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1 | INTRODUCTION

The family of (simply connected) symmetric spaces of rank one consists of spheres and projective
spaces S", CP", HP", CaP?, together with their non-compact duals, the hyperbolic spaces H",
CH", HH", CaH?. As Riemannian manifolds, these are two-point homogeneous spaces, that is,
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any two pairs of points at the same distance can be mapped to one another by an isometry. In
particular, their distance spheres

S(r) = {x €M : dist(xy,x) = r},

are homogeneous spaces themselves, and two distance spheres are isometric if and only if they
have the same radius, regardless of their centers. These homogeneous spheres are the main
object of study in this paper; in which we shall use Lie theory to explicitly compute their entire
Laplace spectrum, and determine their stability (or lack thereof) as constant mean curvature
(CMC) hypersurfaces.

While distance spheres S(r) in S" and H" have constant curvature, that is, are isometric to
round spheres, just like in R", this is no longer the case in projective and hyperbolic spaces. Geo-
metrically, S(r) C M are obtained by rescaling the unit round metric in the vertical direction(s) of
the corresponding Hopf bundle by ¢ > 0:

s} — (s***',g(t)) — cP",  ifM =cCP"" or CH"';
s} — (s**,h(t)) — WP",  ifM = HP"*! or HH"™; (1.1)
s] — (S",k() — Sfl‘/z, if M = CcaP? or CaH?;

where Sf denotes the #-dimensional sphere of constant curvature sec = 1/t?, and then glob-
ally rescaling all directions by o > 0. With the convention (used throughout this paper) that the
above projective and hyperbolic spaces with their canonical metrics have sectional curvatures
1 < secy; < 4 and —4 < secy; < —1, respectively, the values of ¢ and « for S(r) C M are related to
its geodesic radius r as follows:

t =cosr and o =sinr, 0<r<m/2, ifM isa projective space;

(1.2)

t =coshr and «a =sinhr, r>0, if M is a hyperbolic space.

Note that, with these conventions, the above projective spaces have diameter 7 /2. Of course, all
S(r) become asymptotically round as r \, 0, that is, they converge (up to homothety by «) to the
unit round metric, which corresponds to t = 1 in each of the families g(t), h(¢), and k(). Further-
more, only the metrics with either t < 1 or ¢t > 1 appear (up to homotheties) as distance spheres
S(r) C M, according to whether M is projective or hyperbolic.

It is convenient to refer to the Riemannian submersions (1.1) collectively as

s — (SN g(t)) — KP", 1.3)

where K € {C,H,Ca}, d =dim: K € {1,2,4}, n> 1, and N =2d(n+1) =dimM is the (real)
dimension of the ambient space KP"*! or KH"*!. Recall that if K = Ca, thatis,d = 4,onlyn = 1
is possible due to the non-associativity of Cayley numbers [2, 19], and (1.3) is not a homogeneous
fibration [14, 16].

Since the fibers of (1.3) are totally geodesic, the projection map “commutes” the Laplace-
Beltrami operators of total space and base. In particular, lifting a Laplace eigenfunction of KP”"
produces a Laplace eigenfunction of (SN=1, g(t)), with the same eigenvalue. Such eigenvalues
are called basic, and are independent of ¢. Although it has been known for a long time that all
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eigenvalues are sums of basic eigenvalues with certain Laplace eigenvalues of the fiber [5, 6], deter-
mining exactly which sums of eigenvalues from KP" and $?*¢~! indeed appear in the spectrum of
the total space can be somewhat impractical. We circumvent this with an alternative Lie-theoretic
approach based on [21], recently used in [7, 20] and expanded in Section 2 below, which yields our
first main result.

Theorem A. The spectrum of the Laplace-Beltrami operator on the homogeneous sphere
(SN1,g(t)), N = 2d(n + 1), as in (1.3), consists of the eigenvalues

APD(t) = 4p(p+q+d(n+1)—1) +2dng + q(g +2d — 2)55, p,q €Ny, (1.4)

which are basic if g = 0, and have multiplicity

) d( 1) 1 (p+q+d(n+1)—2) (p+dn—1)

prg+dn+1)— p+q P

= d,q), 1.5

pq dn+1)—1 (p+q+d—1) X( q) @5)
pt+q

_ 9 y_I(g+2d-2)
where x(d,q) = (1+ d_l)p(q“)r(zd—z)'

tiplicity of that eigenvalue is the sum of all the corresponding m,, ;.

If different pairs (p, q) give the same value APD(t), the mul-

We take the convention that y(d, q) is extended by continuity to its removable singularity at
d =1, that is,

)((Lq)=1im<1+ q ) rg+2d-2) _ {1 ifg =0

d—1 d—1/T(qg+ 1Dr2d-2) 2 ifg>1,

since I'(z) has a simple pole at z = 0 of residue 1, and I'(a) = (a — 1)! forall a € N. Moreover, ifd >
2, note that y(d,q) = (1 + ﬁ)(q+2qd_3) for all ¢ € N,. As usual, we agree that (Z) =0ifa <b.
Despite the convenient unified formulae (1.4) and (1.5), the proof of Theorem A is done analyzing
each case K € {C, H, Ca} separately, and corresponding formulae can be found in Section 6.

Note that setting ¢t = 1 in (1.4), the eigenvalues APD1)=k(k+N-2), k € Ny, of the unit
round sphere SN~! are recovered, with k = 2p + q. Moreover, (1.5) and combinatorial identities
show that its multiplicity (kﬁizl) - (kﬁif) is equal to the sum of m,, ; over all p, q € N, satis-
fying 2p + q = k. Similarly, setting g = 0, one recovers the eigenvalues A(P°(t) = 4p(p + d(n +
1) — 1), p € Ny, of the projective space KP" and the corresponding multiplicities.

Several partial descriptions of the spectra in Theorem A appear in the literature, for example, [4,
8, 23, 24]; in particular, the first (non-zero) eigenvalue was computed in [8], see also [7]. However,
to the best of our knowledge, the full Laplace spectrum cannot be directly extracted from these
earlier results.

Using Theorem A and (1.2), the full spectrum of the Laplace-Beltrami operator on any distance
sphere S(r) in a rank one symmetric space M can be easily computed, since A, = éAg. Although

the lowest dimensional cases are excluded as n > 1in (1.1), these are trivial since CP! = 82(%) and
HP! ~ 84(%) are isometric to round spheres with sec,; = 4; and CH! ~ H 2(%) and HH! =~ H4(%)
are isometric to real hyperbolic spaces with sec,; = —4, so distance spheres S(r) C M in any of
these spaces are just round spheres.
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The spectrum of distance spheres is closely related to the local ambient geometry, for example,
it detects whether a harmonic space is locally symmetric [1]. One of its global consequences is
explored in our second main result, concerning the existence of other embedded CMC spheres
near distance spheres. More precisely, a distance sphere S(r,) C M is resonant if there exists a
sequence r; of radii converging to r, and a sequence £; C M of embedded spheres converging
to S(r,.), with CMC H(Z;) = H(S(r;)), which are not congruent to S(r;). Note that S(r.) is non-
resonant if and only if, up to ambient isometries, S(r) are locally the only embedded CMC spheres
with their mean curvature if r is sufficiently close to r,.. Recall that a hypersurface ¥ ¢ M has CMC
H if and only if it is a stationary point for the functional Area(X) + H Vol(Z), where Area(Y) is
the (N — 1)-volume of ¥ and Vol(X) is the N-volume of the region enclosed by X in M, and X is
stable if it is locally a minimum.

Theorem B. The distance spheres S(r) in the projective spaces CP"*1, HP"*1, n > 1, and CaP? are
resonant if and only if r = r,, for some p € N, where

k]

. '=arctan\/4p(p—1)+N(2p—1)+1
P 2d -1

d = dim¢ K €{1,2,4} per K € {C,H, Ca}, and N = dim KP"*! = 2d(n + 1). On the other hand, for
all r > 0, the distance spheres S(r) in the hyperbolic spaces CH"*', HH"*!, n > 1, and CaH? are
stable and non-resonant.

The existence of infinitely many resonant distance spheres in CP"*! and HP"*! with radii accu-
mulating at 77 /2 had been established in [9]. Nevertheless, the coarser equivariant spectral meth-
ods used there do not allow one to explicitly determine which radii 0 < r < 77 /2 are resonant, nor
to handle the case of CaP?, since (1.3) is not a homogeneous fibration if K = Ca. Moreover, it was

known that S(r) C KP"*! is stable if and only if 0 < r < r; = arctan / é\;—j, see [4, Theorems 1.3

and 1.4], and that S(r) C KH"*! are stable for all r > 0, see [22, Theorem 2].

The path leading from Theorem A to Theorem B is that the stability operator (or Jacobi opera-
tor) for a CMC hypersurface £ C M isJy = Ay — (Ric(riy) + ||As||?); hence, its spectrum is a shift
of the Laplace spectrum of X by a curvature term, which is constant if ¥ is a distance sphere S(r)
as above. Stability of S(r) is equivalent to non-negativity of the first eigenvalue of Jg,, while res-
onance of S(r,) is detected by eigenvalues of Jg(, crossing zero at r = r,, see Section 7 for details.

This paper is organized as follows. Section 2 describes a Lie-theoretic approach tailored to com-
pute the Laplace spectrum on the total space of Riemannian submersions such as (1.1). The out-
come for the first families in (1.1) is given in Sections 3 and 4, respectively, while Section 5 deals
with the third case. These results are unified in Section 6, with the proof of Theorem A. The appli-
cations regarding resonance and rigidity are discussed in Section 7, where Theorem B is proven.

2 | COMPUTING THE LAPLACE SPECTRUM OF A HOMOGENEOUS
SPACE

2.1 | Basicsetting

LetH C K C G be compact Lie groups, with Lie algebras f) C ¥ C g. Fix a bi-invariant metric on G,
thatis, an Ad(G)-invariant inner product (-, -), on g. For instance, a natural choice on most matrix
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Lie groups is

(X,Y)y = —3 Re(tr(XY)). (2.1)

Let p and q be the (-, -),-orthogonal complements of fj in ¥, and f in g, so that £ = H @ p and
g=tDq=5HD (p D q) are Cartan decompositions. In particular, the H-action on p @ q via
the adjoint representation of G is identified with the isotropy representation of G/H. Note that
although p and q are subrepresentations, they need not be irreducible. Consider the family of
Ad(H)-invariant inner products

1 1
¢ = 55 Cdoly 5 Godolge s >0, (2.2)

on p @ q, which induces a corresponding family of G-invariant metrics g, ;) on G/H.
Up to homotheties, this is the canonical variation of the Riemannian submersion

K/H — G/H — G/K, (2.3)

where all spaces are endowed with normal homogeneous metrics induced by (-, -),. In geometric
terms, g, ;) is obtained by rescaling the vertical and horizontal directions of (2.3) by 1/r and 1/s,
respectively. If p and q are irreducible and non-equivalent as H-modules, then any G-invariant
metric on G/H is isometric to some g, ;).

2.2 | The Lie-theoretic method

In this section, we describe the Lie-theoretic procedure to compute the Laplace-Beltrami spec-
trum of (G/H, g, ), which relies on knowledge of representation branching rules involving G, K,
and H. The discussion below is based on [21] and our earlier work [7, §2], and provides a compu-
tationally efficient alternative to more classical methods in [5, 6].

Notation 2.1. Given a compact Lie group J, let 7T be its unitary dual, that is, the set of equiva-
lence classes of irreducible unitary representations of J. We shall consider elements of J as repre-
sentations (7, V), that is, homomorphisms 7 : J — GL(V ). Given J-representations (o, V) and
(t,V,), set [0 : 7] :=dim Hom,(V,, V). Note that if o is irreducible, then [o : 7] is the multi-
plicity of o in the decomposition of 7 in irreducible components. In particular, [c : 7] > 0 for only
finitely many o € J.

Definition 2.2. The set of spherical representations associated to (G, H) is
Gy i={(m V) eG:Vl#0}={reG: 1 : nly]l >0},

where VH is the subspace of V. given by H-invariant elements, and 1 is the trivial representation
of H. The Casimir element of g with respect to (-, -), is the element Casg (., i= Xf + e+ Xﬁimg
of the universal enveloping algebra U'(g), where {X, ..., X4im ¢} i8 any (-, -)o-orthonormal basis
of g. Since we fixed an Ad(G)-invariant inner product (-, -),, we denote Casg,<,’,>0 by Casg, and

similarly for the Casimir elements Casg and Casy of (¥, (-, -)ol¢) and (h, (-, -)oy)-
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Notation 2.3. Let (¢,V) be a unitary representation of a compact Lie group J. We shall
also denote by ¢ the induced representations of the Lie algebra j of J, of its complexification
jc :=1®g C, and of its universal enveloping algebra U'(jc). Since ¢(a): V, — V,, is unitary
for all a € J, it follows that p(X) is skew-symmetric for all X € g, and, consequently, p(—X?) is
self-adjoint for all X € g.

For 77 € G, the operator n(Casy) 1 V, — V, commutes with 7(a) forall a € G. Thus, by Schur’s
lemma, 7(— Cas,) = 17 Idy_ for some A™ > 0. Analogously, 7(— Casg) = A7 Idy,_and o(—Casy) =
A% Idy, for 7 €K and ¢ € H. The constants A7 and A7 can be computed explicitly using Lie-
theoretic objects, see Subsection 2.3.

Theorem 2.4. The spectrum of the Laplace-Beltrami operator on the homogeneous space
(G/H, g )) consists of the eigenvalues

A55(r,8) = (r* — s?) A" + 5247, (2.4)
where (77,T) € GH x K is such that [t : 7] > 0, with multiplicity
m”’r = [1H . TlH][T : 7T|K] (111'1’1‘/7r

Moreover, (2.4) is basic for the Riemannian submersion (G/H, g, 5)) = G/Kifw € Gy and 7 = 1y,
in which case A™*(r,s) = s*’A" and m,, . = [1y : 7| ]dim V.

Proof. Let{Xy,...,Xgim P} and{Y, ..., Ygim q} be (-, -)o-orthonormal bases of p and q, respectively,
and note that {rXy, ..., 7”Xgim p» 8Y1, ..., Y gim o} is an orthonormal basis of p & q with respect to
(5 )rs)- Set Cp = X2 4 - +X§imp, Co=Yi+ -+ Yéimq, and C, ;) = t*C, + 52 C,. According
to [7, Proposition 2.2], the spectrum of the Laplace-Beltrami operator on (G/H, g, )) is the union
of eigenvalues of 7T(—C(,,,S))|V7r-r|, where 7 € Gy, each with multiplicity diim V..

We need to show that (2.4) appears in the spectrum of ﬂ(—C(r,S))lvy with multiplicity [1 :

|yl : 7|] for any 7 € K satisfying [z : 7|] > 0, and that these eigenvalues exhaust the spec-
trum. For v € V!, we have that

m(—Ci ) -0 =1 m(=Cy) - v + s> 1(—Cy) - v
=(r* —s)r(—Cp) - v+5°w(—Cp, —C,)- v
(2.5)
= (r* —s*) m(— Casy —C,) - v + s> 1(— Casy —C), — C;) - v

= (r* — 5*) m(— Casy) - v + 5> (= Cas,) - v.

The third equality follows from 7(Casy) - v = 0, since v is H-invariant. While clearly 7z(— Casg) .
v = A"v, the computation of the term 7(— Casg) - v is more involved.
Consider the decomposition

v,= @ V.,

ek, [T:7|k]>0
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where the subspace V(1) is given by the sum of all K-submodules of V. equivalent to 7. As a
K-module, V(1) is equivalent to [t : 7|¢] copies of 7. Since V() is obviously invariant under
the action of H, we conclude that

vH = @ V(o).

ek, [r:7|¢]>0
For v € V (1)1, it follows that 7z(— Casg) - v = A%v, and, consequently, from (2.5),
7(=Cr ) v = (P =) AT+ 82A7) v = 277(r, s) v.
Moreover, these eigenvalues exhaust the spectrum of n(—C(,’S))lvg, since

dimV? = 2 diIllV7T(z')H =[7: 7T|K]dimV'T"| =1y : tlyllr : 7kl

ek, [t:7]|,]>0

Finally, by definition, (2.4) is basic for the submersion (G/H, g ) — G/K if the associated
eigenfunctions are constant along the fibers K/H. In this case, they descend to eigenfunctions
of the Laplace-Beltrami operator on the base G/K. Applying [7, Proposition 2.2] to G/K, this cor-
responds to 7w € GK and 7 = 1. [l

Following the method described in Theorem 2.4, the ingredients needed to explicitly determine
the Laplace spectrum of the homogeneous space (G/H, g, ) are:

(i) the set GH of spherical representations associated to (G, H);
(ii) theintegers[1y : t|y]and [r : m|¢]forT € /Ksatisfying [ : 7] > 0;
(iii) the coefficients A7 and A* for all 7 € GH,T e K with [14 : lgllT @ wl] > 0.

All the above are Lie-theoretic in nature. While the first is known in many cases, the second
depends on branching rules that are typically rather intricate, making this the most difficult part
of the computation, see Subsection 2.4. Fortunately, the scalars A™ and A? are easily computed
using Freudenthal’s formula, as follows.

2.3 | Freudenthal’s formula

Fix a maximal torus T in G such that Tn K and T n H are maximal tori in K and H, respectively.
Then t- =t ®p C is a Cartan subalgebra of g = g ® C, and we denote by ®(gc, tc) its root
system. If g is not semisimple (but necessarily reductive), then ®(g, t.) is the root system associ-
ated to the semisimple part [g, g] with respect to [g, g] N t. Fix an order on it* inducing a positive
root system ®*(g., ). By the highest weight theorem (see, for example, [17, Theorem 9.4, 9.5]
or [18, Theorem 5.110]), irreducible G-representations correspond to elements in the set P*(G) of
dominant G-integral weights. Analogous objects are defined for K and H, provided that the orders
are compatible. For A € P*(G), we denote by 7, the unique (up to equivalences) irreducible rep-
resentation of G with the highest weight A. Analogously, for u € P*(K) and v € P*(H), we denote
by 7, and o, the representations with highest weight 1 and v, respectively.
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Freudenthal’s formula (see [25, Lemma 5.6.4] or [17, Proposition 10.6]) applied to A € P*(G)
and u € P*(K) gives, respectively,

A= (A A +2pg)y, and AT = (u, i+ 20¢)0, (2:6)

where p, and pg are half the sum of positive roots in @t (gc, te) and @1 (., (t N E)e), respectively,
and (-, -) is the Hermitian extension of (-, -)o|; to t.

2.4 | Product group

The branching problem needed to compute ingredient (ii) above has an important simplification
if K=HL >~ Hx L, where L is a closed subgroup of G that commutes with H. In this case, the
submersion (2.3) becomes

L — G/H — G/(HxL).
It is well known that every irreducible K-representation is of the form o ® ¢ for some o € A and
¢ €L. Since (c ® P)ly=o0,anyt € K contributing to SpedG/H, g(r5)) in Theorem 2.4 must be of
the form 7 = 1 ® ¢, and also, [1, : 7|4] = 1. Moreover,

[t 7l =14 ®¢ : 7l] = dimy (V) ® Vi, V) = dimy (V, V) =2 [¢ = V1],

In other words, since H and L commute, the L-action leaves V; invariant, and [1 ® ¢ : 7|¢] is
the multiplicity of ¢ in the decomposition of V;' as an L-module. Furthermore, by Freudenthal’s
formula, for any € P*(L),

MO = (1,08, M8, + 2Pper)o = (11 + 2000, @7

where [ is the Lie algebra of L, and, as before, o = % Lacat (1, (tn0)) & Therefore, we may restate
Theorem 2.4 in this case as follows.

Corollary 2.5. IfK = HL as above, then the spectrum of the Laplace-Beltrami operator on the homo-
geneous space (G/H, g ;) consists of the eigenvalues

ATNE(r ) = (17 = $7) (.1 + 2p1)o + S°A7, (28)
where (7, ¢,) € 6H x L is such that [qbn : V;'] > 0, with multiplicity
Mg = (¢, V;']dim V.

Moreover, (2.8) is basic for the Riemannian submersion (G/H, g 5)) = G/K if n = 0, in which case
AP En(r, ) = 247 and m,, 4 = dimV .
)
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3 | EIGENVALUES OF THE LAPLACIAN ON s**1

In this section, we determine the full Laplace spectrum of the homogeneous spheres (S?**+1, g(1)),
n > 1, as in (1.1). Although there are several partial results in the literature, for example, this is
done for all odd n in [7, Theorem 3.9, Remark 3.10], we include a complete argument below to
illustrate the method in Section 2.

A homogeneous metric on S$?"*! is SU(n + 1)-invariant if and only if it is U(n + 1)-invariant.
Although the U(n + 1)-action on S$?"*! is not effective, we shall use it since it simplifies some
computations. Throughout this section, we set:

G=Um+1), L={<(I) 2>:ZEU(1)},
H:{(‘(L)1 g):AeU(n)}, K={<‘;1 2>:Aeu(n),zeU(1)},

Clearly, H ~ U(n), L ~ U(1), and K = HL ~ U(n)U(1), as in Subsection 2.4, and it is well known
that G/H = S$?"*! and G/K =~ CP". It is easy to check that

p={<8 i%):eeR}, q={<_?)* 8):06@"} (3.2)

satisfy f=Hh @ pand g=f D q =5 D (p & q). Moreover, as subrepresentations of the isotropy
representation of H, p is trivial and q is the standard representation.

Consider the G-invariant metrics g, ;) on G/H as in Subsection 2.1. Since p and q are irreducible
and non-equivalent, every G-invariant metric on G/H is isometric to some g, .; for example, for
all t > 0, the metric g(¢) in (1.1) is isometric to g #i 1
t
Proposition 3.1. For all n > 1, the spectrum of the Laplace-Beltrami operator on (S*"*1, &r.s))
consists of the eigenvalues

/I(P’q)(r, s) = (4p(p + q + n) + 2nq)s* + 2¢°r*>, p,q € Ny, (3.3)

which are basic if ¢ = 0, and have multiplicity

2p+q+np+gq+n—-1\(p+n-1
=2-6,,)—— . 3.4
mp,q ( qO) n < p+q p ( )

Proof. Since the groups (3.1) satisfy K = HL, we may apply Corollary 2.5. Fix the maximal torus
of G given by T = {diag(e'®, ..., el%+1) : 9,,...,0,,; € R} Note that TnK, TN H, and TNL are
maximal tori in K, H, and L respectively. The Lie algebra t and its complexification t. consist
of elements Y’ = diag(i6, ..., i6,,,,), where 6; are in R and C, respectively. Define ¢; : t7 — Cas

ej(Y) = iGj, for Y as above, and note that {%El, s %E,ﬂ_l} is a (-, -)o-orthonormal basis of tj:.
With the standard order, we have ®*(g¢,tc) = {g; — g ! 1<i< j<n+1} so half the sum

n+1 n4+2—j
=1 2

+1 o, .
il a5, €@ Zej tay 2 a2 > app)

of positive roots is py = 3

¢j, and the set of dominant integral weights is Pt(G) =
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The classical branching rule from G to H (see, for example, [18, Theorem 9.14]) states that,
if A=Y""a;e; € P*(G) and v = Y., be; € P*(H), then [0, : 7|,] > 0 if and only if a; >
b, >a, > - >a, > b, > a,,,; in which case [0, : 7|,] = 1. We conclude that 7, € G,,, that s,
dim V; =[14 : m|p,] > 0,ifand only ifa; =0 for all 2 < i < nand a; > 0 > a,,. Therefore, the

set of spherical representations is:
GH = {T[k,l = ﬂlgl_k5n+l . k,l S NO}

We henceforth abbreviate Vi ; 1=V

T

. k+l+nfk+n—-1\(l+n-1
dim Vk,l = Tn< Z >< ’;- >, (35)

., It is a simple matter to check that

by the Weyl dimension formula, see, for example, [18, Theorem 5.84].

Note that L ~ U(1) is abelian and (I nt)7 = Cg,,. Thus, its root system is empty, that is,
py =0, and every L-integral weight is dominant, that is, P*(L) ={$,, := ¢y, : m € Z}. It is
well known that V', ~ ¢, as L-modules; more precisely, 7, ;((j 1)) - v = z/"F vforv € V! and
z € U(1), see, for example, [15, Theorem 8.1.2]. ,

From Corollary 2.5, the eigenvalues of (S2"*1, g(,,s)) are ATl H®P1k (r,s) forall k,I € Ny, with
multiplicity dim V; ;. Moreover, by (2.6) and (2.7), we have that

1, ®¢m — — 2
A P = <m€n+1’m5n+1>0 =2m”,

ATt = (ley — kepyq + 204,16y — keyy)g = 2l(n + 1) + 2k(n + k).
We conclude from (2.8) that the corresponding eigenvalue is
AkDIH®Pk(r, 5) = (r? — §2) APkl 4 217kl

=2(k — D*(r* — s*) + 2U(n + 1) + 2k(n + k))s* (3.6)

= (4kl + 2n(k + 1)s® + 2(k — 1)*r?.
For convenience of notation, let us reindex (k,[) € N(Z) as (p,q) € N2,
p := min{k, [}, q := maxik,l} — min{k,l} = |k —1|. (3.7)

Since kl = p(p+q), k+1=2p + q, and (k — 1)> = g2, (3.6) is equal to (3.3). Moreover, g = 0 if
and only if k = I, which is equivalent to ¢,_, = 1, proving the claim regarding basic eigenvalues.

We conclude by determining the contribution m,, to the multiplicity of the eigen-
value AP (r,s) € SpedS$***1, g, ). On the one hand, if g =0, the only solution to (3.7)
is (k,1) = (p, p), so this contribution is mpo = dim Vpp On the other hand, if g > 0, then
there are two solutions to (3.7), namely, (k,I) =(p+q,p) and (k,]) = (p, p + q), yielding a
contribution of m,, = dimV +dimV =2dimV Therefore, (3.4) now follows

p+q.p p.p+q p+q.p*
from (3.5). O
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4 | EIGENVALUES OF THE LAPLACIAN ON $%+3

This short section gives the full Laplace spectrum of the homogeneous spheres (S*+3, h(¢)),n > 1,
based on [7]. Following the same notation as above, we set

G = Sp(n + 1), L={<é 2) :zESp(l)},

A 0\ | ({4 o\
H={<O 1>.A€SP(H)}, K_{<O Z).AeSp(n),zESp(l)},

Clearly, H ~ Sp(n), L ~ Sp(1), and K = HL ~ Sp(n)Sp(1), as in Subsection 2.4, and it is well known
that G/H =~ S**3 and G/K =~ HP". It is easy to check that

0 0) . _ 0 v\ . n
p:{(o a).aelm[l-ﬂ}, q—{<_v* 0>.ve|]—[l}. (4.2)

They satisfy f =)D pandg=£D q=H D (p D q). As subrepresentations of the isotropy rep-
resentation of H, p is equivalent to three copies of the trivial representation, and q is the stan-
dard representation.

Consider again the G-invariant metrics g, ;) on G/H, as in Subsection 2.1. This is a 2-parameter
subfamily of the 4-parameter family of G-invariant metrics on G/H, see, for example, [7, Sec-
tion 3.2]. For all t > 0, the metric h(¢) in (1.1) is isometric to g Ly

4.1)

Proposition 4.1. For all n > 1, the spectrum of the Laplace-Beltrami operator on (S***3, r.s)
consists of eigenvalues

APD(r,s) = (4p(p + g + 2n + 1) + 4qn)s*> + q(q + 2)r>, p,q € N,, (4.3)

which are basic if ¢ = 0, and have multiplicity

_(2p+q+2n+1)(q+1)2<p+q+2n><p+2n—1>‘ (4.4)

" T T s Dp g+ 1) p+q p

Proof. This follows from Corollary 2.5, analogously to Proposition 3.1, using the appropriate
branching law. Alternatively, it follows from [7, Lemma 3.2, Remark 3.3] replacing (p, q) with
(p+4q,p), and settinga=b=c = r/\/E, which implies that vﬁ.q)(a, b,c) = %rzq(q + 2) for all

1 < j € g + 1. Accordingly, the multiplicity (4.4) is g + 1 times that in [7, (3.11)], since vﬁ.q) does

not depend on j in this case. O

5 | EIGENVALUES OF THE LAPLACIAN ON s%

In this section, we determine the full Laplace spectrum of (S'°,k(t)). The Lie groupsH C K C G
in this case do not follow the pattern (3.1) and (4.1) of the previous sections. Namely, the inclusion
H C Kis not given by a block embedding, and there is no Lie subgroup L C K such that K = HL. In
particular, Corollary 2.5 no longer applies.
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Let G = Spin(9), and identify its Lie algebra ¢ = 3pin(9) with 80(9) in the standard way. Let K
be the subgroup of G isomorphic to Spin(8) with Lie algebra

£ = {diag(X,0) € g : X € 30(8)} ~ 30(8).

Clearly, G/K = S%. In order to define the subgroup H C K, which is isomorphic to Spin(7), but
whose Lie algebra §) C f is not a block inclusion as ¥ C g above, we follow an approach tailored to
apply the branching law of Baldoni-Silva [3, §6].

Let F = FZZO be the simply connected Lie group associated to the real simple Lie algebra f of
type FIL. The maximal compact subgroup of F (which is unique up to conjugation) is isomorphic
to G, and F/G = CaH?. Fix the maximal torus T C G C F with Lie algebra

_ . 0 i6; 0 if, )
t= {dmg((_iel 0 ) <—164 0 > ,1> €g:06,..,6, € R}. (5.1)

Its complexification t is a Cartan subalgebra of g, with elements as in (5.1) where 6, ...,6, € C.
The functionals ¢; : t7 — C that map such an element to 6; form a C-basis of t. Fix an order on
it such that the corresponding positive root systems of g, and f with respect to t are

DH(ge.te) ={g 1 1<i<4ufg+e 1 1<i<j<4,
. + 1
@ (e, te) = @7 (ge, te) U {5(51i52i€3i54)}.

Let m be the orthogonal complement of g on { with respect to the Killing form of f, so thatf = g @
m is a Cartan decomposition. Set o = %(51 — &, — &3 —&4) € D¥(f, te), and choose root vectors
Xy € (fo)e and X_;, € (f¢)_, satisfying [X.,X_;] € p. Then a :=R(X,, +X_.,) is a maximal
abelian subalgebra of p. Finally, define H as the centralizer of a in K, that is,

H={keK:AdKk)-a=0}

It can be checked that its Lie algebra § = {X € £ : [X, a] = 0} is isomorphic to 30(7), and H ~
Spin(7), G/H =~ S'°, and K/H =~ S7.

Consider the (-, -)j-orthogonal complements p and q, and G-invariant metrics g ), as in Sub-
section 2.1. As subrepresentations of the isotropy representation of H, p is the standard repre-
sentation, and q is the spin representation. Since they are irreducible and non-equivalent, every
G-invariant metric on G/H is isometric to some g, ,); for example, for all ¢ > 0, the metric k() in
(1.1) is isometric to g(%’z).

Proposition 5.1. The spectrum of the Laplace-Beltrami operator on (S'>, g(r.5)) consists of eigen-
values

APD(r,s) = (p? + p(q +7) +2q)s> + q(q + 6)r*, p,q €Ny, (5.2)

which are basic if ¢ = 0, and have multiplicity

p+q+6\ (p+3\ (g+5

(PE950) (759) (75°)
p+q+3
(70

2p+q+7
A <1+Q>

5.3
P.q 7 3 (5.3)
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Proof. In order to apply Theorem 2.4, we first state the branching law from G to H in order to
determine GH and the integers [1y, : 7|y] and [t : 7] for T € K satisfying [t : 7|¢] > 0. Note
that T N K is a maximal torus in K, and the corresponding positive root system is @+ (£, (t N )¢) =
{e; £ e 1 1<i < j<4}withsimpleroots €, —¢€,,¢, — €5, €5 — €4, &5 + £4,. We have that

J
4
a,=>2a,2a,>2a, 20,
P+(G)= Zaisi: 1z zU3=2Uy 2 . ’
= 20,€7,0;—a;€Zfor1<i,j<4

4
a, = a, =2 a; = |a,,
PT(K) = Zaisi: 1777 ¢ o )
= 20,€Z,0;—a;€Zfor1<i,j<4

The fundamental weights of ®*(gc,t.) are w; =&, w, = & + &, w3 =& + &, + &3, and w, =
%(51 + ¢, + €5 + ¢4), and they satisfy P*(G) = @?:1 No@;-

We define ¢ : 7 — 17 to be the linear map determined by

Pler) = 3(+& + &, + 5 — 2y),
P(gy) = %("‘51 +&,—e3tgy),
p(e;3) = %("‘51 —& te3tey),
Pleg) = 2(—€, + &, + €3 +55).

One can check that ¢? = Id. Since ¢ permutes the simple roots of ®*(£., (t N ¥)c), namely,
ple; — &) = &3 — &, P&y — &3) = &y — &3, P(€3 — &4) = €] — &, and (&3 +¢4) = &3 + &4, We have
that ¢ is an automorphism of ®* (¥, (t N £)), which extends to an automorphism of ¥, that
we denote again by ¢. It turns out (see [3, p. 248]) that ¢(}h) is a copy of 80(7) embedded in
f ~ 30(8). More precisely, p(§)) = {diag(X,0,0) € g : X € 30(7)},so thesimplerootsare:e; — ¢, =
90(53 €4), & — &3 = (e, — €3), &3 = ¢(%(+E1 — & +& +¢4)), and @*(p(h)e, t Ne(h))c) = {g; -

<3pufe +¢; 1 1<i<j< 3} hence

520320,
PT(H) = ch: 7 ,
2c,€Z,¢;—cjezfor1<i,j<3

where H’ denotes the only connected Lie subgroup of K with Lie algebra ¢(}).
We are now in position to state the branching law from G to H established by Baldoni-Silva [3,
Theorem 6.3]. For A = Z?zl a;¢; € P*(G),

aly = > > 7,09. (5.4)

biey+byey+bsez+bue P (K): vi=cie1+Cre,+03e3EPT(H):
a;2b1>a;2by>a32b3>a,>|byl, bl ey 2b)>c,2b>c3>|b] |,
a-b €z, b —c,€z

b{El+"'+b254 : =go(b151+"'+b454),
‘We claim that

Ch ={7pq 1= Tpa,+qw, * P-4 € Nk
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Recallthatw; = ¢, andw, = %(E1 +6& +e+¢ey).LetA = Z?Zl a;€; € P*(G). Of course, the trivial
H-representation 1, coincides with o, with v = 0, that is, ¢; = ¢, = ¢; = 0. Therefore, if [1 :
7alu] > 0, then the coefficients in (5.4) satisfy b} = b} = b} = 0 and b’ € N, which gives b; =
b, = by = —b,y = b} /2, and consequently a, = a; = a, = b} /2 and a; — b /2 € N,. We conclude
that A = bjw, + (a; — b /2)w,, as claimed.

Moreover, for A = pw, + qw, with p,q € Ny, we have that [1, : 7, |4] = 1 (that is, 1,; occurs
exactly once in 7, | ;) since the coefficients b;, bl.’ for 1 <i < 4in(5.4) are uniquely determined in
terms of p and g; indeed, b] = 2b; = 2b, = 2b; = —2b, = q and b} = b} = b, = 0. This implies
that there exists only one u € P*(K) satisfying [1 : Tu|H] = [‘L'M : wolk] = 1, which is given by

. 4
Mg i= i bigi = %(51 +& + 63— gy)
By the above and Theorem 2.4, the eigenvalues of (S'°, g(r.s)) are

APD(r,s) = A™paa(r,s) = (r> — s2) A% + s2A™p4,  p,q € N,,

wherez, € K has the highest weight Mg = %(81 + &, + &5 — g4), with multiplicity m, ;, = dim V', B
equal to (5.3) by the Weyl dimension formula, see, for example, [18, Theorem 5.84]. Moreover,
GK = {n'p,o =Tp, ' PE N} by the classical branching law from Spin(9) to Spin(8), so AP (r, 5)
isbasicifgq = 0.

The only remaining step is to determine the scalars A% and A”r4. It is easy to check that
(g€ j>0 =9; j for all 1 < i, j < 4. Freudenthal’s formula (2.6) gives

At = <:uq’ ,qu + 2pf>

4
<%(£1 +ey+e3—¢y), %(s1 +e+e3—¢gy)+ _21(8 - 2i)£i>
i=
— 4049 a4 .9 '
= 5(5+6)+5(§ +4)+§(5+2)+T
=q(q +6).
Similarly, since 20, = 2?21(9 — 2i)g;, we have that
ATra = (paw; + qug, poy + kwy + 204)
— q 4 904 94 904
=(p+)P+5+N+5G+9)+5G+3)+5G+1D)
=p*+p(q+7)+q* +8q.

Combining the above, one obtains (5.2), which concludes the proof. O

6 | UNIFIED FORMULAE

In order to prove Theorem A in the Introduction, we collect in Table 1 the Laplace spectra of the
homogeneous spheres (SV~1, g(t)) in (1.3), as computed in Propositions 3.1, 4.1, and 5.1, keeping in
mind the isometries relating homogeneous metrics in their geometric description (1.1) with their
algebraic description (2.2).
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TABLE 1 Eigenvalues of the homogeneous spheres (S¥1, g(t)) in (1.3), where N = 2d(n + 1),
d=dim:K €{1,2,4},and p,q €N,

K (SN-1,g(r) Parameters (7, s) and Laplace-Beltrami spectrum
. (r,s) = (#5, 1)
i (s, g(1)) APV = 4p(p+q+n) +2nq +q°;
- 2p+q+n (p+q+n—1 +n—1
My = (2= 6p) 22580 (pFa371) (4
. (r.s)= (1)
(S*+3 h(t)) APD(t) = 4p(p+ q +2n+1) +4nqg +q(q +2)5
d=2 m. = CGpraintl(gHl)? (p+q+2n) (p+2n71)
P4 T @nAl(pHa+l) N ptg P
. (r,5)=(5,2)
a
; (S5, k(1)) APD(t) = 4p(p+q+7) + 89 +q(g + 6)~
=4 2p+q+7 +q+6\ (p+3\ (q+5 +q+3
myq = =+ D) () (7))

Proof of Theorem A. Replacingd € {1,2,4}in (1.4) and (1.5), one obtains A(»?(t) and m p,q as listed
in Table 1. By Propositions 3.1, 4.1, and 5.1, these are the eigenvalues and respective multiplicities
of the Laplace-Beltrami operator on the corresponding sphere (SN, g(t)), and A(P-9(¢) is basic
ifg=0. [l

Recall that the distance sphere S(r) C M is isometric to (SV~1,a?g(t)), where (a,t) is
(sinr,cosr)or (sinhr, cosh r) accordingto M = KP"*! or M = KH"*!, cf. (1.2),and N = dimM =

2d(n + 1). Rescaling all spaces in the Riemannian submersion (1.3) by «, since its fibers are totally
geodesic, one obtains the inclusions of spectra

%Spec(KP”) C Spec(S(r)) C %(Spec([KP”) + Spec(s¥71)), (6.1)
where + is the Minkowski sum of sets, A+ B={a + b : a € A, b € B}. These inclusions are also
immediate from Theorem A, by analyzing the case g = 0 in (1.4).

However, there is another remarkable inclusion of spectra, given by the following:
Corollary 6.1. The Laplace—Beltrami spectrum of S(r) C M satisfies
Spec(S(r)) C Spec(SN~) + Spec(Ss¥1), (6.2)

where + is used if M is projective, and — if M is hyperbolic.

Let us first prove (6.2) with a geometric argument, assuming that K € {C, H} and M = KP"*! is
a projective space, hence the base of the Riemannian submersion

S%d_l N §11\7+2d—1 N KP”+1 (63)

whose totally geodesic fibers are precisely the orbits of the free action of the group Sfd‘l C K* of
multiplicative units on the unit sphere

S11\J+2d—1 c RNV+2d o N/2d+1 (6.4)
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Being a distance sphere, the preimage of S(r) C KP"*! under this submersion is the boundary
of the tubular neighborhood of radius r of the fiber that corresponds to the central point of S(r).
Since this fiber is an orbit of the aforementioned action on (6.4), this boundary is a product of
spheres, isometric to

SQI—] X S[Zd—l — §11V+2d—1 N (RN 2 RZd) ~ 811\7+2d n (KN/Zd ® K),

which proves (6.2) for K € {C,H} and M projective. The same argument can be generalized to
the case in which M = KH"*! is hyperbolic, interpreting (6.4) as the unit pseudo-sphere in the
pseudo-Riemannian vector space KN/2¢ @ K of signature (N, 2d), analogous to the discussion in
[4, Section 6].

Nevertheless, the above arguments do not apply to K = Ca in either case because it is not asso-
ciative; in particular, its unit sphere SZ is not a group. Moreover, it is well known that there are no
fiber bundles S” — CaP? such as (6.3) for topological reasons [13]. Thus, it is a somewhat surpris-
ing consequence of Theorem A that (6.2) still holds for K = Ca, in both projective and hyperbolic
cases. In fact, (6.2) can be explicitly parametrized, for all K € {C,H, Ca} at once, using that, by
(1.4),

AP (1) = 2p + q)(2p + g + N — 2) +q(g +2d — z)(tl2 -1),

2
and, by (1.2), we have i% = (tl2 — 1) according to M = KP"! or M = KH"*1,

7 | RESONANCE AND RIGIDITY OF DISTANCE SPHERES

In this section, we recall the variational and bifurcation framework for CMC hypersurfaces and
prove Theorem B in the Introduction.

7.1 | CMC spheres

Given an N-dimensional Riemannian manifold (M,g), let Emb(S¥~1, M) be the space of
C?>* unparametrized embeddings of S¥~! into M, that is, equivalence classes of embeddings
x: SN~1 = M for the action of Diff(S¥~1) by right composition. Consider the family of func-
tionals

fg: Emb(S""L,M) — R
(7.1
fu(x) = Area(x) + H Vol(x),

where Area(x) denotes the (N — 1)-volume of x(SV~!), and Vol(x) the N-volume of the region
enclosed by x(SNV~1). It is well known that critical points of (7.1) are precisely the embedded
spheres in M with CMC H. Moreover, the second variation of (7.1) at a critical point is represented
by the Jacobi operator

Tx(9) = Ay — (Ric(iiy) + 1Ak, (7.2)
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acting on the space of functions ¢ : $"~! — R with /SN—l ¢ = 0, where A, is the Laplace-Beltrami
operator on SV~! with respect to the metric induced by the embedding x: S¥=! — M, n, is a
unit normal vector field to x(S¥~1) ¢ M, and ||A,|| is the Hilbert-Schmidt norm of its second
fundamental form; for details, see, for example, [4, Section 2]. Functions ¢ € kerJ, are called
Jacobi fields, and the number iy ... (X) of negative eigenvalues of J, counted with multiplicity, is
called the Morse index of x. Moreover, x is stable if and only if J is positive-semidefinite, that is,
iMorseX) = 0, and non-degenerate if and only if ker J, = {0}.

7.2 | Equivariant rigidity and resonance

If a Lie group G acts isometrically on M, then (7.1) is clearly invariant under left composition with
this action, so the entire G-orbit of a critical point is critical. Moreover, since (7.2) is G-equivariant,
each Killing field X € g determines a Jacobi field ¢y = (X, 1) € kerJ,. In this context, we say
that x is G-equivariantly non-degenerate if ker J,, consists solely of such Jacobi fields induced by
the G-action.

Let K be the G-isotropy of x, € M, and assume that the K-action is transitive on all geodesic
distance spheres S(r) C M centered at x,. In particular, the (unparametrized) embeddings

x,: SVt M, x.(SNYH =50), (7.3)

have CMC H(S(r)) for each r. Furthermore, assume that the map r » H(S(r)) is a diffeomor-
phism, so that x, may also be parametrized by its mean curvature. In this context, an appropriate
G-equivariant version of the implicit function theorem [11, Theorem 1.4] implies the following
theorem.

Theorem 7.1. Suppose that (7.3) is G-equivariantly non-degenerate if r = r,. There exists € > 0
such that, if an embedded sphere £ C M has CMC H(X) = H(S(r)), r € (r,, —€,r, +¢€) and, up to
isometries in G, is sufficiently close to S(r) in C>%-topology, then % is congruent to S(r) via an isometry
in G.

The radii r,, for which the conclusion of Theorem 7.1 fails are called resonant.

Definition 7.2. We say thatr, is a resonant radius if there exist sequences r; of radii converging to
ry,andX; C M of embedded CMC spheres converging to S(r,) in C?>*-topology, such that H(Z )=
H(S(r;)) for all j, and Z; is not congruent to S(r;) via any isometry in G.

Clearly, by Theorem 7.1, a necessary condition for r, to be resonant is that x, is not G-
equivariantly non-degenerate. The following sufficient condition for resonancy is a direct con-
sequence of the equivariant bifurcation criterion [10, Theorem 5.4].

Theorem 7.3. Iffor all e > O sufficiently small, x, _,
and iyjorse (X, _¢) # inorse(Xy, 4¢)s then r., is resonant.

andx, . areG-equivariantly non-degenerate
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TABLE 2 Symmetric pairs (G, K) of rank one corresponding to the projective
spaces KP"*!, and their non-compact duals, the hyperbolic spaces KH"*!

G/K G K
cprtt SU(n + 2) S(U(n + 1)U(1))
HPrH! Sp(n + 2) Sp(n + 1)Sp(1)
CaP? F, Spin(9)
e SU(n +1,1) S(U(n + 1)U(1))
HH"! Sp(n+1,1) Sp(n + 1)Sp(1)
CaH? F,2 Spin(9)

7.3 | Rank one symmetric spaces

We now briefly revisit some well-known aspects of the geometry of rank one symmetric spaces that
are used in the proof of Theorem B. First, recall that the symmetric pairs (G, K) that give rise to such
spaces M = G/K are as listed in Table 2. These semisimple Lie groups G act transitively on M, and
K C G is identified with the isotropy of a point x, € M, soits Lie algebraisf = {X € ¢ : X, = 0}.
We fix a Cartan decomposition

g=ftdm, (7.4)

and recall that the space m ={X eg : (VX )x0 = 0} of infinitesimal transvections at x, is
naturally identified with TxOM ; in particular, dim m = dim M = N. The codimension of K-orbits
on distance spheres S(r) C M is equal to rank(M) — 1, so all these K-actions are transitive in our
rank one setting. Thus, the eigenvalues of the second fundamental form A, of S(r) with respect
to the unit outward-pointing normal 7, are constant, and can be computed as follows, see, for
example, [12, §6]:
{2 cot(2r), with multiplicity 2d — 1 ’ i£M = kP,
cot(r), with multiplicity 2dn
{2 coth(2r), with multiplicity 2d — 1’ i£M = KH,
coth(r), with multiplicity 2dn

where d = dim. K, as before. Thus, the mean curvature of S(r) C M is:

H(S()) (N —1)cotr —(2d — 1) tanr, if M = KP"H1, 7.5)
r) = )
(N =1)cothr + (2d —1)tanhr, if M = KH"*.

Note that H(S(r)) is always decreasing, since N = dim M = 2d(n + 1); in particular, the map
r — H(S(r)) is a diffeomorphism. Moreover, we have:

2dn cot? 4(2d — 1) cot?(2r), if M = KP"*1,
”Ar”2={ ncot*(r) + 4( ) cot=(2r) i 7.6)

2dn coth?(r) + 4(2d — 1) coth?(2r), if M = KH"*!.
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The following is essential to determine if S(r) is G-equivariantly non-degenerate:
Lemma 7.4. A Killing field X € g induces a non-zero Jacobi field ¢ = (X, n,) on S(r) if and only
if X € m. Thus, the space of Jacobi fields on S(r) has dimension > N, and equality holds if and only
if S(r) is G-equivariantly non-degenerate.
Proof. Clearly, X € g induces the trivial Jacobi field ¢ = 0 if and only if X is everywhere tangent
to S(r) C M. This implies that the 1-parameter subgroup of isometries in G associated to such a

Killing field X leaves invariant S(r) = {x € M : dist(x,, x) = r},and hence fixes x, € M,soX € f.
Conversely, ¢y =0 for all X € £. The result now follows from (7.4) and the fact that dim m =

N. O
Lastly, routine computations of the Einstein constants for these spaces give:
Ricypnt1 =2dn +4(2d — 1), and Ricgyn1 = —2dn —4(2d — 1). (7.7

We now combine Theorem A with Theorems 7.1 and 7.3 to prove Theorem B.

Proof of Theorem B. The Jacobi operator J, of the distance sphere S(r) C M can be computed
using (7.2), (7.6), and (7.7), and simplifies to

T ($) = A.¢ — V()¢ (7.8)

where A, = %Ag([), with o and ¢ as in (1.2), and

(N = 1)csc?r + (2d — 1) sec?r, if M = KP"+1,
V(r)=
(N =1 csch?r — (2d — 1)sech?r, if M = KH"!.

First, let us analyze the projective case M = KP"*!, where a = sinr and ¢ = cosr. By Theo-
rem A, the eigenvalues of a?J, are:

A2 — ?V(r) = 4p(p +q+ % - 1) +2dng + q(q + 2d — 2)sec’r — V(r)sin’r
=4p(p+q+%—1) +2dnqg — (N — 1)
+(q(g — 1) + (2d — 1)(q — sin? r)) sec? r,
forall (p,q) € N(Z) \ {(0,0)}. In particular, for all p € N,
APO(cosr) —sin®r V(r) = 4p<p + % - 1) —(N-1)-(d-1)tan’r

=4p(p—1)+NQ2p—-1)+1—(2d —1)tan’r
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is a decreasing function of 0 < r < g with a unique zero at:

4p(p—1)+NQCp—-1)+1
= t . 7.9
p arctan \/ d—1 (7.9)
Note that r; = arctan 4/ é\(;—tll, and rp /! % as p /' +oo0. Moreover, for all r,
AO0D(cosr) —sin®r V(r) = 0, (7.10)

while, if g > 2, then

109D (cosr) — sin? r V(r) = 192 (cosr) — sin® r V(r)
=2dn + (2d + 1)sec’r

>N+1>0,
and, ifboth p > 1 and q > 1, then
APD(cosr) — sin? r V(r) > 4(% + 1) +2dn—-(N-1)+Qd—1)
=2N +4>0.

Thus, ifr € {r, : p € N}, the only zero eigenvalues of J, are (7.10), and hence dim ker J, coincides
with the dimension of the eigenspace of Ay associated to A0D(¢), which is my, = N, by Theo-
rem A. Therefore, it follows from Lemma 7.4 that S(r) is G-equivariantly non-degenerate for all

réf{r, : peNL
Furthermore, it follows from the above spectral analysis that

IMorse (Xr) = Z mpo-

{peN :rp<r}
Thus, the claims in Theorem B regarding M = KP"*! follow from applying Theorem 7.1 to each
r. €{rp, : p €N}, and Theorem 7.3 to eachr, € {r, : p € N}

Second, let us analyze the hyperbolic case M = KH"*!, where a = sinhr and t = cosh r. Simi-
larly to the above case, by Theorem A, the eigenvalues of a%J, are:

APD(t) —a? V(r) = 4p<p +q+ %’ - 1) +2dnq + q(q + 2d — 2) sech? r
—V(r)sinh®r
=4p<p+q+%]—1>+2dnq—(N—1)

+ (q(g = 1) + (2d — 1)(q + sinh? r)) sech®r,
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forall (p,q) € Ng \ {(0, 0)}. In particular, we have that, for all r,
AOD(coshr) — sinh? r V(r) = 0, (7.11)
while, if g > 2, then

10D(cosh r) — sinh? r V(r) > 12 (coshr) — sinh? r V(r)
=2dn + (2d + 1)sech’r

>2dn >0,
and, forall p > 1and q € N,
AP D(coshr) —sinh?>rV(r) > N +1> 0.

Thus, the only zero eigenvalues of J, are (7.11), and all other eigenvalues are strictly positive, so
ivorseX,) = 0 for all ¥ > 0, that is, S(r) is stable for all r > 0. As before, dim ker J, coincides with
the dimension of the eigenspace of A, associated to A0D(t), which is m,, = N, by Theorem A;
so Lemma 7.4 implies that x, is G-equivariantly non-degenerate for all » > 0, hence non-resonant
by Theorem 7.1. O

Remark 7.5. It was known that a sequence of resonant radii r, / % existed for distance spheres
S(r) in CP™*! and HP"™*! centered at any point x,, due to basic eigenvalues for the Riemannian
submersion S?¢~! — S(r) — Cut(x,), see [9, Example 6.1]. However, neither their exact location
(7.9) nor the fact that only basic eigenvalues give rise to such bifurcations was previously known.
Moreover, the study of local rigidity and resonance for geodesic spheres in CaP? was also not
possible in [9] since none of the group normality assumptions H <t K or K < G are satisfied in this
case. The fact that it was possible to overcome these difficulties in Theorem B might suggest that
a different approach, for example, using Mean Curvature Flow, cf. [9, Rem. 2.13], may lead to even
more general bifurcation results.
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