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In recent years, the reassessment of quantum physical phenomena under the framework of resource theories
has triggered the design of novel quantum technologies that take advantage from quantum resources, such as
entanglement and quantum coherence. Bearing this in mind, in this work we study the dynamics of quantum
resources for two solid-state fermionic quantum devices: (i) a system composed by a pair of Majorana fermions
and (ii) another comprising a pair of regular fermions. In both systems, the fermionic species are coupled to a
single-level quantum dot. From the interaction of these tripartite systems with a dissipative reservoir, we were
able to characterize the dynamics of the devices for some initial states. By employing a time-nonlocal master-
equation approach, we obtain the evolution for fermionic occupations, quantum correlations, and quantum
coherences in both the Markovian and non-Markovian dissipating regimes. We investigate the interconversion
of local coherence and bipartite correlations for the marginal states in each device. While the dynamics of the
entanglement and quantum coherence depend quite strongly on the temperature of the reservoir for regular
fermions, we found these evolutions are qualitatively similar for the case of Majorana bound states regardless of
temperature. Our results illustrate the use of quantum information-theoretic measures to characterize the role of
quantum resources in fermion systems.
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I. INTRODUCTION

Quantum information science has paved the way for a
comprehensive understanding of quantum phenomena as re-
sources, which in turn may be consumed to perform tasks
that are typically not possible otherwise [1]. This is the case
of entanglement and quantum coherence, both concepts be-
ing rigorously formulated under the framework of resource
theories [2–6]. Indeed, the former is an essential resource
to enhance precision of phase estimation tasks in quantum
metrology [7], also useful for quantum key distribution [8,9],
while the later finds applications in quantum optics [10],
quantum thermodynamics [11], and many-body physics [12].
Due to such characteristics, electronic and spin states have
emerged as very promising platforms to design high-sensitive
devices with applicability from materials science to biochem-
istry [13–19]. Hence designing physical systems that take
advantage from quantum resources in a controllable fashion
becomes imperative.

The ubiquitous idea proposed by Majorana [20] regarding
particles that constitutes their own antiparticles, nowadays
called Majorana fermions, opened new avenues in several
areas of physics, including quantum computation [21–27].
Unlike ordinary Dirac fermions such as electrons and protons,
i.e., spin-1/2 charged particles described by complex fields,
Majorana fermions are spin-1/2 neutral particles whose real
field equations remains invariant to charge conjugation sym-
metry [28]. Over the past 80 years, probing the signature of
Majorana fermions still remains an experimental challenge for
the high-energy physics community. Quite recently, Majorana

fermions has been predicted as zero-mode quasiparticle ex-
citations in quantum many-body systems and its signatures
experimentally observed in some solid-state setups [29–41].
Indeed, Majorana fermions play an important role as quasi-
particle excitation in prototypical models for fault-tolerant
topological quantum computation [21], possibly manipulated
in topological superconductors [32], or fractional quantum
Hall systems [42], thermally induced topological phase transi-
tions [43–48], and even in driven dissipative devices [49,50].
Noteworthy, the interest in Majorana fermions relies on their
exotic properties, such as non-Abelian statistics, thus differing
quite radically from the original conventional electrons that
condense into the superconducting state [51]. Despite the
intense debate regarding some experimental results in recent
years, the hope for realizing quantum devices based on Majo-
rana fermions is still alive [52,53].

Motivated by the potential applicability of Majorana
fermions (MFs), in this work we study the dynamics of two
fermionic systems, one composed of MFs and the other com-
prising regular fermions (RFs). Both systems are mediated by
a quantum dot (QD) in an experimentally feasible solid-state
setup [41,54]. From an open quantum dynamics approach, we
investigate the behavior of the quantum resources of these
fermionic systems combined to the QD, i.e., quantum co-
herence and entanglement, thus showing these quantities are
somehow correlated. By considering initial states with dif-
ferent fermionic occupations, the results show the two-body
marginal states of each system exhibit nonzero values of
concurrence and quantum coherences during the nonunitary
dynamics. Moreover, the time evolution of such quantum
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resources behaves quite distinctly when the QD is coupled
to MFs as compared to the case in which it is coupled to
RFs. While in the former configuration the quantum resources
evolve quite similarly regardless of temperature, in the latter
they are rather distinct.

We find that quantum coherence and entanglement co-
incide for the case of the dynamics of regular fermions at
zero temperature, for most of the initial states that have been
considered. Our results indicate that quantum coherence can
be consumed and converted into entanglement and vice versa.
This interconversion process can occur for both the systems
of Majorana fermions and regular fermions, at zero and fi-
nite temperatures. In detail, the local coherence (correlations)
is consumed and partially transformed into local bipartite
correlations (quantum coherence) in the system formed by
MFs + QD, RFs + QD, and MFs + RFs.

The paper is organized as follows. In Sec. II, we introduce
the details of the physical models. In Sec. III, we describe
the open system dynamics due to the coupling of the physi-
cal models with a dissipative environment. Such environment
depends on the ohmicity parameter in a way that we can set
both the Markovian and non-Markovian regimes. In Sec. IV,
we analyze the dynamics of entanglement and quantum co-
herences in the system of MFs + QD and RFs + QD under the
influence of the environment in both regimes, at zero and finite
temperatures. In Sec. IV A, we present numerical analysis of
occupations for a separable initial state with single-fermion
occupation. In Sec. IV B, we discuss the dynamics of concur-
rence and �1 norm of coherence for entangled initial states
with single-fermion and two-fermion occupations. Focusing
on the system of MFs + QD, we discuss in Sec. V the role
of nonlocality of the Majorana bound states in the dynamics
of occupations and quantum resources. Finally, in Sec. VI we
summarize our conclusions.

II. MODEL

In this section we will investigate the spectral properties
of the two different models depicted in Fig. 1: the first one
consists of nonlocal Majorana bound states, while the second
comprises canonical regular fermions. In both systems, the
two fermionic species couples to a single level quantum dot
(QD). Throughout this work we assume a system of spinless
fermions, which can be experimentally realized by applying a
strong magnetic field. In fact, spinless fermion is an impor-
tant condition for the emergence of Majorana bound states
in topological superconductors [30,31,42]. Unless otherwise
stated, the coupling to the reservoir is turned off and thus both
MFs + QD and RFs + QD setups can be understood as closed
quantum systems. The open quantum system scenario will be
investigated in Sec. III.

A. Majorana fermions

For the case of Majorana fermions, we consider two wires
with finite length L, supporting Majorana modes in their ends.
Figure 1(a) depicts this physical setting. In our system, the
Majorana modes emerge at the edges of the pair of nanowires
disposed in a serial geometric arrangement. We assume that
the superconducting wires are far apart from each other, both

FIG. 1. Schematic representation of the physical setups dis-
cussed in the paper. In the upper panel (a), the nonlocal Majorana
fermions appear as edge modes in the ends of two nanowires of
length L. The pair of MFs γB1 and γB2 are coupled to a single-level
quantum dot (QD), with λ1 and λ2 being the coupling parameters
of the QD to its jth neighboring MFs. The QD interacts with a
fermionic reservoir at finite temperature. The lower panel (b) depicts
the system of two electronic f orbitals, i.e., regular fermions, which
in turn hybridizes with the electronic orbitals of the quantum dot by
means of coupling constants λ1 and λ2. The system of RFs + QD is
allowed to interact to a bath of free fermions, thus modeling an open
quantum system.

of them in the topological regime. This proposed structure is
similar to the setup experimentally realized using InAs/InP
heterostructures in Ref. [41]. Here we assume that both the
source and drain wire segments are covered by supercondu-
tors, allowing for topological superconductivity in both sides
of the system. Because for finite length of the wires, we shall
expect a nonzero overlap between the two MF wave functions
at the ends of each nanowire. Within this geometry, we neglect
direct overlap of leftmost and rightmost wave functions. The
Hamiltonian of the paired Majorana fermions is given by

HMF = i

2

∑
j=1,2

ε j γAj γBj , (1)

where γAj ,Bj are the two MF operators satisfying the Clifford
algebra {γXj , γYl } = 2 δX,Y δ j,l and ε j ∼ e−L/ξ j stands for the
hybridization between each pair of MF edge modes due to
the overlap of their wave functions, with ξ j being the effective
coherence length [55]. Importantly, the coupling energy ε j de-
creases exponentially with the length L of the nanowires, thus
vanishing in the case of L � ξ j . Furthermore, the MF pair
becomes equivalent to a single zero-energy regular fermion
(RF) in the asymptotic regime L → ∞. Next, we will consider
the single level noninteracting quantum dot (QD) modeled by
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the Hamiltonian

HQD = εd n̂d , (2)

where εd is the energy of the QD and n̂d = d†d is the electron
number operator, while d (d†) is the electron annihilation
(creation) operator. The MF modes γB1 and γB2 in each wire
leak into the QD and modify its electronic properties [56].
The coupling between the QD and the pair of Majorana edge
modes γB1 and γB2 is described by the tunneling Hamiltonian

HMD =
∑
j=1,2

λ j (d
† − d ) γB j, (3)

where the real parameters {λ j} j=1,2 characterize the coupling
of the QD to its jth neighboring MFs.

Remarkably, MF operators can be mapped onto RF cre-
ation and annihilation operators as γAj = i( f j − f †

j ) and γBj =
f j + f †

j , where f j ( f †
j ) is the RF annihilation (creation) opera-

tor fulfilling the anticommutation relations { f j, f †
l } = δ jl and

{ f j, fl} = { f †
j , f †

l } = 0. Noteworthy, RFs are nonlocal in the
sense that they are composed by Majorana modes living far
apart from each other. Next, it can be readily shown that the
Hamiltonian of paired MFs in Eq. (1) can be recast as

HMF =
∑
j=1,2

ε j

(
n̂ j − 1

2

)
, (4)

where n̂ j = f †
j f j is the RF number operator. Similarly, the

Hamiltonian in Eq. (3) which models the QD-MF coupling
is rewritten as

HMD =
∑
j=1,2

λ j (d
† f j + f †

j d + d† f †
j + f jd ). (5)

Finally, combining Eqs. (2), (4), and (5), the total Hamiltonian
of the system reads

HM = εd n̂d +
∑
j=1,2

ε j

(
n̂ j − 1

2

)

+
∑
j=1,2

λ j (d
† f j + d† f †

j + H.c.). (6)

B. Regular fermions

For the system composed of regular fermions, we assume
the QD is coupled to two other electron orbitals as depicted
in Fig. 1(b). These orbitals could be thought of as two other
quantum dots. For the sake of clarity, we will continue using
the same notation of { f j} j=1,2 operators for these orbitals. In
this case, the Hamiltonian of the system is written as

HR = εd n̂d +
∑
j=1,2

ε j

(
n̂ j − 1

2

)
+

∑
j=1,2

λ j (d
† f j + f †

j d ), (7)

where the first term describes the QD, the second describes the
electron orbitals, and the third accounts for the hybridization
between the QD and the f orbitals. Similar to the previous
case, here we have n̂d = d†d and n̂ j = f †

j f j for j = {1, 2}.
Note that, for convenience, the energy of the f orbitals is
shifted by the constant value (−1/2)

∑
j=1,2ε j , which does not

change the dynamics of the quantum states.

C. Generalized Hamiltonian

Next, we will present a generalized Hamiltonian that en-
compasses both MF and RF systems. From Eqs. (6) and (7) we
see that, apart from the terms d† f †

j + f j d inherited from the
tunnel coupling of the QD and MFs, both Hamiltonians have
the same form. It is therefore convenient to define a generic
Hamiltonian that comprises both MF and RF systems as

HM,R = εd n̂d +
2∑

j=1

ε j

(
n̂ j − 1

2

)

+
∑
j=1,2

(λ j d† f j + λ̃ j d† f †
j + H.c.). (8)

In particular, the Hamiltonian describing the MF system [see
Eq. (6)] is recovered by choosing λ̃ j = λ j , while one model-
ing the RF system [see Eq. (7)] is obtained by setting λ̃ j = 0.

In the following we discuss the matrix representation
of the generalized Hamiltonian with respect to the basis
{|n1, n2, nd〉}, where the index n1,2,d = {0, 1} assigns the oc-
cupation number in the single-particle states created with the
operators f †

1 , f †
2 , and d† acting on the vacuum state |0̃〉 ≡

|01, 02, 0d〉. To study in detail the Hamiltonian in Eq. (8), we
fix the basis ordering {|0̃〉, f †

1 d†|0̃〉, f †
2 d†|0̃〉, f †

1 f †
2 |0̃〉, d†|0̃〉,

f †
1 |0̃〉, f †

2 |0̃〉, f †
1 f †

2 d†|0̃〉}. Note that the first four states are
eigenvectors of the operator N̂ = n̂1 + n̂2 + n̂d with even
eigenvalues, while for the last four states the eigenvalues
are odd. We see that all processes described by the generic
Hamiltonian either conserve the number of particles (for the
RF system) or change it by two particles (for the MF system).
With respect to this basis, the Hamiltonian in Eq. (8) takes the
form

H = 1
2 (I + σz ) ⊗H0 + 1

2 (I − σz ) ⊗H1, (9)

where I is the 2 × 2 identity matrix and σz is the Pauli matrix,
with the Hermitian blocks

H0 =

⎡
⎢⎢⎣

−ε+ −λ̃1 −λ̃2 0
−λ̃1 εd + ε− 0 λ2

−λ̃2 0 εd − ε− −λ1

0 λ2 −λ1 ε+

⎤
⎥⎥⎦ (10)

and

H1 =

⎡
⎢⎢⎣

εd − ε+ λ1 λ2 0
λ1 ε− 0 −λ̃2

λ2 0 −ε− λ̃1

0 −λ̃2 λ̃1 εd + ε+

⎤
⎥⎥⎦, (11)

where we have defined ε± = (ε1 ± ε2)/2.
Next, we will discuss the spectral properties of the Hamil-

tonian in Eq. (9) for the case of MFs and RFs. For simplicity,
from now on we will focus on the particular case of ε1 = ε2 =
ε, which implies ε− = 0 and ε+ = ε. For the system of MFs,
we set λ̃ j = λ j in Eqs. (10) and (11). The set of eigenstates
{|Ej〉} j=1,...,8 and energies {Ej} j=1,...,8 of the Hamiltonian for
MFs are listed in Table I. It is worth of mentioning that E1

corresponds to the ground state of the system. Importantly,
the set of states {|Ej〉} j=1,...,4 exhibits even parity respective
to the occupation number, while the set {|Ej〉} j=5,...,8 be-
longs to the odd parity sector. Particularly, for the asymptotic
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TABLE I. Eigenvectors and eigenvalues of the Hamiltonian in
Eq. (9) for the case of Majorana fermions (̃λ j = λ j). Here we have
defined the parameters ξ± = (εd ± ε)/2 and 	± = √

ξ 2± + λ2
1 + λ2

2,
while b−1

μν = √
2	μ(	μ + νξμ) and cμν = (ξμ + ν	μ)bμν , with

μ, ν = {+, −}.

Eigenstate Energy

|E1〉 = (b++(λ2 f †
2 + λ1 f †

1 )d† + c++)|0̃〉 E1 = ξ− − 	+
|E2〉 = (b−−(λ1 f †

1 + λ2 f †
2 ) + c−−d†)|0̃〉 E2 = ξ− − 	−

|E3〉 = (b+−(λ1 f †
2 − λ2 f †

1 ) + c+− f †
1 f †

2 d†)|0̃〉 E3 = ξ+ − 	+
|E4〉 = (b−+(λ1 f †

2 − λ2 f †
1 )d† + c−+ f †

1 f †
2 )|0̃〉 E4 = ξ+ − 	−

|E5〉 = (b−+(λ2 f †
2 + λ1 f †

1 ) + c−+d†)|0̃〉 E5 = ξ− + 	−
|E6〉 = (b+−(λ1 f †

1 + λ2 f †
2 )d† + c+−)|0̃〉 E6 = ξ− + 	+

|E7〉 = (b−−(λ2 f †
1 − λ1 f †

2 )d† − c−− f †
1 f †

2 )|0̃〉 E7 = ξ+ + 	−
|E8〉 = (b++(λ1 f †

2 − λ2 f †
1 ) + c++ f †

1 f †
2 d†)|0̃〉 E8 = ξ+ + 	+

case L � ξ1,2 in which the MF energies become negligible,
i.e., ε1 = ε2 = ε ≈ 0, we thus have that ξ+ = ξ− = εd/2. As
a consequence, the energy spectrum will collapse into the

two energy levels εd/2 ±
√

(εd/2)2 + λ2
1 + λ2

2 with fourfold
degeneracy.

For the system of RFs we set the parameter λ̃ j = 0 into
Eq. (9). On the one hand, from Eq. (10) it follows that
H0 exhibits a one-dimensional matrix block corresponding
to the occupation quantum number N = 0 and also a three-
dimensional block respective to N = 2. On the other hand,
H1 in Eq. (11) presents a three-dimensional matrix block
regarding N = 1 and a one-dimensional block for the N = 3
parity sector. The set of eigenstates {|Ej〉} j=1,...,8 and energies
{Ej} j=1,...,8 of the Hamiltonian for RFs are listed in Table II.

III. DYNAMICS OF THE OPEN QUANTUM SYSTEM

In this section we will describe the dynamics of both the
systems of MFs + QD and RFs + QD undergoing the dissipa-
tive effects from the coupling to a fermionic reservoir B that
is initialized at the equilibrium state (see Fig. 1 for details).

TABLE II. Eigenstates and energies of the Hamiltonian in Eq. (9)
for the case of regular fermions (̃λ j = 0). Here we have defined the
parameters ξ± = (εd ± ε)/2 and 	± = √

ξ 2± + λ2
1 + λ2

2, while b−1
μν =√

2	μ(	μ + νξμ) and cμν = (ξμ + ν	μ)bμν , with μ, ν = {+, −}.

Eigenstate Energy

|E1〉 = |0̃〉 E1 = −ε

|E2〉 = 1√
λ2

1+λ2
2

(λ1 f †
2 − λ2 f †

1 )|0̃〉 E2 = 0

|E3〉 = 1√
λ2

1+λ2
2

(λ1 f †
1 + λ2 f †

2 )d†|0̃〉 E3 = εd

|E4〉 = f †
1 f †

2 d†|0̃〉 E4 = εd + ε

|E5〉 = (b−−(λ1 f †
1 + λ2 f †

2 ) + c−−d†)|0̃〉 E5 = ξ− − 	−
|E6〉 = (b−+(λ1 f †

2 − λ2 f †
1 )d† + c−+ f †

1 f †
2 )|0̃〉 E6 = ξ+ − 	−

|E7〉 = (b−+(λ1 f †
1 + λ2 f †

2 ) + c−+d†)|0̃〉 E7 = ξ− + 	−
|E8〉 = (b−−(λ2 f †

1 − λ1 f †
2 )d† − c−− f †

1 f †
2 )|0̃〉 E8 = ξ+ + 	−

To do so, we set HS = HM,R as the generalized Hamiltonian
of the systems [see Eq. (8)], which recovers either the Hamil-
tonian of MFs + QD [see Eq. (6)] or RFs + QD [see Eq. (7)]
depending on adjustment of the physical parameters. The QD
is weakly coupled to an environment of free fermions at fi-
nite temperature, with Hamiltonian HB = ∑

k εkc†
kck , where

c†
k (ck) is the creation (annihilation) operator respective to

the kth fermionic mode, while εk is the energy [57,58]. The
interaction between the system and the bath is described by
the Hamiltonian HI = ∑

k gk (d†ck + dc†
k ), where gk is the

coupling strength. Hence the Hamiltonian of the joint system
reads H := HS + HB + HI .

A. Density-matrix formalism

To obtain the dynamics of the physical quantities of the
system, we employ the well-known density-matrix formalism,
within which the dynamics of the system can be obtained
by tracing out the environmental degrees of freedom. The
resulting quantum master equation can be written as [59,60]

dρS (t )

dt
= −i[HS, ρS (t )] +

∫ t

0
dτ α+(t − τ )

× [(Vτ−t d†)ρS (t ), d]

+
∫ t

0
dτ α−(t − τ )[(Vτ−t d ) ρS (t ), d†]

+ H.c., (12)

in which Vτ−t• = ei(τ−t )HS • e−i(τ−t )HS , and the correlation
functions read

α+(t ) =
∫ ∞

0
dω J (ω)NF (ω)eiωt (13)

and

α−(t ) =
∫ ∞

0
dω J (ω)[NF (ω) + 1]e−iωt . (14)

Here, NF (ω) = [exp(βω) + 1]−1 is the Fermi-Dirac distribu-
tion describing the fermionic reservoir at a given temperature
T = (kBβ )−1 and J (ω) = g2(ω) |∂ω(k)/∂k|−1 is the spectral
density of the environment, in which g(ω) is the density of
states of the bath. Hereafter we set Boltzmann’s and Planck’s
constants to the unity, i.e., kB = h̄ = 1. Furthermore, we have
implicitly assumed the chemical potential of the bath to be
zero. The behavior of the system can be described by con-
sidering an accurate model for the spectral density at low
frequencies. From now on we will focus on the effect of a
generic bath on the system as described by the spectral density
[61–63]

J (ω) = γ ωs ω1−s
c e−ω/ωc , (15)

for all s > 0, where γ is the coupling strength of the sys-
tem and the environment. The environment can be classified
as subohmic (0 < s < 1), ohmic (s = 1), and superohmic
(s > 1) [61–63]. The exponential factor in Eq. (15) provides
a smooth cutoff for the spectral density, which is modulated
by the frequency ωc. The frequency ωc describes the decaying
time scale of the environment as τc ∼ ω−1

c . The Markov limit
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FIG. 2. Spectral density J (ω) for s = 1 (ohmic case), coupling
strength γ = 0.05, and cutoff frequencies ωc = 10 (red solid line),
ωc = 30 (blue dashed line), and ωc = 50 (black dotted line).

would correspond to the case τc � 1/�, i.e., when the corre-
lation time τc is much smaller than the typical dissipation time
scale of the system given by � ∼ ∫ ∞

0 dx α−(t − x). In Fig. 2,
we show the spectral density J (ω) in the ohmic case s = 1,
for ωc = 10 (non-Markovian) and ωc = 50 (Markovian), also
setting γ = 0.05. Generically speaking, the larger ωc the more
Markovian is the dynamics of the system.

To solve the master equation, one may recast the
marginal state ρS (t ) in terms of the occupation number basis
{|n1, n2, nd〉} as

ρS (t ) =
∑
k,m

Ak1, k2, kd
m1, m2, md

(t ) |k1, k2, kd〉〈m1, m2, md |, (16)

where k = (k1, k2, kd ), m = (m1, m2, md ), with k j = {0, 1},
and mj = {0, 1} for j = {1, 2, d}, while

Ak1, k2, kd
m1, m2, md

(t ) = 〈k1, k2, kd |ρS (t )|m1, m2, md〉. (17)

Plugging Eq. (17) into Eq. (12), we obtain a set of cou-
pled differential equations for the time-dependent coefficients
{Ak1, k2, kd

m1, m2, md
(t )}k,m, whose solution fully characterizes the re-

duced density matrix ρS (t ), for a given initial state ρS (0) of the
system. We refer to the Appendix for details on simplifying
the master equation.

The density matrix ρS (t ) stores information about the evo-
lution of the system. The solution of the master equation in
Eq. (12), also using Eq. (16), allows us to study the occupation
numbers {〈n̂μ〉}μ=1,2,d of the QD and the two fermions, which
can be written as

〈n̂μ〉 =
∑

n1, n2, nd

nμ An1, n2, nd
n1, n2, nd

(t ), (18)

where n̂d = d†d , n̂1 = f †
1 f1, and n̂2 = f †

2 f2 are the fermion
number operators.

B. Entanglement and quantum coherences

Here we will introduce the minimal theoretic framework
to study the role of entanglement and quantum coherences in
both the systems of MFs and RFs, with respect to the two-

body reduced states

ρ jl (t ) =
∑
k j , kl

∑
mj , ml

A
kj , kl
mj , ml (t ) |k j, kl〉〈mj, ml |, (19)

with j, l = {1, 2, d} and j 
= l , k j = {0, 1}, and mj = {0, 1},
where

A
kj , kl
mj , ml (t ) =

∑
ky: y 
= j 
=l

Ak1, k2, kd
m1, m2, kd

(t ). (20)

For our purposes, we address quantum correlations according
to the concurrence, a bipartite entanglement quantifier [64],
while for quantum coherences our analysis is based on the so-
called �1 norm of coherence [65]. The concurrence is defined
as [66,67]

Conc[ρ] = max(0,�1 − �2 − �3 − �4), (21)

where {� j} j=1,...,4 are the eigenvalues in decreasing order of
the matrix

R[ρ] :=
√√

ρ (σy ⊗ σy)ρ∗(σy ⊗ σy)
√

ρ. (22)

Opposite to entanglement, quantum coherence is a basis de-
pendent quantity, and thus its formulation requires one to fix
some preferred basis states. Hereafter we will adopt the ref-
erence basis {|n1, n2〉, |n1, nd〉, |n2, nd〉}, with n j = {0, 1} for
j = {1, 2, d}. To characterize the quantum coherence stored
in the marginal states in Eq. (19), we consider the so-called �1

norm of coherence, i.e., a monotonic distance-based quantifier
of coherence written as [68]

C�1 [ρ jl (t )] =
∑

j 
=l; n jl 
=k jl

|〈k j, kl | ρ jl (t )|n j, nl〉|, (23)

where n jl := (n j, nl ) and k jl := (k j, kl ), with n j = {0, 1} and
k j = {0, 1}, for j, l = {1, 2, d}. In what follows, we present
our numerical results obtained from the equations presented
above.

IV. NUMERICAL RESULTS

To obtain our numerical results we set the coupling
strength γ = 0.05, λ2 = 2λ1 = 0.2, and εd = 0.5. Bearing in
mind that the chemical potential of the bath is zero, this fixed
value of εd serves as an energy reference for our calculations.
Otherwise stated, we will also use ε = 0.5. Moreover, we will
assume an ohmic bath characterized by s = 1. Our analysis
will consider either Markovian or non-Markovian baths, for
which we use ωc = 10 and ωc = 50, respectively. The results
will also be shown for zero temperature (T = 0) and finite
temperature (β = 1). We will consider initial states within the
Hilbert subspace of the system characterized by occupation
N = 1 (odd) and N = 2 (even).

A. Dynamics of occupations of the single-fermion initial state

As we have discussed already, we are mainly interested in
the dynamics of quantum coherences and correlations. Before
doing so, we will briefly discuss how the occupations evolve
in time for a simple case of N = 1. For this, we consider the
initial state ρS (0) = |1̃〉〈1̃|, with |1̃〉 = d†|0̃〉 representing the
nonzero fermionic occupation in the QD at time t = 0.
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FIG. 3. Populations of the subsystem of MFs + QD (black solid
line) and RFs + QD (red dotted line), where 〈•〉 = Tr[• ρS (t )], with
ρS (t ) being the reduced density matrix obtained from the master
equation in Eq. (12). The system of MFs + QD (RFs + QD) is ini-
tialized at the state ρS (0) = |1̃〉〈1̃|, with |1̃〉 = d†|0̃〉, and coupled to
a fermionic reservoir at zero temperature (T = 0). Here we set the
coupling strength γ = 0.05, s = 1, and cutoff frequencies ωc = 10,
non-Markovian regime (left panels), and ωc = 50, Markovian regime
(right panels).

The dynamics of the populations 〈 f †
1 f1〉, 〈 f †

2 f2〉, and 〈d†d〉
in both MFs + QD (black solid line) and RFs + QD (red
dotted line) setups are shown in Figs. 3 (T = 0) and 4
(β = 1). Left and right panels refer to cutoff frequencies ωc =
10 (non-Markovian) and ωc = 50 (Markovian), respectively.
For T = 0, the non-Markovian dynamics (ωc = 10) of the
average occupation 〈d†d〉 of the QD decreases and exhibits
damped oscillations in both the systems of RFs + QD and
MFs + QD, going to zero in the former case, while the latter
reaches a nonzero stationary value [see Fig. 3(a)]. The long-
time behavior of the occupation vanishes for the RFs + QD
system because all the levels are above the chemical potential
of the system, in which case the fermion leaks into the bath.
In contrast, the occupations 〈 f †

j f j〉 will grow and oscillate
with damped amplitudes, thus approaching a stationary value
which is asymptotically zero for RFs and nonzero for MFs
[see Figs. 3(c) and 3(e)]. Here, the finite occupation of the

FIG. 4. Populations of the subsystem of MFs + QD (black solid
line) and RFs + QD (red dotted line), where 〈•〉 = Tr[• ρS (t )], with
ρS (t ) being the reduced density matrix obtained from the master
equation in Eq. (12). The system of MFs + QD (RFs + QD) is
initialized at the pure state ρS (0) = |1̃〉〈1̃|, with |1̃〉 = d†|0̃〉, and
coupled to a fermionic reservoir at finite temperature (β = 1). Here
we set the coupling strength γ = 0.05, s = 1, and cutoff frequencies
ωc = 10, non-Markovian regime (left panels), and ωc = 50, Marko-
vian regime (right panels).

MFs in the long-time regime results from the terms propor-
tional to λ̃ j in the Hamiltonian [see Eq. (8)] acting as a source
of charge for the system.

At finite temperature (β = 1), the occupations will behave
quite similarly to the case of zero temperature, except that
populations of the QD and both fermions will asymptotically
converge to nonzero values at later times of the dynamics
[see Figs. 4(a), 4(c), and 4(e)]. Here, the occupation is mainly
provided by thermal excitation, since T = 1 is of the order of
the energy of the levels ε = εd = 0.5 in this case.

In the Markovian dynamics of the occupations (ωc = 50)
shown in the right panels of Figs. 3 and 4, the population of the
QD decreases quite smoothly vanishing at large t for zero tem-
perature [see Fig. 3(b)], while it reaches a stationary nonzero
value for finite temperature (β = 1) [Fig. 4(b)]. Interestingly,
the occupation of the QD for both the systems of MFs and
RFs show similar behaviors, with a negligible difference. This
is because the temperature used is large enough to smooth
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FIG. 5. Comparison between concurrence (black solid line) and �1 norm of coherence (red dashed line) for the non-Markovian dynamics
(ωc = 10) of MFs and RFs. Panels (a), (b), (e), (f), (i), and (j) refer to the case of zero temperature (T = 0), while panels (c), (d), (g), (h), (k),
and (l) show the curves for the bath at finite temperature (β = 1). Here we choose the initial state of the system MFs + QD (RFs + QD) given
by ρS (0) = |1̃〉〈1̃|, with |1̃〉 = d†|0̃〉, and γ = 0.05, s = 1, ε = 0.5, εd = 0.5, and λ2 = 2λ1 = 0.2.

out any effect of the nonconserving term of the Hamiltonian
into the QD occupation. Moreover, the occupations 〈 f †

1 f1〉 and
〈 f †

2 f2〉 exhibit nonzero values that increase and reach station-
ary values for a wide time window in the system of MFs,
for both temperatures [see Figs. 3(d), 3(f), 4(d), and 4(f)].
However, the occupations of RFs increase initially, but invert
this behavior vanishing eventually at later time for T = 0
[see Figs. 3(d) and 3(f)]. At finite temperature (β = 1) these
occupations saturate at a nonzero value for longer times [see
Figs. 4(d) and 4(f)]. The insets clearly show fluctuations in
the amplitudes of the fermionic occupations at earlier times,
which in turn are smoothly suppressed as t increases.

B. Dynamics of coherence and correlations

Let us now turn our attention to the numerical analysis
for entanglement and quantum coherence for some paradig-
matic initial pure states for the systems of MFs + QD and
RFs + QD. Overall, such probe states are representative in
the context of quantum information science, with applica-
tions ranging from quantum metrology [69,70] to quantum

communication [71]. These input states store a given amount
of coherence and entanglement, i.e., quantum resources that
would be sensitive to the dissipative effects from the coupling
between the system MFs + QD (RFs + QD) and the reservoir.
Here we will address the robustness of quantum resources
for the set of initial states and the interconvertibility of the
quantum resources, i.e., verify the conditions where quantum
coherence can be consumed and converted into entanglement,
and vice versa, under the open quantum dynamics. This is
somehow related to the concept of genuine and distributed
correlated coherence, which in turn witnesses the amount of
quantum coherence that is contained within the correlations of
the tripartite system [72,73].

1. Single-fermion initial state

a. Separable initial state. Similar to the previous section,
here we consider the initial state ρS (0) = |1̃〉〈1̃|, with |1̃〉 =
d†|0̃〉. Importantly, this initial state is completely uncorrelated,
and also incoherent with respect to the reference basis of states
{|n1, n2, nd〉}. In Figs. 5 and 6, we compare the concurrence
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FIG. 6. Comparison between concurrence (black solid line) and �1 norm of coherence (red dashed line) for the Markovian dynamics
(ωc = 50) of MFs and RFs. Panels (a), (b), (e), (f), (i), and (j) refer to the case of zero temperature (T = 0), while panels (c), (d), (g), (h), (k),
and (l) show the curves for the bath at finite temperature (β = 1). Here we choose the initial state of the system MFs + QD (RFs + QD) given
by ρS (0) = |1̃〉〈1̃|, with |1̃〉 = d†|0̃〉, and γ = 0.05, s = 1, ε = 0.5, εd = 0.5, and λ2 = 2λ1 = 0.2.

and the �1 norm of coherence in both the systems MFs + QD
and RFs + QD, for cutoff frequencies ωc = 10 and ωc = 50,
respectively.

In Fig. 5, note that the reduced density matrix ρ12(t ) [see
Eq. (19)] exhibits nonzero values for concurrence and �1 norm
of coherence, which in turn coincide in both systems of MFs
and RFs, regardless the temperature [see Figs. 5(a)–5(d)]. In
contrast, for marginal states ρ1d (t ) and ρ2d (t ) [see Eq. (19)],
the dynamics of entanglement and quantum coherence will
coincide only in the system of RFs, at zero temperature [see
Figs. 5(f) and 5(j)], thus behaving quite differently in the other
scenarios. Indeed, at finite temperature (β = 1), note that con-
currence starts growing but goes suddenly to zero for MFs
and RFs, while the quantum coherence exhibits oscillations
that are suppressed until approaching a nonzero constant value
[see Figs. 5(g), 5(h), 5(k), and 5(l)]. In Figs. 5(e) and 5(i),
concurrence exhibits a revival after suddenly going to zero,
and then saturates at a constant value for longer times of the
dynamics.

Figures 6(a)–6(d) show that concurrence and quantum
coherence of the marginal state ρ12(t ) coincide for both

species of MFs and RFs, regardless the temperature, for the
Markovian frequency ωc = 50. However, for states ρ1d (t )
and ρ2d (t ), entanglement and quantum coherence will coin-
cide exclusively for RFs, at zero temperature, also exhibiting
a highly oscillating behavior [see Figs. 6(f) and 6(j)]. In-
deed, for finite temperature (β = 1), note that concurrence
starts increasing and dropping to zero suddenly for MFs [see
Figs. 6(g) and 6(k)], while it exhibits revivals whose ampli-
tude mostly decreases in the system of RFs [see Figs. 6(h)
and 6(l)]. In addition, quantum coherence exhibits a highly
oscillating regime, saturating at a nonzero constant value for
longer times [see Figs. 6(g), 6(h), 6(k), and 6(l)]. In Figs. 6(e)
and 6(i), concurrence exhibits a revival after suddenly going
to zero, also experiencing fluctuations in its amplitude that are
suppressed as it starts decreasing, and then approaches zero at
later times. We emphasize this behavior is strikingly different
from the non-Markovian case (ωc = 10) in Figs. 5(e) and 5(i),
in which both concurrence and quantum coherence remains
nonzero for longer times of the dynamics. An important mes-
sage we can take from the result from Figs. 5 and 6 is that the
quantum correlations and coherences depend strongly on the
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FIG. 7. Comparison between concurrence (black solid line) and �1 norm of coherence (red dashed line) for the non-Markovian dynamics
(ωc = 10) of MFs and RFs. Panels (a), (b), (e), (f), (i), and (j) refer to the case of zero temperature (T = 0), while panels (c), (d), (g), (h),
(k), and (l) show the curves for finite temperature (β = 1). Here we choose the initial state of the system MFs + QD (RFs + QD) given by
ρS (0) = |+̃〉〈+̃|, with |+̃〉 := 1√

2
( f †

1 + f †
2 )|0̃〉, and γ = 0.05, s = 1, ε = 0.5, εd = 0.5, and λ2 = 2λ1 = 0.2.

temperature for RFs, but are qualitatively similar for MFs at
both zero and finite temperatures.

b. Superposition initial state. Here we set the input state
ρS (0) = |+̃〉〈+̃| that exhibits nonzero values of entanglement
and quantum coherence regarding the subspace of fermions,
with |+̃〉 := 1√

2
( f †

1 + f †
2 )|0̃〉. In Figs. 7 and 8, we show the

concurrence and the �1 norm of coherence in both the systems
MFs + QD and RFs + QD, for the cutoff frequencies ωc = 10
and ωc = 50, respectively.

In Fig. 7, for the case of RFs at zero temperature, we
first note that the dynamics of entanglement and quantum
coherence are identical for each of the two-body reduced
states of the system [see Figs. 7(b), 7(f), and 7(j)]. In oppo-
site, for MFs at zero temperature, concurrence of state ρ12(t )
exhibits a revival after going to zero, and then decreases until
completely vanishing, while the quantum coherence oscillates
until it reaches a stationary value [see Fig. 7(a)]. In addition,
Figs. 7(e) and 7(i) show the marginal states ρ1d (t ) and ρ2d (t )
have nonzero oscillating values of quantum coherence that
approach a stationary value for a wide time window. In turn,

concurrence of the state ρ1d (t ) increases and suddenly goes
to zero for short times [see Fig. 7(e)], while for the state
ρ2d (t ) the concurrence shows revivals after going suddenly
to zero, and then oscillates and remains finite for longer times
[see Fig. 7(i)]. Next, moving to the case of finite temperature
(β = 1), the concurrence of state ρ12(t ) decreases and goes
to zero in both systems of MFs and RFs, also showing an
intermediate revival before completely vanishing in the for-
mer setup, while quantum coherence starts decreasing and
asymptotically converges to a stationary value [see Figs. 7(c)
and 7(d)]. Furthermore, Figs. 7(g), 7(h), 7(k), and 7(l) show
that states ρ1d (t ) and ρ2d (t ) have zero valued concurrence,
except for a narrow peak that appears at short times of the
dynamics, while the �1 norm of coherence shows damped
oscillations and then saturates to a fixed value.

In Fig. 8, we show the dynamics in the Markovian regime
with ωc = 50. We see that the curves of entanglement and
quantum coherence are identical for the two-body reduced
states of the setup comprising RFs at zero temperature [see
Figs. 8(b), 8(f), and 8(j)]. Figures 8(f) and 8(j) show the
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FIG. 8. Comparison between concurrence (black solid line) and �1 norm of coherence (red dashed line) for the Markovian dynamics
(ωc = 50) of MFs and RFs. Panels (a), (b), (e), (f), (i), and (j) refer to the case of zero temperature (T = 0), while panels (c), (d), (g), (h),
(k), and (l) show the curves at finite temperature (β = 1). Here we choose the initial state of the system MFs + QD (RFs + QD) given by
ρS (0) = |+̃〉〈+̃|, with |+̃〉 := 1√

2
( f †

1 + f †
2 )|0̃〉, and γ = 0.05, s = 1, ε = 0.5, εd = 0.5, and λ2 = 2λ1 = 0.2.

quantum resources for marginal states ρ1d (t ) and ρ2d (t ) ex-
hibit rapid oscillations that are later suppressed. For MFs
at zero temperature, concurrence and quantum coherence of
state ρ12(t ) decays and saturates into a stationary value [see
Fig. 8(a)]. Furthermore, Figs. 8(e) and 8(i) show that the
marginal states ρ1d (t ) and ρ2d (t ) have nonzero damped os-
cillating values of concurrence and quantum coherence, with
the former going to zero and the latter approaching a fixed
nonzero value. For finite temperature (β = 1), Figs. 8(c) and
8(d) show the concurrence of state ρ12(t ) decreases exponen-
tially in the system of MFs, while abruptly going to zero in
the case of RFs. In turn, quantum coherence of MFs starts
decreasing and asymptotically converges to a stationary value,
and the quantum coherence of RFs exhibits a revival after
suddenly going to zero and then asymptotically approaches a
stationary value. Figures 8(g), 8(h), 8(k), and 8(l) show the
states ρ1d (t ) and ρ2d (t ) have nonzero quantum coherences
with oscillation damping in the amplitudes, and also nonzero
entanglement signaled by a narrow peak of concurrence that
survives only for a short time window of the dynamics.

c. Werner initial state. We now consider the time evolu-
tion of the dynamics of a third type of single-fermion initial
state. We choose ρS (0) = |W 〉〈W |, where |W 〉 := 1√

3
(d† +

f †
1 + f †

2 )|0̃〉 is the Werner state that fully correlates the two
fermions and the QD, also exhibiting nonzero quantum coher-
ence in all Hilbert subspaces. Figures 9 and 10 show the plots
of concurrence and the �1 norm of coherence for both the sys-
tems of MFs + QD and RFs + QD, for the cutoff frequencies
ωc = 10 and ωc = 50, respectively.

In Fig. 9, for the case of RFs at zero temperature, values
of concurrence and �1 norm of coherence coincide for each
of the two-body reduced states of the system [see Figs. 9(b),
9(f), and 9(j)]. Conversely, for MFs at zero temperature, con-
currence of states ρ jd (t ) exhibits revivals after going to zero,
while it reaches nonzero asymptotic values for the two-body
states that mix both the QD and fermionic degrees of freedom
[see Figs. 9(e) and 9(i)] and also vanishes at later times for the
reduced state of two fermions [see Fig. 9(a)]. In addition, for
MFs at finite temperature, concurrence of the state ρ12(t ) ex-
hibits revivals and asymptotically goes to zero [see Fig. 9(c)],
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FIG. 9. Comparison between concurrence (black solid line) and �1 norm of coherence (red dashed line) for the non-Markovian dynamics
(ωc = 10) of MFs and RFs. Panels (a), (b), (e), (f), (i), and (j) refer to the case of zero temperature (T = 0), while panels (c), (d), (g), (h),
(k), and (l) show the curves at finite temperature (β = 1). Here we choose the initial state of the system MFs + QD (RFs + QD) given by
ρS (0) = |W 〉〈W |, with |W 〉 := 1√

3
(d† + f †

1 + f †
2 )|0̃〉, and γ = 0.05, s = 1, ε = 0.5, εd = 0.5, and λ2 = 2λ1 = 0.2.

while abruptly vanishing for states ρ jd (t ) [see Figs. 9(g) and
9(k)]. In turn, quantum coherence shows fluctuations in its
amplitudes and approaches stationary values, regardless of the
temperature [see Figs. 9(a), 9(c), 9(e), 9(g), 9(i), and 9(k)].
For the system of RFs, �1 norm of coherence exhibits damped
oscillations and vanishes asymptotically for the states ρ jd (t )
[see Figs. 9(h) and 9(l)], while for the state ρ12(t ) it reaches
nonzero stationary value [see Fig. 9(d)].

In the Markovian regime (ωc = 50), at zero temperature
(T = 0), Figs. 10(b), 10(f), and 10(j) show the concurrence
and quantum coherence of all states behaving identically in
the system of RFs, experiencing rapid oscillations at earlier
times. In contrast, for the system of MFs, both quantities take
different values and exhibit nonmonotonic decays with rapid
oscillations that are suppressed at later times [see Figs. 10(a),
10(e), and 10(i)]. Next, moving to the case of finite tem-
perature (β = 1), the concurrence of state ρ jd (t ) decreases
and suddenly goes to zero in both systems of MFs and
RFs, while quantum coherence shows fluctuations in its am-
plitudes and asymptotically converges to a stationary value

[see Figs. 10(g), 10(h), 10(k), and 10(l)]. In addition, for
the marginal state ρ12(t ), the quantum resources decay and
approach stationary values [Figs. 10(c) and 10(d)]. We point
out that quantum coherence converges to a finite value in the
system MFs, while it goes to zero for the reduced state of two
fermions. This shows that quantum coherence of the two-body
state of MFs is a more robust quantum resource than that
of RFs.

2. Two-fermions initial state

We now present the dynamics of correlation and quantum
coherences when the system is initialized in the initial state
ρS (0) = |φ̃〉〈φ̃| that entangles two fermions, where |φ̃〉 :=

1√
2
(I + f †

1 f †
2 )|0̃〉. Noteworthy, this initial state has even parity

respective to the occupation number of fermions, also exhibit-
ing nonzero correlations and quantum coherences between the
two fermionic subspaces. In Figs. 11 and 12, we compare the
concurrence and the �1 norm of coherence of the systems of
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FIG. 10. Comparison between concurrence (black solid line) and �1 norm of coherence (red dashed line) for the Markovian dynamics
(ωc = 50) of MFs and RFs. Panels (a), (b), (e), (f), (i), and (j) refer to the case of zero temperature (T = 0), while panels (c), (d), (g), (h),
(k), and (l) show the curves at finite temperature (β = 1). Here we choose the initial state of the system MFs + QD (RFs + QD) given by
ρS (0) = |W 〉〈W |, with |W 〉 := 1√

3
(d† + f †

1 + f †
2 )|0̃〉, and γ = 0.05, s = 1, ε = 0.5, εd = 0.5, and λ2 = 2λ1 = 0.2.

MFs + QD and RFs + QD, for the cutoff frequencies ωc = 10
and ωc = 50, respectively.

We shall begin discussing Fig. 11 for the case of non-
Markovian dynamics (ωc = 10). For MFs at zero temperature,
Fig. 11(a) shows that �1 norm of coherence of ρ12(t ) de-
creases, reaching a finite stationary value, while concurrence
oscillates and suddenly goes to zero. In addition, Figs. 11(e)
and 11(i) show the oscillation patterns for quantum coherence
of states ρ1d (t ) and ρ2d (t ), with the latter saturating faster to
a finite stationary value than the former. Interestingly, con-
currence of state ρ1d (t ) goes to zero after displaying a few
revivals [see Fig. 11(e)], while for the state ρ2d (t ) concurrence
starts increasing and exhibits periodic oscillations around a
stationary value for larger times [see Fig. 11(i)]. For RFs at
zero temperature, Figs. 11(f) and 11(j) show that both quan-
tum resources for states ρ jd (t ) oscillate and vanish for larger
times. In particular, note that concurrence and quantum co-
herence of state ρ1d (t ) oscillates approximately with the same
period [see Fig. 11(f)], while the former goes to zero faster
than the latter for the reduced state ρ2d (t ) [see Fig. 11(j)]. For

the two-body state ρ12(t ), Fig. 11(b) shows that concurrence
exhibits a revival after suddenly going to zero, while quantum
coherence decays to a stationary value. Interestingly, both
resources asymptotically reach the same numerical value for
later times of the dynamics. For MFs at finite temperature,
Figs. 11(g) and 11(k) show the �1 norm of coherence of states
ρ jd (t ) starts increasing and slowly reaches a finite stationary
value, while concurrence shows narrow peaks at the earlier
times of the dynamics. In Fig. 11(c), concurrence of state
ρ12(t ) goes abruptly to zero, while �1 norm of coherence
decreases slowly. For RFs at finite temperature, Fig. 11(d)
shows the quantum coherence of state ρ12(t ) decreases and
remains finite, while concurrence suddenly goes to zero. In
Fig. 11(h), the concurrence of state ρ1d (t ) shows a narrow
peak at earlier times and suddenly goes to zero, while in
Fig. 11(l) concurrence of ρ2d (t ) is zero at all times of the
dynamics. For both two-body reduced states, the �1 norm of
coherence shows damped oscillations and approaches zero.

Next, let us comment on Fig. 12 for the case of Markovian
dynamics (ωc = 50). For MFs at zero temperature, Fig. 12(a)
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FIG. 11. Comparison between concurrence (black solid line) and �1 norm of coherence (red dashed line) for the non-Markovian dynamics
(ωc = 10) of MFs and RFs at zero (T = 0) and finite (β = 1) temperatures. Here we choose the initial state of the system MFs + QD (RFs +
QD) given by ρS (0) = |φ̃〉〈φ̃|, with |φ̃〉 := 1√

2
(I + f †

1 f †
2 )|0̃〉, and γ = 0.05, s = 1, ε = 0.5, εd = 0.5, and λ2 = 2λ1 = 0.2.

shows that �1 norm of coherence of ρ12(t ) decreases exponen-
tially, while concurrence suddenly goes to zero. In addition,
Figs. 12(e) and 12(i) show the concurrence of states ρ1d (t )
and ρ2d (t ), with the former going to zero faster than the
latter. In both cases, quantum coherence oscillates and ap-
proaches a stationary value for larger times. For RFs at zero
temperature, Figs. 12(f) and 12(j) show that both quantum
resources for states ρ jd (t ) display rapid oscillations that are
suppressed for later times. In contrast, for the two-body state
ρ12(t ), Fig. 12(b) shows that concurrence exhibits a revival
after dropping suddenly to zero, while quantum coherence
decays monotonically to a stationary value. We point out
that both resources start saturating to the same numerical
value for later times of the dynamics. For MFs at finite
temperature, Figs. 12(g) and 12(k) show the states ρ jd (t )
have zero valued concurrence, except for a narrow peak at
the earlier times of the dynamics, while the �1 norm of co-
herence shows damped oscillations and then saturates to a
stationary value. In Fig. 12(c), concurrence of state ρ12(t )
abruptly goes to zero, while �1 norm of coherence of state
ρ12(t ) monotonically decreases and vanishes for larger times.

For RFs at finite temperature, Fig. 12(d) shows the quan-
tum coherence of state ρ12(t ) decreases monotonically and
remains finite, while concurrence suddenly goes to zero. For
the two-body reduced states ρ jd (t ), Figs. 12(h) and 12(l)
show the �1 norm of coherence displays oscillations that
are rapidly damped, while concurrence is zero at all times
of the dynamics.

Before closing this section, a final remark is in order.
Apart from the asymptotic case shown in Figs. 11(b) and
12(b), note that concurrence and quantum coherence display
different dynamical behaviors, i.e., the two quantum resources
do not coincide at any time of the dynamics. This feature
somehow suggests a parity fingerprint that is related to the
global occupation of the initial state. On the one hand, for ini-
tial states with odd parity in the occupation number, quantum
coherence and concurrence coincide for some of the marginal
states of the system (see Figs. 5–10). On the other hand,
Figs. 11 and 12 show the quantum resources behave quite
differently at all times of the dynamics when the system is
initialized in a probe state with even parity in the occupation
number.
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FIG. 12. Comparison between concurrence (black solid line) and �1 norm of coherence (red dashed line) for the Markovian dynamics (ωc =
50) of MFs and RFs at zero (T = 0) and finite (β = 1) temperatures. Here we choose the initial state of the system MFs + QD (RFs + QD)
given by ρS (0) = |φ̃〉〈φ̃|, with |φ̃〉 := 1√

2
(I + f †

1 f †
2 )|0̃〉, and γ = 0.05, s = 1, ε = 0.5, εd = 0.5, and λ2 = 2λ1 = 0.2.

V. DYNAMICS IN THE NONLOCAL REGIME OF THE
MAJORANA FERMIONS

In this section we will discuss the possible role of nonlocal-
ity of Majorana fermions in the dynamics of occupations and
quantum resources. The physical system of MFs + QD com-
prises a pair of Majorana bound states that arises at the ends
of two superconductor nanowires of length L [see Fig. 1(a)].
In turn, for large values of L, i.e., taking the MFs far from
apart each other, it is well known the couplings ε j ≈ 0 ( j =
1, 2) between them will become negligible, mainly because
such energies decrease exponentially with the length of the
nanowires. Hence, in our setting, the smaller the coupling ε,
the more nonlocal should be the pair of MFs. In the following,
we will investigate the nonlocality of MFs by setting ε =
0.0005. For simplicity, the system of MFs + QD is initial-
ized in the fully uncorrelated initial state ρS (0) = |1̃〉〈1̃|, with
|1̃〉 = d†|0̃〉. Moreover, we set γ = 0.05, s = 1, εd = 0.5, and
λ2 = 2λ1 = 0.2.

Figure 13 shows the dynamics of the occupations in the
system of MFs + QD. In the non-Markovian regime (ωc =
10), note the occupation of the QD and both the MFs take

nonzero values and oscillate around stationary values, regard-
less of the temperature. For the case of Markovian dynamics
(ωc = 50), we point out the occupation 〈d†d〉 mostly de-
creases, while {〈 f †

j f j〉} j=1,2 starts growing and approaches
stationary values at later times of the dynamics, also regard-
less of the temperature of the system. In particular, note the
occupation of the QD goes to zero at zero temperature [see
Fig. 13(a)], while it remains a nonzero constant for finite
temperature (β = 1) [see Fig. 13(b)].

In Fig. 14, we plot the concurrence and the �1 norm
of coherence for the system of MFs + QD for the cut-
off frequencies ωc = 10 and ωc = 50, at zero (T = 0) and
finite temperature (β = 1). Note that entanglement and quan-
tum coherence of the reduced state of fermions ρ12(t ) take
nonzero values, and also coincide for all times of the dy-
namics, regardless of temperature and cutoff frequencies
[see Figs. 14(a)–14(d)]. We point out the marginal states
{ρ jd (t )} j=1,2 have nonzero oscillating quantum coherences
that approach stationary values at later times, regardless
the temperature, for both the non-Markovian (ωc = 10) and
Markovian (ωc = 50) settings. However, the concurrence of
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FIG. 13. Populations of the subsystem of MFs + QD with non-
local Majorana fermions (ε = 0.0005), where 〈•〉 = Tr[• ρS (t )], for
both the non-Markovian (ωc = 10) and Markovian dynamics (ωc =
50), at zero (T = 0, right panels) and finite (β = 1, left panels)
temperatures. The system of MFs + QD is initialized at the state
ρS (0) = |1̃〉〈1̃|, with |1̃〉 = d†|0̃〉. Here we set γ = 0.05, s = 1, εd =
0.5, and λ2 = 2λ1 = 0.2.

such states is a zero valued quantity, except for narrow
peaks that appear at earlier times of the dynamics as shown
in Figs. 14(e), 14(g), 14(i), 14(k) (T = 0, ωc = 10) and
Figs. 14(h), 14(l) (β = 1, ωc = 50). In particular, for β = 1
and ωc = 10, note that the concurrence of ρ1d (t ) and ρ2d (t )
shows an oscillation pattern that is smoothly suppressed to
zero [see Figs. 14(f) and 14(j)].

Finally, we comment on the role of nonlocality of MFs into
the quantum resources in comparison with the dynamics of
such quantities for the system of local MFs (see Figs. 5 and
6). In both cases, we observe qualitatively similar behavior
of quantum coherence and entanglement, regardless of the
dynamics and temperature effects. However, for the system
composed of nonlocal MFs, the reduced states {ρ jd (t )} j=1,2

present more fragile entanglement to dissipative effects than
the one that we found for local MFs. On the one hand,
for the system of MFs + QD with nonlocal fermions un-
dergoing the non-Markovian dynamics (ωc = 10) at zero
temperature (T = 0), Figs. 14(e) and 14(i) show that the
concurrence of the marginal states ρ1d (t ) and ρ2d (t ) exhibits

only two nonzero peaks at earlier times of the dynamics.
On the other hand, Figs. 5(e) and 5(i) show that, for the
system of MFs + QD with local fermions at zero temperature,
the entanglement stored in each reduced state {ρ jd (t )} j=1,2

asymptotically converges to a stationary value at later times
of the non-Markovian dynamics (ωc = 10).

VI. CONCLUSIONS

In this work we have investigated the dynamics of quantum
resources in a tripartite fermionic system coupled to an exter-
nal reservoir. Two classes of systems were considered: (i) a
two-level quantum dot coupled to two regular fermion levels
(RFs + QD) and (ii) a quantum dot coupled to two pairs of
Majorana fermions (MFs + QD). In both cases, the quantum
dot is coupled to a fermionic reservoir. Invoking a quantum
master-equation approach that includes a memory kernel al-
lowing study of both the Markovian to the non-Markovian
regimes, at zero and finite temperatures, we analyze the time
evolution of the quantum resources of the systems, namely,
pairwise entanglement and quantum coherence, quantified by
concurrence and �1 norm, respectively.

In general, we observe a clear distinction of the dynamics
in each system, depending on the initial state and the parity
of the global occupation of such state. On the one hand, for a
fully uncorrelated incoherent initial state with a single fermion
in the system, we observe that entanglement and coherence
are generated by the dynamics at both the zero and finite
temperatures in the MFs + QD system. On the other hand, in
the RFs + QD these quantities are generated but survive only
during a certain time window, vanishing at later times of the
dynamics at zero temperature, and saturating at a small value
at finite temperature. Overall, these features are observed in
both the Markovian and non-Markovian dissipation regimes.

For entangled and coherent single-fermion initial states, the
quantum resources decrease but saturate to finite stationary
values for the MFs + QD system regardless of temperature,
for both the Markovian and non-Markovian regimes. On the
other hand, for the RFs + QD system, the quantum coherence
settles down at a finite value at nonzero temperature. Similar
features are observed for choosing an initial state with two
fermions in the system. We discussed the physical setting in
which the Majorana fermions in each pair are almost fully
decoupled from each other, i.e., typically a long topological
nanowire. We observe qualitatively similar behavior, showing
the robustness of our results against changes in the topological
superconductor hosting the Majorana fermions.

Finally, we highlight the correlated behavior of the quan-
tum resources at both zero and finite temperatures in the
MFs + QD system, which is not observed in the RFs + QD
case. This might be seen as a signature of the property called
genuine and distributed correlated coherence, which in turn
witnesses the amount of quantum coherence that is contained
within the correlations of the tripartite system [72,73]. As a
final remark, we point out that the Hamiltonian in Eq. (6)
can be extended to a more realistic scenario that includes the
coupling of MFs on different wires. To do so, Eq. (6) should be
recast to include the contribution of parity-dependent splitting
terms to take in account the imbalance of phases related to
tunneling matrix elements (see, for example, Refs. [74,75]).
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FIG. 14. Plot of concurrence (black solid line) and �1 norm of coherence (red dashed line) of the subsystem of MFs + QD with nonlocal
Majorana fermions (ε = 0.0005), for both the non-Markovian (ωc = 10) and Markovian dynamics (ωc = 50), at zero (T = 0) and finite
(β = 1) temperatures. The system is initialized in the uncorrelated state ρS (0) = |1̃〉〈1̃|, with |1̃〉 = d†|0̃〉, with γ = 0.05, s = 1, εd = 0.5, and
λ2 = 2λ1 = 0.2.

For this case, one could investigate the robustness of quantum
coherence and entanglement to temperature fluctuations and
environmental decoherence. Indeed, this is an issue that we
hope to address in further investigations.

ACKNOWLEDGMENTS

We thank I. de Vega for fruitful conversations. The authors
acknowledge the financial support from the Brazilian min-

istries MEC and MCTIC. The project was funded by Brazilian
funding agencies CNPq (Grant No. 307028/2019-4 and Grant
No. 305738/2018-6), FAPESP (Grant No. 2017/03727-0),
Coordenação de Aperfeiçoamento de Pessoal de Nível Su-
perior–Brasil (CAPES) (Finance Code 001), and by the
Brazilian National Institute of Science and Technology for
Quantum Information (INCT-IQ) Grant No. 465469/2014-0.

APPENDIX: DETAILS ON THE MASTER EQUATION

The reduced dynamics of the system MFs + QD is described by the quantum master equation

dρS (t )

dt
= −i [HS, ρS (t )] +

∫ t

0
dτ α+(t − τ )[(Vτ−t d†)ρS (t ), d] +

∫ t

0
dτ α−(t − τ )[(Vτ−t d ) ρS (t ), d†] + H.c., (A1)

with HS = H1 + H2 + H3, where H1 = εd n̂d is the QD Hamiltonian, H2 = ∑2
j=1 ε j (n̂ j − 1/2) is the MF (RF) Hamiltonian, and

H3 = ∑
j=1,2(λ j d† f j + λ̃ j d† f †

j + H.c.) stands for the Hamiltonian modeling the MFs + QD (RFs + QD) coupling. To clarify,

by setting λ̃ j = λ j one obtains the Hamiltonian of the system MFs + QD, while the Hamiltonian of the system RFs + QD is
recovered imposing that λ̃ j = 0. In the former case, the energies {Ej} j=1,...,8 and the eigenstates {|Ej〉} j=1,...,8 of the system
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MFs + QD have been presented in Table I, while for the latter the spectral decomposition of the Hamiltonian for RFs + QD is
given in Table II in the main text. In Eq. (A1) we have introduced the operator Vτ−t d† = ei(τ−t )HS d† e−i(τ−t )HS , which in turn can
be written more conveniently as

Vτ−t d† =
8∑

j,l=1

ei(τ−t )(Ej−El ) 〈Ej |d†|El〉 |Ej〉〈El |, (A2)

with

〈Ej |d†|El〉 =
∑
k1, k2

(−1)k1+k2〈Ej |k1, k2, 1〉〈k1, k2, 0|El〉. (A3)

Next, the system-bath correlation functions are given by

α+(t ) =
∫ ∞

0
dω J (ω)NF (ω) eiωt (A4)

and

α−(t ) =
∫ ∞

0
dω J (ω)[NF (ω) + 1] e−iωt , (A5)

with NF (ω) = [exp(βω) + 1]−1 being the Fermi-Dirac distribution related to the fermionic reservoir and J (ω) =
γ ωs ω1−s

c e−ω/ωc being the spectral density of the environment. For all s > 0 and finite temperature 0 < T < ∞ (i.e., ∞ >

β > 0), it is straightforward to verify that

α+(t ) = γ

4 β2
(2βωc)1−s �(1 + s){ξ1+s[z(t )] − ξ1+s[z(t ) + 1/2]}, (A6)

with

z(t ) := 1 + βωc − iωct

2βωc
(A7)

and

α−(t ) = α+(t )∗ + γ ω2
c �(1 + s)

(1 + iωct )1+s , (A8)

where ξ1+s(x) defines the generalized Riemann zeta function as ξ1+s(x) = ∑∞
k=0 (x + k)−1−s. Noteworthy, for the asymptotic

case of zero temperature T → 0 (i.e., β → ∞), one gets limβ→∞ α+(t ) = limβ→∞ α+(t )∗ = 0, and thus

lim
β→∞

α−(t ) = γ ω2
c �(1 + s)

(1 + iωct )1+s . (A9)

In the following we will discuss how to solve the master equation in Eq. (A1) for the reduced density matrix ρS (t ). To do so,
we point out the marginal state ρS (t ) can be written in terms of the occupation number basis states {|n1, n2, nd〉} as follows:

ρS (t ) =
∑
k,m

Ak1, k2, kd
m1, m2, md

(t ) |k1, k2, kd〉〈m1, m2, md |, (A10)

where k = (k1, k2, kd ), n = (m1, m2, md ), with k j = {0, 1}, and mj = {0, 1} for j = {1, 2, d}, while

Ak1, k2, kd
m1, m2, md

(t ) = 〈k1, k2, kd |ρS (t )|m1, m2, md〉. (A11)

Next, we will substitute Eq. (A10) into Eq. (A1), and also project the aforementioned master equation onto the occupation
number basis, thus obtaining a set of coupled differential equations for the time-dependent coefficients {Ak1, k2, kd

m1, m2, md
(t )}k,m. By

proceeding in this way, one gets

d

dt
A�1, �2, �d

n1, n2, nd
(t ) = −i 〈�1, �2, �d |[HS, ρS (t )]|n1, n2, nd〉 +

∫ t

0
dτ α+(t − τ ) 〈�1, �2, �d |[(Vτ−t d†) ρS (t ), d]|n1, n2, nd〉

+
∫ t

0
dτ α−(t − τ ) 〈�1, �2, �d |[(Vτ−t d ) ρS (t ), d†]|n1, n2, nd〉 + H.c. (A12)

To solve the set of differential equations in Eq. (A12), we require numerical simulations. We see that, for a given initial state
ρS (0), Eqs. (A10) and (A12) fully characterize the marginal state ρS (t ). We point out that it is possible to simplify each
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contribution that appears in the right-hand side of Eq. (A12). In this regard, the matrix elements of the sum of Hamiltonians
H1 + H2 respective to the occupation number basis are given by

〈�1, �2, �d |[H1 + H2, ρS (t )]|n1, n2, nd〉 =
∑

j={1,2,d}
ε j

(
δ� j ,1� j − δn j ,1n j

)
A�1, �2, �d

n1, n2, nd
(t ), (A13)

while the matrix element for the coupling Hamiltonian H3 reads as

〈�1, �2, �d |[H3, ρS (t )]|n1, n2, nd〉 = λ1

∑
j=0,1

(−1) j
[
(−1)�2C�1,�d , jA

�1−2 j+1, �2, �d +2 j−1
n1, n2, nd

(t ) − (−1)n2 Cn1, nd , jA
�1, �2, �d
n1−2 j+1, n2, nd +2 j−1(t )

]

+ λ̃1

∑
j=0,1

(−1) j
[
(−1)�2 C̃�1, �d , j A�1+2 j−1,�2,�d +2 j−1

n1,n2,nd
(t ) − (−1)n2 C̃n1, nd , jA

�1,�2, �d
n1+2 j−1,n2,nd +2 j−1(t )

]

+ λ2

∑
j=0,1

(−1) j
[
C�2, �d , j A�1, �2−2 j+1, �d +2 j−1

n1, n2, nd
(t ) − Cn2, nd , j A�1, �2, �d

n1, n2−2 j+1, nd +2 j−1(t )
]

+ λ̃2

∑
j=0,1

(−1) j
[
C̃�2, �d , j A�1, �2+2 j−1, �d +2 j−1

n1, n2, nd
(t ) − C̃n2, nd , j A�1, �2, �d

n1, n2+2 j−1, nd +2 j−1(t )
]
, (A14)

where we have defined the time-independent coefficients

Cx,y, j = δx, j δy,1− j (−1)x
√

(x + 1 − j)(y + j) (A15)

and

C̃x,y, j = δx,1− j δy,1− j (−1)x
√

(x + j)(y + j). (A16)

We point out that Eq. (A14) will reduce to a simpler form for the case of Majorana fermions (̃λ j = λ j) and also for regular
fermions (̃λ j = 0). Moreover, one may verify that∫ t

0
dτ α+(t − τ ) 〈�1, �2, �d |[(Vτ−t d†) ρS (t ), d]|n1, n2, nd〉

=
8∑

j,l=1

G+
jl (t ) 〈Ej | d†|El〉

[
δnd ,1(−1)n1+n2

√
nd Y�1, �2, �d

n1, n2, nd −1( j, l, t ) − δ�d ,0 (−1)�1+�2
√

�d + 1Y�1, �2, �d +1
n1, n2, nd

( j, l, t )
]

(A17)

and ∫ t

0
dτ α−(t − τ ) 〈�1, �2, �d |[(Vτ−t d ) ρS (t ), d†]|n1, n2, nd〉

=
8∑

j,l=1

G−
jl (t ) 〈Ej |d|El〉

[
δnd ,0 (−1)n1+n2

√
nd + 1Y�1, �2, �d

n1, n2, nd +1( j, l, t ) − δ�d ,1(−1)�1+�2
√

�d Y�1, �2, �d −1
n1, n2, nd

( j, l, t )
]
, (A18)

where we define

G±
jl (t ) :=

∫ t

0
dτ α±(t − τ ) ei(τ−t )(Ej−El ) (A19)

and

Y�1, �2, �d
n1, n2, nd

( j, l, t ) :=
∑

k1, k2, kd

〈�1, �2, �d |Ej〉〈El |k1, k2, kd〉 Ak1, k2, kd
n1, n2, nd

(t ), (A20)

with the matrix element 〈Ej |d†|El〉 explicitly defined in Eq. (A3).
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