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SILOV BOUNDARY FOR HOLOMORPHIC FUNCTIONS ON 
SOME CLASSICAL BANACH SPACES 

MARfA D. ACOSTA AND MARY LILIAN LOURENQO 

ABSTRACT. Let Ao., (Bx) be the Banach space of all bounded and continu­

ous functions on the closed unit ball Bx of a complex Bans.ch space X and 
holomorphic on the open unit ball, with sup norm, and let A,,(Bx) be the sub­
space of Ao.,(Bx) of those functions which are uniformly continuous on Bx. 

A subset B C Bx is a boundary for Aoo(Bx) if 11/U = SUP:reB 1/(x)I for every 

/ E Ao.,(Bx). We prove that for the cases X = d(w, l) (the Lorentz 110quence 

space) and for X = C1(H), the trace cl888 operators, there is a minimal closed 
boundary for Ax, (Bx). For a change, for the cases X = S, the Schreier space 
and X = K(lp, l9) (1 $ p $ q < oo ), there is no minimal closed boundary for 

the corresponding spares of holomorphic functions. 

1. INTRODUCTION 

A result of Silov asserts that if 21 is a unital separating algebra of C(K) (K is 

a compact Hausdorff topological space), there is a. smallest closed subset Sc K 

such that every function of 21 attains its norm at some point of S [6, Theorem 

1.4.2]. Bishop (4] proved that if K is metrizable, in fact, there is a minimal subset 

of K satisfying the above condition for every separating algebra of C(K). That 

subset is the set of peaks points for 21 (see definition below). 
Globevnik introduced the corresponding concepts for a subalgebra of Cb(fl), the 

space of bounded continuous functions on a t.opological space n not necessarily 

compact [9]. In fact, he considered the case n = Bx, where Xis a Banach space. 

If 21 is a subspace of Cb(n), we will say that a subset B c n is a boundary for !21 
if 

II/II= sup 1/(b}I, VJ E 21. 
bEB 

If there is a. minimal closed boundary B for 21, we will say that B is the Silov 

boundary of 21. 
If X is a complex Banach space, we will denote by A,,(Bx) the space of uni­

formly continuous functions on the closed unit ball of X which are holomorphic on 
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the open unit ball. Globevnik [9] described the boundaries of A.(BciJ As a con­
sequence of the description, he showed that this algebra has no Shilov boundary. 
Aron, Choi, Louren~o and Paques [3] gave examples of boundaries for A(Bt.,.,) 
a.nd proved that there is no Silov boundary for this algebra. They also showed 
that the unit sphere of l 1 is the Silov boundary for .A..(Bt1 ). 

Moraes and Romero (14] gave a characterization of the boundaries of 
A(B4("',1)), where d.(w, 1) is the canonical predual of the Lorentz sequence 
space d(w, 1) when w = {¼}. Later Acosta, Mora.es and Romero [2] general­
ized that characterization proving it for any space d.(w, 1) and obtained another 
one in terms of the strong peak sets of the unit ball. In this case, there is no 
Silov boundary. Choi, Garcia, Kim and Maestre [5] proved that there is no Silov 
boundary for .A..(Bc(K)), when K is infinite and scattered. Acosta showed the 
same result for every infinite K and also proved that for this space the subset of 
extreme points of the unit ball of C(K) is a boundary for .A..(Bc(K)) (1}. 

Before going on it is convenient to recall some definitions. Let A be a function 
space on a metric space n. An element y E n is called a peak point for A if 
there is some/ E .A such that f(y) = 1 and lf(x)I < 1, 'vx E O\{y}. In this case 
we say that/ peaks at y. Ao element y E O iB called a strong peak point for 
A if there is some/EA satisfying f(y) = 1 and such that given any e > 0 there 
is some o > 0 such that dist{x, y) > e implies that 1/(x)I < 1- o. It is clear that 
every closed boundary for A contains all the strong peak points. 

In this paper we prove that there is no Silov boundary for .A..(Bx) when X 
is the Schreier space or the space K ( 4,, lq) ( 1 $ p $ q < oo). For the spaces 
X = Ci(H), the trace class operators on a complex Hilbert space Hor X = 
d(w, 1), there is Silov boundary for A,.(Bx). In fact, all the points in the unit 
sphere of d(w, 1) are strong peak points for .A..(Bd("',1)) and so, in this case the 
Silov boundary is the unit sphere. For l 1 the same result also holds. That fact 
was proved in [3J for the finite supported sequences in the unit sphere. If K is 
infinite, we also prove that there is no strong peak points for A(BC(K))· The 
subset of the peak points for .A..(Bc(K)) is the set of extreme points of BC(K) if 
K is separable. 

Throughout this paper, all the Banach spaces considered axe complex. For a 
Banach space X, Bx and Sx will be the closed unit ball and the unit sphere of 
X, respectively. We will denote by Ax,(Bx), the Banach space of all bounded 
and continuous functions on Bx which are holomorphic on the open unit ball and 
A.(Bx) the space of all functions in Ax,(Bx) which are uniformly continuous. 
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2. EXISTENCE OF SILOV BOUNDARY ON THE LORENTZ SEQUENCE SPACE 

Given a decreasing sequence w of positive real numbers satisfying w E eo\£1, 

the complex Lorentz sequence space d(w, 1) is given by 
00 

d(w, 1) = { x: N -- C : sup{L jx(a(n))lwn: u: N - N injective} < +oo }-
n=l 

The norm is given by 

llxll = sup{t w,.jx(a(n))I : u: N - N injective} (x E d(w, 1)). 

It is well-known and easy to verify that the above supremum is attained for 

the decreasing rearrangement of x. The usual vector basis { e,.} is a monotone 

Schauder basis (see (12]). 
A canonical predual d.(w, 1) of d(w, 1) is given by 

d.(w, 1) = {x E Co: lim E~ x*(k) = o} 
n W,. 

where W,. = I;~ Wk and x• is the decreasing rearrangement of x. This space is a 

Banach space endowed with the norm 

llxll = sup{E~ x*(k) }· 
n Wn 

(see [16) and [7)). d.(w, 1) has a Schauder basis whose sequence of biorthogonal 

functionals is, in fact, the canonical basis of d(w, 1). 

We begin presenting some useful lemmas. 

Lemma 2.1. If {Zn} is a bounded sequence of complex numbers such that the 

sequence {1 + lz..l - 11 + z,.I} converges to zero, then the sequence {lz..1- z,.} also 

converges to zero. 

Proof We consider the following identity for a complex number z 

(1 + jzj - jl + zl)2 = 

1 + lzl2 + 2lzl + 11 + zl2 
- 2(1 + lzl) 11 + zl = 

2( Re z - lzl) + 2(1 + lzl)(l + lzl - 11 + zl) . 

If we apply the above identity to the sequence {z,.} and use the assumption, we 

obtain that the sequence {lz,.I - Re z,.} converges to zero. 
Now if we consider the following expression 

(lzl - Re z)2 = 

2Re 2z + Im 2z - 2lzl Re z = 
= Im 2z+2(Rez-lzl)Rez, 
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and we apply the identity to the sequence {z,,}, we deduce that { Im z,,} - 0. 
Hence 

{lz..1- z..} = {lz..l - Re z.. - iim z.,} - o. 
• 

Lemma 2.2. ([3, Lemma 9]) Let O <a< l. The real value.d function given by 

9a(x)=(1+ 1:a)(1+ 1:x) (xelR) 
attains its maximum at x = a and 

1 
Ua(x) < 9a(a) = a(l- a)' Vx E lR\{a}. 

Lemma 2.3. The subset of peak points in Sx for Aoo(Bx) is invariant under 
surjective linear isometries on X. The same result also holds for the subset of 
strong peak points in Sx . 

Theorem 2.4. The set of strong peak points for the space of the polynomials of 
degree less or equal than 2 on d(w, 1) contains the unit sphere of d(w, 1). 
Proof. Let Yo E Sd(w,l)• By Lemma 2.3 we can assume that supp Yo is an interval 
of positive integers containing {1} and it is also satisfied that 
(1) Yo(i) ER+, Vj E supp Yo, and Yo(n) ~ Yo(n + 1) 'v'n EN. 
We will prove that y0 is a strong peak for A..(d(w, 1)). 

If the support of yo contains just one element, then yo = e1 and it is sufficient 
to consider the I-degree polynomial given by 

J(x) = 1 + x(l) (x E d(w, 1)). 
Clearly llf II = 2 = f (yo)- By using that in Sd(w,1) the weak and the 
u(d(w, 1), d.(w, 1)) convergence coincide ([16, Proposition 2.2) and [10, Corol­
lary III.2.151) and that every point of the unit sphere is a point of continuity of 
the unit ball [13, Proposition 4), then it is easily checked that f strongly peaks 
the unit ba.11 at Yo· 

Otherwise we will assume that J := supp y0 has at least two elements. Since 
\\Yoll = 1, by (1), we knowtha.t I:ieJw;yo(i) = 1 and so O < w;yo(i) < 1 for every 
i E J. 

For every k E J we define the function given by 

J,.(x) = ~ (1 + 1 ~::(k~k)) (1 + w 1 (k) L w;x(j)) ,. 1cYo 1cYo ;eJ\{k} 
(x E d(w, 1)) , 
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1 
where Mk= W.1:Yo(k)(l _ W.1:Yo(k)). Then J,. is clearly a non-homogeneous poly­

nomial on d(w, 1) with degree 2 and satisfies that J,,.(y0 ) = 1. We will check that 

llb,11 = 1. 
H x E Bd(w,1), then it is satisfied that 

(2) 

lfi.(x)l=~ ll+l_:i:(k~k) ll l+w l(k) L w;x(j) ,$ 
k kYD kYO jEJ\{k} 

~ (1 + 1 :"~(k~~)) (1 + w \k) L lw;x(j)I)$ (since x E Bx) 
1c 1cYo kYo iEJ\{k} 

$ ~ (1+ w1clx(k)I )(1+l-w1clx(k)I)< (byLemma2.2) 
M,. 1 - WkYo(k) W1,;Yo(k) -

<~(l + w,.yo(k) ) (l + 1-wwo(k))= 1 
- M,. 1- WkYo(k) W1cYo(k) 

Hence IJJ,.11 = 1. 
Our intention is to show that y0 is a strong peak for the space of 2-degree 

polynomials. For this reason, we will prove the following 

(3) x,. E Bd(w,l), Yn, {lfk(xn)l}n-> 1 =? {xn(k)} -> Yo(k) . 

For every k fixed, we will write U,. = 1'.'.'.""'n(~i) and Vn = }:;o Wj:tn(~)) . 
W~I/I) jf,k W~I/I) " 

We rewrite the inequality (2) in terms of the above sequences 

1 
l!i,(xn)I = M,. II+ Uni l1 + Vnl $ 

1 
M,. (1 + 1-u,.I) (1 + lvnl) $ 1 . 

li we assume that {h,(xn)}n -> 1, then, let us note that the sequence {l +vn} has 

no subsequence converging to zero. Because of the above inequality we deduce 

that 
{l1 + u,.I - 1 - 1-u,.I} -- o . 

Since k is fixed, in view of Lemma 2.1 that condition implies that {lu,.I - u,.} 
converges to zero, that is, {lxn(k)I - Xn(k)}n - 0 . Also by Lemma 2.2, we know 

that 
{ w,.lx,.(k)l}n - w,.yo(k) . 

Hence we deduce that {xn(k)}n -> Yo(k). 
Now we choose a sequence {a..} in £1 such that supp a= J, O!n > 0, 'vn E J 

and :E..eJ an = 1. Let us define the function given by 

f(x) = La,.Ji,(x) (x E Bt1(w,1)) . 

/ceJ 
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Then f is a polynomial of degree at most 2 in d(w, 1) and satisfies 11/11 :S 1 = 
/(yo). 

We will prove now that this function strongly peaks the unit ball of d(w, 1) 
at y0• So assume that for some sequence {xn} in the unit ball it happens that 
{lf(xn)}I -+ 1. That clearly implies that {/A:(Xn)}n -+ 1 for every k E J. 

Since y0 E Sd(w,t), by condition {3), we know that {xn} converges pointwise to 
y0• All the elements involved in the argument are in the unit ball of d(w, 1) and 
so the sequence {xn} converges to Yo in the u(d(w, 1), d.(w, 1))-topology. Since 
d.(w, 1) is M-ideal in its dual (see [16, Proposition 2.2} or (10, Examples IIl.1.4c]), 
in the unit ball of d(w, 1), the weak and weak*-topologies coincides on points of 
the unit sphere, in view of [10, Corollary III.2.15]. By applying that fact to the 
element y0, which is the w*-limit of the sequence {xn}, then we obtain that in 
fact {xn} converges weakly to Yo· Since all the points of the unit sphere of d(w, 1) 
a.re points of continuity [13, Proposition 41, then we obtain that { Xn} converges 
in norm to Yo and y0 is a strong peak point, as we wanted to show. ■ 

Corollary 2.5. The Silov boundary for the space of 2-degree polynomials on 
d(w, 1) is Sd(w,1)• Hence Sd(w,l) is also the Silov boundary for .A..(Bd(w,i)) and 
Ao(Bd(a1,1)) • 

It is known that all the finite supported elements in S11 are strong peak points 
for the space of 2-degree polynomials on l 1 (3, Theorem 10]. We will extend such 
result. 

Theorem 2.6. 811 is the subset of strong peak points for the space of 2-degree 
polynomials on l 1 • 

Proof. If Yo E S11 , by Lemma 2.3, we can assume that y0 (n) ~ 0 for every n. If 
!supp Yo! = 1 and {n} = supp Yo, the function x 1-+ I+ x(n) strongly peaks the 
unit ball of l1 at Yo• Otherwise, if we assume that J := supp y0 satisfies that IIJII ~ 2, then the 2-degree polynomial given by 

/A:(x) := 1 (1 + x(k) ) (1 + E,# x(i}) (x E l1) 
Yo(k)(l - Yo(k}) 1- Yo(k) Yo(k) 

satisfies tha.t /(Yo)= 1. In view of Lemma. 2.1, it also satisfies that 11/A:II = 1 and 
now we can follow the same argument in the proof of Theorem 2.4. ■ 
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3. BOUNDARIES ON THE SCHREIER SPACE AND C(K). 

A subset E = { n1 < n2 < · · • < n.d of the natural numbers N is said to be 
admissible if k $ n1• The Schreier space Sis the completion of the space Coo of all 

scalar sequence of finite support with respect the norm llxll = sup E lx;I, where 
jEE 

the supremum is ta.ken over all admissible sets of natural numbers E. 
The following theorem shows in particular that the intersection of all bound­

aries for Aoo(Bs) is empty. 

Theorem 3.1. Let S be the Schreier space and B a boundary for Aoo(Bs). If 
xo E B and O < r < 1, then B\(xo + rBs) is a boundary for Aoo(Bs). As a 
consequence, there is no Silov boundary for Aoo(Bs), 

Proof Assume that h E Aoo(Bs). For every O < c < 12r, there is Yo E Coo such 

that IIYoll < 1 and 
Jh(yo)I > 11h11 - c · 

We write k = ma.x supp y0. If we choose a positive integer n such that n > 1_:l/0II 

and IJ(J - Pn)(xo)II < £, we will check that the element Yo+ zy E Bs, for every 
2n 

z E IC, lzl = 1 and y = E ~e;. 
j.:n+l 

Let A = E u F be an admissible set such that E c { 1, ... , k} and min F > k. 
If E =I- 0, then IE! + !Fl $ k and 

L IYo + zy(i)I $ 
iEEuF 

k 
}: IYo(i)I + L ]y(i)J $ IIYoll +;; $ 1 . 
iEE iEF 

If E = 0, then E IYo + zy(i)I = E jy(i)I $ 1. So IIYo + zyll $ 1. 
iEF iEF 

Since IIYII = 1, there is y• E Ss such that y*(y) = 1, y*(e;) = 0, Vj $ n. 
Let z E C, such that lzl = 1 and lh(yo) + zy•(y)I = Jh(yo)I + 1. Now, we define 

the holomorphic function g given by 

g(x) := h(x) + zy•(x) (x E Bs) . 

It easy to see that the function g belongs to Aoo(Bs) and satisfies that 

1 + 11h11 - e < IIYII $ 11h11 + 1. 

Since B is an boundary there is zo E B, such that 

lu(Zo)l > 11h11 - e + 1. 

On the other hand 

lu(zo)I $ !h(zo)I + jy*(Zo)I $ 11h11 + jy*(zo)I $ lihll + 1 • 
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So, it implies jy*(Zo)I > 1 - e. Hence 

II(/ - Pn)(Zo)II ~ jy•(zo)I > 1 - c. 
Consequently, 

llzo -xoll ~ 11(1 - Pn)(Zo - xo)II ~ 
11(1 - Pn)(.zo)ll - ll(J - Pn)xoll ~ 1 - 2c > r. 

Also Zo satisfies that lh(.zo)I + 1 ~ 11h11 + 1-e and so lh(.zo)I > 11h11 -e. Therefore 
Zo E B\(xo + rBs) and this set is a boundary for .Aoo(Bs). As a consequence, 
there is no Silov boundary for this space. This completes the proof. ■ 

We will recall that a. point x E Bx is a C-extreme point of the unit ball if it 
sa.tisfies that 

Theorem 3.2. If K is any infinite compact Hausdorff topological space, then 
there is no strong peak points for Aoo(BccK)), 

If K is separable, then all the extreme points in Bc(K) are peak points for the 
space of I-degree polynomials on C(K). 

Proof It is known that every peak point is a Cextreme point [8, Theorem 4] . 
So we will prove that the Cextreme points of Bc(K) a.re no strong peak points. 
Asswne that x0 E Sc(K) is a.n extreme point of the unit ball. Since K is infinite, 
then there is a sequence {x,.} of functions on C(K) satisfying that 

0 ~ x,. ~ 1, llx,.11 = 1, 'vn, supp x,. n supp Xm = 0, 'vn =/- m . 
Asmnne that h E B.A«,(Bc<K>l is such that h(xo) = 1. Since {x,.} is equivalent 
to the ea-basis, then it converges weakly to zero. By Rainwater Theorem, the 
sequence {xo(l - Xn)} is in the unit ball of C(K) and converges weakly to x0. 
Since C(K) has the Dunford-Pettis property, then it has also the polynomial 
Dunford-Pettis property [15], a.nd so, if we follow the argument in the proof of 
[1, Proposition 4.1], then 

{h(xo(l - Xn))} -+ l} . 
Since Xn are nonnegative elements in the unit sphere, then for every n there is 
t,. EK such that x,.(t,.) = 1 and so 

llxo(l - x,.) - xoll ~ llxox,.U ~ /xo(t,.)xn(tn)I = 1 . 
Hence Xo is not a strong peak point for Aoo(Bc(K)), 

If K is separable and { tn : n E N} is a dense set in K, we will prove that 
the function u such that u(K) = {1} is a peak point for the space of I-degree 
polynomials. In view of Lemma 2.3, this proves the stated assertion. 
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Just define the function f given by 
00 

J(x) := L On(l + x(tn)) (x E C(K)) , 
n=l 

where { o,.} is a sequence in St, such that On > 0 for every n. Then / is clearly 

a I-degree polyn?mia.l on C(K) and satisfies that J(u) = 11/11 = 2. If x E Bc(Kl 

and 1/(x)I = 2, then 11 + x(tn)I = 2 for every n and so x(tn) = 1 for a.11 n, that 

is,x=u. ■ 

Since l00 has a countable subset of functionals that separates points a.nd attains 

the norm at the same element of the unit ball, we can also obtain: 

Corollary 3.3. (I3]} All the extreme paints in B4c are peak paints for the space 

of I-degree polynomials on l 00 • 

4. SILOV BOUNDARY ON THE TRACE CLASS OPERATORS 

Let H be a complex Hilbert space. An operator T : H - H is ca.lled a trace 
cl8BB oper6tor if there is a.n orthonormal basis B such that E < T-(Te), e >< oo, 

eeB 

where T• is the adjoint operator of T. We denote by C1(H) the Banach space of 

all trace class operators on H with the trace norm IITll1 = E < T"(Te), e >. 
eeB 

Theorem 4.1. If H is a complex Hilbert space, there is a Silov boundary for 

A.,(C1(H)} and Ax,(C1(H)) and both coincide. 

Proof. Assume that { e; : i E J} is an orthonormal basis of H and F C I is a 

subset, then the operator IlF given by 

IlF(T) := PFTPF, (TE C1(H)), 

where PF(x) = E;eFx(i)e;, (x EH) is a norm one projection on C1(H). Since 

Lin{e;@e;: i,j E /} is dense in C1(H), then for every h E Ax,(Bc,(H)), it holds 

that 
11h11 := sup llh o IIFII . 

FCl 
F ftnite 

For every complex finite dimensional space Y, it holds that the subset of peak 

points of By is a boundary for .A,.(By) [4, Theorem 1]. We will prove that for 

every F c I finite subset, every peak point of the unit ball of I1F(C1(H)) for the 

space of bounded and continuous functions on the unit ball of IlF(C1(H)) which 

are holomorphic on the open unit ball, is a strong peak point for A..(Bc1(H))-
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Let T0 E Sc1(HJ n TIF(C1(H)) be a peak point. Hence there is a function g 
defined on the unit ball of ITF(C1(H)) such that 

g(To) = 11911 = 1 and jg(T)I < 1, VT E (Bc1 (H) n IIF(C1(H}))\{To} . 
Now we extend g to Bc1cm by 

g(T) = g(IIF(T)) (TE Bc1(H)) . 

We clearly have that g E .A..(Bc1cn)) and it is satisfied that ll911 $ IJgll = I and 
g(T0) = 1. Assume that {Tn} is a sequence in Bc1 (H) such that {l§(Tn)I} ---+ 1, 
that _is {lg(IIF(Tn))I}---+ 1. Since ITF(C1(H)) is a finite-dimensional space and To 
is a peak point, then {TIF(Tn)} ---+ To. Since IIToll = 1, then {IITIF(Tn)lln} ---+ 1. 
By using [11, Proposition 2.2], it holds that 

IIPFTnPFJl 2 + IIPFTn(l -PF)ll 2 + ll(I-PF)TnPFll 2 + ll(J -PF)T<1- PF)ll 2 $ 

IJTnll2 $1, 
and so IIITFTn - Tnll = IIPFTnPF - Tnll -+ 0. Since we knew that {IlF(Tn)} 
converges to To, then {T,.} also converges to To and To is a strong peak point, 
as we wanted to show. Since the strong peak points are contained in any closed 
boundary and in this case the subset of strong peak points is a boundary for 
A,,(Bc1 (H)), then the Silov boundary for this space is the closure of the strong 
peak points of A,,(Bc1(H))- We can follow the same argument for the space 
~~~- ■ 

5. BOUNDARIES ON K(lp, l9) 

We now restrict our attention to study properties of the boundaries for ~(Bx), 
where the Banach space X is the space of all compact operators on £,,, for 
1 Sp< oo. 

Theorem 5.1. If I $ p $ q < oo, there is no Silov boundary for Ax,(BK(lp~))­
In fact, if B is a boundary for ~(BK(t,.,t9)), 0 < r < l and S0 E B, the set 
B\(So + rBK(t,.,t,)) is also a boundary for ~(Bxct.,tq))-

There are closed boundaries A, B for Ax,(BK(t,.,t
9
)) such that dist(A, B) ?: 1. 

The same assertions also hold for /4.(BK(tp,t,))-

Proof. We will denote by {Pn} and {Qn} the sequences of canonical projections 
associated to the usual basis of 4 and lq, respectively. 

Assume that B C BK(t,.,t
9

) is a boundary of ~(BK(t,.,t
9
)), 0 < r < 1 and 

So E B. If h E Ax,(BK(t,.,t,)) and O < e < 1;r, there is N E N and FE BK(t,.4 ) 
such that QNFPN = F and 

lh(F)I > llhll - €. 
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Since So is a compact operator, then there is n > N such that 

II(/ - Qn}So(I - Pn}II < e. 

Now we choose a.n operator RE SK(ti,.t.,l such that 

(I - Qn}R(I - Pn} = R 

and an element x E S4 such that Pnx = 0 and IIR(x)II = 1 and y• E Si; such 

that Q;(y•) = 0 and y"(R(x)) = 1. By using the Maximum Modulus Theorem, 
there is Zo EC such that IZol = 1 and 

sup lh(F + zoR)I = lh(F + ZoR)I, 
l.zl=l 

If A E C is a modulus one scalar such that 

lh(F + zoR) + Ay"(Rx)I = lh(F + ZoR)I + 1, 

we define he holomorphic function g given by 

g(T) := h(T) + Ay*(Tx). 

Clearly the function g belongs to Aoo(BK(4 ,t.,i) a.nd satisfies that 

IIBII ~ lu(F + zoR)I ~ lh(F)I + ly"(R.x)I > 11h11 - e + l. 
Since Bis a boundary for Ax,(BK(tp,t.,)), then there is SE B such that lu(S)I > 
Hull - e. Hence 

(4) 11h11 - 2c + 1 S llull - e < lg(S)l:::; lh(S)I + ly*(Sx)I , 

and so, 
ly*(Sx)I ~ 1 - e . 

By the choice of x and y•, then 

11(1 - Qn)S(I - Pn)II ~ ly*(/ - Qn)S(J - Pn)xl = l11*(Sx)I ~ 1- e , 

Finally, we deduce that 

11S - Soll ~ ll(I - Qn)(S - So)(/ - Pn)II ~ 

ll(J - Qn}S(J - Pn)ll - !l(J -Qn)So{J - Pn)!I ~ 1- 2e > T • 

From inequality (4), we also obtain that 

lh(S)I ~ 11h11 - 2e . 

We just proved that B\(S0 + rBK(4,t.,)) is a boundary for A,.,(BK(t,.,t.))· As a 

consequence, there is no Silov boundary for this space. 
Now we will show a procedure to construct boundaries for A,o(Bx(ti,,t.,), Since 

Lin{x ® 11 : x E (l,,)-, 11 E l9 ,supp x,supp y is finite} is dense in K(f,,,iq), then 
for every h E Ax,(BK(4,t.,)}), it is satisfied that 

11h11 = sup{llhFII: F C N finite} , 
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where hF(T) := h(QFTPF) for T E K(l,,,l,) a.nd QF, PF are the projections 
given by 

nEF nEF 

Note also that for F C G, then llhFII :5 llhcll-
Assume that {Fn} is an increasing sequence of finite sets of N such that Gn := 

Fn+l \Fn is non empty a.nd U..Fn = N. We consider the subsets An whose elements 
are those operators TE Bx(t,,,t,J such that T admits a decomposition as sum of 
two operators T = R + S satisfying the following 

Let us note that An is closed for every n. 
We will check that B = UnAn is a closed boundary for Aoc,(Bxcti,,t,,J)- Given he Aoc,(Bx(t,.,tq)) and e > 0, there is some finite set F C N such that l!hFII > 

11h11 - e. If m satisfies that F C Fm, then also llhF_ 11 ~ 11h11 - E. Hence there is 
an operator R E Sx(t,,,t,,) such that QFmRPF..,. = R where hF.,. attains its norm 
a.nd so 

jh(R)I 2: 11h11 - e . 

If SE Sx(t,,,t,,) satisfies that QF ... SPF ... = 0 a.nd Qa..,SPa ... = S, then the operator 
R + zS is in the unit ball of K(lp, t,,), for every complex number z in the unit 
disk. Ifwe apply the Maximum Modulus Theorem to the function z 1-+ h(R+zS) 
defined on the complex unit disk, then there is a complex number zo with !zol = 1 
and such that 

lh(R + zoS)I ~ lh(R)I 2: 11h11 - e . 
Since the element R + zoS E Am, then Bis a boundary for Aoc,(Bx(t,,,t.))-

Let us note that for two pooitive integers n < m, if Tn E An, Tm E Am, then 

Since every An is closed, from the above inequality, it follows that B is also closed. 
By using the same argument, then the subsets UnA2n and UnA2nr-1 a.re also 

closed boundaries for Ao.,(Bx(t,1t))- In view of (5), then the distance between 
both sets is at least 1. ■ 
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