

PROCEEDINGS

ANIMAL SCIENCE:

Challenges in Production and Sustainability

ISSN: 1983-4357

SOCIEDADE
BRASILEIRA
DE ZOOTECNIA

www.sbz.org.br/reuniao2021

 sbzoficial

FLORIANÓPOLIS - SC

**ANIMAL SCIENCE:
CHALLENGES IN PRODUCTION AND
SUSTAINABILITY**

Proceedings of the 56th Annual Meeting of the Brazilian Society of Animal Science
Florianópolis – Brazil
August 16 – 20 2021

Edited by
Éder Fernando Varela
Gabriela Regina Dias Lira
Juliana Varchacki Portes
Meire Luiza Wirth
Sandra Regina Souza Teixeira de Carvalho

Published by

The Brazilian Society of Animal Science
(*Sociedade Brasileira de Zootecnia - SBZ*)
SHC/Norte CL Quadra 310 Bloco B sala 35 Subsolo
Asa Norte - Brasília/DF
70759-520
www.sbz.org.br

and

The Department of Animal Science and Rural Development
(*Departamento de Zootecnia e Desenvolvimento Rural*)
Universidade Federal de Santa Catarina
Florianópolis – UFSC – SC
zdr@contato.ufsc.br

Layout by

Sandra Regina Souza Teixeira de Carvalho (sandra.carvalho@ufsc.br)
Juliana Varchacki Portes (juh@zootecnista.com.br)

The authors are responsible for the grammatical and textual review of the manuscripts and abstracts.

All rights reserved. The copy and publication of this document is allowed in any form or manner providing the source is mentioned.

ISSN 1983 – 4357

NOTICE: The individual contributions in this publication and any liabilities arising from them are of the sole responsibility of the authors and may not necessarily represent the opinion of the companies and supporters, as well as of the Brazilian Society of Animal Science.

AVISO: as informações expressas neste material são de exclusiva responsabilidade do(s) seu(s) autor(es), ou detentor(es) dos direitos legais, e não representam endosso por parte das empresas e entidades patrocinadoras, eximindo-as de quaisquer responsabilidades ou danos decorrentes por erros, imprecisões ou demandas de terceiros. Opiniões pessoais do(s) autor(es), aqui expressas, não necessariamente convergem com a opinião institucional da Sociedade Brasileira de Zootecnia ou de seus apoiadores e patrocinadores.

Title: horse feed pellet quality and energy consumption in different corn grinding granulometry standards

H. Costa Filho *¹, A. H. da Silva¹, A. E. M. Cerbaro¹, F. L. Bastos¹, R. A. Pereira¹, A. A. O. Gobesso¹

¹Laboratory of Research in Digestive Health and Performance of Horses, LabEqui, University of São Paulo, Pirassununga / SP

* Master student - henrique_costa@usp.br

Producing horses pelleted feed, grinding corn is one of the most costly factors for the industry and can also compromise pellet quality, a very undesirable fact as it is expected a whole pellet without fines. The present study aimed to evaluate the pellet quality and the energy expenditure in corn grinding process according to three different corn grinding standards. Feed rations production and collection was carried out in a feed mill with individual grinding, where only the corn was grinded, in Leme/SP city, and the other analyzes were carried out in FMVZ nutrition and production department bromatology laboratory at University of São Paulo, Fernando Costa Campus. The treatments consisted of three corn grinding sieves in a hammer mill: 3 mm (P3), 5 mm (P5) and 8 mm (P8). All other feed ingredients were used without grinding. Then the rations were pelleted and subsequently analysed to pellet durability index test (PDI), as well as their diameter was measured. Granulometry of grinded corn, in its different grinding standards, was measured for geometric mean diameter (DGW), and productivity and energy consumption results of the mill were evaluated. Data were analysed by analysis of variance (ANOVA) using GLM Procedure of SAS software (SAS Institute, 1990). When the model was significant, Tukey's test was used to separate treatment means. Differences between treatment means were considered significant at $P<0.05$, in ten repetitions per treatment for the PDI, thirty repetitions per treatment for pellet diameter and two repetitions per treatment for DGW. No significant differences ($P>0.05$) were observed for pellet quality parameter, with results indicating an average PDI of $98.04 \pm 0.56\%$ for P3, $97.83 \pm 0.78\%$ for P5 and $98.24 \pm 0.41\%$ for P8. Likewise, no significant differences ($P>0.05$) were observed for pellets diameter, with average values of 4.79 ± 0.08 mm for P3, 4.79 ± 0.08 mm for P5, 4.81 ± 0.06 mm for P8. For DGW, significant differences were observed ($P<0.05$) between treatments P3 and P8. Results indicated an average DGW of 1047 ± 33 μm for P3, 1235 ± 56 μm for P5 and 1363 ± 9 μm for P8. Regarding the mill's productivity, under constant corn grain flow to grind, the following average productivity was observed: 1.588 kg h^{-1} , and energy consumption was $8.15 \text{ kWh ton}^{-1}$, $6.11 \text{ kWh ton}^{-1}$ and $4.07 \text{ kWh ton}^{-1}$, respectively, for sieves grinding P3, P5 and P8. Granulometry difference in corn grinding did not interfere in pellets quality produced and corn grinding, in larger diameter sieves, provides a lower energy consumption per ton of ground corn, under constant corn feed flow to grind, doing more efficient feed production process.

Keyword: DGW, industry, mill, PDI, processing