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devices, as it oers a simple and inexpensive framework
for computing their transport properties [12–15]. Notably,
predictions based on LRT have been experimentally veried
across a wide range of geometries and parameters [19–24].
However, recent technological advances in nanofabri-

cation and measurement techniques have made it possible
to explore transport regimes far beyond linear response,
where large bias voltages, temperature gradients, and time-
dependent perturbations drive the system out of equilibrium,
manifesting entirely new transport dynamics that transcend
established paradigms [25–32]. In this regime, strongly corre-
lated eects, such as nonequilibrium Kondo physics [29–31,
33], and Coulomb blockade [23, 32], manifest in nontrivial
ways, and conventional LRT fails to capture the complex
interplay between interactions and nonequilibrium dynamics.
From a theoretical standpoint, techniques such as the

numerical renormalization group (NRG) [34, 35] and the
densitymatrix renormalization group (DMRG) [36, 37] have
been instrumental in studying thermal equilibrium proper-
ties, as well as transport and excitation behavior with LRT.
However, exploring out-of-equilibrium properties presents
even greater challenges, as not only the ground state and
low-energy excitations but also high-energy excitations
can play a signicant role. As a result, the nonequilibrium

1 Introduction

Understanding the transport properties of correlated electronic
systems has been crucial for advancing new, more ecient
electronic devices and, by extension, modern technologies [1–
5]. Within this context, quantum dots have established them-
selves as versatile platforms for investigating fundamental
aspects of quantum transport, electron-electron interactions,
and many-body phenomena such as Kondo physics [6–12].
Over the past three decades, much of the research on

quantum dots has focused on the linear response regime
(LRR) [12–15], where applied biases and temperature dif-
ferences remain small, allowing transport properties to be
described by equilibrium correlation functions via linear
response theory (LRT) [16–18], since the system response
is proportional to the applied external perturbation. LRT has
proven extremely useful for studying conductance in these
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properties of these systems, in contrast to their equilibrium
behavior, are still not fully understood [38–42].
The experimental advances have further motivated theo-

retical eorts to improve nonequilibrium methods. New
approaches such as nonequilibrium Green’s functions [43–
46], noncrossing approximation [47–49], real-time NRG
[50–54], and time-dependent DMRG [27, 37] simulations,
have signicantly advanced our understanding of transport
properties in quantum dots under nite bias, magnetic elds,
and temperature dierences.
Although intensively studied for decades, transport prop-

erties in quantum dots still uncover rich and not yet fully
understood physical behavior. In particular, the investiga-
tion of transport phenomena beyond the LRR has uncovered
a frontier of new eects. These studies are promising not
only for advancing the fundamental understanding of non-
equilibrium many-body systems [55], but also for enabling
novel applications in electronic devices [56] and quantum
dot-based quantum computing [57].
Here, we aim to provide an overview of the established

properties of quantum dots and their transport behavior in
the linear regime, summarize recent theoretical and experi-
mental advances both within and beyond this regime, and
discuss emerging perspectives while highlighting key open
problems in the eld.

2 Quantum Dot Properties

A quantum dot (QD) is a nanoscale structure in which elec-
trons are conned in all spatial dimensions [1], leading to
a discrete energy spectrum resembling that of an articial

atom. Typically, a QD is coupled to two leads: a source and
a drain. Among the various QD congurations, two geom-
etries are particularly noteworthy, as illustrated in Fig. 1: the
single-electron transistor (SET) [12] and the side-coupled
(SIDE) [13]. Thanks to their high tunability, QDs oer pre-
cise control over their electronic properties, making them
ideal platforms for exploring transport phenomena in cor-
related many-body systems [9–12].
Tounderstand thebehavior of aQD,webeginwith the single

impurityAnderson model [58], described by the Hamiltonian

H0 = εd (nd↑ + nd↓) + Und↑nd↓ + HB + Hh, (1)

where ndσ = d†
σdσ is the electronic density, and

d†
σ (dσ) creates (annihilates) one electron on the QD with
spin σ = {↑, ↓} and energy εd. The Coulomb repulsion term
U penalizes double occupancy.HB represents the leads, and
Hh allows electron transfer between the dot and leads.
The conductor leads can be simply modeled by a one-

dimensional tight-binding model as:

HB = −τ
∑

r

N∑

j=1,σ

(
a†

r,j,σar,j+1,σ + h.c.
)

. (2)

Here, τ is the hopping, r = {L, R} and indicates the source
(L) or the drain (R), the operator a†

r,j creates one electron in

the site j of the lead r, and N is the number of sites1.

The hybridization term can be written as:

1 In the case of the side-coupled geometry, the term

−τ
∑

σ

(
a†

L,1,σaR,1,σ + h.c.
)
has to be add in (2), enabling electrons

to transfer between the source and drain.

Fig. 1 Schematic of QDs for SET (top) and SIDE (bottom) geome-
tries. While in the SET, electrons necessarily cross the QD to move
from the source to the drain, in the SIDE, electrons can bypass the
QD and cross directly. The electrodes VG, VL, and VR, control
the energy levels within the QD, the Coulomb repulsion, and its
coupling to the metallic leads. Applying a small potential dierence
∆V between the leads enables transport through the devices
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Hh =

√
Γ

πρ0

∑

r

∑

σ

(
a†

r,1,σdσ + d†
σar,1,σ

)
, (3)

where ρ0 = 1/2πτ is the leads density of state at Fermi
level, and Γ is the hybridization strength.
The transport in the chain is initiated by introducing a

small potential dierence ∆V between the source and the
drain, which alters their respective chemical potentials,
driving the QD out of equilibrium. This can be modeled by
the term:

∆H = e ∆V

2
∑

jσ

(
a†

L,jσaL,jσ − a†
R,jσaR,jσ

)
, (4)

with e being the positron charge.

2.1 Equilibrium Properties

Among the various intriguing phenomena observed in
quantum dots, Kondo physics stands out as a particularly
rich one [11–14], emerging at low temperatures. There-
fore, to extract the relevant physics, it requires an accurate
description of the low-energy states. Since the Hamiltonian
described by (1) is not quadratic if U ̸= 0, a closed exact
analytical expression for this problem is not possible by
conventional methods [34, 35]. To make the situation even
worse, this problem is well known to be non-perturbative
under the usual perturbative expansions [34, 35], thus
requiring an impurity solver [59] to accurately diagonalize
the model and compute its properties.
Despite the challenges involved in diagonalizing

the Hamiltonian (1), its equilibrium properties are well
established and can be qualitatively described in terms
of its fixed points [34, 35, 60, 61]. At high temperatures,
kBT ≫ {|εd|, |2εd + U |}, where kB is the Boltzmann
constant, the system is in the free orbital xed point, such
that the QD is eectively decoupled from the band. As the
temperature decreases, the QD begins to interact with the
band, favoring the single occupancy in the dot. The QD then
acquires an eective magnetic moment, a local moment
xed point, and the QD starts to interact antiferromagneti-
cally with the conduction electrons.
As the temperature decreases further, the antiferromag-

netic coupling eectively increases. At a critical tempera-
ture, known as the Kondo temperature TK , the QD becomes
strongly coupled to the band. This temperature character-
izes the strong-coupling xed point and can be expressed by
Haldane’s formula [62],

kBTK ≈ 2τ

√
2Γ
πU

exp(−π|εd||εd + U |
4ΓU

). (5)

Below TK , the dot and its neighboring sites are bound by
an antiferromagnetic interaction [34], forming a spin-singlet
many-body state in which the dot’s magnetic moment is
fully screened by the conduction electrons. This phenom-
enon gives rise to the well-known Kondo cloud [34, 63–65],
which spreads spatially within the leads and can, in prin-
ciple, reach macroscopic sizes.
This singlet state arises from the QD hybridization with

the low-energy levels of the band, with a strength given by
ΓK ∼ kBTK [12], as shown in Fig. 2. This interaction cre-
ates a high local density of states concentrated at the Fermi
level, known as the Kondo resonance [12] — a sharp peak
at zero energy, shown in the top panel of Fig. 3. The Kondo
resonance can overcome the Coulomb blockade, enabling
ballistic conduction through the SET QD (see bottom panel
of Fig. 3), inducing the phenomenon known as the zero-bias
conductance anomaly [12].

2.2 Transport Properties via LRT

When the external perturbation is suciently small, one can
rely on standard LRT [17], thereby avoiding the heavy com-
putational cost of calculating nonequilibrium properties. In
this formalism, as shown in Refs. [12, 15], the zero-bias
conductance for the SET geometry can be obtained via the
Meir-Wingreen formula [18],

GSET (T ) = G0

ˆ

dϵ

(
−∂n̄β(ϵ)

∂ϵ

)
ρd(ϵ, T ), (6)

where n̄β(ϵ) = (1 + exp(βϵ))−1 is the Fermi function,
β = 1/(kBT ), G0 = 2e2/h is the conductance quanta and
h is the Planck constant. Here, ρd(ϵ, β) is the QD local den-
sity of states (LDOS) at nite temperature [12], which can
be expressed as

ρd(ϵ, T ) = πΓ
Zβ

∑

n,m,σ

(
e−βEn + e−βEm

)
×

|⟨n|d†
σ|m⟩|2δ(ϵ − En + Em),

(7)

where Zβ = Tr [exp(−βH0)], and |n⟩, |m⟩ represent
many-body eigenstates of H0, with energies En and Em

respectively.
As shown in Ref. [15], the SIDE and SET conductances

are related by

GSIDE(T ) = G0 − GSET(T ), (8)

which means no additional computation is required: one
can directly obtain GSIDE(T ) from the SET conductance.
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LDOS shown in the top panel2. For the SET device, at
low temperatures (T < TK ), the QD becomes strongly
coupled to the low-energy states of the leads, as evi-
denced by the appearance of the Kondo resonance in the
LDOS, which provides a channel for electron transport
between the leads. For T ≫ TK , however, the QD-band
coupling weakens, the QD can fluctuate into triplet
states, the resonance peak broadens, the low-energy den-
sity at the QD decreases, and so does the conductance.
The same Kondo physics occurs in the SIDE device;
however, the direct conduction channel between the
leads guarantees conductance when the QD-band chan-
nel is closed T ≫ TK . At low temperatures T < TK , the
bands are strongly coupled to the QD, trapping the con-
duction electrons into the Kondo singlet, and the con-
ductance drops to zero.
One notable eect is the splitting of the LDOS Kondo

peak in the presence of a small non-zero voltage bias or a
weak magnetic eld [29, 67–69]. Figure 4 shows this phe-
nomenon (top panel) and its eect on the conductance (bot-
tom panel): G(T) deviates from the zero-bias behavior for
T < TK , where it decreases due to bias-induced changes
in the chemical potential [70]. In this regime, the lowest
energy states are more localized in one lead, and transfer-
ring an electron to the other requires overcoming the energy
splitting [70]. At higher temperatures, the behavior remains
similar to the zero-bias case.
LRT has been extremely useful for studying the con-

ductance in QDs, as it oers a simple and inexpensive
platform to compute their properties and shows good
agreement with experiments within the LRR [19–24].
However, there are situations where traditional LRT can-
not be applied.
For example, if the system begins in its ground state

and the voltage is increased adiabatically to a non-zero
value before being switched to the final bias, it remains
in equilibrium up to that point. In such cases, the con-
ductance can be computed using linear response theory
(LRT), revealing features such as the Kondo peak split-
ting shown in Fig. 4. In practice, however, the state
of the system during QD manipulation is typically
unknown and cannot be assumed to be in equilibrium.
Consequently, if the applied voltage is large or intro-
duced non-adiabatically, LRT no longer provides a reli-
able description.
Given that the ultimate goal is to harness these systems

in technological applications — where fast manipula-
tions and precise control over a wide range of param-
eters are essential — the limitations of linear response
theory become evident. Meeting these demands requires

2 The quantities shown in Figs. 3 and 4were calculated using the NRG
method with a discretization parameter Λ = 4.0.

Similarly, the thermal conductivity can be computed using
the Wiedemann-Franz law [66].
Figure 3 (bottom panel) shows the zero-bias conduc-

tances for the SET (via (6)) and the side-coupled (8)
geometries. Both conductances were computed using the

Fig. 3 (Top) LDOS as a function of energy at a xed kBT = 10−3τ
for the particle-hole symmetric case εd = −U/2 = −τ , with hybrid-
ization Γ = 0.20τ . From the numerical data is extracted for this set
of parameters. (Bottom) Zero-bias conductance as a function of tem-
perature T, computed using (6) (SET: black circles) and (8) (SIDE: red
diamonds)

Fig. 2 Schematics of the the Kondo hybridization (ΓK ∼ kBTK )
between the QD and the low-energy states of the band to form the spin
singlet. Once in the ground state, the QD is occupied by a single elec-
tron; to access double occupancy and conduct one electron, the Cou-
lomb blockade ∼ U/2 must be overcome. The high density of states
around the Fermi energy ϵF enables conductance between the leads
when∆V ̸= 0. Here, n̄β is the Fermi function
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⟨Ô⟩β,t ≡ Tr
[
Û †

t ÔÛt
exp(−βH0)

Zβ

]
, (9)

where Ô is the observable operator, Ût is the time-evolution
operator, and t represents time.
To verify the range of validity of the LRT, we set

εd = −U/2 = 0, where H0 is quadratic [71], and com-
pute the time-dependent current3 in response to a sud-
den voltage quench ∆V between the leads, given by
H(t > 0) = H0 + ∆H , comparing it with the LRT pre-
diction. Figure 5 shows the nonequilibrium SET current
I, normalized by ∆V , highlighting the onset of nonlinear

3 SinceH0 is quadratic and can be diagonalized, we numerically eval-
uated the time-evolution operator Ût using N = 5000 sites in each
lead and used (9) with Ô = N̂r =

∑
jσ

nr,jσ to obtain the total num-

ber of particles in each lead r as a function of time.

a deeper, more rigorous investigation of the system,
including the explicit computation of transport properties
under genuinely nonequilibrium conditions.

2.3 Nonequilibrium Transport

Computing the nonequilibrium properties of correlated
many-body systems is not straightforward, requiring a care-
ful analysis of the relevant energy scales, a task that is far
less trivial than in the analogous equilibrium case. How-
ever, advances in computational power and time-dependent
impurity solver methods have enabled realistic nonequilib-
rium simulations of these systems [69].
For simplicity, let us focus on nonequilibrium cases

driven by external perturbations at a xed temperature.
Thus, the nonequilibrium properties of the system can be
calculated as

Fig. 4 (Top) LDOS as a function of energy ϵ at a xed
kBT = 10−3τ and a bias voltage∆V = 0.01τ , which
causes a splitting of the Kondo resonance. The other param-
eters used here are the same as in Fig. 3. (Bottom) Conduc-
tance for the SET geometry as a function of temperature,
shown for nite (black dots) and zero bias (blue line)
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agreement with the LRT prediction, with only a slight devia-
tion appearing for strong hybridization, Γ > 0.125τ (blue
and black curves). However, for any e∆V > 2Γ, Panel D
reveals that the system is rapidly driven out of the LRR,
described by I = ∆V · G(kBT = e |∆V |/2) from (6).
Moreover, the larger the value of Γ, the greater and ealier
the deviation occurs.
The non-interacting symmetric case can be used as an anal-

ogy to its interacting counterpart (see Fig. 2). In the interact-
ing case, the high conductance at low temperatures (T < TK)
originates from the eective antiferromagnetic dot-band inter-
action, which couples the dot to the band low-energy states
with an eective hybridizationΓK ∼ kBTK . Similarly, in the
non-interacting case, the QD hybridizes with the low-energy
states of the band via the hybridization Γ, allowing high

behavior. Time and energies are scaled by Γ4, the numeri-
cal calculations are for dierent values of e∆V/2Γ, for
xed Γ = 0.008τ (Fig. 5 A) and Γ = 0.031τ (Fig. 5 B).
For small values of e∆V/2Γ (black and blue curves), the
scaled conductance is essentially the same for both values
of Γ; however, when e∆V ≫ 2Γ (red and purple curves),
this behavior breaks down, indicating a nonlinear behavior.
PanelsCandDshowthecurrent5 for severalΓasa function

ofkBT (Fig.5C) atxed e∆V = 10−4τ , and as a function of
e∆V (Fig. 5D) at xed kBT = 10−4τ . Panel C shows good

4 For the non-interacting symmetric case, this energy scale predomi-
nantly determines the system’s behavior.
5 The steady-state current is taken from the time window where it
remains constant, while the later drop is a nite-size eect due to the
nite number of sites (N = 5000) used in the calculations.

Fig. 5 Nonequilibrium SET current I, divided by ∆V to observe the
nonlinear conductance behavior, in unities of G0. Here, it is xed
εd = −U/2 = 0 andN = 5000 sites. Time and energies are scaled by
Γ. Top panels (A and B) show the time-dependent current for dierent
values of e|∆V |/2Γ (values indicated in the legend of panel A), com-
puted at a xed kBT = 10−4τ , for Γ = 0.008τ (panel A, left) and
Γ = 0.031τ (panel B, right). The dashed lines in the top panels repre-
sent the steady-state currents for Γ = 0.008τ , with the corresponding

colors, to allow comparison between panels A and B. Bottom panels
(C and D) show the steady-state current as a function of kBT (panel
C, left) at xed e∆V = 10−4τ , and as a function of e∆V (panel D,
right) at xed kBT = 10−4τ , for dierent values of Γ (values indi-
cated in the legend of panelC). Note that the drop in the current at long
times is a nite-size eect. In the thermodynamic limit (N → ∞), the
current would remain constant
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bias voltage, TK is the Kondo temperature, and GK is the uni-
versal impurity Green’s function for the Kondo model [74].
The results obtained from expression (10) show excellent

agreement with the experimental data, both at zero bias and
under nite bias conditions (in the presence of an external
magnetic eld), where the Kondo splitting (shown in Fig. 4)
is present, conrming the dominance of Kondo physics in this
system. Consequently, a Ti adatom on the Cu2N/Cu(100) sur-
face represents a promising platform for investigating nonequi-
librium many-body eects through STM tip manipulations.
Subsequently, Ref. [75] presented a detailed theoreti-

cal investigation of the nonlinear transport through a QD,
focusing on situations where the couplings to the two leads
are asymmetric and the system operates at low temperatures
(T < TK ), within the Fermi-liquid regime [60]. The authors
carefully expanded the analytical steady-state current at
low energies up to third order in the applied voltage, and
obtained the following expression for the conductance:

G(e V )
G0

= sin2(δ) − CT

(
πT

TK

)2

+ CV,2

(
e V

kBTK

)
− CV,3

(
e V

kBTK

)2
.

(11)

Here, δ is the low energy phase shift, and the coecients
can be computed via the corresponding correlation func-
tions [75].
This work identied two nonlinear transport coe-

cients: CV,2 and CV,3, which encode asymmetry eects,
such as nite ∆V and unequal couplings. CV,2 captures
the energy shift of the dot’s electronic level induced by
asymmetry, while CV,3 incorporates contributions from
both two-body and three-body Fermi-liquid correlation
functions. These coecients were calculated using NRG
calculations, and their behaviors were systematically ana-
lyzed. As a consequence, transport measurements in QDs
can potentially be used as sensitive probes of many-body
Fermi-liquid eects beyond LRR, providing valuable
information about the contributions of two- and three-
body electronic correlation functions.
In a similar study, Ref. [76] investigated the eects of

three-body electronic correlations on the nonlinear trans-
port properties of low-temperature QDs by combining an
extended Fermi-liquid theoretical framework with high-
precision measurements on a carbon nanotube QD. Theo-
retical predictions for the dependence of the three-body
contributions, acquired using NRG calculations, are quan-
titatively validated against the experimental data, provid-
ing the rst direct experimental evidence of the three-body
Fermi-liquid correlations predicted in Ref. [75].

conductivity at low temperatures kBT < Γ. Although this
analogy is not perfect, one should be aware of potential inac-
curacies in predictions made by LRT when e∆V ≫ kBTK .

3 Transport Beyond Linear Regimes

In the early stages of research on transport through quan-
tum dots (QDs), attention was primarily directed toward the
linear regime in relatively simple systems. Today, however,
experimental studies frequently probe transport properties
beyond this limit. In this section, we highlight both theoreti-
cal and experimental developments that, despite the appar-
ent simplicity of the systems involved, continue to reveal
rich and unexplored phenomena.

3.1 Nonlinear Conductivity

Almost twenty years ago, the rst signs of nonlinear con-
ductance behavior arising from nonequilibrium eects
began to appear. In 2006, Ref. [31] reported the observa-
tion of a nonequilibrium singlet-triplet Kondo eect in car-
bon nanotube QDs, where a conductance peak emerges at
nite bias when the ground state is a spin singlet and the
triplet state becomes accessible through inelastic tunnel-
ing. This anomaly, absent at zero bias, was interpreted as a
many-body Kondo resonance involving virtual transitions
between singlet and triplet states under nonequilibrium con-
ditions, supported by a perturbative renormalization-group
analysis. This study demonstrated that Kondo correlations
can persist out of equilibrium and contribute to the transport
properties of such devices.
Two years later, Ref. [30] reported a similar phenom-

enon in a QD based on a C60 molecule, further conrming
the presence of these nonequilibrium Kondo phenomena in
such devices.
In Ref. [29], the author investigated the lineshape of the

Kondo resonance in the conductance of spin-1/2 magnetic
adatoms on decoupling layers at low temperatures, using
experimental data obtained from scanning tunneling micros-
copy (STM) spectroscopy [72]. As a phenomenological
ansatz based on Fano resonances [73], the nonlinear conduc-
tance as a function of the applied voltage was expressed as

G(e.V ) =c0 + c1(1 − c2
2)ImGK

(
e (V − V0)

kBTK

)

+ 2c2ReGK

(
e (V − V0)

kBTK

)
.

(10)

Here, the constants c0, c1 and c2 can be extracted from the
numerical data, as explained in detail in Ref. [29]; V0 is the
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with connement. This method relies on oscillations in con-
ductivity, which appear only when the electrons in the con-
ductor leads are correlated [64, 78]. Using this concept, an
experimental setup was built, and oscillations in conductiv-
ity as a function of the connement potential were observed
at distances of a few micrometers [63], which the authors
interpreted as direct evidence of the Kondo cloud.
However, despite this promising experimental evidence,

there are important considerations regarding the theoretical
framework used to analyze these results. In Ref. [63], the
authors applied an alternating small voltage to induce cur-
rent in the experimental setup, while the theoretical analysis
relied on LRT6. Despite the very interesting observation, the
oscillations in conductivity could potentially arise from non-
equilibrium eects [79] or from nite-size eects due to the
connement [80]. Therefore, a theoretical study focused on
this setup, analyzing the device’s response to an alternating
voltage, would greatly help to determine whether these oscil-
lations are indeed a direct consequence of the Kondo cloud.

3.4 Theoretical Methodology

One active line of research focuses on improving the descrip-
tion of QD devices, making them more realistic and directly
comparable to experiments by rening their Hamiltonians
to incorporate additional eects, such as spin-orbit coupling
[81], multiple QDs [82–86], and non-metallic leads like
superconductors and topological materials [68, 69, 85, 87],
and other relevant features.
In addition, Ref. [88] introduced a generalized conductance

formula for nanoscale devices with geometries that violate the
Meir-Wingreen proportional-coupling condition. While tradi-
tional QD setups assume tunneling amplitudes can be factor-
ized into independent lead and dot contributions, this breaks
down in more complex architectures. Using a QD-SET-like
coupled to a tunable electronic cavity as a case study, the work
investigated how multiple tunneling paths lead to quantum
interference, generating asymmetric conductance line shapes
and modulations associated with the cavity’s discrete modes.
The proposed framework successfully explained experimental
observations in QD-cavity systems [89].
However, these works still rely on LRT and are there-

fore restricted to the linear response regime. To overcome
this limitation, two possible strategies have emerged: one is
to derive new expressions for the transport properties that
include higher-order correlation functions as Refs. [75, 76];
the other is to adopt time-dependent impurity solvers. Early
eorts to generalize impurity solvers to nonequilibrium

6 Which assumes that the system starts in thermodynamic equilibrium
and is subjected to a small voltage. However, as we discussed, a time-
dependent voltage can introduce non-zero bias eects and other non-
equilibrium behaviors.

Despite the good agreement between theory and experi-
ment reported in Refs. [29, 76], where the expressions (10)
and (11), respectively, successfully reproduced the corre-
sponding experimental results, these expressions are not
applicable to general cases. In particular, their validity is
restricted to T < TK . While Ref. [29] does not derive the
expression (10) from rst principles, Refs. [75, 76] derive
(11) within a Fermi-liquid description, although it does not
fully capture the splitting of the Kondo resonance peak.
Future works could focus on deriving, from rst princi-

ples, a more complete expression that generalizes (6), incor-
porating two- and three-body correlation functions, inspired
by Refs. [75, 76]. Such an approach could also be extended
to thermopower and spin currents, which are important for
emerging technologies. On the experimental side, future stud-
ies could use setups similar to those in Refs. [29–31] to inves-
tigate nonlinear transport in greater detail, providing valuable
data to test and validate theoretical predictions. Additionally,
advanced time-dependent simulations of these systems could
oer deeper insights into the nature of the excitations respon-
sible for nonlinear eects in such devices [69].

3.2 Violation of the Wiedemann-Franz Law

The Wiedemann-Franz law states that the ratio of a mate-
rial’s thermal conductivity to its electrical conductivity is
proportional to the temperature. This relation can be derived
within the LRT formalism [66].
Ref. [77] reported a clear experimental violation of the

WFL in a QD formed within a semiconducting InAs nanow-
ire transistor. Using a precisely tunable SET geometry, the
authors measured both the electrical and thermal conductance
of the QD under strong connement at low temperatures.
They observed a marked suppression of thermal conductance
relative to the value predicted by the law. This suppression
was attributed to energy-selective transport: while charge
transport remains ecient through discrete energy levels,
only a narrow range of electron energies contributes to heat
ow, leading to a substantial reduction in thermal conduc-
tance. The results are supported by scattering theory and
highlight the potential of QDs as thermal conductance lters.
This work indicates the need to extend investigations

of thermal transport properties in QDs beyond the LRT as
well. Such an extension could be achieved by employing an
approach similar to that used for G(eV) in Refs. [75, 76],
deriving a novel expression for thermal conductivity that
incorporates higher-order correlation functions.

3.3 Direct Detection of the Kondo Cloud

Anew approach to directly measure the Kondo cloud length
in QDs was proposed in Ref. [64], using an SET-like device
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Ref. [68] recently investigated nonequilibrium charge and
heat transport in a QD side-coupled to a topological super-
conductor hosting Majorana zero modes. Using NRGF, the
authors derived steady-state expressions for the current and
thermocurrent under applied voltage and thermal biases.
The coupling to Majorana modes induces zero-bias conduc-
tance anomalies and nonmonotonic thermoelectric behavior,
including thermocurrent sign reversals. This work proposes
transport-based diagnostics for identifying Majorana modes
in QD-superconductor hybrid systems.
NEGF methods provide good approximations for small

values of U, but its perturbative nature makes it unreliable
when U becomes large. The TDNRG and tDMRG methods,
on the other hand, are non-perturbative and oer accurate
results for short-time dynamics. However, these techniques
rely on reduced basis approximations and/or logarithmic
discretization, which introduce errors in the long-time
behavior, particularly in the steady-state regime. Therefore,
improving these methods for long-time accuracy is essen-
tial for reliably computing steady-state transport properties.
Additionally, fast and ultrafast experimental measurements
of QD transport would be an excellent way to test and
explore the nonequilibrium predictions provided by these
theoretical approaches.

3.5 Fast and Ultrafast Measurements

When studying the LRR, the time scale of transport prop-
erty measurements is not a major issue, since both theo-
retical and experimental methods can focus on long-time
scales. In this regime, typical current measurement times
on the order of milliseconds are sucient. However, non-
equilibrium behaviors are much more dependent on time
scales. Although their eects still inuence long-time trans-
port properties, time-resolved measurements can reveal
nonequilibrium phenomena that may remain inaccessible in
long-time averaged measurements [96–102].
In Ref. [96], the coherent control of two-electron spin

states in a double QD was achieved through rapid electrical
tuning of the exchange interaction. To observe this phenom-
enon, the authors employed radio-frequency measurements
techniques, achieving measurement times on the order of
nanoseconds. Ref. [97] studies the allowed and nominally
forbidden energy transitions under phonon emission in QDs,
based on time-resolved measurements in the nanosecond
range. This study shows that forbidden transitions, enabled
by spin-ip processes, exhibit relaxation times around 200
µs, supporting the potential of QDs as candidates for spin-
based quantum information storage.
More recently, Refs. [98–103] have employed similar

radio-frequency techniques to achieve fast transport mea-
surements. Ultrafast measurements, capable of capturing

conditions led to the development of time-dependent DMRG
(tDMRG) [37] and time-dependent NRG (TDNRG) [50].
The TDNRG [50–53] oers a computationally inex-

pensive platform to compute nonequilibrium properties of
QD-based devices and has proven to be a good alternative
for observing the short-time behavior. This method has
been improved over the years, but it is still not suciently
accurate, especially for long-time computations necessary
to access steady-state currents [54, 90–92]. On the other
hand, the tDMRG has demonstrated higher accuracy [27,
37, 55, 87], though it is computationally demanding and
still faces challenges at very long times. Advances in the
accuracy of these time-dependent impurity solvers, par-
ticularly for long-time behavior, would be extremely valu-
able for improving our understanding of nonequilibrium
transport in these systems.
As an example, the authors of Ref. [69] investigated

nonequilibrium spin transport through a QD coupled to fer-
romagnetic leads, targeting spintronic applications. Employ-
ing a hybrid NRG-tDMRG approach, they analyzed the spin
current in response to a suddenly introduced nite bias, for
both particle-hole symmetric and asymmetric cases. The
study demonstrated that spin polarization suppresses the
Kondo conductance peak via an eective exchange eld,
while applying an external magnetic eld can restore the
Kondo resonance. Furthermore, the authors systematically
mapped how temperature, spin polarization, and external
elds jointly govern the nonequilibrium Kondo eect, oer-
ing valuable insights for the design of spintronic devices.
Analytical methods such as the non-crossing approxi-

mation (NCA) [48, 49], perturbation theory, and effec-
tive models have also been employed to deepen the
understanding of nonequilibrium transport properties
in QDs, which are particularly useful for extracting
insights in regimes where the employed approxima-
tions remain valid. For instance, Ref. [93] investigates
transport through a double QD under a temperature gra-
dient using NCA, reporting a pronounced violation of
the Wiedemann-Franz law, which indicates non-Fermi-
liquid behavior. Additionally, Ref. [33] analyzes the
Kondo effect when a QD is suddenly coupled to Hub-
bard chains. Using a combination of an effective Lut-
tinger model and perturbation theory, the authors show
that, for non-interacting leads, the current dynamics are
governed by the Kondo time scale tK ∼ 1/TK . In con-
trast, for interacting chains, the current at intermediate
times exhibits a power-law dependence characteristic of
Luttinger-liquid physics and a logarithmic enhancement
associated with the Kondo effect.
Another interesting method for studying the transport in

these systems is the use of nonequilibriumGreen’s functions
(NEGF) [39, 43, 68, 94, 95]. To demonstrate its usefulness,
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4 Conclusions

The study of quantum dots beyond the linear regime has
uncovered a rich playground for observing new physical
phenomena driven by strong correlations and nonequilib-
rium eects. Notable advances include both the experimen-
tal observation and theoretical analysis of nonlinear Kondo
resonances in electrical conductivity, where many-body
correlations persist even when a nite bias is applied. Fur-
thermore, the experimental violation of the Wiedemann-
Franz law in QDs emphasizes the necessity of exploring
transport beyond the LRR. The reported direct detection
of the Kondo cloud also underscores the potential of QDs
as sensitive probes of fundamental phenomena, although a
deeper understanding of the interplay between nite-size
eects, nonequilibrium dynamics, and quantum conne-
ment remains a signicant challenge.
On the theoretical side, recent eorts have focused on

rening QD models to incorporate more realistic features.
While many of these studies still rely on LRT, advances
in non-perturbative, time-dependent methods, such as
TDNRG and tDMRG, have oered new insights under
nonequilibrium conditions. Although these techniques
currently face limitations in capturing long-time dynam-
ics, they remain crucial tools for exploring the behavior of
strongly correlated systems and are continuously undergo-
ing improvements.
Complementarily, fast and ultrafast experimental tech-

niques — capable of probing dynamics on nanosecond and
even picosecond timescales — have opened exciting new
avenues for investigating real-time transport phenomena,
with promising applications in spintronics and quantum
information.As QD-based qubits continue to advance, over-
coming key challenges related to coherence, precise con-
trol, and scalability will be essential for establishing QDs
as viable building blocks in future quantum technologies.
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phenomena on the picosecond time scale, have also been
proposed and discussed for these devices [96, 104].
Experimental data with such detailed time dependence
would be invaluable for directly comparing observed
features with nonequilibrium theoretical predictions.
Specially in the transient regime, about which little is
currently known.

3.6 Qubits for Quantum Computing

QDs have been studied as potential candidates for qubits in
quantum computing [57, 97, 105–110], as they can conne
individual electrons and be easily manipulated, allowing for
precise control over their quantum states [1, 63]. For their
use as qubits, two key properties of QDs must be ensured:
the ability to implement adiabatic protocols to manipulate
the devices without losing quantum information [105, 106,
110, 111], and long coherence times for reliable quantum
information storage [97, 107, 108].
Adiabatic quantum-state transfer was demonstrated in

Ref. [106] in chains of semiconductor QD spin qubits via
controlled exchange couplings. Single- and two-spin states
were transferred over nanoseconds with delities exceeding
95%7, showing very small loss of information, supporting
scalable spin-qubits arrays and future adiabatic quantum
computing architectures.
In Ref. [112], a high-delity (98%) two-qubit CNOT

gate was demonstrated in a silicon QD using electrically
tuned exchange interactions and resonant microwave con-
trol. Spin-selective manipulation was eectively achieved
via electric dipole spin resonance. These results are very
promising for the development of electrically controlled,
QD-based quantum computing in silicon.
Despite these impressive results, QD-based qubits still

lag behind the superconducting qubits [113] and trapped
ions [114], which exhibit longer coherence times, higher
delities, and simpler control schemes. The challenges in
advancing QD-based qubits lie in nanofabrication con-
straints, charge noise suppression, the implementation of
fast and high-delity entangling gates, and the develop-
ment of reliable multi-qubits architectures. As material
science and fabrication techniques (particularly in Si/
SiGe platforms) continue to improve, QD qubits may yet
emerge as a competitive and scalable option for future
quantum computing architectures.

7 The delity measures how close the quantum state of the system is to
the desired state. It is often used to quantify how good the system kept
the desired quantum information.
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