) ⊂ 1

𝛼2

(
Spec(𝕂𝑃𝑛) + Spec

(
𝕊2𝑑−1𝑡

))
, (6.1)

where+ is theMinkowski sum of sets,𝐴 + 𝐵 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. These inclusions are also
immediate from Theorem A, by analyzing the case 𝑞 = 0 in (1.4).
However, there is another remarkable inclusion of spectra, given by the following:

Corollary 6.1. The Laplace–Beltrami spectrum of 𝑆(𝑟) ⊂ 𝑀 satisfies

Spec(𝑆(𝑟)) ⊂ Spec
(
𝕊𝑁−1𝛼

)
± Spec

(
𝕊2𝑑−1𝑡

)
, (6.2)

where + is used if𝑀 is projective, and − if𝑀 is hyperbolic.

Let us first prove (6.2) with a geometric argument, assuming that 𝕂 ∈ {ℂ, ℍ} and𝑀 = 𝕂𝑃𝑛+1 is
a projective space, hence the base of the Riemannian submersion

𝕊2𝑑−11 ⟶ 𝕊𝑁+2𝑑−11 ⟶ 𝕂𝑃𝑛+1 (6.3)

whose totally geodesic fibers are precisely the orbits of the free action of the group 𝕊2𝑑−11 ⊂ 𝕂∗ of
multiplicative units on the unit sphere

𝕊𝑁+2𝑑−11 ⊂ ℝ𝑁+2𝑑 ≅ 𝕂𝑁∕2𝑑+1. (6.4)
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Being a distance sphere, the preimage of 𝑆(𝑟) ⊂ 𝕂𝑃𝑛+1 under this submersion is the boundary
of the tubular neighborhood of radius 𝑟 of the fiber that corresponds to the central point of 𝑆(𝑟).
Since this fiber is an orbit of the aforementioned action on (6.4), this boundary is a product of
spheres, isometric to

𝕊𝑁−1𝛼 × 𝕊2𝑑−1𝑡 = 𝕊𝑁+2𝑑−11 ∩ (ℝ𝑁 ⊕ ℝ2𝑑) ≅ 𝕊𝑁+2𝑑1 ∩ (𝕂𝑁∕2𝑑 ⊕ 𝕂),

which proves (6.2) for 𝕂 ∈ {ℂ, ℍ} and 𝑀 projective. The same argument can be generalized to
the case in which 𝑀 = 𝕂𝐻𝑛+1 is hyperbolic, interpreting (6.4) as the unit pseudo-sphere in the
pseudo-Riemannian vector space 𝕂𝑁∕2𝑑 ⊕ 𝕂 of signature (𝑁, 2𝑑), analogous to the discussion in
[4, Section 6].
Nevertheless, the above arguments do not apply to 𝕂 = ℂa in either case because it is not asso-

ciative; in particular, its unit sphere 𝕊71 is not a group. Moreover, it is well known that there are no
fiber bundles 𝕊𝓁 → ℂa𝑃2 such as (6.3) for topological reasons [13]. Thus, it is a somewhat surpris-
ing consequence of Theorem A that (6.2) still holds for 𝕂 = ℂa, in both projective and hyperbolic
cases. In fact, (6.2) can be explicitly parametrized, for all 𝕂 ∈ {ℂ, ℍ, ℂa} at once, using that, by
(1.4),

𝜆(𝑝,𝑞)(𝑡) = (2𝑝 + 𝑞)(2𝑝 + 𝑞 + 𝑁 − 2) + 𝑞(𝑞 + 2𝑑 − 2)
( 1
𝑡2
− 1

)
,

and, by (1.2), we have ±𝛼2

𝑡2
= ( 1

𝑡2
− 1) according to𝑀 = 𝕂𝑃𝑛+1 or𝑀 = 𝕂𝐻𝑛+1.

7 RESONANCE AND RIGIDITY OF DISTANCE SPHERES

In this section, we recall the variational and bifurcation framework for CMC hypersurfaces and
prove Theorem B in the Introduction.

7.1 CMC spheres

Given an 𝑁-dimensional Riemannian manifold (𝑀, g), let Emb(𝕊𝑁−1,𝑀) be the space of
𝐶2,𝛼 unparametrized embeddings of 𝕊𝑁−1 into 𝑀, that is, equivalence classes of embeddings
𝐱∶ 𝕊𝑁−1 → 𝑀 for the action of Dif f (𝕊𝑁−1) by right composition. Consider the family of func-
tionals

𝑓𝐻 ∶ Emb(𝕊𝑁−1,𝑀)⟶ ℝ

𝑓𝐻(𝐱) = Area(𝐱) + 𝐻 Vol(𝐱),
(7.1)

where Area(𝐱) denotes the (𝑁 − 1)-volume of 𝐱(𝕊𝑁−1), and Vol(𝐱) the 𝑁-volume of the region
enclosed by 𝐱(𝕊𝑁−1). It is well known that critical points of (7.1) are precisely the embedded
spheres in𝑀 with CMC𝐻. Moreover, the second variation of (7.1) at a critical point is represented
by the Jacobi operator

𝐽𝐱(𝜙) = Δ𝐱𝜙 − (Ric(𝑛𝐱) + ‖𝐴𝐱‖2)𝜙, (7.2)
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acting on the space of functions 𝜙∶ 𝕊𝑛−1 → ℝwith ∫𝕊𝑁−1 𝜙 = 0, whereΔ𝐱 is the Laplace–Beltrami
operator on 𝕊𝑁−1 with respect to the metric induced by the embedding 𝐱∶ 𝕊𝑁−1 → 𝑀, 𝑛𝐱 is a
unit normal vector field to 𝐱(𝕊𝑁−1) ⊂ 𝑀, and ‖𝐴𝐱‖ is the Hilbert–Schmidt norm of its second
fundamental form; for details, see, for example, [4, Section 2]. Functions 𝜙 ∈ ker 𝐽𝐱 are called
Jacobi fields, and the number 𝑖Morse(𝐱) of negative eigenvalues of 𝐽𝐱, counted with multiplicity, is
called theMorse index of 𝐱. Moreover, 𝐱 is stable if and only if 𝐽𝐱 is positive-semidefinite, that is,
𝑖Morse(𝐱) = 0, and non-degenerate if and only if ker 𝐽𝐱 = {0}.

7.2 Equivariant rigidity and resonance

If a Lie group 𝖦 acts isometrically on𝑀, then (7.1) is clearly invariant under left composition with
this action, so the entire𝖦-orbit of a critical point is critical. Moreover, since (7.2) is𝖦-equivariant,
each Killing field 𝑋 ∈ 𝔤 determines a Jacobi field 𝜙𝑋 = ⟨𝑋, 𝑛𝐱⟩ ∈ ker 𝐽𝐱. In this context, we say
that 𝐱 is 𝖦-equivariantly non-degenerate if ker 𝐽𝐱 consists solely of such Jacobi fields induced by
the 𝖦-action.
Let 𝖪 be the 𝖦-isotropy of 𝑥0 ∈ 𝑀, and assume that the 𝖪-action is transitive on all geodesic

distance spheres 𝑆(𝑟) ⊂ 𝑀 centered at 𝑥0. In particular, the (unparametrized) embeddings

𝐱𝑟 ∶ 𝕊𝑁−1 → 𝑀, 𝐱𝑟(𝕊
𝑁−1) = 𝑆(𝑟), (7.3)

have CMC 𝐻(𝑆(𝑟)) for each 𝑟. Furthermore, assume that the map 𝑟 ↦ 𝐻(𝑆(𝑟)) is a diffeomor-
phism, so that 𝐱𝑟 may also be parametrized by its mean curvature. In this context, an appropriate
𝖦-equivariant version of the implicit function theorem [11, Theorem 1.4] implies the following
theorem.

Theorem 7.1. Suppose that (7.3) is 𝖦-equivariantly non-degenerate if 𝑟 = 𝑟∗. There exists 𝜀 > 0
such that, if an embedded sphere Σ ⊂ 𝑀 has CMC 𝐻(Σ) = 𝐻(𝑆(𝑟)), 𝑟 ∈ (𝑟∗ − 𝜀, 𝑟∗ + 𝜀) and, up to
isometries in𝖦, is sufficiently close to 𝑆(𝑟) in𝐶2,𝛼-topology, thenΣ is congruent to 𝑆(𝑟) via an isometry
in 𝖦.

The radii 𝑟∗ for which the conclusion of Theorem 7.1 fails are called resonant.

Definition 7.2. We say that 𝑟∗ is a resonant radius if there exist sequences 𝑟𝑗 of radii converging to
𝑟∗, andΣ𝑗 ⊂ 𝑀 of embeddedCMC spheres converging to 𝑆(𝑟∗) in𝐶2,𝛼-topology, such that𝐻(Σ𝑗) =
𝐻(𝑆(𝑟𝑗)) for all 𝑗, and Σ𝑗 is not congruent to 𝑆(𝑟𝑗) via any isometry in 𝖦.

Clearly, by Theorem 7.1, a necessary condition for 𝑟∗ to be resonant is that 𝐱𝑟∗ is not 𝖦-
equivariantly non-degenerate. The following sufficient condition for resonancy is a direct con-
sequence of the equivariant bifurcation criterion [10, Theorem 5.4].

Theorem 7.3. If for all 𝜀 > 0 sufficiently small, 𝐱𝑟∗−𝜀 and 𝐱𝑟∗+𝜀 are𝖦-equivariantly non-degenerate
and 𝑖Morse(𝐱𝑟∗−𝜀) ≠ 𝑖Morse(𝐱𝑟∗+𝜀), then 𝑟∗ is resonant.
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TABLE 2 Symmetric pairs (𝖦, 𝖪) of rank one corresponding to the projective
spaces 𝕂𝑃𝑛+1, and their non-compact duals, the hyperbolic spaces 𝕂𝐻𝑛+1

𝗚∕𝗞 𝗚 𝗞

ℂ𝑃𝑛+1 𝖲𝖴(𝑛 + 2) 𝖲(𝖴(𝑛 + 1)𝖴(1))

ℍ𝑃𝑛+1 𝖲𝗉(𝑛 + 2) 𝖲𝗉(𝑛 + 1)𝖲𝗉(1)

ℂa𝑃2 𝖥4 𝖲𝗉𝗂𝗇(9)

ℂ𝐻𝑛+1 𝖲𝖴(𝑛 + 1, 1) 𝖲(𝖴(𝑛 + 1)𝖴(1))

ℍ𝐻𝑛+1 𝖲𝗉(𝑛 + 1, 1) 𝖲𝗉(𝑛 + 1)𝖲𝗉(1)

ℂa𝐻2 𝖥−204 𝖲𝗉𝗂𝗇(9)

7.3 Rank one symmetric spaces

Wenowbriefly revisit somewell-knownaspects of the geometry of rank one symmetric spaces that
are used in the proof of TheoremB. First, recall that the symmetric pairs (𝖦, 𝖪) that give rise to such
spaces𝑀 = 𝖦∕𝖪 are as listed in Table 2. These semisimple Lie groups 𝖦 act transitively on𝑀, and
𝖪 ⊂ 𝖦 is identified with the isotropy of a point 𝑥0 ∈ 𝑀, so its Lie algebra is 𝔨 = {𝑋 ∈ 𝔤 ∶ 𝑋𝑥0 = 0}.
We fix a Cartan decomposition

𝔤 = 𝔨 ⊕𝔪, (7.4)

and recall that the space 𝔪 = {𝑋 ∈ 𝔤 ∶ (∇𝑋)𝑥0 = 0} of infinitesimal transvections at 𝑥0 is
naturally identified with 𝑇𝑥0𝑀; in particular, dim𝔪 = dim𝑀 = 𝑁. The codimension of 𝖪-orbits
on distance spheres 𝑆(𝑟) ⊂ 𝑀 is equal to rank(𝑀) − 1, so all these 𝖪-actions are transitive in our
rank one setting. Thus, the eigenvalues of the second fundamental form 𝐴𝑟 of 𝑆(𝑟) with respect
to the unit outward-pointing normal 𝑛𝑟 are constant, and can be computed as follows, see, for
example, [12, §6]: {

2 cot(2𝑟), with multiplicity 2𝑑 − 1

cot(𝑟), with multiplicity 2𝑑𝑛
, if𝑀 = 𝕂𝑃𝑛+1,

{
2 coth(2𝑟), with multiplicity 2𝑑 − 1

coth(𝑟), with multiplicity 2𝑑𝑛
, if𝑀 = 𝕂𝐻𝑛+1,

where 𝑑 = dimℂ 𝕂, as before. Thus, the mean curvature of 𝑆(𝑟) ⊂ 𝑀 is:

𝐻(𝑆(𝑟)) =

{
(𝑁 − 1) cot 𝑟 − (2𝑑 − 1) tan 𝑟, if𝑀 = 𝕂𝑃𝑛+1,

(𝑁 − 1) coth 𝑟 + (2𝑑 − 1) tanh 𝑟, if𝑀 = 𝕂𝐻𝑛+1.
(7.5)

Note that 𝐻(𝑆(𝑟)) is always decreasing, since 𝑁 = dim𝑀 = 2𝑑(𝑛 + 1); in particular, the map
𝑟 ↦ 𝐻(𝑆(𝑟)) is a diffeomorphism. Moreover, we have:

‖𝐴𝑟‖2 ={
2𝑑𝑛 cot2(𝑟) + 4(2𝑑 − 1) cot2(2𝑟), if𝑀 = 𝕂𝑃𝑛+1,

2𝑑𝑛 coth2(𝑟) + 4(2𝑑 − 1) coth2(2𝑟), if𝑀 = 𝕂𝐻𝑛+1.
(7.6)
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The following is essential to determine if 𝑆(𝑟) is 𝖦-equivariantly non-degenerate:

Lemma 7.4. A Killing field 𝑋 ∈ 𝔤 induces a non-zero Jacobi field 𝜙𝑋 = ⟨𝑋, 𝑛𝑟⟩ on 𝑆(𝑟) if and only
if 𝑋 ∈ 𝔪. Thus, the space of Jacobi fields on 𝑆(𝑟) has dimension ⩾ 𝑁, and equality holds if and only
if 𝑆(𝑟) is 𝖦-equivariantly non-degenerate.

Proof. Clearly, 𝑋 ∈ 𝔤 induces the trivial Jacobi field 𝜙𝑋 ≡ 0 if and only if 𝑋 is everywhere tangent
to 𝑆(𝑟) ⊂ 𝑀. This implies that the 1-parameter subgroup of isometries in 𝖦 associated to such a
Killing field𝑋 leaves invariant 𝑆(𝑟) = {𝑥 ∈ 𝑀 ∶ dist(𝑥0, 𝑥) = 𝑟}, and hence fixes 𝑥0 ∈ 𝑀, so𝑋 ∈ 𝔨.
Conversely, 𝜙𝑋 ≡ 0 for all 𝑋 ∈ 𝔨. The result now follows from (7.4) and the fact that dim𝔪 =
𝑁. □

Lastly, routine computations of the Einstein constants for these spaces give:

Ric𝕂𝑃𝑛+1 = 2𝑑𝑛 + 4(2𝑑 − 1), and Ric𝕂𝐻𝑛+1 = −2𝑑𝑛 − 4(2𝑑 − 1). (7.7)

We now combine Theorem A with Theorems 7.1 and 7.3 to prove Theorem B.

Proof of Theorem B. The Jacobi operator 𝐽𝑟 of the distance sphere 𝑆(𝑟) ⊂ 𝑀 can be computed
using (7.2), (7.6), and (7.7), and simplifies to

𝐽𝑟(𝜙) = Δ𝑟𝜙 − 𝑉(𝑟)𝜙, (7.8)

where Δ𝑟 =
1
𝛼2
Δg(𝑡), with 𝛼 and 𝑡 as in (1.2), and

𝑉(𝑟) =

⎧⎪⎨⎪⎩
(𝑁 − 1) csc2 𝑟 + (2𝑑 − 1) sec2 𝑟, if𝑀 = 𝕂𝑃𝑛+1,

(𝑁 − 1) csch2 𝑟 − (2𝑑 − 1) sech2 𝑟, if𝑀 = 𝕂𝐻𝑛+1.

First, let us analyze the projective case 𝑀 = 𝕂𝑃𝑛+1, where 𝛼 = sin 𝑟 and 𝑡 = cos 𝑟. By Theo-
rem A, the eigenvalues of 𝛼2𝐽𝑟 are:

𝜆(𝑝,𝑞)(𝑡) − 𝛼2𝑉(𝑟) = 4𝑝
(
𝑝 + 𝑞 + 𝑁

2
− 1

)
+ 2𝑑𝑛𝑞 + 𝑞(𝑞 + 2𝑑 − 2) sec2 𝑟 − 𝑉(𝑟) sin2 𝑟

= 4𝑝
(
𝑝 + 𝑞 + 𝑁

2
− 1

)
+ 2𝑑𝑛𝑞 − (𝑁 − 1)

+ (𝑞(𝑞 − 1) + (2𝑑 − 1)(𝑞 − sin2 𝑟)) sec2 𝑟,

for all (𝑝, 𝑞) ∈ ℕ20 ⧵ {(0, 0)}. In particular, for all 𝑝 ∈ ℕ,

𝜆(𝑝,0)(cos 𝑟) − sin2 𝑟 𝑉(𝑟) = 4𝑝
(
𝑝 + 𝑁

2
− 1

)
− (𝑁 − 1) − (2𝑑 − 1) tan2 𝑟

= 4𝑝(𝑝 − 1) + 𝑁(2𝑝 − 1) + 1 − (2𝑑 − 1) tan2 𝑟
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is a decreasing function of 0 < 𝑟 < 𝜋
2
, with a unique zero at:

𝑟𝑝 ∶= arctan

√
4𝑝(𝑝 − 1) + 𝑁(2𝑝 − 1) + 1

2𝑑 − 1
. (7.9)

Note that 𝑟1 = arctan
√

𝑁+1
2𝑑−1

, and 𝑟𝑝 ↗
𝜋
2
as 𝑝 ↗ +∞. Moreover, for all 𝑟,

𝜆(0,1)(cos 𝑟) − sin2 𝑟 𝑉(𝑟) = 0, (7.10)

while, if 𝑞 ⩾ 2, then

𝜆(0,𝑞)(cos 𝑟) − sin2 𝑟 𝑉(𝑟) ⩾ 𝜆(0,2)(cos 𝑟) − sin2 𝑟 𝑉(𝑟)

= 2𝑑𝑛 + (2𝑑 + 1) sec2 𝑟

⩾ 𝑁 + 1 > 0,

and, if both 𝑝 ⩾ 1 and 𝑞 ⩾ 1, then

𝜆(𝑝,𝑞)(cos 𝑟) − sin2 𝑟 𝑉(𝑟) ⩾ 4
(
𝑁
2
+ 1

)
+ 2𝑑𝑛 − (𝑁 − 1) + (2𝑑 − 1)

= 2𝑁 + 4 > 0.

Thus, if 𝑟 ∉ {𝑟𝑝 ∶ 𝑝 ∈ ℕ}, the only zero eigenvalues of 𝐽𝑟 are (7.10), and hence dimker 𝐽𝑟 coincides
with the dimension of the eigenspace of Δg(𝑡) associated to 𝜆(0,1)(𝑡), which is 𝑚0,1 = 𝑁, by Theo-
rem A. Therefore, it follows from Lemma 7.4 that 𝑆(𝑟) is 𝖦-equivariantly non-degenerate for all
𝑟 ∉ {𝑟𝑝 ∶ 𝑝 ∈ ℕ}.
Furthermore, it follows from the above spectral analysis that

𝑖Morse(𝐱𝑟) =
∑

{𝑝∈ℕ∶𝑟𝑝<𝑟}

𝑚𝑝,0.

Thus, the claims in Theorem B regarding𝑀 = 𝕂𝑃𝑛+1 follow from applying Theorem 7.1 to each
𝑟∗ ∉ {𝑟𝑝 ∶ 𝑝 ∈ ℕ}, and Theorem 7.3 to each 𝑟∗ ∈ {𝑟𝑝 ∶ 𝑝 ∈ ℕ}.
Second, let us analyze the hyperbolic case𝑀 = 𝕂𝐻𝑛+1, where 𝛼 = sinh 𝑟 and 𝑡 = cosh 𝑟. Simi-

larly to the above case, by Theorem A, the eigenvalues of 𝛼2𝐽𝑟 are:

𝜆(𝑝,𝑞)(𝑡) − 𝛼2 𝑉(𝑟) = 4𝑝
(
𝑝 + 𝑞 + 𝑁

2
− 1

)
+ 2𝑑𝑛𝑞 + 𝑞(𝑞 + 2𝑑 − 2) sech2 𝑟

− 𝑉(𝑟) sinh2 𝑟

= 4𝑝
(
𝑝 + 𝑞 + 𝑁

2
− 1

)
+ 2𝑑𝑛𝑞 − (𝑁 − 1)

+ (𝑞(𝑞 − 1) + (2𝑑 − 1)(𝑞 + sinh2 𝑟)) sech2 𝑟,
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for all (𝑝, 𝑞) ∈ ℕ20 ⧵ {(0, 0)}. In particular, we have that, for all 𝑟,

𝜆(0,1)(cosh 𝑟) − sinh2 𝑟 𝑉(𝑟) = 0, (7.11)

while, if 𝑞 ⩾ 2, then

𝜆(0,𝑞)(cosh 𝑟) − sinh2 𝑟 𝑉(𝑟) ⩾ 𝜆(0,2)(cosh 𝑟) − sinh2 𝑟 𝑉(𝑟)

= 2𝑑𝑛 + (2𝑑 + 1) sech2 𝑟

⩾ 2𝑑𝑛 > 0,

and, for all 𝑝 ⩾ 1 and 𝑞 ∈ ℕ0,

𝜆(𝑝,𝑞)(cosh 𝑟) − sinh2 𝑟 𝑉(𝑟) ⩾ 𝑁 + 1 > 0.

Thus, the only zero eigenvalues of 𝐽𝑟 are (7.11), and all other eigenvalues are strictly positive, so
𝑖Morse(𝐱𝑟) = 0 for all 𝑟 > 0, that is, 𝑆(𝑟) is stable for all 𝑟 > 0. As before, dimker 𝐽𝑟 coincides with
the dimension of the eigenspace of Δg(𝑡) associated to 𝜆(0,1)(𝑡), which is𝑚0,1 = 𝑁, by Theorem A;
so Lemma 7.4 implies that 𝐱𝑟 is 𝖦-equivariantly non-degenerate for all 𝑟 > 0, hence non-resonant
by Theorem 7.1. □

Remark 7.5. It was known that a sequence of resonant radii 𝑟𝑝 ↗
𝜋
2
existed for distance spheres

𝑆(𝑟) in ℂ𝑃𝑛+1 and ℍ𝑃𝑛+1 centered at any point 𝑥0 due to basic eigenvalues for the Riemannian
submersion 𝕊2𝑑−1 → 𝑆(𝑟) → Cut(𝑥0), see [9, Example 6.1]. However, neither their exact location
(7.9) nor the fact that only basic eigenvalues give rise to such bifurcations was previously known.
Moreover, the study of local rigidity and resonance for geodesic spheres in ℂa𝑃2 was also not
possible in [9] since none of the group normality assumptions 𝖧 ⊲ 𝖪 or 𝖪 ⊲ 𝖦 are satisfied in this
case. The fact that it was possible to overcome these difficulties in Theorem B might suggest that
a different approach, for example, usingMean Curvature Flow, cf. [9, Rem. 2.13], may lead to even
more general bifurcation results.
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