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1 Introduction 

One of the most annoying flaws of the usual canonical formalism in field theory is 
its lack of manifest covariance, that is, its lack of explicit Lorentz invariance (in the 
context of special relativity) and more generally its lack of explicit invariance under 
space-time coordinate transformations (in the context of general relativity). Of course, 
this defect is built into the theory from the very beginning, since the usual canonical 
formalism represents the dynamical variables of classical field theory by functions on 
some spacelike hypersurface (Cauchy data) and provides differential equations for their 
time evolution off this hypersurface: thus it presupposes a splitting of space-time into 
space and time, in the form of a foliation of space-time into Cauchy surfaces. AB a result, 
canonical quantization leads to models of quantum field theory whose covariance is far 
from obvious and in fact constitutes a formidable problem: as a well known example, we 
may quote the efforts necessary to check Lorentz invariance in (perturbative) quantum 
electrodynamics in the Coulomb gauge. 

These and similar observations have over many decades nourished attempts to de­
velop a fully covariant formulation of the canonical formalism in classical field theory, 
which would hopefully serve as a starting point for alternative methods of quantization. 
Among the many ideas that have been proposed in this direction, two have come to 
occupy a special role. One of these is the "covariant functional formalism", based on 
the concept of "covariant phase space" which is defined as the (infinite-dimensional) 
space of solutions of the equations of motion. This approach was strongly advocated 
in the 1980's by Crnkovic, Witten and Zuckerman [1-3] (see also [4]) who showed how 
to construct a symplectic structure on the covariant phase space of many important 
models of field theory (including gauge theories and general relativity), but the idea 
as such has a much longer history. The other has become known as the ''multisymplectic 
formalism", based on the concept of ''multiphase space" which is a (finite-dimensional) 
space that can be defined locally by associating to each coordinate qi not just one 
conjugate momentum p; but n conjugate momenta pr (µ = 1, .. . , n), where n is the 
dimension of the underlying space-time manifold. In coordinate form, this construction 
goes back to the classical work of De Donder and Wey! in the 1930's (5, 6), whereas 
a global formulation was initiated in the 1970's by a group of mathematical physi­
cists, mainly in Poland [7-10] but also elsewhere (11, 12], and definitely established in 
the 1990's [13, 14]; a detailed exposition, with lots of examples, can be found in the 
GIMmsy paper [15]. 

The two formalisms, although both fully covariant and directed towards the same 
ultimate goal, are quite different in nature; each of them has its own merits and draw­
backs. 

• The multisymplectic formalism is manifestly consistent with the basic principles of 
field theory, in particular that of locality, and is mathematically rigorous because 
it uses well established methods from calculus on finite-dimensional manifolds. 
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On the other hand, it does not seem to permit any obvious definition of the 

Poisson bracket between observables. Similarly, the introduction of n conjugate 

momenta for each coordinate obscures the usual duality between canonically con­

jugate variables (such as momenta and positions), which plays a fundamental role 

in all known methods of quantization. A definite solution to these problems has 

yet to be found. 

• The covariant functional formalism fits neatly into the philosophy underlying the 

symplectic formalism in general; in particular, it admits a natural definition of the 

Poisson bracket (due to Peierls (16] and further elaborated by De Witt (17-19]) 

that preserves the duality between canonically conjugate variables. On the other 

hand, being of intrinsically global nature, it obscures the implementation of the 

principle of locality. Moreover, it cannot be considered to be mathematically 

rigorous since it is often restricted to the formal application of methods from 

calculus on manifolds, extrapolated to the infinite-dimensional case: transforming 

such formal results into mathematical theorems is a separate problem, often highly 

complex and difficult. 

Unfortunately, the exact relation between the two approaches has never been made 

completely explicit in the literature. This is surprising since it should be clear from 

the previous remarks that they are to a certain extent complementary, so establishing 

a firm link between them will very likely be a. source for new insights. 

The present paper, based on the PhD thesis of the second author [201, is intended 

as a first step to overcome this deficiency. It is organized into two main sections. In 

Sect. 2, we briefly review some salient features of the multisymplectic approach to 

geometric field theory, focussing on the concepts needed to make contact with the co­

variant functional approach. In particular, this requires a digression on jet bundles 

of first and second order as well as on the definition of both extended and ordinary 

multiphase space as the twisted affine dual of the first order jet bundle and the twisted 

linear dual of the linear first order jet bundle, respectively: this will enable us to give 

a global definition of the space of solutions of the equations of motion, both in the 

Lagrangian and Hamiltonian formulation, in terms of a globally defined Euler- Lagrange 

operator e and of a globally defined De Donder-Weyl operator '.D, respectively. 

To describe the formal tangent space to this space of solutions at a given point, we 

also write down the linearization of each of these operators around a given solution. 

In Sect. 3, we apply these constructions to derive a general expression for the sym­

plectic form n on covariant phase space, a la Crnkovic-Witten-Zuckerman, in terms of 

the multisymplectic form w on extended multiphase space and/or the Cartan form 

wc, obtained from it by pull-back via the Legendre transformation induced by a 

Lagrangian density .C. Finally, we show that the Poisson bracket associated with the 

form n, according to the standard rules of symplectic geometry, suitably extended to 

this infinite-dimensional setting, is precisely the Peierls- De Witt bracket of classical 

field theory [1&--19]. 
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2 Multisymplectic Approach 

2.1 Overview 

The multisymplectic approach to geometric field theory, whose origins can be traced 
back to the early work of Hermann Weyl on the calculus of variations [6], is based on 
the idea of modifying the transition from the Lagrangian to the Hamiltonian framework 
by treating spatial derivatives and time derivatives of fields on an equal footing. Thus 
one associates to each field component cp; not just its standard canonically conjugate 
momentum 11"; but rather n conjugate momenta 1rf, where n is the dimension of space­
time. In a first order Lagrangian formalism, where one starts out from a Lagrangian L 
depending on the field and its first partial derivatives, these are obtained by a covariant 
analogue of the Legendre transformation 

8L 
1rf = 88,.cpi . (1) 

This allows to rewrite the standard Euler- Lagrange equations of field theory 

8L 8L 
a,, aa,,~ - a,f,; = o (2) 

as a covariant first order system, the covariant Hamiltonian equations or De Donder -
Weyl equations 

8H 
81!"1:' 

I 

= a,,.cp' , (3) 

where 
H = 1rf8,,'{i - L (4) 

is the covariant Hamiltonian density or De Donder - Wey! Hamiltonian. 

Multiphase space (ordinary as well as extended) is the geometric environment built 
by appropriately patching together local coordinate systems of the form (qi,pf) - in­
stead of the canonically conjugate variables (qi ,p;) of mechanics - together with space­
time coordinates x" and, in the extended version, a further energy type variable that 
we shall denote by p (without any index). The global construction of these multi­
phase spaces, however, has only gradually come to light; it is based on the following 
mathematical concepts. 

• The collection of all fields in a given theory, defined over a fixed { n-dimensional 
orientable) space-time manifold M, is represented by the sections cp of a given 
fiber bundle E over M, with bundle projection 71': E ➔ M and typical fiber Q. 
This bundle will be referred to 88 the configuration bundle of the theory since Q 
corresponds to the configuration space of possible field values. 
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• The collection of all fields together with their partial derivatives up to a certain 

order, say order r, is represented by the r-jets rip== (cp, oip, ... , arip) of sections 

of E, which are themselves sections of the r th order jet bundle YE of E, regarded 

as a fiber bundle over M. In this paper, we shall only need first order jet bundles, 

with one notable exception: the global formulation of the Euler - Lagrange equa­

tions requires introducing the second order jet bundle. 

• Dualization - the concept needed to pass from the Lagrangian to the Hamiltonian 

framework via the Legendre transformation - comes in two variants, based on the 

fundamental observation that the first order jet bundle J1 E of E is an affine 

bundle over E whose difference vector bundle J 1 E will be referred to as the 

linear jet bund~e. Ordinary multiphase space is obtained as the twisted linear 

dual J 1*E of J 1 E while extended multiphase space is obtained as the twisted 

affine dual J1®E of J1 E, where the prefix ''twisted" refers to the necessity of 

taking an additional tensor product with the bundle of n-forms on M .1 

• The Lagrangian £, is a function on J1 E with values in the bundle of n-forms 

on M so that it may be integrated to provide an action functional which enters 

the variational principle. The De Donder-Weyl Hamiltonian ~ is a. section of 

J1®E, considered as an affine line bundle over J1®E. 

Note that the formalism is set up so as to require no additional structure on the con­

figuration bundle or on any other bundle constructed from it: all are merely fiber 

bundles over the space-time manifold M. Of course, additional structures do arise 

when one is dealing with special classes of fields (matter fields and the metric tensor 

in general relativity are sections of vector bundles, connections are sections of affine 

bundles, nonlinear fields such as those arising in the sigma model are sections of trivial 

fiber bundles with a fixed Riemannian metric on the fibers, etc.), but such additional 

structures depend on the kind of theory considered and thus are not universal. Finally, 

the restriction imposed on the order of the jet bundles considered reflects the fact 

that almost all known examples of field theories are governed by second order partial 

differential equations which can be derived from a Lagrangian that depends only on the 

fields and their partial derivatives of first order, which is why it is reasonable to develop 

the general theory on the basis of a first order formalism, as is done in mechanics [21,22]. 

2.2 The First Order Jet Bundle 

The field theoretical analogue of the tangent bundle of mechanics is the first order jet 

bundle J 1 E associated with the configuration bundle E over M. Given a point e in E 

1 We use an asterisk • to denote linear dua.18 of vector spaces or bundles and a star* to denote affine 

dua.18 of affine spaces or bundles. These symbols are appropriately encircled t.o characterize twisted 

duals, as opposed to the ordinary duals defined in terms of linear or affine maps with values in I.. 
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with base point x = 7r(e) in M, the fiber J;E of J1 Eat e consists of all linear maps 
from the tangent space T..,M of the base space M at x to the tangent space TeE of the 
total space Eat e whose composition with the tangent map T811': TeE ➔ T..,M to the 
projection 7r : E ➔ M gives the identity on T..,M: 

(5) 

Thus the elements of J; E are precisely the candidates for the tangent maps at x to 
(local) sections rp of the bundle E satisfying rp(x) = e. Obviously, J;E is an affine 
subspace of the vector space L(T,.M, TeE) of all linear maps from T,.M to the tangent 
space T

8
E, the corresponding difference vector space being the vector space of all linear 

maps from T..,M to the vertical subspace ~E: 

The jet bundle J 1 E thus defined admits two different projections, namely the target 
projectio~ TE : J 1 E ➔ E and the source projection uE : J 1 E ➔ M which is simply 
its composition with the original bundle projection, that is, uE = 7r o TE. The same 
goes for Ji E, which we shall call the linearized first order jet bundle or simply linear 
jet bundle associated with the configuration bundle E over M. 

The structure of J 1 E 8lld of Jt E aa fiber bundles over M with respect to the source 
projection (in general without any additional structure), as well as that of J 1 E liB 'an "" 
affine bundle and of Ji E as a vector bundle over E with respect to the target projection, 
can most easily be seen in terms oflocal coordinates. Namely, local coordinates x" for M 
and qi for Q, together with a local trivialization of E, induce local coordinates (x", qi) 
for E as well as local coordinates (x11 ,q\q!) for J 1EcL(1r*(TM),TE) and (x",q', q!) 
for Ji Ee L(7r*(TM), TE). Moreover, local coordinate transformations x" ➔ x'" for M 
and qi ➔ </; for Q, together with a change of local trivialization of E, correspond to 
a local coordinate transformation (x", qi) ➔ (x"', q'1) for E where 

(7) 

The induced local coordinate transformations (x", qi, q!) ➔ (x'", qi, qi) for J1 E and 
(x",q', ii!) ➔ (x'11 ,q1

;, q:f) for J1E are then easily seen to be given by 

/ · OXµ 0</j · OXµ oq'J 
qJ = ox'" oqi q~ + ox'" 8xP. ' (8) 

and 

(9) 
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This makes it clear that J1 E is an affine bundle over E with difference vector bundle 

in accordance with eq. (6).2 

That the (first order) jet bundle of a fiber bundle is the adequate arena to incorpo­

rate (first order) derivatives of fields becomes apparent by noting that a global section 

<p of E over M naturally induces a global section j 1cp of J 1 E over M given by 

for XEM. 

In the mathematical literature, j 1 cp is called the (first) prolongation of 'P, but it would 

be more intuitive to simply call it the derivative of 'P since in the local coordinates used 

above, 
j1ip(x) = (x",'Pi(x),o,.ip\x)), 

where o,. = o/oxl'; this is symbolically summarized by writing j1cp = (<p, acp). 

Similarly, it can be shown that the linear jet bundle of a fiber bundle is the adequate 

arena to incorporate covariant derivatives of sections, with respect to an arbitrarily 

chosen connection. 

Finally, let us discuss briefly the lifting, from E to J1 E, of (local) bundle automor­

phisms and, passing to generators of one-parameter groups, of projectable vector fields. 

Let 4> : E ➔ E be an automorphism of the fiber bundle E over M and ip : M ➔ M 

the induced diffeomorphism of M such that the diagram 

q> 
E -+ E 

"II" 1 1 "II" 

¢ 
M-+ M 

commutes. This can be lifted to an automorphism of the jet bundle J 1 E, as an affine 

bundle over E, by defining J 14> : J1 E ➔ J 1 E as follows: given a point e in E with 

base point x = ,r(e) in Mand a 1-jet 'YE J:E, define the 1-jet J 14>('Y) E J~(e)E by 

(11) 

2Given a.ny vector bundle V over M, such as TM, T• M or any of their exterior powers, one can 

consider it as as vector bundle over E by forming its pull-back ir•V. In order not to overload the 

notation, we shall here and in what follows suppress the symbol ir•. 
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ObvioUBly, this formula defines a linear map from L(T:zM, TeE) to L(T~:z)M, T•(e)E) 
that restricts to an affine map from J;E to Ji(e}E: 

T•C•J71' o J1<1>(-y) = T•(e}71' o T0 cl> o-y o (T:z</>}-1 

= Te (1r o cl>) o 'Yo (Tz¢)-1 

= T.(<f,011")0-yo(T,,J/>)- 1 

= Tz</> o Te1r o 'Yo (T,,,</>)-1 

= T:z</> 0 idT. Mo (Tzif>t1 . 
= idT M. •<•) 

In particular, the die.gram 
JlcI, 

JlE ~ JlE 

T l l T 

cl> 
E ~ E 

commutes, justifying to call J 1<1> the first prolongation of cl>. This construction ca.n 
be generalized to any fiber bundle map cl> : E --+ F over a. (local) diffeomorphism 
,P: M --t N, giving an affine bundle map J1<l> : J 1 E--+ J 1 F over <I> : E--+ F. 

Passing to the description of the infinitesimal situation, let us consider a projectable 
vector field Von E, whose flow is a one-parameter group of (local) automorphisms of E 
that can be lifted to a one-parameter group of local automorphisms of J1 E, generated 
by a projectable vector field J 1 V on J 1 E: this is then defined to be the prolongation 
of V. Thus 

V = M>. I =} JlV 8).. ).=() 

= a(J1<1>>.) I 
8).. >.=0 • 

In local coordinates as before, we can write 

(12) 

where V" = V"(xv) and Vi = V'(x", qi), and since the lifting of bundle automorphisms 
is described by the transformation law (8), differentiation with respect to ).. gives 

iv _ ,. a , a (a0 J: av" , av') a 
J - V ox" + V 8,t + 8q1r. q,,. - 8x" q,. + ox" 8¢,, . (13) 

2.3 Duality 

The next problem to be addressed is how to define an adequate notion of dual for J 1 E. 
The nece.<1Sary background information from the theory of affine spaces and of affine 
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bundles (including the definition of the affine dual of an affine space and of the transpose 

of an affine map between affine spaces) is summarized in the Appendix. Briefly, the 

rules state that if A is an affine space of dimension k over R, its dual A* is the space 

A(A, R) of affine maps from A to R, which is a vector space of dimension k + 1. 

Thus the affine dual J1*E of J1 E and the linear dual Jto E of ] 1 E are obtained by 

talcing their fiber over any point e in E to be the vector space 

(14) 

and 
J;• E = {z. : J;E --+ JR linear} (15) 

respectively. However, as mentioned before, the multiphase spaces of field theory are 

defined with an additional twist, replacing the real line by the one-dimensional space 

of volume forms on the base manifold M at the appropriate point. In other words, the 

twisted affine dual 
J1®E = J1*E@A.nr•M 

of J1 E and the twisted linear dual 

(16) 

(17) 

of J1 E are defined by taking their fiber over any point e in E with base point x = 1r(e) 

in M to be the vector space 

(18) 

and 
J;®E = { z0 : J;E--+ A,nT;M linear} (19) 

respectively.2 As in the case of the jet bundle and the linear jet bundle, all these 

duals admit two different projections, namely a target projection onto E and a &ource 

projection onto M which is simply its composition with the original projection 7r. 

Using local coordinates as before, it is easily shown that all these duals are fiber 

bundles over M with respect to the source projection (in general without any additional 

structure) and are vector bundles over E with respect to the target projection. Namely, 

introducing local coordinates (x", qi) for E together with the induced local coordinates 

(x",qi,q!) for J1E and (x",q\q!) for ] 1E as before, we obtain local coordinates 

(x", qi,pt,P) both for J 1* E and for J 1®E as well as local coordinates (x", q;,Pt) both 

for Ji. E and for ] 1*E, respectively. These are defined by requiring the dual pairing 

between a point in J1*E or J 1®E with coordinates (x",qi,Pt,P) and a point in J1E 

with coordinates (x", qi, tf,.) to be given by 

(20) 
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in the ordinary (untwisted) case and by 

(pfq! + p) dnx (21) 

in the twisted case, whereas the dual pairing between a point in Jio E or in ] 1*E with 
coordinates (xi', q',pf) and a point in J1 E with coordinates (xl',q', iJ!) is given by 

(22) 

in the ordinary (untwisted) CME! and by 

(23) 

in the twisted case. Moreover, a local coordinate transformation (xi',¢) ➔ (x'", ,t;) 
for E as in eq. (7) induces local coordinate transformations for J 1 E and for J1 E as in 
eqs (8) and (9) which in turn induce local coordinate transformations (x",q',pf,p) ➔ 
(x'", q'',pj,p') both for J1*E and for J 1®E as well as local coordinate transformations 
(x",q',pr) ➔ (x,.,,q';,PJ') both for Ji.E and for ] 1*E: these are given by 

Iv 8x'" 8qi µ / oq'J aq' µ 
P; = ox"' o</i P; ' p = p - ox" oq'i P; 

in the ordinary (untwisted) case and 

'" - d (OX) ox/JI oq' µ 
P; - et ox' {)xi' oq•; P; 

in the twisted case. 

(24) 

(25) 

Finally, it is worth noting that the affine duals J1* E and J1®E of J 1 E contain line 
subbundles J;* E and J;®E whose fiber over any point e in E with base point x = ,r(e) 
in M consists of the constant (rather than affine) maps from J;,E to Rand to !tT;M, 
respectively, and the corresponding quotient vector bundle<;1 over E can be naturally 
identified with the respective linear duals Ji. E and ] 1*E of Ji E, i.e., we have 

(26) 

and 

(27) 
respectively. This shows that, in both cases, the corresponding projection onto the 
quotient amounts to "forgetting the additional energy variable" since it takes a point 
with coordinates (x"',q',pf,p) to the point with coordinates (x"',q',pf); it will be 
denoted by r, and is easily seen to turn J 1* E and J1®E into affine line bundles over Ji. E and over ] 11.,E, respectively. 
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2.4 The Second Order Jet Bundle 

For an appropriate global formulation of the standard Euler - Lagrange equations of field 

theory, which are second order partial differential equations, it is useful to introduce 

the second order jet bundle .fl E associated with the configuration bundle E over M. 

It can be defined either directly, as is usually done, or by invoking an iterative procedure, 

which is the method we shall follow here. Starting out from the first order jet bundle 

J1 E of E, regarded as a fiber bundle over M, we consider its first order jet bundle 

J1 J 1 E and define, in a first step, the semiholonomic second order jet bundle J2 E of E 

to be the sub bundle of J1 J1 E given by 

(28) 

where 7)1E: J 1J1E ➔ J 1E is the target projection of J 1J1E while J1rE: J1J1E ➔ 

J1 E is the prolongation of the target projection TE: J1 E ➔ E of J1 E, considered as 

a map of fiber bundles over M. As will become clear below, J2 E is an affine bundle 

over E, with difference vector bundle (T" M EB (T• M ® T* M)) ® VE. Therefore, using 

the construction of the affine quotient of an affine space (bundle) by a vector subspace 
(subbundle) of its difference vector space (bundle), as explained in the Appendix, we 

may complete the construction by observing that since T* M ® T* M contains /\ 2 T* M 
as a vector subbundle ( and hence so does T• M EB (T• M ® T* M)), it is possible to define 

the second order jet bundle PE of E as the quotient 

J2E = PE I NT*M ®VE . 

Once again, PE is an affine bundle over E, with difference vector bundle 

J2E = (T*MeV2 rM) ®VE. 

(29) 

(30} 

These assertions can be proved by introducing local coordinates (x", q') for E to­

gether with the induced local coordinates (x", qi, q!) for J1 E as before to first define 

induced local coordinates (x", qi, q!, r!, q!p) for J1J1 E. Simple_ calc~ations then show 

that the points of J2 E are characterized by the condition qt = r~ and the points 

of PE by th.e additional condition q!P = q!,.. Moreover, a local coordinate trans­

formation (x", q') ➔ (x"', qi) for E as in eq. (7) induces a local coordinate transfor­

mation for J 1 E as in eq. (8) which in turn induces a local coordinate transformation 

(x",q\q!,r!,q~) ➔ (x"',q'i,qJ,ri,q'J,,.) for J 1J 1E, given by eq. (8) together with 

r'i 
" 

(31) 

q'i = {)zP 8tfj i {)zP 8qj (32) 
vu {)z'IT 8qt qµp + {)x'tT {)zP . 

In particular, eqs (8) and (31) show that q~ = r~ implies <tj = ri, as required by 

the global, coordinate independent nature of the definition of J2 E as a sub bundle of 
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J 1J 1E, while eq. (32) can be further evaluated by differentiating eq. (8) with respect 
to q! and xP, which leads to 

8x/J 8xP 8,/; i 

,tJ" = 8x'" 8x1" 8qi qµp 

( 
ax,, {)xP {)2,/i {)x" {)xP {)x/J a2TfA 8<fi) i 

+ 8x111 8x1" 8xP {}qi 8X111 8X1" OX1). {)xP OX" 8qi q/J 

( 
8x/J {JxP 82 <Ii 8x" {)xP OX/J [}2 x'). o<li) 

+ 8x111 O'C" 8xP 8x/J OX111 8x'" 8x1>- 8xP 8x" OXµ . 

(33) 

This is also the induced local coordinate transformation for FE, whereas that for J2 E 
is obtained by symmetrization: 

. 8x" oxP 8</; . 
qJ(I = 8x'" ox1" 8qi q~p 

(
1 ({)x" {)xP 8xl' {)xP) 82qi OX" oxP 8xl' 82x'). 8r/j) i 

+ 2 8x111 OX1cr + 8x1" {)x"' oxP {)qi 8x111 {)z't1 8x1>. OXP OX" 8¢ q/J 

( 
{)x/J 8xP 82qi {)x" OXP OX/J 82x1

). 8q'i) 
+ OX111 ox'" OXP OXµ - ox"' OT" OX1). OXP OX" QX/J . (

34
) 

Both formulas indicate that PE and .PE are indeed affine bundles over E, with dif­
ference vect.or bundles as stated above. 

The equivalence between the definition of the second order jet bundle given here 
and the traditional one is obtained observing that the iterated jet j1j1rp of a (local) 
section cp of E assume values not only in FE but even in PE, due to the Schwarz 
rule. Therefore, second order jets in the traditional sense, that is, classes of (local) 
sections where the equivalence relation is the equality between the Taylor expansion 
up to second order, are in one-to-one correspondence with these iterated jets of (local) 
sections. Moreover, a global section cp of E over M naturally induces a global section 
j2cp of PE over M such that in the local coordinates used above 

j2ip(x) = (x",cp'(x),8,,,/(x)A,8.,ip'(x)). 

where 8,, = 8/ox/J; this is symbolically summarized by writing j2cp = (cp, {}cp, 82cp) . 

2.5 The Legendre 'fransformation 

A Lagrangian field theory is defined by its configuration bundle E over M and its 
Lagrangian density or simply Lagrangian, which in the present first order formalism is 
a map of fiber bundles over E : 

(35} 
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The requirement that £, should take values in the volume forms rather than the func­

tions on space-time is imposed to guarantee that the action functional S: r(E) ➔ R 

given by 

S[cpJ = £ £,(cp, o<p) for <p e r(E) {36) 

be well-defined and independent of the choice of additional structures, such as a space­

time metric.3 Such a Lagrangian gives rise to a Legendre transformation, which comes 

in two variants: as a map 

or as a map 

{37) 

(38) 

of fiber bundles over E. For any point I in J; E, the latter is defined as the usual fiber 

derivative of£, at 1 , which is the linear map from ]!E to /\nT;M given by 

for ~ e ]!E, (39) 

whereas the former encodes the entire Taylor expansion, up to first order, of£., around 1 
along the fibers, which is the affine map from J; E to /\ n r; M given by 

for K.E J;E. (40) 

Of course, F £., is just the linear part of Ff.,, that is, its composition with the bundle 

projection f7 from extended to ordinary multiphase space: F £, = 1/ o FJ:.,. In local 

coordinates as before, Ff., is given by 

8L . 
' P = L - 8qt q~ (41) 

where £, = L dnx. Finally, if L is supposed to be hyperregular, which by definition 

means that FL should be a global diffeomorphism, then one can define the De Donder­

Weyl Hamiltonian :Ji to be the section of J 1®E over J1ceE given by 

(42) 

In local coordinates as before, this leads to 

H = pfq~ - L (43) 

where £, = L dnx and :Ji= -H dnx, as stipulated in eq. (4). 

Conversely, the covariant Hamiltonian formulation of a field theory that can be 

described in terms of a configuration bundle E over M is defined by its Hamiltonian 

3Strictly speaking, the integration should be restricted to compact subsets 0£ space-time, which 

leads to an entire family of action functionals. 
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density or simply Hamiltonian, in the spirit of De Donder and Weyl, which in global 
terms is a section of extended multiphase space J1eE as an affine line bundle over 
ordinary multiphase space ] 1*E: 

(44) 

Such a Hamiltonian gives rise to an inverse Legendre trans/ ormation, which is a map 

(45) 

of fiber bundles over E defined as follows. For any point z in ];*E, the usual fiber 
derivative of '.J{ at z is a linear map from ]!*E to J!®E which when composed with 
the projection '7 from J';®E to i!®E gives the identity on ]!*E (since '.J{ is a section): 
such linear maps form an affine subspace of the vector space of all linear maps from 
i;*E to J;*E that can be naturally identified with the original affine space J;E, as 
explained in the Appendix. In local coordinates as before, FJ< is given by 

; 8H 
q,, = opf (46) 

where J( = - H dnx. Finally, if J( is supposed to be hyperregular, which by definition 
means that F:K should be a global diffeomorphism, then one can define the Lagrangian 
£., to be given by 

L(-y) ;; (J< o (F.1-()-1) ('Y) · 'Y. (47) 
In local coordinates as before, this leads to 

L = pfq~ - H (48) 

Thus in the hyperregular case, the two processes are inverse to each other and 
allow one to pass freely between the Lagrangian and the Hamiltonian formulation. Of 
course, this is no longer true for field theories with local symmetries, in particular gauge 
theories, which require additional conceptual input. 

At any rate, it has become apparent that even in the regular case, the full power 
of the multiphase space approach to geometric field theory can only be explored if one 
uses the ordinary and extended multiphase spaces in conjunction. 

2.6 Canonical Forms 

The distinguished role played by the extended multiphase space is due to the fa.ct that 
it carries a naturally defined multisymplectic form w, derived from an equally naturally 
defined multicanonical form 8 by exterior differentiation: it is this property that turns 
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it into the field theoretical analogue of the cotangent bundle of mechanics:' Global 

constructions are given in the literature [13-15], so we shall content ourselves with 

stating that in local coordinate.s ( x", qi, pr, p) as before, fJ takes the form 

(49) 

so w = -dO becomes 

(50) 

Given a Lagrangian L, we can use the associated Legendre transformation 'JF.C to pull 

back O and w and thus define the Poincare-Cartan forms Or., and wr., on J1 E associated 

with the Lagrangian L: 

(51) 

Similarly, given a Hamiltonian :J{, we can use it to pull back (J and w and thus define 

the De Donder- Weyl forms O" and w'.i< on i 1®E associated with the Hamiltonian :J{: 

(52) 

Of course, wr., = - d.Or., and w:J<. = - dO:J<.; moreover, supposing that :J{ o F .C = lF.C, 

we have 
Be. = (JF.C..)*O:x , wr., = (FL)*wx. (53) 

In local coordinates as before, eq. ( 49) implies that 

8 8L d • dn (L BL •) d" 
r., = 0qt q A Xµ + - 0qt q/J X ' 

(54) 

01<. = pf dq'" dnx,, - H d"x . (55) 

It is useful to note that the forms Or.. and O:J<. allow us to give a very simple definition of 

the action functional: it is given by pull-back and integration over spaco-time.4 Thus 

in the Lagrangian framework, the action associated with a section <p of E over M is 

obtained by taking the pull-back of Or., with its derivative which is a section (rp,8<p) 

of J 1 E over M, 

for '{)E r(E), (56) 

whereas in the Hamiltonian framework, the action associated with a section ( '{), 7r) 

of J1eE over M is simply 

for (<p, 71') E r(i1®E) . (57) 

'Note that this statement fails if one UBe8 the ordinary duals instead of the twisted ones. 
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In both cases, it can be shown that the stationary points of the action are precisely 
the solutions of the corresponding Euler- Lagrange and De Donder - Weyl equations, 
respectively. It is therefore no surprise that these equations can be formulated globally 
through the vanishing of certain (in general nonlinear) differential operators e and '.D 
defined solely in terms of the forms W,c and Wx, respectively. However, an explicit 
construction in the spirit of global analysis [23,24] does not seem to be readily available, 
although there do exist various attempts that go a long way in the right direction; see, 
e.g., [25] for the Lagrangian case and [13] for the Hamiltonian case. 

2.7 Euler-Lagrange and De Donder-Weyl Operator 

Theorem 1 Given a Lagrangian density as in eq. {35} above, define the con-esponding 
Euler - Lagrange operator to be the map 

(58) 

of fiber bundles over JlE G that associates to each 2-jet (ip,8ip,82cp) of {local} sections 
ip of E over M and each vertical vector field V on E the n-form on M given by 

(59) 

Then for any section ip of E, e(ip, 8cp, 82cp) is the zero section if only if I{) satisfies the 
Euler - Lagrange equations associated to J:., . 

PROOF: Let V be a vertical vector field on E, with local coordinate expression 

V = v•~ 
8q• 

(cf. eq. (12)), and let J1 V be its lifting to J1 E, with local coordinate expression 

1 . a (avi ,. av;) a 
J V = V' oqi + iJq" q,. + 8x,. 8qt 

(cf. eq. (13)). Applying the exterior derivative to eq. (54), contracting with J 1V and 
then pulling back with (ip, 8cp) gives, after some calculation, 

5 Again, we suppress the symbola indicating the pull-back of bUDdles from E or M to J1 E. 
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where it is to be noted that the terms depending on the derivatives of V have dropped 

out. This leads to the following explicit formula for t'.: 

t'.(cp,ocp,82cp) = (a,.(!~ (cp,fJcp)) - :~(cp,fJcp)) dl©dnx. (60) 

In particular, it is clear that e depends on cp only through the point values of cp and 

its partial derivatives up to second order, which concludes the proof. □ 

Theorem 2 Given a Hamiltonian density as in eq. (44) above, define the corresponding 

De Donder - W eyl operator to be the map 

(61} 

of fiber bundles over Y*E 6 that associates to each 1-jet ( cp, 1r, ocp, 01r) of {local} sections 

(cp, 1r) of ] 1*E over M and each vertical vector field V on ] 1*E the n-form on M 

given by 
(62} 

Then for any section (cp, 1r) of ]1*E, 'D(cp, 1r, acp, ch) is the zero section if only if (cp, 1r) 

satisfies the De Donder- Weyl equations associated to K 

PROOF: Let V be a vertical vector field on J1®E, with local coordinate expression 

V ; a TT/J a 
= V 8qi + v; {)pr . 

Applying the exterior derivative to eq. (55), contracting with V and then pulling back 

with (cp, 1r) gives, after a short calculation, 

(cp,1r)*(ivw,d = a,,1rr V;(cp,11') dnx + ~H (cp,7r) Vi(cp,1r) dnx 
vq' 

- o,,cp; ~"(cp,1r) dnx + ~(cp,1r) ~,,(cp,1r) dnx. 

This leads to the following explicit formula for '.D: 

'.D(cp, 1r, O<p, &) = ( ::. (ip, 1r} - 0µ1Tf) dl ® dnx 

+ (:(cp,1r} + 8µtp~) dpf®dnx. 

(63) 

In particular, it is clear that '.D depends on (cp, 11') only through the point values of cp 
and 1r and their partial derivatives up to first order, which concludes the proof. □ 

8 Again, we suppress the symbols indicating the pull-back of bundles from E or M to 11 a E. 
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2.8 Jacobi Operators 

In order to make contact with the functional formalism to be discussed in the next 
section, we must also derive explicit expressions for the linearization of the Euler­
Lagrange operator and the De Donder- Weyl operator around a given solution of the 
equations of motion. This leads to linear differential operators between vector bundles 
over M that we shall refer to as Jacobi operators, generalizing the familiar derivation 
of the Jacobi equation by linearizing the geodesic equation. 

In its Lagrangian version, the Jacobi operator is a second order differential operator 

(64) 

where V,p = y,• (VE) and V"'* = y,• (V• E) ® I\" T* M, obtained by linearizing the 
Euler-Lagrange operator e around a given solution cp of the equations of motion. 
Similarly, in its Hamiltonian version, the Jacobi operator is a first order differential 
operator 

(65) 

where \.'(,p,,r) = (cp,1r)•(V(]1®E)) and \7c!,,,.) = (cp,1r)*(V*(]1*E))®/\"T*M, obtained 
by linearizing the De Donder- Weyl operator '.D around a given solution (ip, 1r) of the 
equations of motion. (Thus in both cases, the vector bundles involved are obtained by 
pulling back the appropriate vertical bundle and its twisted dual with the solution of 
the nonlinear equation around which the linearization is performed,) To obtain explicit 
expressions, consider an arbitrary variation cp,. around cp and evaluate e(ip,., 8cp,., 82ip,.) 
which, for each ,\., is a section of V'I'~' observing that since cp = cp,.l,.=o is a solution, 
e(cp,., 8cp,., 82ip,.)l,.=0 is the zero section of V,p*, and setting 

(66) 

Noting that in local coordinates, the value of e(cp,.,8ip,.,82cp,.) at a point x in M with 
coordinates x" has coordinates (x", ipHx), e(cp,., 8cp,., 82ip,.);(x)) where the last piece is 
the coefficient of dq; ® d"x in eq. (60), we get by differentiation with respect to ,\. 

:,\. e(ip,., acp,., a2cp,.)f,.=
0 

.a 
= 6rp'-a. q• 
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Similarly, consider an arbitrary variation (rp.,., ,r.,_) around (rp, ,r) and evaluate 

'D( <p>,., 1r.,., o<p.,., lnr'),) which, for each >.., is a section of V:<* ,.. )' observing that since 
f{)>.., l. 

(rp, 1r) =. (<p.,., 7r.,_) !.,.=0 is a solution, 'D(<p.,., 1r.,., o<p.,., 811">,.) /.,_=0 is the zero section of Ye:,,,.)' 
and settmg 

(67) 

Again, noting that in local coordinates, the value of 'D( cp>,., 1T>,., 8cp.,., 8,r.,_) at a point x 

in M with coordinates x/J has coordinates (x,,, rpi(x), (11">,.)f(x), '.D(<pJ., ir.,. , {)cp.,_ , 8,r.,_);(x), 

'D(cp.,., 1T>,., Ocp>,., 81r.,.)t(x)) where the last two pieces are the coefficients of dq' ®dnx and 

of dpf ® dnx in eq. (63), we get by differentiation with respect to>.. 

:>.. 'D( <p>,., 11">,., Ocp>,., {J,r.,_t =O 

~ i a ~ " a ucp - + U1l"• -{Jqi • 8pf 

+ ( a:: :qi (rp, 1r) 6cpi + a!; !qi (<p, 7r) fa'; - a,, c57rf) dl ® dnx 

+ (
0

82
~ µ(rp,7r) c5cpi +:.:Ho,,, (<p,11') c5ir'f + 8,,6,/) dpf ®dnx. 

qJ up; vyi P; 

In order to show how to extract the Jacobi operators from these expressions, by 

means of a globally defined prescription, we apply the following construction [11]. 

Let F be a fiber bundle over M, with bundle projection 7rF,M : F ➔ M, and W 

be a vector bundle over F with bundle projection 1rw,F : W ➔ F, which is then also a 

fiber bundle (but not necessarily a vector bundle) over M with respect to the composite 

bundle projection 1rw,M = 1l"F,M o 1rw,F : W ➔ M. Thus W admits two different kinds 

ofvertical bundles, VFW and VMW, with fibers defined by (VF)wW = ker T..,1rw,F and 

(VM)wW = ker T11171'w,M for we W; obviously, the former is contained in the latter as a 

vector subbundle. Moreover, since W is supposed to be a vector bundle over F, there 

is a canonical isomorphism VFW~ 1TwFW. On the other hand, consider the vertical 

bundle VF of F which can be pulled bock to W to obtain a vector bundle 1rw,F(V F) 

over W, with fibers defined by (1rw,F(VF)).., = V1F = ker T11rF,M for weW with 

f : 1rw,Fw. Note also that the tangent map to the bundle projection 71'w,F, which 

by definition has kernel VFW, maps VMW onto VF, so we have the following exact 

sequence of vector bundles over W: 

0 ~ VFW~1rw,FW-+ VMW-+ 11'w,F(VF) ~ 0. 

The crucial observation is now that this exact sequence admits a canonical splitting 

over the zero section O : F ➔ W, given simply by its tangent map. Indeed, its 

tangent map T10 : T1F ➔ Tou)W at any point / e F takes the vertical subspace 

V1F to the M-vertical subspace (VM)ocnW and so restricts to a vertical tangent map 
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v,o: V1F ➔ (VM)o(l)W whose composition with the restriction of the tangent map 
Tocn1rw,F: To{J)W ➔ T1F to (VM)ocnW gives the identity on v,F. Thus the image of 
v,o is a subspace of (V M )ocn W that is complementary to the subspace (VF )o(I) W = w, 
and provides a surjective linear map u1 : (VM)o(l)W ➔ W1 of which it is the kernel. 
At the level of bundles, this corresponds to a surjective vector bundle homomorphism 
u:VMWj0 ➔ W. 

Applying this construction to the situation at hand, take F = E in the Lagrangian 
case and F = i 1®E in the Hamiltonian case, setting W = V"(F) ® ftT•M in 
both cases. The fact that the Euler-Lagrange or De Donder- Weyl operator is being 
linearized around a solution cp or ( cp, 1r) of the equations of motion then means that 
we are evaluating its derivative, which a priori takes the variation oip or (oip, 01r) to a 
vector field on W along M which is vertical with respect to the projection of W onto M, 
precisely over the zero section, so we can apply the operator u just introduced to project 
it down to a section of W over M itself. This operation completes the definition of the 
Jacobi operators, namely 

(68) 

and 

a,dip,1r] • (ocp,01r) = a(~ '.D(cp,\,1r,\,acp,\,01r,\) j,\=o) . (69) 

The local coordinate expressions are the ones derived above, that is, 

{ 
82L 

8.c.[ip] · ocp = aq/,aqt (cp,ocp) a"a.,or;J 

and 

+(a"(a~2:¢,.(cp,8ip)) + (a!2!qt - ai2:qt)(cp,8cp))a,,or;J (70) 

+ ( a" (8:
2

Jqi (cp, oip)) - 0:
2
!q• (ip, ocp)) or;J} ~• ® dnx, 

(71) 
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3 Functional Approach 

Let us begin by recalling the definition of the Poisson bracket between functions on a 

symplectic manifold with symplectic form w. First, one associates to each (smooth) 

function J a (smooth) Hamiltonian vector field X 1, uniquely determined by the condi­

tion 
(72) 

Then the Poisson bracket of two functions J and g is defined to be the function {J, g} 

given by 
(73) 

The goal of this section is to show that formally, the same construction applied to 

covariant phase space links the Witten symplectic form to the Peierls bracket. 

3.1 Covariant Phase Space 

In contrast to the traditional non-covariant Hamiltonian formalism offield theory, where 

phase space is a "space" of Cauchy data, covariant phase space, denoted here by S, is the 

"space" of solutions of the equations of motion, or field equations. Of course, one cannot 

expect these two interpretations of phase space to be equivalent in complete generality, 

since it is well known that, for nonlinear equations, time evolution of regular Cauchy 

data may lead to solutions that, within finite time, develop some kind of singularity. 

An even more elementary prerequisite is that the underlying space-time manifold M 

must admit at least some Cauchy surface E : this means that M should be globally 

hyperbolic. 

Thus our basic assumption for the remainder of this paper will be that the underlying 

space-time manifold M should be globally hyperbolic. Globally hyperbolic space-times 

are the natural arena for the mathematical theory of hyperbolic (systems of) partial 

differential equations, in which the Cauchy problem is well posed. There are by now 

various and apparently quite different definitions of the concept of a globally hyperbolic 

space-time, but they have ultimately turned out to be all equivalent; see Chapter 8 

of [26] for an extensive discussion. For our purposes, the most convenient one is that M 

admits a global time function whose level surfaces provide a foliation of M into Cauchy 

surfaces, providing a global diffeomorphism M ~ R x E. As an immediate corollary, 

we can define the concept of a (closed/open) time slice in M: it is a (closed/open) 

subset of M which under such a global diffeomorphism corresponds to a subset of the 

form / x ~ where/ is a (closed/open) interval in R. 

In the Lagrangian as well as in the Hamiltonian approach to field theory, the equa­

tions of motion are derived from a variational principle, that is, their solutions are the 

stationary points of a certain functional S called the action and defined on a space 

of sections of an appropriate fiber bundle over space-time which is usually referred to 

21 



as the space of field configurations of the theory and will in what follows be denoted 
by e. More concretely, e is the space r(F) of smooth sections ¢, of a fiber bundle F 
over M: in the Lagrangian approach, Fis the configuration bundle E, whereas in the 
Hamiltonian approach, Fis the multiphase space ] 1*E, regarded as a fiber bundle 
over M. 

Formally, we shall as usual think of e as being a manifold (which is of course infinite­
dimensional). As such, it has at each of its points¢, a tangent space T,;e that can be 
defined formally as a space of smooth sections, with appropriate support properties, of 
the vector bundle V; = <t,•(VF) over M, i.e., T.,e c f 00 (V;). The cotangent space T;e 
will then be the space of distributional sections, with dual support properties, of the 
vector bundle V,;* = ¢,•(v· F) ®An r· M over M, i.e., r;e C r-00 (V.,'l). It contains 
as a subspace the corresponding space of smooth sections, where the pairing between 
a smooth section of V,; and a smooth section of V,;* (with appropriate support condi­
tions) is given by contraction and integration of the resulting form over M. Similarly, 
the second tensor power r;e ® r;e of r;e can be thought of as the space of distribu­
tional sections, again with dual support properties, of the second exterior tensor power7 

V,;*181 V! of Vt; it contains as a subspace the corresponding space of smooth sections, 
where the pairing between a pair of smooth sections of V,; and a smooth section of 
Vf181V,;e (with appropriate support conditions) is given by contraction and integration 
of the resulting form over M x M. 

Regarding the support conditions to be imposed, the first two options that come 
to mind would be to require that either the elements of T,;e or the elements of r;e 
should have compact support, which would imply that the support of the elements of 
the corresponding dual, r;e or T,;e, could be left completely arbitrary: 

OPTION l : T,;e = r 00 (V,;) r;e = r;00(V.,*) (74) 

OPTION 2 : T,;e = ~(V,;) r;e = r-00(Vt) (75) 
There is a third option that makes use of the assumption that M is globally hyperbolic. 
To formulate it, we introduce the following terminology. A section of a vector bundle 
over M is said to have spatially compact support if the intersection between its support 
and any (closed) time slice in Mis compact, and it is said to have temporally compact 
support if its support is contained in some time slice. Then we require the elements 
of T.,e to have spatially compact support and the elements of r;e to have temporally 
compact support: 

OPTION 3: T. e r 00
(") T!e -- r:.00 (V,.*) ,; = IC Yt; ' ., - .. (76) 

Obviously, for each of these three options, the two spaces listed above are naturally 
dual to each other. 8 

1H V and W are vector bundles over M, V 181 W is defined to be the vector bundle over M x M 
with fibers given by (V181 W)(a:,r) = V,. ® Wr, for all z, 11 e M. 

1Here and in what follows, the symbols r., r .. and rte indicate spaces of sections of compact, 
spatially compact and temporally compact support, respectively. 
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These constructions can be applied to elucidate the nature of functional derivatives 
of functionals on e, such as the action. Namely, given a {formally smooth) functional 
A: e -t R, its functional derivative at a point <I> is the distributional section (oA/o<t>)[<t>] 
of Vt that, according to 

(77) 

represents the directional derivative of A at ¢, along 8¢, - a smooth section of Vt/> with 
appropriate support properties, defined by the requirement that for any one-parameter 
family of sections ¢,>. of F such that ¢i>-l>.=o = ¢,, 

In local coordinates, we have in the Lagrangian framework 

8A 8A . 
8

4> [4>](x) = <5cpi [cp)(x) dq' 6<) dnx , 

whereas in the Hamiltonian framework 

Similarly, the second functional derivative of A at ¢, is the distributional section 
(.52A/li¢2)[¢,] of v.,,®181 v.,,* that, according to 

(78) 

represents the Hessian of A at ¢, evaluated on 8¢,1 and li</>2 - two smooth sections 
of Vt/> with appropriate support properties, defined by the requirement that for any 
two-parameter family of sections</>>.,,>., of F such that 4>>.,,>-,1>.,,>.,=0 = ¢,, 

if 

{uf>1 = a~ 4>>.,,>., I , , 8¢,2 = a~ ¢,,.,,>., I). , =O . 
-"1 >.,,...,=O -"2 ,,...2-

Jn local coordinates, we have in the Lagrangian framework 
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whereas in the Hamiltonian framework 
~A ~A . . oq,2 [q,](x, y) = ocpi ocpi [cp, ,r](x, y) (dq' ® dnx) ® (dq' ® dny) 

+ r ~ 1., [cp, 1r](x, y) (di® dnx) ® (dpj ® d"y) 
ucp' u'Tr; 

+ r o: 1 . [cp, 1r](x, y) (dpf ® d"x) ® (~ ® dny) 
u'tr; u<p' 

+ 
0
! :1r~ [cp, 1r](x, y) (dpf ® d"x) ® (dpj ® d"y) . 

I J 

Of course, for the integrals in eqs (77) and (78) to make sense, even when interpreted 
in the sense of pairing distributions with test functions, we must make some assumption 
about support properties, which leads us back to the options stated in eqs (74)-(76). 
Option 1: when A is arbitrary, we have to restrict the sections 0¢,, o</,1 , o<p2 of V91 
considered above to have compact support (which can be achieved if the sections ¢,}., 
¢,,..,,}.2 of Fare supposed to be independent of the parameters outside a compact subset). 
Option 2: when A is local, which we understand to mean that its functional dependence 
on the fields is non-trivial only within a compact region, or equivalently, that its func­
tional derivative oA/ 0¢, at each ¢, has compact support, the sections oq,, oq,1, o<p2 of v. 
considered above may be allowed to have arbitrary support; this is the case for local 
observables defined as integrals of local densities over compact regions of space-time 
and, in particular, over compact regions within a Cauchy surface E ( energy, momen­
tum, angular momentum, charges etc. within a finite volume). Option 3: when A is 
local in time, which we understand to mean that its functional dependence on the fields 
is non-trivial only within a time slice, or equivalently, that its functional derivative 
oA/otji at each if, has temporally compact support, we have to restrict the sections 
otji, otji1, oq,2 of V91 considered above to have spatially compact support (which can be 
achieved if the sections t/i>., t/i>.,,>., are supposed to be independent of the parameters 
outside a spatially compact subset); this is the case for global observables defined as 
integrals of local densities over time slices and, in particular, over a Cauchy surface E 
( total energy, total momentum, total angular momentum, total charges etc.). 

Finally, covariant phase space 8 is defined to be the subset of e consisting of the 
critical points of the action: 

s = {4>ee/S'l</J)=O}. (79) 
Formally, we can think of S as being a submanifold of e whose tangent space at any 
point 4> of 8 will be the subspace T.s of the tangent space T~e consisting of the solu­
tions of the linearized equations of motion (where "linearized" means "linearized around 
the solution 4> of the full equations of motion"), which are precisely the sections of v. 
belonging to the kernel of the corresponding Jacobi operator a[4>) : r(V91) --t r(V.~ : 

T~8 = ker a[</J] . (80) 
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3.2 Symplectic Structure 

Our next goal is to justify the term "covariant phase space" attributed to S by show­

ing that, formally, S carries a naturally defined symplectic form 0, derived from an 
equally naturally defined canonical form 0 by formal exterior differentiation. Accord­
ing to Cmkovic, Witten and Zuckerman [l-3] (see also (4]), the symplectic form n 
can be obtained by integration of a "symplectic current", which is a closed (n - 1)­
form on space-time, over an arbitrary spacelike hypersurface E. Here, we show that 
this "symplectic current" can be derived directly from the multisymplectic form w or, 
more explicitly, from the Poincare-Cartan form w,:, in the Lagrangian approach and 
the De Donder - Weyl form wx in the Hamiltonian approach. 

We begin with the definition of e and n in terms of (J and w, which is achieved by 

a mixture of contraction and pull-back: given a point </> in e ( a smooth section </J of F) 
and smooth sections o</J, o</)1 , o</)2 of V41 , insert o</J into the first of then arguments of 0 
or o</,1 and o</>2 into the first two of the n + 1 arguments of w and apply the definition 
of the pull-back with <p (which amounts to composition with the derivatives 8</J of </>) 
to the remaining n - 1 arguments to obtain (n - 1)-forms on space-time which a.re 
integrated over E. Note that these integrals exist if we assume that oip and either ot/)1 

or 5</>2 have spatially compact support, since this will intersect E in a compact subset. 

Explicitly, in the Lagrangian framework, we have 

84>(5</>) = L(cp,8cp)*0,:,(5cp,8ocp) (81) 

and 
n.(54>1, 5¢2) = l (cp, ocp)* w,:,(ocp1,86cp1, 5!p2, 86cp2) (82) 

where the notation is the same as that employed in eq. (56): <I> = cp is a section of 
E over Mand j1cp = (cp, 8cp) is its (first) prolongation or derivative, a section of J1 E 
over M, while 6</> = ocp, 6</>1 = ocp1 , 6</>2 == ocp2 are variations of </> = cp, all sections 
of VE over M, and 5j1ip = (oip,8oip), oj1cpl = (01P1,80cp1), oj1cp2 = (5cp2,80cp2) are 
the induced variations of j1cp = (cp,8cp), all sections of V(J1E) ~ J 1(VE) over M. 
In local coordinates, 

and 
.r -1 a -1 I o • a a 5 • a 
vJ cp == 8).. J '{)>. >.=O = cp Oq' + JJ cp 8qt 

whereas 0c, is given by eq. (54) and We, by 

( 
a2L . . a2L . ·) 

We, = a j a i dq'"' dq1 + a,j a ; dq'"' dq;, "' dnxµ 
q qµ ~v qµ 

a2L dq' dn d(L 8L •) d" + -a a· 11 x- --a,qµ"' x. 
xJJ q~ qµ 

25 



(The exterior derivative in the last term could be worked out explicitly, but we shall 
not need this expression because the last two terms vanish under contraction with two 
vertical vectors.) Then 

and 

n.(5¢,1,tS<t,2) = h cIE,. J;(t5¢,1,6<P2) 

with the "symplectic current" J given by 

or equivalently 

(83) 

(84) 

(85) 

(86} 

The same results can be obtained even more directly in the Hamiltonian framework, 
in which we have 

{87} 

and 

(88) 

where the notation is the same as that employed in eq. (57): tf, = (cp,1r) is a section of 
J1*E over M while 6¢, = (6<p,61r), t5tf,1 = (61p1,01r1), 5¢,2 = (t5<p2,t5,r2) are variations of 
¢, = (<p,1r), all sections ofV(]1 *E) over M. In local coordinates, 

0 I .{} 0 I a ~=~~~=~~,&=~~~=~~ 
whereas Bx is given by eq. (55) and w:K by 

W:H: = dq'" dpf" d"x,. - dH" d"x 

(The exterior derivative in the last term could be worked out explicitly, but we shall not 
need this expression because the last term vanishes under contraction with two vertical 
vectors.) Then 

0.(0¢,) = L dE,. ,rf 5,p' 
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and 

0.;(6</>1, 6</>2) = i cIB,, J:(6</>1, 6</>2) 

with the "symplectic current" J given by 

J$(rS</>1, rS</>2) = rS,A rS1r2,': - rSrp~ rS1r1.f . 

(90) 

(91) 

Incidentally, these formulas show that, just like in mechanics, the canonical form 8 and 

the symplectic form n do not depend on the choice of the Hamiltonian 9i. 

Another important result, duly emphasized in the literature [1-4], is the fact that 

on covariant phase space S, the symplectic form n does not depend on the choice of the 

hypersurface E used in its definition, since for any solution </> of the equations of motion 

and any two solutions r5q,1, r5q,2 of the linearized equations of motion, the "symplectic 

current" J;(oq,1, r5q,2) is a closed form on space-time. To prove this, assume that</> is a 

point in S and observe that a tangent vector 6</> in T;e belongs to the subspace T;S if 

and only if 6</>, as a section of V~, satisfies the pertinent Jacobi equation, which reads 

( a2L . a2L . ) 
a,, -

8 
.
8

. (rp,arp) rSw + - - - . (rp,arp) aJ>w 
qJ q~ 8,1,, 8q~ 

&L . &L . 
= -a· 

0 
. (rp, 8t.p) orp' + ---:--;:;(t.p, 8rp) avor 

qJ q• 8q•8'1,v 

(92) 

in the Lagrangian framework and 

iJ2H . iPH V 

a,, 0< = oqi aq/rp, 1r) rSr + op'; aq• (rp, 1r) r57r1 

. ~H . ~H a,, orp' = - a . ,A..../J (rp, 1r) r5r - op" a ,, (ip, 1r) rS1r; 
qJ VJli j Pi 

(93) 

in the Hamiltonian framework. Thus if r5q,1 and oq,2 both satisfy the Jacobi equation, 

we have 
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= ( 
EflL · EflL ·) · 

oq; oq• ( cp, ocp) o'P{ + Bqio<f., ( cp, 8cp) a.,o'P{ ocp2 

( 
EflL · EflL .-1) · ~ ; ~ , ( cp, 8cp) 6tp{ + ~,.; ~ i ( cp, 8cp) 8.,S'fT1 8,_6cp2 uq uq,_ uv11 uq,_. 

( 
EflL . EflL ·) · + aq; oq• ( cp, ocp) o~ + oq'o</,, ( cp, ocp) a.,o~ acp~ 

( 
EflL · EflL · ) · + 

8 
; 
8 

j ( cp, acp p~ + 
8

,.; 
8 

. ( cp, acp) a.,o~ a,,.ocp! 
q q,. 'ill qt,. 

in the Lagrangian framework and 

a,,.1;(o<fa1, OfP2) = a,.ocpl 07r2,r + ocp{ a,,.a1r2,r - o,_.ocp; 01r1,r - oip; a,,.01r1,r 

( 
82H · {)2H ) 

- {)qi {)pf (cp, 1r) «Sip{ + op'; {}pf (cp, 1r) 81r1J 811"2,j 

. ( a2H . a2H ) + ocpi 8qi8¢(cp,1r) o~ + 8p'j8¢(cp,1r) o1r2J 

( a2H . a2H ) + 8qi8pf(cp,1r} 0~ + api;0pr<cp,1r) 01r2J 071"1,r 

. ( a2H . a2H ) 
- &cp; aqi oq;( cp, 'Tr) o'P{ + op'J a¢ ( 'P, 7r) o1r iJ 

in the Hamiltonian framework: obviously, both of these expressions vanish. 

Of course, independence of the choice of hypersurface holds only for n but not for 0. 
In fact, if M1,2 is a region of space-time whose boundary is the disjoint union of two 
hypersurfaces E 1 and E2, then 01:2 = 01:1 but 

(94) 

where SM1 ,, is the action calculated by integration over M1,2 and o is the functional 
exterior derivative, or variational derivative, on S. 

3.3 Poisson Bracket 

Given a relativistic field theory with a regular first-order Lagrangian, one expects each 
of the corresponding Jacobi operators 8[cp] ( cp ES) to form a. hyperbolic system of second­
order partial differential operators. A typical example is provided by the sigma model, 
where E is a trivial product bundle M x Q, with a given Lorentzian metric g on the 
base manifold M, as usual, and a given Riemannian metric hon the typical fiber Q. 
Its Lagrangian is 
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so that the coefficients of the highest degree terms of the Jacobi operator ,:J[<,o] are 

which clearly exhibits the hyperbolic nature of the resulting linearized field equations. 

A general feature of hyperbolic systems of linear partial differential equations is the 
possibility to guarantee existence and uniqueness of various types of Green functions. 
In the present context, what we need is existence and uniqueness of the retarded Green 
function c;, the advanced Green function G! and the causal Green function G,p for 
the Jacobi operator 8[4>], for each ef> e S. By definition, the first two are solutions of the 
inhomogeneous Jacobi equations 

8:c[ef>] c;(x, y) = o(x, y) , a,A<I>] G;(x, y) = o(x, y) , (95) 

or more explicitly, 

where 8a[ef>] denotes the Jacobi operator with respect to the variable z, characterized by 
the following support condition: for any x, ye M, c;(x, y) = 0 when x it J+(y) and 
G! (x, y) = 0 when x r/. J-(y), where J+ (y) and J-(y) are the future cone and the past 
cone 'of y, respectively. The causal Green function, also called the propagator, is then 
simply their difference: 

G,t, = G;- Gt. (97) 

Obviously, it satisfies the homogeneous Jacobi equations 

(98) 

Note that the symmetry of the Jacobi operator 8[</>], stemming from the fact that it 
represents the second variational derivative of the action, forces these Green functions to 
be symmetric, except for the exchange between the retarded and the advanced function: 

G; 1k(y,x) = G:fk1(x,y) , G1k(y x) Gk'(x y) .,, ., ti> ' = ti> , . (99) 

It should be pointed out that existence and uniqueness of these Green functions cannot 
be guaranteed in complete generality: this requires not only that M be globally hyper­
bolic but also that the linearized field equations should form a hyperbolic system. Here, 
we shall simply assume this to be the case and proceed from there; further comments 
on the question will be deferred to the end of the section. 

Our next step will be to study solutions OA<P of the general inhomogeneous Jacobi 
equation 

(100) 
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for smooth functionals A on covariant phase space which are (at least) local in time. 
To eliminate the ambiguity in this equation stemming from the fact that its rhs does 
not really belong to the image space of the Jacobi operator :1[¢,] but rather io a quotient 
space thereof (an inclusion of the form T.,,S cT4>e induces a natural projection from y;e 
to r;s), it is necessary to first of all extend the given functional A on Stoa functional 
A one of the same type (smooth and local in time), whose functional derivative oA/6¢, 
will be a one-form on e. Now performing a convolution with the retarded or advanced 
Green functions introduced above, we can construct formal vector fields over S which to 
each solution ¢, e S of the field equations associate (distributional) sections oi4> of v.,, 
defined by 

± .1: · [ n HI( ) oA [ ]( ) (101) oA.¢, (x) = }Md y GI/> x,y o¢,I 'P Y , 

satisfying the inhomogeneous Jacobi equation 

(102) 

Similarly, convolution with the causal Green function leads to a formal vector field 
over S which to each solution ¢, e S of the field equations associates a ( distributional) 
section o A¢, of v.,, defined by 

0,4.1/>"(x) = l d"y G~(x,y) :;[¢,](y), (103) 

satisfying the homogeneous Jacobi equation 

:J[ip](o ,4.¢,) = o , (104) 

since 

(105) 

Note !hat the convolutions in eqs (101) and (103) exist due to our support assumptions 
on oA/6¢, and to the support properties of the Green functions Gi and a.,,. 

According to eq. (104), the prescription of associating to each solution ¢, e S of the 
field equations the section o A.¢, of v.,, defines a formal vector field on S which is tangent 
to S. (It becomes more than just a formal vector field if A is such that o ,4.'P belongs to 
T;S , which requires it to be not just a distributional section but a smooth section of V,; 
and to satisfy appropriate support properties; we shall come back to this point later on.) 
The main statement about this formal vector field, to be proved below, is that (a) it 
does not depend on the choice of the extension J.. of A, so we may simply denote it 
by oA.¢,, and (b) that it is formally the Hamiltonian vector field associated to A with 
respect to the symplectic form n discussed in the previous subsection. More explicitly, 
we claim that for any solution ¢, e S of the field equations and any smooth section a¢, 
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of V, with spatially compact support which is a solution of the linearized field equations, 
we have 

(106) 

Note that under the assumptions stated, both sides of this equation make sense although 
we have originally defined n,(o¢,1, o<j,2) only in the case where both o<j,1 and o<f,2 are 
smooth; the extension of this definition, given in the previous subsection, to the case 
where one of them is a distribution is straightforward. 

To prove this key statement, let us begin by recalling that the symplectic form n 
and the symplectic current J of the previous subsection are really defined on e and not 
only on S - the only difference is that on e, n is only a presymplectic form so that J 
should be more appropriately called the presymplectic current and that J on e is no 
longer be conserved so that n on e will depend on the choice of the hypersurface E. 
At any rate, we can almost literally repeat the calculation performed at the end of the 
previous subsection, either in the Lagrangian or in the Hamiltonian formulation, to 
show that for any solution <j, e S of the field equations and any smooth section 0¢, of Vq, 
with spatially compact support, we have 

so that if 0¢, is a solution of the linearized field equations, 

(108) 

Now since, by assumption, the support of oA/E,<j, is contained in some time slice, we 
can choose two Cauchy surfaces I;_ to the past and E+ to the future of this time slice 
and, using that 6¢, has spatially compact support, integrate eq. (108) over the time 
slice s_ between E_ and E and similarly over the time slice S+ between E and E+. 
Applying Stokes' theorem, this gives 

h daµ(x) J;Wi_<l>,6¢)(x) = h_daµ(x) J;Wj_</J,o<f>)(x) + fs_dnx ~;[¢,](x) · 0¢,(x), 

{ daµ(x)J;(61</J, o<f,)(x) == { daµ(x)J;(o1<1>, 0¢,)(x) - { dnx ~~[<f,](x) · 0¢,(x) . J~ 1~+ ls+ ~ 

But the support conditions on G;, together with the fact that the support of (o.A/o<l>)[<I>] 
lies to the future of I;_ and to the past of .E+, imply that 6"j_<I> vanishes on E_ and 
similarly that 61¢ vanishes on E+, so the first term on the rhs of each of these equations 
is zero. Thus taking their difference and inserting eq. (105), we get 
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and since (&A/64>)[4>] vanishes outside S_ uS+, 

(109) 

Finally, observe that since 04> is supposed to be a solution of the linearized field equa­
tions (and hence tangent to S), the rhs of this equation does not depend on the choice 
of the extension A of A. Therefore, cS .A<P will not depend on this choice either provided 
the symplectic form n. is weakly non-degenerate. Now using the space--time split of M 
over E provided by the tangent vector field 8t of some global time function t on M 
or its dual dt, and identifying solutions O</J of the linearized field equations with their 
Cauchy data on :E,9 it can be seen by direct inspection, either of eqs (84) and (85) in 
the Lagrangian formalism or of eqs (90) and (91} in the Hamiltonian formalism, that 
the expression n.(64'1, 6¢2) can only be zero for all t5¢2 if tS</>1 vanishes, as soon as we 
require the Lagrangian L to be regular in time derivatives, that is, to satisfy 

(110) 

or equivalently, the Hamiltonian to be regular in timelike conjugate momenta, that is, 
to satisfy 

{J3H 
<let f}p~ opJ I o . (111) 

Moreover, it can be shown that this statement will remain true if 64,1 is allowed to be a 
distributional solution of the linearized field equations with arbitrary support, as long 
as 64'2 runs through the space of smooth solutions of the linearized field equations with 
spatially compact support. 

In other words, the previous construction does not apply directly to degenerate 
systems such as gauge theories: these require a separate treatment. 

Having established eq. (106), it is now easy to write down the Poisson bracket of 
two functionals A and B on S: it is, in complete analogy with eq. (73), given by 

(112) 

Inserting eq. (103) and omitting the tildes, we arrive at the main conclusion of this 
paper. 

9Explicitly, in the Lagrangian formalism, the Cauchy data for 6,p on Mare 6rp and 6ip on I:, whereas 
in the Hamiltonian formalli!m, the Cauchy data for (6,p,6,r) on Mare 6,p and 6n" on I:. 
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Theorem 3 The Poisson bracket associated with the symplectic form n on covariant 

phase space as defined by Crnkovic, Witten and Zuckerman, according to the standard 
prescription of symplectic geometry, suitably adapted to the infinite-dimensional setting 

encountered in this context, is precisely the field theoretical bracket first proposed by 
Peierls and brought into a more geometric form by De Witt : 

r r 5A 6B 
{A,B}[</>] = }M dnx }M dny 6¢,k[</>](x) a;1(x,y) 6¢,1[</>](y). (113) 

Of course, for the expressions in eqs (112) and (113) to exist, it is not sufficient to 
require A and/or B to be local in time. In fact, if we want to use conditions that 
(a) are sufficient to guarantee existence of this Poisson bracket without making use 
of specific regularity and support properties of the propagator, (b) are the same for 
A and B and (c) are reproduced under the Poisson bracket, we are forced to impose 
quite rigid assumptions: the functionals under consideration must be assumed to be 
both regular and local, in the sense that their functional derivative at any point ¢, of S 
must be a smooth section of Vl of compact support (this will force the corresponding 
Hamiltonian vector field to be a smooth section of V,p of spatially compact support). 

On the other hand, it must be pointed out that this Poisson bracket, which we might 
call the Peierls - De Witt bracket, has all the structural properties expected from a good 
Poisson bracket: bilinearity, antisymmetry, validity of the Jacobi identity and validity 
of the Leibniz rule with respect to plain and ordinary multiplication of functionals. 
This can be seen directly by noting that the first two properties and the Leibniz rule 
are obvious, while the Jacobi identity expresses the propagator identity for the causal 
Green function. But it is of course much simpler to argue that all these properties 

follow immediately from the above theorem, in combination with standard results of 
symplectic geometry. Moreover, the Peierls-De Witt bracket trivially satisfies the fun­
damental axiom of field theoretic locality: functionals localized in spacelike separated 
regions commute. All this suggests that the Peierls- De Witt bracket is the correct clas­
sical limit of the commutator of quantum field theory. Therefore, it ought to play an 
outstanding role in any attempt at quantizing classical field theories through algebraic 
methods, a popular example of which is deformation quantization. 

The basic complication inherent in the algebraic structure provided by the Peierls­
De Witt bracket is that it is inherently dynamical: the bracket between two functionals 
depends on the underlying dynamics. This could not be otherwise. In fact, it is the 
price to be paid for being able to extend the canonical commutation relations of classical 
field theory, representing a non-dynamical equal-time Poisson bracket, to a covariant 
Poisson bracket. The dynamical nature of covariant Poisson brackets is simplified (but 
still not trivial) for free field theories, where the equations of motion are linear, implying 
that the Jacobi operator 8[<1>] and its causal Green function G~ do not depend on the 
background solution <f>. 

Finally, we would like to remark that the main mathematical condition to be im­
posed in order for the constructions presented here to work is that lineariza.tion of the 
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field equations around any solution <I> should provide a hyperbolic system of partial 
differential equations on M, for which existence and uniqueness of the Green functions a: and G,t, can be guaranteed. There are various definitions of the concept of a hyper­
bolic system that can be found in the literature, but the most appropriate one seems 
to be that of regular hyperbolicity, .proposed by Christodoulou [27-29] in the context 
of Lagrangian systems, according to which the matrix 

,. ,, 82L 
'U u ---. aq~art 

should (in our sign convention for the metric tensor) be positive definite for timelike 
vectors u and negative definite for spacelike vectors 1.1: a typical example is provided 
by the sigma model 118 discussed at the beginning of this subsection. What is missing 
is to translate this condition into the Hamiltonian formalism and to compare it with 
other definitions of hyperbolicity for first order systems, such 118 the traditional one of 
Friedrichs. 

Summarizing the main result of this paper, we have shown that in the context 
of regular hyperbolic Lagrangian or covariant Hamiltonian field theories defined on 
a globally hyperbolic space-time, the Peierls-De Witt bracket is identical with the 
canonical Poisson bracket associated with the standard symplectic form on covariant 
phMe spa.ce. 

Appendix: Affine Spaces and Duality 

In this appendix, we collect some basic facts of linear algebra for affine spaces which 
are needed in this paper but which do not seem to be readily available in the literature. 

A (nonempty) set A is said to be an affine space modelled on a vector space V if 
there is given a map 

+ : AxV -+ A 
(a,v) I--+ a+v 

satisfying the following two conditions: 

• a+ (u + v) = (a+u) +v for all a EA and all u,v EV. 

• Given a, b E A, there exists a unique v E V such that a = b + v. 

(114) 

Elements of A are called points and elements of V are called vectors, so the map (114) 
can be viewed as a transitive and fixed point free action ofV (as an Abelian group) on A, 
associating to any point and any vector a new point called their sum. Correspondingly, 
the vector v whose uniqueness and existence is postulated in the second condition is 
often denoted by a - b and called the difference of the points a and b. 
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For every affine space A, the vector space on which it is modelled is determined 
uniquely up to isomorphism and will usually be denoted by A. 

A map / : A ➔ B between affine spaces A and B is said to be affine if there exists 
a point a E A such that the map 1: : .A ➔ B defined by 

(115) 

is linear, that is, 1: E L(A, B). It is easily seen that this condition does not depend on 
the choice of the reference point: in fact, if the map 1: is linear for some choice of a, 
then the maps 1:, are all equal as a' varies through A, so it makes sense to speak of 
the linear part f of an affine map /. Denoting the set of all affine maps from A to B 
by A(A, B), we thus have a projection 

l : A(A,B) 

f 
--t L(A,B) 
I-----+ I (116) 

This construction is particularly important in the special case where B is itself a vector 
space, rather than just an affine space. Given an affine space A and a vector space W, 
the set A(A, W) of affine maps from A to W is easily seen to be a vector space: in fact 
it is simply a linear subspace of the vector space Map(A, W) of all maps from A to W. 
Moreover, the projection 

l : A(A, W) --t L(A, W) 
f I-----+ f (117) 

is a linear map whose kernel consists of the constant maps from A to W. Identifying 
these with the elements of W itself, we obtain a natural isomorphism 

A(A, W)/W ~ L(A, W) , (118) 

or equivalently, an exact sequence of vector spaces, as follows: 

I ◄ 
0 --t W --t A(A, W) --t L(A, W) --t O . (119) 

In the general case, one shows that given two affine spaces A and B, the set A(A, B) of 
affine maps from A to B is again an affine space, such that A(A, B) = A(A, B), and 
that the projection (116) is an affine map. 

Concerning dimensions, we may choose a reference point o in A which provides not 
only an isomorphism between A and A but also a splitting of the exact sequence (119) 
and hence an isomorphism between A(A, W) and W a, L(A, W), to show that 

dim A(A, W) = dim W + dim L(A, W) . {120) 
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Choosing W to be the real line R, we obtain the affine dual A* of an affine space A: 

A* = A(A,R) . (121) 

Observe that this is not only an affine space but even a vector space which, according 
to eq. (119), is a one-dimensional extension of the linear dual A'• of the model space A 
by R, that is, we have the following exact sequence of vector spaces: 

I ~ 0 --t R --t A* --t A• --t O . (122) 

In particular, according to eq. (120), its dimension equals 1 plus the dimension of the 
original affine space: 

dim A* = dim A+ 1 . (123) 
More generally, we may replace the real line R by a (fixed but arbitrary) one-dimensional 
real vector space R (which is of course isomorphic but in general not canonically iso­
morphic to R) to define the twisted affine dual A• of an affine space A: 

A• = A(A,R). (124} 

Again, this is not only an affine space but even a vector space which, according to 
eq. (119), is a one-dimensional extension of the linear dual .J• of the model space A 
by R, that is, we have the following exact sequence of vector spaces: 

Obviously, the dimension is unchanged: 

dimA• = dimA+l. 

Moreover, we have the following canonical isomorphism of vector spaces 

A9 ~ A*©R, 

and more generally, for a.ny vector space W, 

A(A,W) ~ A*©W. 

(125} 

(126} 

(127} 

(128) 

Regarding the splittings of the exact sequence (125), we note the following £act which is 
used in the construction of the inverse Le~endre !ra.nsformation: these splittings form 
an affine space modelled on the bidua.l A•• of A, which in finite dimensions can be 
identified with A itself. 

The concept of duality applies not only to spaces but also to maps between spaces: 
given a.n affine ma.p / : A ➔ B between affine spaces A a.nd B, the formula 

(r(b*))(a) = b*(/(a)) 
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yields a linear map f* : B* ➔ A* between their affine duals B" and A*. NJ a result, the 
operation of taking the affine dual can be regarded as a ( contra variant) functor from the 
category of affine spaces to the category of vector spaces. This functor is compatible 
with the usual (contravariant) functor of taking linear duals within the category of 
vector spaces in the sense that the following diagram commutes: 

B* ~ A* 

(130) 

Finally, we also need the construction of quotients in the affine category. These are 
defined by dividing out not affine subspaces but rather linear subspaces of the model 
space. In fact, given an affine space A and a linear subspace V of its model space A, we 
can declare two points a and a' of A to be equivalent modulo V if a-a' EV. Obviously, 
this relation is reflexive, symmetric and transitive, and hence is an equivalence relation 
dividing A into equivalence classes; the set of equivalence classes is as usual denoted 
by A/V. It is then easy to see that there is a unique affine structure on A/V turning 

--+ -A/V into an affine space such that A/V = A/V and such that the natural projection 

p : A ---+ A/V 
a o-t [a] (131) 

is an affine map. Moreover, this construction satisfies the standard factorization prop­
erty: given two affine spaces A and B, two linear subspaces V of A and W of Band an 
affine map f : A -+ B whose linear part j: A -+ B maps V into W, there exists a 
unique affine map [/] : A/V -+ B /W such that the diagram 

f 
A -+ B 

(132) 

(/] 
A/V ---+ B/W 

commutes. 

Concluding this appendix, we would like to point out that all the concepts intro­
duced above can be extended naturally from the purely algebraic setting to that of 
fiber bundles. For example, affine bundles are fiber bundles modelled on an affine space 
whose transition functions (with respect to a suitably chosen atlas) are affine maps. 
Moreover, functors such as the affine dual or the construction of quotients are smooth 
(see (30] for a definition of the concept of smooth functors in a similar context) and 
therefore extend naturally to bundles (over a fixed base manifold M). This means that 
any affine bundle A over M has a naturally affine dual, which is a vector bun1le A* 
over M, and that given any vector subbundle V of the difference vector bundle A of an 
affine bundle A over M, we can form the quotient affine bundle A/V over M. 
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