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the open unit ball. Globevnik [9] described the boundaries of A,(B,,). As a con-
sequence of the description, he showed that this algebra has no Shilov boundary.
Aron, Choi, Lourengo and Paques [3] gave examples of boundaries for Au(Be,)
and proved that there is no Silov boundary for this algebra. They also showed
that the unit sphere of ¢; is the Silov boundary for .A,(By, ).

Moraes and Romero [14] gave a characterization of the boundaries of
Au(Ba,(w,1)), where d,(w,1) is the canonical predual of the Lorentz sequence
space d(w, 1) when w = {1}. Later Acosta, Moraes and Romero [2] general-
ized that characterization proving it for any space d,(w, 1) and obtained another
one in terms of the strong peak sets of the unit ball. In this case, there is no
Silov boundary. Choi, Garcia, Kim and Maestre [5] proved that there is no Silov
boundary for Au(Bc(x)), when K is infinite and scattered. Acosta showed the
same result for every infinite K and also proved that for this space the subset of
extreme points of the unit ball of C(K) is a boundary for Au(Beuag) (1)

Before going on it is convenient to recall some definitions. Let A be a function
space on a metric space (2. An element y € 2 is called a peak point for A if
there is some f € A such that f(y) = 1and |f(z)] < 1,Vz € 2N\{y}. In this case
we say that f peaks at y. An element y € §2 is called a strong peak point for
A if there is some f € A satisfying f (y) = 1 and such that given any € > 0 there
is some § > O such that dist(z, y) > ¢ implies that |f(z)| < 1—6. It is clear that
every closed boundary for A contains all the strong peak points.

In this paper we prove that there is no Silov boundary for .A,(Bx) when X
is the Schreier space or the space K(t,%) (1 < p < g < o0). For the spaces
X = Cy(H), the trace class operators on & complex Hilbert space H or X =
d(w,1), there is Silov boundary for Au(Bx). In fact, all the points in the unit
sphere of d(w, 1) are strong peak points for Au(Buaw,1)) and so, in this case the
Silov boundary is the unit sphere. For £; the same result also holds. That fact
was proved in [3] for the finite supported sequences in the unit sphere. If K is
infinite, we also prove that there is no strong peak points for Au(Bc(x)). The
subset of the peak points for A.(Bgx)) is the set of extreme points of Bk if
K is separable.

Throughout this paper, all the Banach spaces considered are complex. For a
Banach space X, By and Sx will be the closed unit ball and the unit sphere of
X, respectively. We will denote by Ao (Bx), the Banach space of all bounded
and continuous functions on By which are holomorphic on the open unit ball and
Ay(Bx) the space of all functions in Ac(Bx) which are uniformly continuous.
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2. EXISTENCE OF SILOV BOUNDARY ON THE LORENTZ SEQUENCE SPACE

Given a decreasing sequence w of positive real numbers satisfying w € o\,
the complex Lorentz sequence space d(w, 1) is given by

dlw,1) = {z :N—C :sup{i |z(o(n))|wn:0: N— N injective} < +oo}.
n=1

The norm is given by

llz|| = sup{i wolz(o(n))| 10 : N — N injective} (z € d(w,1)).

n=1

It is well-known and easy to verify that the above supremum is attained for
the decreasing rearrangement of x. The usual vector basis {es} is & monotone
Schauder basis (see [12}).

A canonical predual d.{w, 1) of d(w,1) is given by

d,(w,1)={z€co:1irrlngwﬂk—) =0}

where W,, = 3°7 wy, and z* is the decreasing rearrangement of z. This space is &
Banach space endowed with the norm

(see [16] and [7]). du(w,1) has a Schauder basis whose sequence of biorthogonal
functionals is, in fact, the canonical basis of d{w, 1).

We begin presenting some useful lemmas.

Lemma 2.1. If {zx} is a bounded sequence of complez numbers such that the
sequence {1+ |zn] — |1+ 24|} converges to zero, then the sequence {|2n| — 20} also
converges to zero.

Proof. We consider the following identity for a complex number z
(L+ |2l - 1 +2])* =
L+ |22+ 202+ 1+ 2P =21+ |2]) 1+ 2| =
2(Re z—|2]) +2(1 + 2)(1 + |2| =1 + 2) -
If we apply the above identity to the sequence {z,} and use the assumption, we

obtain that the sequence {|z,] — Re z,} converges to zero.
Now if we consider the following expression

(Jz} — Re z)* =
2Re 22+ Im %z~ 2|zjRe 2 =
=Im?2+2(Rez—|z|)Re z,
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and we apply the identity to the sequence {z,}, we deduce that {Im z,} = 0.
Hence
{lznl — 2z} = {}za] — Re 2, —iIm 2,} — 0.

Lemma 2.2. ([3, Lemma 9]) Let 0 < o < 1. The real valued function given by
1-
9(z) =(1 + 1%) (1 + TZ) (z €R)

a
attains its mazimum at x = a and

ga(z) < ga(a) = ;Tl{-—a)’ Yz € R\{a}

Lemma 2.3. The subset of peak points in Sy Jor Ax(Bx) is tnvariant under
surjective linear isometries on X. The same result also holds for the subset of
strong peak points in Sx.

Theorem 2.4. The set of strong peak points for the space of the polynomials of
degree less or equal than 2 on d(w, 1) contains the unit sphere of d{w, 1).

Proof. Let yo € Syw,1). By Lemma 2.3 we can assume that supp ¥o is an interval
of positive integers containing {1} and it is also satisfied that

0y v(/) ERT, Vi€supp yo, and yo(n) > w(n+1) VneN.
We will prove that yo is a strong peak for A, (d(w, 1)).

If the support of yp contains just one element, then yg = e, and it is sufficient

to consider the 1-degree polynomial given by

f@)=1+z(1) (ze€dw1)).
Clearly [|fl = 2 = f(y). By using that in Sagw,1) the weak and the
o(d(w,1),d.(w, 1)) convergence coincide (16, Proposition 2.2] and [10, Corol-
lary I11.2.15]) and that every point of the unit sphere is a point of continuity of
the unit ball [13, Proposition 4], then it is easily checked that [ strongly peaks
the unit ball at y,.

Otherwise we will assume that J := supp yo has at least two elements. Since
llvoll = 1, by (1), we know that > ies wivo(i) = 1 and s0 0 < wiyo(i) < 1 for every
ieJ.

For every k € J we define the function given by

_ i wkz(k) 1 ——
fi(z) = A (1 + w,,yo(k)) (l + —rs je;{” wa(J)) (z € d(w, 1)},
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1

where Mj = . Then fi is clearly a non-homogeneo Ly~
"7 wiyo(k) (1 — weno(k)) fi Y mogeneous poly

nomial on d{w, 1) with degree 2 and satisfies that fi(yo) = 1. We will check that
[Ife]l = 1.
If £ € Byw,1), then it is satisfied that

@)
()] =Mik|1 +

wkx(k) 1
1- kao(k)‘ ‘,1 M wiyo(k)

> w(i).s

je\{k}

-L ___wk|z(k)| ———1 (7 since
M; (1 * 1- ’U)kyo(k)) (1 * wiyo(k) je§k} lex(])l)s (since = € Bx)

A I SV | S,
STV-TI: (1 * 1-— wkyo(k)) (1 + wiyo(k) )5 (by Le 2.2)

<z (4 2ete) (1 )

Hence ||fill = 1.

QOur intention is to show that yp is a strong pesak for the space of 2-degree
polynomials. For this reason, we will prove the following
3 Zn € Byw,), Y1 {|fk(@n)l}n = 1= {zn(k)} — yo(k) -

wyTn (k) _ wze(d)
i 80 th = Les LiTh-

‘We rewrite the inequality (2) in terms of the above sequences

For every k fixed, we will write u, =

1
| fr(za)| = 7\7'1 + | |1 +2a] <
k

a0+ ) (L e <1

If we assume that {fx(Zn)}n — 1, then, let us note that the sequence {1+uvn} has
no subsequence converging to zero. Because of the above inequality we deduce
that

{11+ 00l — 1 = fun]} = 0.
Since k is fixed, in view of Lemma 2.1 that condition implies that {|ua| — un}
converges to zero, that is, {|Za(k)| — zn(k)}n — 0 . Also by Lemma 2.2, we know

that
{wlza(k)|}n — wivo(K) -
Hence we deduce that {z.(k)}n — vo(k).
Now we choose a sequence {a,} in ¢; such that supp a = J, on > 0,Vn € J
and 3, . ;0n = 1. Let us define the function given by

f(z) =Y filz) (€ Bawy) -

ked
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Then f is a polynomial of degree at most 2 in d(w,1) and satisfies Ifl<1=
fw)-

We will prove now that this function strongly peaks the unit ball of d(w, 1)
8t yo. So assume that for some sequence {z,} in the unit ball it happens that
{1f(zn)}| = 1. That clearly implies that {fi(z)} — 1 for every k € J.

Since yo € Syw,1), by condition (3), we know that {x,} converges pointwise to
Yo All the elements involved in the argument are in the unit ball of d(w,1) and
80 the sequence {z,} converges to yo in the o(d(w, 1),d.(w, 1))-topology. Since
d.(w, 1) is M-ideal in its dual (see [16, Proposition 2.2] or [10, Examples II1.1.4c}),
in the unit ball of d(w, 1), the weak and weak*-topologies coincides on points of
the unit sphere, in view of [10, Corollary I11.2.15]. By applying that fact to the
element yo, which is the w*-limit of the sequence {z,}, then we obtain that in
fact {z,} converges weakly to o. Since all the points of the unit sphere of d(w, 1)
are points of continuity [13, Proposition 4], then we obtain that {z,} converges
in norm to yo and yo is a strong peak point, as we wanted to show. »

Corollary 2.5. The Silov boundary for the space of 2-degree polynomials on
d(w,1) is Syw,1). Hence Syw,) is also the Silov boundary for Au(Byw)) and
Aco(Bd(m,l))-

It is known that all the finite supported elements in Sy, are strong peak points
for the space of 2-degree polynomials on £; [3, Theorem 10]. We will extend such
result.

Theorem 2.6. Sy, is the subset of strong peak points for the space of 2-degree
polynomials on {,.

Proof. If yo € Sy, by Lemma 2.3, we can assume that to(n) > 0 for every n. If
Isupp o] = 1 and {n} = supp yo, the function z — 1 + z(n) strongly peaks the
unit ball of ¢, at y. Otherwise, if we assume that J := Supp yo satisfies that
l7]] > 2, then the 2-degree polynomial given by

. 1 z(k) Zi (1)
@ = Ty Ot 1) (g ) @)

satisfies that f(o) = 1. In view of Lemma 2.1, it also satisfies that IIfell =1 and
now we can follow the same argument in the proof of Theorem 2.4. =
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3. BOUNDARIES ON THE SCHREIER SPACE AND C(K).

A subset E = {n; < na < --- < ng} of the natural numbers N is said to be
admissible if k < n;. The Schreier space S is the completion of the space cop of all
scalar sequence of finite support with respect the norm ||z|| = sup }_ |z;|, where

jEE

the supremum is taken over all admissible sets of natural numbers E.
The following theorem shows in particular that the intersection of all bound-
aries for As(Bs) is empty.

Theorem 3.1. Let S be the Schreier space and B a boundary for Ax(Bs). If
To € B and 0 < r < 1, then B\(zo + 7Bs) is a boundary for Ax(Bs). Asa
consequence, there is no Silov boundary for Ax(Bs).

Proof. Assume that b € Ax(Bs). For every 0 < ¢ < =2 there is yg € cgp such

that |lyo]l < 1 and
|h(yo)| > liRf| —¢ .

We write k£ = max supp ¥o. If we choose a positive integer n such that n > I_—TTuo_ﬂ

and |[(I — P.)(zo)l] < €, we will check that the element yo + 2y € Bs, for every
2n

z€Clzl=1landy= ) Ze;.

j=n+1

Let A= E U F be an admissible set such that E C {1,...,k} and min F' > k.
If E+#0, then |E| + |F| <k and

S lwo+ 2900l <

i€eEUF

3l + S W < ol + 2 < 1.
13 jEer

If E =0, then 3 |yo+ 2y(3)| = E ly(#)] < 1. So Hyo +zyll <L
i€F
Since |ly|| = 1, there is y* € Ss such that y*(y) = 1, y*{e;) =0,¥j < n.

Let z € C, such that |z] = 1 and {h(yo) + zy* ()| = |h(yo)| + 1. Now, we define
the holomorphic function ¢ given by

g(z) = h(z) + zy*(z) (z € Bs) .
It easy to see that the function g belongs to Aw(Bs) and satisfies that
1+ ||hfl — & < lgll < Al + 1.
Since B is an boundary there is z, € B, such that

fg(z0)] > ||h|| — + L.
On the other hand

l9(20)| < |R(20)] + ly*(20)} < lIRl| + 13" (20)] < fIBfl +1 .
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So, it implies Jy*(z0)] > 1 — &. Hence
I = Pa)(20)| = [y"(20)| > 1 - .
Consequently,
120 = zofl 2 [|(Z = Ba)(20 — o)l >
(I = Fa)(zo)ll — NI = Pa)zof| 21 -2¢ > 1.
Also z satisfies that |h(z0)| +1 > |||+ 1€ and so |h(zo)] > ||h]| — . Therefore

25 € B\(zo + rBs) and this set is a boundary for A (Bs). Asa consequence,
there is no Silov boundary for this space. This completes the proof. H

We will recall that a point x € By is a C-extreme point of the unit ball if it
satisfies that

eXllz+Ml <1, VAeC A =1) = y=0.

Theorem 3.2. If K is any infinite compact Hausdorff topological space, then
there is no strong peak points for Aoo(Bexy)-

If K is separable, then all the extreme points in Bexy are peak points for the
space of 1-degree polynomials on C(K).

Proof. Tt is known that every peak point is a C-extreme point [8, Theorem 4].
So we will prove that the C-extreme points of Be(x) are no strong peak points.
Assume that zp € S¢(k) is an extreme point of the unit ball. Since K is infinite,
then there is a sequence {2} of functions on C(K) satisfying that

0<zp <1, |jznl| = 1,Vn, supp z,Nsupp 2, =0,Vn#m.

Assume that b € B, (B, is such that h(ze) = 1. Since {z,} is equivalent
to the co-basis, then it converges weakly to zero. By Rainwater Theorem, the
sequence {zo(1 ~ 2,)} is in the unit ball of C(K) and converges weakly to .
Since C(K') has the Dunford-Pettis property, then it has also the polynomial
Dunford-Pettis property [15], and so, if we follow the argument in the proof of
[1, Proposition 4.1], then

{A(zo(1 ~ zn))} — 1} .
Since z,, are nonnegative elements in the unit sphere, then for every n there is
i, € K such that z,(t,) = 1 and so
llZo(1 — 2n) = Zoll 2 ||zoznll > |Zo(ta)zalts)l = 1.

Hence z; is not a strong peak point for Aoo(Be(x))-

If K is separable and {t, : n € N} is a dense set in X, we will prove that
the function u such that u(K) = {1} is a peak point for the space of 1-degree
polynomials. In view of Lemma 2.3, this proves the stated assertion.



SILOV BOUNDARY FOR SPACES OF HOLOMORPHIC FUNCTIONS 9

Just define the function f given by

f@) =3 aal +3(ta) (¢ €C(K)),
n=1
where {a,} is a sequence in Sy, such that o, > 0 for every n. Then f is clearly
a 1-degree polynomial on C(K) and satisfies that f(u) = ||f|| = 2. If z € Bex)
and |f(z)| = 2, then |1+ x(t,)| = 2 for every n and so z(t;) = 1 for all n, that
is, T =u. "

Since £, has a countable subset of functionals that separates points and attains
the norm at the same element of the unit ball, we can also obtain:

Corollary 3.3. ([3]) All the extreme points in By, are peak points for the space
of 1-degree polynomials on £w.

4. SILOV BOUNDARY ON THE TRACE CLASS OPERATORS

Let H be a complex Hilbert space. An operator T : H — H is called a trace
class operator if there is an orthonormal basis B such that 3 < T*(Te), e >< oo,

ecB
where T* is the adjoint operator of T. We denote by Ci(H) the Banach space of
all trace class operators on H with the trace norm ||T||; = 3- < T*(Te),e >.
e€B

Theorem 4.1. If H is a complex Hilbert space, there is a Silov boundary for
A(C1(H)) and Ax(C1(H)) and both coincide.

Proof. Assume that {e; : i € I} is an orthonormal basis of H and F C I'is &
subset, then the operator IIz given by

HF(T) = PpTPr, (Te€ Ci(H)),

where Pr(z) = ¥ ;cpz(i)ei, (z € H) is a norm one projection on C:(H). Since
Lin{e; ® e; : 4,j € I} is dense in Cy(H), then for every h € Aco(Bcy(my), it bolds
that
liAll ;= sup |lhoTiFll.
Fpﬁcnlite

For every complex finite dimensional space Y, it holds that the subset of peak
points of By is a boundary for Au(By) [4, Theorem 1]. We will prove that for
every F C I finite subset, every peak point of the unit ball of 7(C1(H)) for the
space of bounded and continuous functions on the unit ball of I1z(Cy(H }) which
are holomorphic on the open unit ball, is a strong peak point for Au(Beoym)-
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Let To € Sgyy Np(C1(H)) be a peak point. Hence there is a function g
defined on the unit ball of [15(C;(H)) such that

9(To) = |lgll =1 and |g(T)| < 1, ¥T € (Boyy N Mr(Cr(H)\{To} -
Now we extend g to Bc, () by
9(T) = 9(Mr(T)) (T € Bey)) -

We clearly have that § € A.(Bc,(m) and it is satisfied that ||| < |lg|l = 1 and
§(To) = 1. Assume that {T,} is a sequence in Bg,(y) such that {l5(Ta)1} — 1,
that is {|g(I1»(T,))|} — 1. Since Iz(Cy(H)) is a finite-dimensional space and Ty
is a peak point, then {IIr(T)} — To. Since | Tof| = 1, then {|{TIp(T3)[l.} — 1.
By using [11, Proposition 2.2], it holds that

IBTaPrll” + | PeTa(I = Pe)I* + (1 — Pe)TuPr|* + (I ~ Pe)T — Pr)|? <

ITal*< 1,
and so ||\IIpT, — T,|| = ||PrTnPr — Ty|| — 0. Since we knew that {I-(T2)}
converges to To, then {7} also converges to To and 7T, is a strong peak point,
as we wanted to show. Since the strong peak points are contained in any closed
boundary and in this case the subset of strong peak points is a boundary for
Au(Bc,(m)), then the Silov boundary for this space is the closure of the strong
peak points of Ay(Bg,(x)). We can follow the same argument for the space

Aso(Cr(H)). .

5. BOUNDARIES ON K (£, £,)

We now restrict our attention to study properties of the boundaries for A(Bx),
where the Banach space X is the space of all compact operators on £, for
1<p<ox.

Theorem 5.1. If 1 < p < g < oo, there is no Silov boundary for Aco(Brs,,2))-
In fact, if B is a boundary for .Am(BK(,P,,q)), 0 <7 <1andS; € B, the set
B\(So+ Bk, s,)) is also a boundary for Aoo(Br(g,.0,))-
There are closed boundaries A, B for Ao(Brit, ;) such that dist(A, B) > 1.
The same assertions also hold for Au(Bk(e,.t0))-

Proof. We will denote by {P,} and {Q,} the sequences of canonical projections
associated to the usual basis of £, and £,, respectively.

Assume that B C Bx(e,4,) is & boundary of Acw(Bkt,e)), 0 < r < 1 and
So€B. Hhe .AOQ(BK(tmgq)) and 0<e< 12;', thereis Ne Neand F e BK(t,,,l,,)
such that Qy FPy = F and

IR(F)] > |Ihl| ~ ¢ .
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Since Sy is & compact operator, then there is n > N such that

IT = Qu)SolI — Fo)| <&
Now we choose an operator R € Sks,.,) such that
(I-QuR(I-F)=R
and an element z € S, such that P,z = 0 and ||R(z)|| = 1 and y* € S such

that Q%(y*) = 0 and y*(R(z)) = 1. By using the Maximum Modulus Theorem,
there is 2o € C such that |29| =1 and

sup |h(F + 2oR)| = [h(F + 2R)|.

Jzl=1
If ) € C is a modulus one scalar such that
|h(F + zR) + M\y*(Rz)| = |h(F + zR)| + 1,
we define he holomorphic function g given by
g(T) := hT)+ My*(Tx) .
Clearly the function g belongs to Ac(Bk(s,.¢,)} and satisfies that
llgll 2 lg(F + 2o0R)| > |[W(F)| + |y*(Rz)| > [Ihf| —e +1.

Since B is a boundary for Ao (Bix,.e,)), then there is S € B such that |g(S)| >
llgl] — . Hence

4) [l - 26 +1 < [lgll — & < g(S)] < |A(S) + [y*(S=)l
and so,

ly*(Sz)| 2 1-¢.
By the choice of z and y*, then

(7 — @u)SU — Pl 2 [y*(I — @u)SU — Po)z| = [y*(Sz)| 2 1 —€ .
Finally, we deduce that
15 = Soll = (7 = Q@n)(S — So)(I = Fa)l| 2
I~ Qu)SU — Pl =l = @u)SoI = Fa) 21— 26 > 1.

From inequality (4), we also obtain that

[R(S)] = liR)l — 2
We just proved that B\(So + rBx(e,e,)) is & boundary for Aco(Bk(s,4))- As 8
consequence, there is no Silov boundary for this space.

Now we will show a procedure to construct boundaries for VAx{Bi(g,.z,) Since

Lin{z ® y : ¢ € (§,)*,y € £y, 5upp z,5upp y is finite} is dense in K (£, 4,), then
for every h € Ax(Bk(t,.4,))), it is satisfied that

|iall = sup{|lkp]| : F C N finite} ,
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where hp(T) := W(QFTPr) for T € K(£,,£,) and Qr, Pr are the projections
given by

Pr(z) = Z z(n)en, (z€6), Qr(z)= Zz'(n)e,., (zed,).

neFrF neF

Note also that for F' C G, then ||hr|| < |lhe]-

Assume that {F,} is an increasing sequence of finite sets of N such that G, :=
Foq\F, is non empty and U, F,, = N. We consider the subsets Ay, whose elements
are those operators T’ € By, s,) such that T admits a decomposition as sum of
two operators T = R + S satisfying the following

I8l = ISt =1, R = Qr,RPr,, Qr.5Pr, =0, Q¢,SPs, =S .

Let us note that A, is closed for every n.

We will check that B = U, A, is a closed boundary for Aoo(Bk(t,.2,)). Given
h € Aso(Bks, 4)) and € > 0, there is some finite set F C N such that |[hg| >
JIAll — . If m satisfies that F C F.., then also lhr. ]l = ||k|] — e. Hence there is
an operator R € Sk(,.z,) such that Qr, RPr, = R where hp,, attains its norm
and so

IR(R)| = ||l - € .

IfSe SK(gp,Q) satisfies that meSPFm =0and QG,..SPG,,. = S, then the operator
R+ 2§ is in the unit ball of K (£,,£,), for every complex number z in the unit
disk. If we apply the Maximum Modulus Theorem to the function 2z — h(R+2S)
defined on the complex unit disk, then there is a complex number zp with |2g] = 1
and such that

[R(R +205)| 2 |h(R)| > |IAl| — ¢ .

Since the element R + 2,5 € A4,,, then B is a boundary for Aco(Bxkit, 2))-
Let us note that for two positive integersn < m, if T, € A,,Tin € A, then

(5) 1T — Tall 2 1Q6 (T — Ta) P | = 1Qc,, T Ponll = 1 .

Since every A, is closed, from the above inequality, it follows that B is also closed.

By using the same argument, then the subsets Un Az, and U, Ay, 3 are also
closed boundaries for Aco(Bk(t,4,))- In view of (5), then the distance between
both sets is at least 1. .
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