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Abstract. We analyze the global phase diagram of a Maier-Saupe lattice model with the inclusion of shape-
disordered degrees of freedom to mimic a mixture of oblate and prolate molecules (discs and cylinders). In
the neighborhood of a Landau multicritical point, solutions of the statistical problem can be written as a
Landau-de Gennes expansion for the free energy. If the shape-disordered degrees of freedom are quenched,
we confirm the existence of a biaxial nematic structure. If orientational and disorder degrees of freedom
are allowed to thermalize, this biaxial solution becomes thermodynamically unstable. Also, we use a two-
temperature formalism to mimic the presence of two distinct relaxation times, and show that a slight
departure from complete thermalization is enough to stabilize a biaxial nematic phase.

1 Introduction

The transition between a uniaxial nematic structure and
an orientationally disordered phase is perhaps the most
investigated and best characterized phase transition phe-
nomenon in liquid crystalline systems [1]. This weak first-
order transition is quite well described by the mean-
field theory of Maier and Saupe [2-4], which can also
be formulated in terms of a fully connected statistical
lattice Hamiltonian [5]. The existence of a biaxial ne-
matic phase, however, and the transitions between differ-
ent types of nematic structures, which have been proposed
on the basis of phenomenological calculations for systems
with intrinsically biaxial molecular groups [6-8], turned
out to be much more difficult to characterize experimen-
tally [9,10]. Although there have been some recent reports
of a biaxial nematic structure in thermotropic liquid crys-
talline systems formed by bent-core or boomerang-shaped
molecules [11-13], a biaxial phase has been first charac-
terized in the phase diagram of a lyotropic liquid mix-
ture [14-20], which is better represented by a lattice model
of shape disordered uniaxial molecules. We then revisit the
problem of a Maier-Saupe lattice model, with the inclu-
sion of extra degrees of freedom to mimic a mixture of
oblate and prolate molecules (discs and cylinders). Some
versions of this problem, in the Maier-Saupe context, have
been analyzed by different authors, with conflicting results
for the stability of a biaxial nematic phase [21-28]. Also,
treatments of mixtures of discs and cylinders according
to the early Onsager theory for the nematic transition,
depending on a number of approximations and suitable
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choices of an intermolecular potential, are still open to
questions about the existence of a biaxial phase [29-31].
The review by Berardi and collaborators [32,33] gives a
good account of previous work, and an idea of the diffi-
culties to carry out conclusive numerical simulations for
models of mixtures of discs and cylinders.

In the present article, in agreement with the conclu-
sions of a recent calculation for a shape-disordered Maier-
Saupe model with restricted orientations [34], we point
out that the treatment of two sets of degrees of freedom
opens the possibility of choosing different relaxation times,
with different outcomes for the thermodynamic stability
of a biaxial nematic structure. We formulate and analyze
a Maier-Saupe lattice model for a mixture of discs and
cylinders. This problem includes orientational (quadrupo-
lar) and shape-disordered (discs and cylinders) degrees of
freedom, which might be associated with different relax-
ation times. Solutions can be obtained by the application
of well-known methods of statistical mechanics. First, we
treat the case of fixed (frozen) shapes, as in a typical prob-
lem of a disordered solid state system. In this quenched
case, shape-disordered degrees of freedom are fixed, frozen,
while the orientational degrees of freedom are allowed to
thermalize during experimental times. We then treat the
case of annealed (thermalized) shapes, in which both ori-
entational and shape-disordered degrees of freedom are
allowed to reach thermodynamic equilibrium during ex-
perimental times, and which is certainly more adequate to
explain the behavior of a liquid system. In agreement with
previous calculations for similar models, in the quenched
case we show the existence of a biaxial nematic structure
for typical distributions of shape disorder [23,24]. In the
thermalized case, however, there is a biaxial nematic so-
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lution of the model equations, but it turns out to be ther-
modynamically unstable, in agreement with older calcula-
tions by Palffy-Muhoray and collaborators [21,22], as well
as a number of results indicating the demixing between
cylinder-rich and disc-rich nematic phases in the context
of the Onsager theory for the nematic transition [35, 36].
We then resort to a formalism based on two heat reser-
voirs, at distinct temperatures, which is conceived to de-
scribe an intermediate situation, between fully fixed and
fully thermalized distributions of shape variables [37-39].
As in the calculations for the Maier-Saupe model with re-
stricted orientations [34], we show that a small difference
of temperatures, which is equivalent to a slight departure
from complete thermalization, is already sufficient to pro-
duce a stable biaxial nematic phase.

It should be pointed out that we write closed-form so-
lutions of the statistical problem, which are not restricted
to the neighborhood of the transitions, and which can be
used to draw global phase diagrams, in terms of tempera-
ture and either concentration or chemical potential. Also,
it is feasible to extend these calculations beyond the mean-
field level, as it has been done in the annealed case for the
analogous model with restricted orientations [40]. We use
the model solutions to write a Landau-de Gennes expan-
sion for the free energy in terms of the invariants of the
tensor order parameter, but with model-dependent coeffi-
cients. Corresponding phenomenological expansions have
been investigated by a number of authors [2,41,42], and
we can use some asymptotic results to confirm the numer-
ical analysis in the neighborhood of a Landau multicritical
point.

2 Disordered Maier-Saupe model

The Maier-Saupe theory of the nematic-isotropic phase
transition can be obtained from a statistical calculation for
a fully connected lattice model given by the quadrupolar
Hamiltonian

M =- Y & X srsr)

1<i<j<N = pr=wy,2

where the sum is over all pairs of lattice sites, A/N is a
scaled interaction energy, and {S!"} is a set of orienta-
tional (quadrupolar tensor) variables, given by

1
S = 3 (3nknY —0,.), (2)
where n; = (n¥,n?,n?), with |n;| = 1, is a local ne-

matic director. This mean-field Maier-Saupe (MS) model
is known to reproduce the main features of the (weak)
first-order transition between uniaxial nematic and disor-
dered phases.

We mimic the behavior of a binary mixture of oblate
and prolate molecules (discs and cylinders) by introduc-
ing an additional set of (shape) degrees of freedom, {\;},
with \; = 41, for ¢ = 1,..., N. Given the configurations
of orientational and disorder (shape) degrees of freedom,
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{n;} and {)\;}, the simplest Maier-Saupe Hamiltonian for
this mixture of discs and cylinders is given by

A v qu
> TN > ossh,
1<i<j<N W V=2,Y, 2
(3)

which can also be written in the more convenient form

H({Ai} {ni}) = -

H({Ai},{ﬁi}):_% [Z&Sﬁ”l, (4)

i=1

where we have discarded irrelevant terms in the N — oo
limit.

In a typical problem of a disordered system of solid
state physics, the disordered degrees of freedom are fixed,
frozen, while the orientational degrees of freedom are al-
lowed to thermalize during the experimental times [43,44].
In this fixed, quenched case, as in amorphous and glassy
materials, disorder variables are not strictly thermody-
namic. In the opposite case, which seems more adequate
to describe liquid mixtures, both orientational and dis-
order degrees of freedom are allowed to reach thermody-
namic equilibrium during experimental times. The fully
thermalized, annealed case, is then treated according to
the standard rules of equilibrium thermodynamics.

In the following paragraphs, we consider quenched and
annealed cases separately. As in the work of Henriques
and Henriques [23,24], for a lattice Maier-Saupe model
with restricted orientations, we confirm that there is a
biaxial nematic structure in the quenched case. Also, we
show that this biaxial structure becomes thermodynami-
cally unstable in the annealed case, which agrees with an
older Maier-Saupe calculation for a mixture of cylinders
and discs by Palffy-Muhoray and collaborators [21,22]. We
then introduce the two-temperature formalism [34,37-39]
in order to show that a slight departure from complete
thermalization is already sufficient to produce a stable bi-
axial nematic phase. The numerical analysis of the free
energy is supplemented, and confirmed, by an analysis of
a Landau-de Gennes expansion in the neighborhood of the
Landau multicritical point.

2.1 Quenched disorder

Given the set of disordered shape variables, {\; }, we write
the canonical partition function

N 2
Z({N}) =D exp % > [Z Aisf”] )
{ni}

v Li=1

where § = A/kgT = 1/t is the inverse of a (dimension-
less) temperature, p, v = 1, 2, 3 correspond to the Carte-
sian directions, and we are summing over configurations
of the local (microscopic) directors. In this quenched case,
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sin? 0; cos? ¢i — %
S = = | sin? 0 sin ¢; cos ¢;

sin 6; cos 0; cos ¢;

sin? 6; sin i COS ¢;
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sin 6; cos 0; cos ¢;
sin 0; cos 0; sin¢; |, (8)

2 1
cos” 0; — 3

{A:} is a set of independent, identical, and identically dis-
tributed random variables, associated with a probability
distribution

=

N
Pmmzﬂmm. (6

It is convenient to parametrize the local directors by
polar coordinates,

n; = (sin 6; cos ¢;, sin 6; sin ¢;, cos ;) , (7)
with 2, = (Hi, (bi); so that

see eq. (8) above

and the sum over orientational configurations becomes an
integral over solid angles,

Z({n}) =

pr=cy,z Li=1

In the thermodynamic limit (N — o0), we have the
asymptotic form

Z ({Ai}) ~ exp[=BNgn ({Ai})] - (10)

The resulting (quenched) free energy g, comes from an av-
erage of gy ({\i}) over the distribution of shape variables

P({Ai}),

1
~ % I Z({AD) =

(H d&) AN IZ ({0}, 0).

1 (11)

~ (g ({Ai})

where the brackets (...) indicate shape averages, and we
are taking the limit of large N.

The sum over the square terms in eq. (9), can be dealt
with by a set of Gaussian identities. For example, we have

2

exp % lz ST (02;)

+oo
da?n

ﬁ
3 12 N
xexp{ x11+2<2N> lz)\iSu(Qz’) 1?11}
=1
AN\ Y2
)
+oo

N
1
X /dQM exp {—ZN&Z% + E BASM (2;) QH} -
=1

— 0o

(12)

Taking into account the symmetry of the traceless tensor
SHY . we introduce a set of six variables, q11, ¢22, ¢33, q12,
(13, and @23, and write the partition function

Z({M})zz/fdﬂ

xexp{—Nﬂunu—NﬁZqW +ZlnM }

pu<v =1

(13)

where

BNY?
dq] = | == | dqi1dgeedgszdqiadqizdgas, (14)

2

and

M faw D) = [ dfiexp | 300 (2) g

pn<v
(15)
In the thermodynamic limit, we resort to Laplace’s
asymptotic method, and invoke the law of large numbers,

N
%Zme@M%H®MQMmm=

/d)\p (AN)In M (X {qu}) -
(16)
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We then have a self-averaged expression for the quenched
free energy,

1
90 = 5 ((ﬁl + a5+ CI§3) + a1+ dis + B35

_% /d)\p (NI M (A, {gw ), (17)

where the set of parameters {g,, } come from the minima
of the asymptotic integration

fdQS‘S‘; (2) exp Zﬁ)\SW (12) g
n<v

455 = / Ap (A) dA ,
[ d2exp ZBASW (2) ¢

n<v

(18)
for 6 =1,2,3, and

[0S (2)exp | BASH (2) g

n<v

[dexp | > BASH (2) g
u<v
(19)
for § < 7. The set of variables {g,, } has a clear physical
interpretation as the mean values of the quadrupole tensor
components. In fact, if we include field terms in the origi-
nal Hamiltonian, of the form h**\;S*”, with couplings of
local quadrupoles A;S!"” to external fields h*”, the (Gibbs)
free energy will depend on these external fields, and the
mean quadrupoles will be given by ¢, = —0g,/0h*".
Using the explicit forms of S*¥ ({2), given by eq. (8),
it is straightforward to show that we can choose ¢12 =
q13 = q23 = 0, with q11, ¢o2, q33 # 0. This self-consistent
choice leads to a diagonal mean-quadrupole tensor in a
convenient laboratory frame of reference. We then write
the quenched free energy

1 1
94 = 5 (qfl + @y + q§3) "3
X/p(A)d)\ln{/dQexp 6}\ Z S#H (\Q)un }7
u=123

(20)

where

[ dQSH (02) exp [stw rm

Quu = | Ap(A)dA
/ [dQexp | > BASH (2) gy

“w

(21)
Also, we remark that

(22)

Zq”” =0,
m
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Fig. 1. Phase diagram, in terms of the ratio between temper-
ature ¢/t and the concentration ¢, for the case of quenched
disorder with a double-delta distribution. We indicate the ne-
matic biaxial (B), two uniaxial nematic phases of opposite
symmetry (N; and N_) and the Landau multicritical point
(L), located at tz = 3/10 and ¢z, = 0.5. The heavy dashed line
corresponds to first-order transitions. Heavy solid lines corre-
spond to continuous transitions (between biaxial an uniaxial
nematic structures). We also indicate asymptotic results com-
ing from an expansion of the free energy in the neighborhood
ot the Landau multicritical point (thin solid lines). The sta-
bility curves for the isotropic and nematic phases are given by
the dotted lines.

which is a direct consequence of eq. (21), and which con-
firms the traceless property of the mean-quadrupole ten-
sor. Therefore, we introduce the standard parametrization

g1 0 O n—s 0 0
0 g2 O = — 0 —n—s0 ],

. (23)
0 0 qs3 0 0 2s

q:

so that i) s # 0 and 1 # 0 in a biaxial nematic phase,
ii) s # 0 and 7 = 0 in a uniaxial nematic phase, and
ili) s = 0 and n = 0 in the disordered phase.

The analysis of the quenched free energy depends on
the choice of the distribution p (). For example, we may
choose

pAN)=cdA—=1)+1-c)d(A+1), (24)

which represents a sample with a number concentration
¢ of prolate molecules (A = +1) and 1 — ¢ of oblate
molecules (A = —1), and which is convenient for compar-
isons with the annealed situation. If we adopt this form of
p (), it is straightforward to analyze eqs. (20) and (21),
with the standard parametrization (23), and draw the
phase diagram of fig. 1. We indicate two uniaxial nematic
phases, Ny with s > 0, and N_ with s < 0, separated
by a first-order boundary (heavy dashed line) from the
isotropic phase. The biaxial nematic region is limited by
two critical lines that meet at the Landau multicritical
point (¢, = 1/2 and t;, = 1/8; = 3/10), in agreement
with the scenario of the previous analyses for a discrete
version of the Maier-Saupe model [23,24,34]. In the neigh-
borhood of this Landau point, we confirm these results by
the analysis of an expansion of the free energy in terms of
the invariants of the tensor order parameter.
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Fig. 2. Phase diagram for the annealed case in terms of ther-
modynamic field variables (dimensionless temperature t = 1/
and chemical potential p). The triple point is located at ¢t =
3/10 and g = 0. Dashed lines indicate first-order boundaries.

2.2 Annealed disorder

In the annealed approach, we write the canonical partition
function

N 2
=" el 2% [Z Ais;‘"] ,
i} {7} no Li=1

where the sum over the configurations of shape variables,
{Ai}, is restricted by the fixed value of the number density
c of prolate molecules

N
dAN=Ni-N_=N(2-1).
=1

It is then convenient to introduce a chemical potential p
and to change to a grand-canonical ensemble

==Yy

1 B al ’
X exp 55# +ﬁ — [Z )\lS;‘V‘|

i=1

N
N+Z)\i
i=1

In analogy with the treatment of the quenched case,
we use a polar parametrization for S, take advantage of
the Gaussian identities to eliminate the squares, and write
the asymptotic (N — o0o) result

= ~exp[-ONd], (25)
where ¢ is a grand potential per molecule,
J7 1

¢>=—§+§(Qf1+q§z+(£3)—Blnc, (26)

with
¢ =[x (50u) | [aew5L(@, (4
o (~50u)| [ anew oz (@ (g, @)
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Fig. 3. Phase diagram, in terms of temperature and concentra-
tion, in the annealed case. The tie lines indicate the coexistence
of two uniaxial nematic phases. The region of coexistence of the
uniaxial nematic and the isotropic phases is too narrow to be
represented in this graph.

and

L(2,{guu}) = S" (2) qu1 + 5% (2) g2o + 5% () q:zl%a )

28

which should be supplemented by the coupled equations

for the minimization of ¢ with respect to ¢i1, g2 and

q33. Again, we see that the mean quadrupole tensor is

traceless, so that we can use the standard parametrization
of eq. (23).

The analysis of the free energy shows that the biaxial
solution (s # 0, n # 0) is thermodynamically unstable
(it is a saddle-point instead of a minimum of ¢). We then
draw the phase diagram of fig. 2, in terms of the thermody-
namic field variables ¢ = 1/, dimensionless temperature,
and chemical potential p. The dashed lines indicate first-
order boundaries between the uniaxial nematic phases N
and N_, and between the isotropic and each one of the ne-
matic phases. The multicritical Landau point (at u = 0
and tz, = 3/10) is just a simple triple point. We can also
draw the phase diagram shown in fig. 3, in terms of tem-
perature and concentration, which may be more interest-
ing from the experimental point of view. The tie lines in
the ordered region indicate the coexistence of two distinct
uniaxial nematic phases. Again, we confirm these results
by an analysis of an expansion of the free energy in terms
of the invariants of the tensor order parameter.

2.3 Two-temperature formalism

In the two-temperature formalism, we introduce two heat
baths, at different temperatures, associated with the re-
laxation times of the orientational (quicker) and shape-
disordered (slower) degrees of freedom. We now give a
brief account of this formalism [37-39]. Given a configura-
tion {\;} of the slower shape variables, we can schemati-
cally write the probability of occurrence of a configuration
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{o;} of the orientational variables,

P({oi} {Ai}) = fexp[ BH{oi} { )],

where T'= 1/( is the temperature of a heat bath, and

(29)

Zy = Z5 ({N}) = > exp[-BH ({o:} . {\D)]. (30)
{‘71}
The time evolution of A; is given by a Langevin equation,
o OH
Bt ==z (t) )\z 87/\1 + i (t) ’ (31)

where z(t) is a multiplier associated with the chemical
potential, and

(ni () m; (t')) = 2 Tx0350 (=) , (32)

where we have introduced the temperature T of a second
heat bath. With the assumption of quick and slow time
scales, it is reasonable to replace OH/O\; by its average

value,
oH N OH B
o\, o/, o
where

Hett = e ({\i}) = —kpTIn > exp [-FH ({03}, {\:})] -
{oi}

aHeff
N’

(33)

(34)
We then assume that the probability of a configuration
{Ai} is given by the grand-canonical expression

P\ = m exp [BapNy — BraHer],  (35)
where
E(ﬁ)\,ﬁ,N,M) =

n

s

(36)

and the ratio n = T'/T) resembles the number of replicas
in spin-glass problems [43,44].

According to this two-temperature formalism, the ori-
entational degrees of freedom of the Maier-Saupe model
are allowed to reach thermal equilibrium at a tempera-
ture T" and the shape degrees of freedom thermalize at a
temperature T # T, with n = T'/T\. The problem is then
reduced to the calculation of the grand-canonical partition
function of n replicas of the original system [34],

Jiax %;exp[ BH ({01}, DD+

Eur. Phys. J. E (2012) 35: 14

In the thermodynamic limit, we write

Siwo ~ €XP [_ﬂN(btwo] 5 (37)
where
1 1 9 9 9 1
Ptwo = —ohn + 5" (gi1 + 432 + 433) — 3 InGowo  (38)
with

Clwo = {[GXP (;ﬁuﬂ /dQexp [BL (£2, {qw})]}n
+ { [exp <—;ﬂﬂ>} /d()exp [—BL (2, {qw})]}n,

(39)

The minimization of the grand potential ¢y, leads to the
equilibrium values q11, ¢22, and q33 = —q11—¢qo2. Note that
we regain the annealed case for n = 1, and that the role
of this parameter n will become clear in the next section.

3 Connections with the Landau-de Gennes
expansion

We have already chosen a standard order parameter, given
by the traceless diagonal tensor (23). We then introduce
the second and third-order invariants

(35 + %)

L=Tr[q’] =qi1+ ¢+ 35 = (40)

N | =

and

3
I3 =Tr [q3] =¢ + a3+ Q§3 =1 (32 - 772) , o (41)

in terms of which it is usual to write the phenomenological
Landau-de Gennes expansion for the free energy in the
neighborhood of a transition,

C

A B 9
f—f0+512+§fs+z(12)
D E 4
5 bals (13) (12)3 + (42)

The Landau multicritical point is given by A = B = 0.
The stability conditions of the ordered phases in the neigh-
borhood of the Landau point are discussed in terms of the
signs of the coefficients of the higher-order terms. It has
been shown that E > 0 is a necessary condition for the
stability of a biaxial nematic phase in the vicinity of the
Landau multicritical point [2,41].

In the present case, we remark that it is more conve-
nient to adopt an alternative parametrization, in terms of
two new variables r and 1, such that

(cosd) +/3sin w> ,
(cosw — \/gsirmﬁ) ,

(43)

N3

qi1 = —

q22 = — (44)

N3
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and
q33 = r cosp. (45)
We then have ¢11 + g22 + ¢33 = 0,
I = grz (46)
and 3
I; = 17“3 cos (31) . (47)

3.1 Quenched disorder

In the neighborhood of the Landau multicritical point,
the quenched free energy, given by eq. (20), leads to the
expansion

gq:go+% (13632> 12211&):\:)213
5A

42 (ﬁ)g i
200030

7007 (F)S ’

_|_

1450\6 .
N )
27027 </\2>

where gq is the free energy of the isotropic phase,

e = / Nep () dA, (49)
and we have kept terms up to fifth order only. The Landau
multicritical point is given by ¢ = 3A2/10 and A3 = 0 (for
any distribution of shapes).

Let us choose the double-delta distribution, given by
eq. (24), which is particularly adequate for a comparison
with the annealed case. The expansion of the free energy in
the neighborhood of the Landau multicritical point (6 =
Br =10/3 and ¢ = ¢, = 1/2) is given by

gy = —ntdm | 1 <1—35) -1y,

3 2 10 21

5 2000 1450

By Rt - Sy 50
T2 T 70078 T 270272 (50)

The positive sign of the coefficient of I7 indicates that bi-
axial nematic phase is stable in the neighborhood of this
Landau point. Sufficiently close to the Landau point, we
can show that the first-order transition between the uni-
axial nematic and the disordered phase is asymptotically
given by 0

l 2

™ 71+63(2C 17,
in agreement with numerical calculations (see fig. 1). Also,
we show that the critical lines separating the biaxial and
the two uniaxial nematic phases are given by

t 10 1001 %/?
=l (6)'/* (1200> 2c—1)*3,  (52)

(51)
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which also agrees with numerical calculations close to the
Landau point (see fig. 1). This phase diagram, with a sta-
ble biaxial nematic phase, is in qualitative agreement with
previous results for a Maier-Saupe model with restricted
orientations [23, 24, 34]. Using the notation of the phe-
nomenological Landau-de Gennes free energy, we remark
that C > 0 and D = 0, as in the work of Allender and
Longa [41]. However, new topologies may arise if we con-
sider other forms of the distribution p (X).

3.2 Annealed disorder

In the annealed case, we use the grand potential ¢, given
by eq. (26), to locate the Landau multicritical point (8, =
10/3 and p, = 0), and write the expansion

1 35 50
¢—¢0+2<1—10>I2—63/i]3
5 1o

5o, 2500 , 1450
4272 2702773 27027

b0 = f% — %ln {87rcosh <;/BM>:|

is the grand potential of the isotropic phase. The nega-
tive coefficient of 12 shows that there is no stable biaxial
nematic phase in the neighborhood of the Landau multi-
critical point. The line at © = 0, below the temperature of
the Landau point, is a first-order boundary between two
distinct uniaxial nematic phases (with s > 0 and s < 0).
We show that the first-order lines separating the uniaxial
nematic from the isotropic phase are given by the asymp-
totic expression

I3, (53)

where
(54)

t 250 ,

0 sert
in the immediate vicinity of the Landau point. The phase
diagram in fig. 2 is in agreement with these asymptotic
results.

We can also calculate some asymptotic expressions in
terms of temperature and concentration, which are more
convenient variables from the experimental point of view.
For example, the region of coexistence of the uniaxial ne-
matic phases in fig. 3 is limited by the asymptotic border

t_ 5 (e 2/3 1\ %3
—=1—--| = c— = .
. 7\ 25 2

The asymptotic form of the first-order border between the
uniaxial nematic and the isotropic phases is given by

(55)

(56)

(57)

in full agreement with numerical calculations. Also, it
should be remarked that the phase diagram in fig. 3 is
in qualitative agreement with previous calculations for a
Maier-Saupe model with restricted orientations [34].
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3.3 Two-temperature formalism

The same sort of calculations can be carried out for the
grand potential in the two-temperature formalism. From
eq (38), in the immediate neighborhood of the Landau
point, we have the expansion

1 38 50 1
wo = dowo+ = (1=22 )ty — 28
Dtwo ¢o,to+2( 10)”2 Gl
5 1 4 2500 1
b
42 n? 27027 nt

108 143n\ , 1450 1 4
x ( 35 35 )I?’ 27027 nt 12 (58)
where ¢¢ two is the grand potential of the isotropic phase,
and we keep terms up to fifth order. Of course, we recover
the expansion for the annealed case with n = T/T) = 1.
The Landau multicritical point is still located at B;, =
10/3 and puy = 0, but the sign of the coefficient of I2
depends on the parameter n. Indeed, there will be a stable
biaxial nematic phase for

108 2

which indicates that a slight departure from complete an-
nealing (n = 1) is already enough to give rise to a stable
biaxial structure. Comparisons with previous results for a
Maier-Saupe model with restricted orientations [34] indi-
cate that a somewhat larger difference between the tem-
peratures is needed to stabilize the biaxial phase in the
presence of additional direction fluctuations.

4 Conclusions

We have carried out exact statistical-mechanics calcula-
tions for a Maier-Saupe lattice model with the inclusion
of extra degrees of freedom to mimic a mixture of discs and
cylinders. The closed-form solutions of the problem can be
written as a Landau-de Gennes expansion for the free en-
ergy in the neighborhood of the transition, with explicit
expressions for model-dependent coefficients, which allows
the use of several results from the literature. The stability
of a biaxial nematic structure depends on the treatment
of the shape-disordered degrees of freedom. For quenched
shapes, with a typical double-delta distribution of discs
and cylinders, we obtain a global phase diagram, in terms
of temperature and concentration, with a Landau multi-
critical point, a biaxial and two uniaxial nematic phases.
If the shape-disordered degrees of freedom are allowed to
reach thermal equilibrium, we show that the biaxial struc-
ture becomes unstable, and there is a just a first-order
transition between cylinder-rich and disc-rich uniaxial ne-
matic phases. We then assume that orientation and shape
degrees of freedom are associated with two different re-
laxation times, which are effectively represented by cou-
plings to different heat reservoirs, with two different tem-
peratures. Using this two-temperature formalism, we show
that a small temperature difference, which is equivalent to

Eur. Phys. J. E (2012) 35: 14

a certain departure from complete thermalization, is al-
ready enough to stabilize a biaxial nematic structure. Dis-
tinct relaxation times, which are mainly related to chem-
ical composition and eventual defects of real systems, are
suggested to play an essential role in this problem. These
results explain the instability of the biaxial nematic phase
predicted by the early mean-field Maier-Saupe calcula-
tions of Palffy-Muhoray and collaborators [21,22], which
corresponds to our annealed case, as well as the existence
of a biaxial nematic structure in the statistical-mechanics
calculations of Henriques [23,24], which correpond to the
fully quenched case. Also, these results may have some
bearing on other types of theoretical calculations and on
the numerical simulations.

We thank Eduardo do Carmo and Danilo Liarte for helpful
suggestions and comments. This work has been supported by
grants from FAPESP and CNPq.
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