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STRICT COMPLEMENTARITY IN SEMIDEFINITE OPTIMIZATION
WITH ELLIPTOPES INCLUDING THE MAXCUT SDP∗
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Abstract. The MaxCut approximation algorithm by Goemans and Williamson is one of the
most celebrated results in semidefinite optimization, and the corresponding MaxCut semidefinite
optimization problem (SDP) has many favourable properties. The feasible regions of this class of
SDPs are known as elliptopes, and they have been studied extensively. One of their nicest geo-
metric/duality properties is the fact that their vertices correspond exactly to the cuts of a graph,
as proved by Laurent and Poljak in 1995. Recall that a boundary point x of a convex set C is
called a vertex of C if the normal cone of C at x is full-dimensional. Semidefinite programs over
elliptopes were also exploited by Goemans and Williamson and by Nesterov to develop approxima-
tion algorithms for the Maximum-2-Satisfiability problem and for nonconvex quadratic optimization
problems, respectively. We study how often strict complementarity holds or fails for SDPs over ellip-
topes when a vertex is optimal, i.e., when the SDP relaxation is tight. While strict complementarity
is known to hold when the objective function is in the interior of the normal cone at any vertex, we
prove that it fails generically (in a context of Hausdorff measure and Hausdorff dimension) at the
boundary of such normal cones. In this regard, SDPs over elliptopes display the nastiest behavior
possible for a convex optimization problem. We also study strict complementarity with respect to
two classes of objective functions. We show that, when the objective functions are sampled uniformly
from a class of negative semidefinite rank-one matrices in the boundary of the normal cone at any
vertex, the probability that strict complementarity holds lies in (0, 1). To complete our study with
a spectral-graph-theory-based viewpoint of the data for the MaxCut SDP, we extend a construction
due to Laurent and Poljak of weighted Laplacian matrices for which strict complementarity fails.
Their construction works for complete graphs, and we extend it to cosums of graphs under some
mild conditions.

Key words. semidefinite optimization, elliptope, strict complementarity, graph Laplacian,
Hausdorff dimension, Hausdorff measure
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1. Introduction. Consider a linear optimization problem (LP)

(1) max{ cTx : Ax = b, x ≥ 0}

and its dual min{ bTy : ATy ≥ c}, where A ∈ Rm×n is a matrix, and b ∈ Rm and
c ∈ Rn are vectors. In this context, a pair (x̄, ȳ) of primal-dual feasible solutions is
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STRICT COMPLEMENTARITY IN SDPS OVER ELLIPTOPES 2651

complementary if x̄is̄i = 0 for each i ∈ [n] := {1, . . . , n}, where s̄ := ATȳ − c ≥ 0 is
the slack. For each i ∈ [n], since s̄i is the slack in the dual constraint generated by
the primal variable xi, the definition of complementarity requires that at least one of
the feasibility inequalities xi ≥ 0 (in the primal) and (ATy)i ≥ ci (in the dual) must
be tight, i.e., they cannot both have a slack. Since slack variables allow us to express
the complementarity condition more concisely, we shall always write them explicitly,
and we will instead refer to a pair (x̄, ȳ ⊕ s̄) of primal-dual solutions, in place of the
more cumbersome notation (x̄, (ȳ, s̄)).

Complementary slackness is a fundamental optimality condition, and hence ubiq-
uitous in optimization. It may be stated in the more general setting of continuous
optimization (see [4]), and it can be expressed very conveniently in structured con-
vex optimization (see [33]). In this paper, we are mainly concerned with semidefinite
optimization problems (SDPs) in the format

(2) max{Tr(CX) : A(X) = b, X � 0};

here, as usual, we equip the space Sn of symmetric n-by-n matrices with the trace
inner-product 〈C,X〉 := Tr(CXT) =

∑
i,j CijXij , the map A : Sn → Rm is linear,

and X � 0 denotes that X ∈ Sn is positive semidefinite; most of our notation can be
found in Tables 1 to 5. The dual SDP is

(3) min{ bTy : S = A∗(y)− C, S � 0},

where A∗ : Rm → Sn is the adjoint of A, and a pair (X̄, ȳ⊕ S̄) of primal-dual feasible
solutions is called complementary if Tr(X̄S̄) = 0; equivalently, if X̄S̄ = 0, since
X̄, S̄ � 0.

Strict complementarity is a refinement of the notion of complementary slackness
where we require precisely one of the feasibility conditions involved to be tight, which
forces the other one to have a slack. A pair (x̄, ȳ⊕ s̄) of primal-dual feasible solutions
for the LP in (1) and its dual is strictly complementary if x̄is̄i = 0 and x̄i + s̄i > 0 for
every i ∈ [n]. A pair (X̄, ȳ ⊕ S̄) of primal-dual feasible solutions for the SDP in (2)
and its dual is strictly complementary if X̄S̄ = 0 and X̄+ S̄ � 0, i.e., X̄+ S̄ is positive
definite. The latter two notions can be neatly unified in the context of convex conic
optimization via the concept of faces (see [32]).

Complementary slackness characterizes primal-dual optimality whenever strong
duality holds, in both LPs and SDPs: a primal-dual pair of feasible solutions is
optimal if and only if it is complementary. This is sometimes described by saying
that complementary slackness holds for the (primal-dual pair of) programs. In the
case of LPs, whenever primal and dual are both feasible, there exists a primal-dual pair
of optimal solutions that is strictly complementary [15], i.e., strict complementarity
holds for every primal-dual pair of feasible LPs. However, there exist primal-dual
pairs of SDPs (which satisfy strong regularity conditions sufficient for SDP strong
duality) that have no strictly complementary primal-dual pair of optimal solutions
(see [37]); in such cases, we say that strict complementarity fails for said primal-dual
pair of SDPs. In fact, failure of strict complementarity is deeply related to failure of
strong duality in the context of convex conic optimization [40].

Existence of a strictly complementary pair of optimal solutions is crucial in con-
tinuous optimization in general and in semidefinite optimization in particular. This
strict complementarity property is needed or is very useful in the following scenarios:

• identifying the set of optimal solutions in primal and dual problems, detect-
ing infeasibility and unboundedness, and efficiently recovering certificates for
these [42, 29, 19];
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2652 MARCEL K. DE CARLI SILVA AND LEVENT TUNÇEL

• establishing various optimality conditions [37];
• establishing (finite) convergence of various SDP relaxations for polynomial

optimization problems [31, 23];
• convergence of the central path to the analytic center of the optimal face [17];
• superlinear/quadratic convergence theory for interior-point algorithms [20,

27, 21, 30];
• understanding SDP instances where strong duality fails [40];
• establishing stability results and error bounds [2, 5, 38].

Hence, it is important to determine whether the strict complementarity property holds
for a given class of SDPs.

It is known that strict complementarity holds generically for SDPs [1, 16]; for a
generalization to convex optimization problems, see [33]. (We shall expand below on
a more precise meaning of “generic.”) However, there are some generic properties of
LPs that fail in some natural, highly structured formulations arising in combinatorial
optimization. For instance, whereas systems of linear inequalities are well known to
be generically nondegenerate, the natural description of many classical polytopes is
degenerate (e.g., for the matching polytope, see [36, Theorem 25.4]), and “most real-
world LP problems are degenerate” according to [41]. Thus, one ought to be careful
about strict complementarity when approaching combinatorial optimization problems
via SDP relaxations.

In this paper, we study how often strict complementarity holds or fails for semi-
definite programs over the elliptope En, the set of n-by-n positive semidefinite matrices
with all diagonal entries equal to one. Such SDPs (and their duals) may be written
as

(4)
max Tr(CX)

diag(X) = 1,
X � 0,

= min 1
Ty
S = Diag(y)− C,
S � 0;

here, diag : Sn → Rn extracts the diagonal, Diag : Rn → Sn is the adjoint of diag, and
1 is the vector of all-ones. Strong duality holds for every C ∈ Sn since both SDPs
have Slater points, i.e., feasible solutions that are positive definite.

When the objective matrix C is a weighted Laplacian matrix of a graph, the
primal problem in (4) is known as the MaxCut SDP. Recall that the MaxCut problem
for a given graph G = (V,E) on V = [n] and weight function w : E → R can be cast
as the optimization problem max{xTCx : x ∈ {±1}n}, where C ∈ Sn is defined as

(5) 4C := LG(w) :=
∑
{i,j}∈E

w{i,j}(ei − ej)(ei − ej)T

and {e1, . . . , en} is the standard basis of Rn. The matrix LG(w) is known as (a
weighted) Laplacian matrix of G, and it is simple to check that LG(w) � 0 if w ≥ 0.
Hence, the MaxCut SDP is a relaxation of the MaxCut problem. This SDP was
used in the celebrated approximation algorithm by Goemans and Williamson [14].
More generally, semidefinite programs over elliptopes were also exploited by Goe-
mans and Williamson [14] to obtain an approximation algorithm for the Maximum-
2-Satisfiability problem and by Nesterov [28] in designing approximation algorithms
for nonconvex quadratic optimization problems.

The structure of the elliptope has been extensively studied; see [10]. An important
feature of the elliptope in relation to the MaxCut problem (and other combinatorial
applications) is that the vertices of En are precisely its elements that are rank-one
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matrices [25], i.e., matrices of the form xxT with x ∈ {±1}n. Thus, they correspond
precisely to the exact solutions of the MaxCut problem, for which the MaxCut SDP is
a relaxation. The vertices of En are by definition the points of En whose normal cones
are full-dimensional (we postpone the definition of the normal cone to subsection 2.2).

It is known [8] (see Proposition 5) that strict complementarity holds in (4) pre-
cisely when C lies in the relative interior of the normal cone of some X ∈ En. In par-
ticular, if X̄ is a vertex of En, then strict complementarity holds for (4) whenever
C is in the interior of the normal cone of En at X̄. An imprecise though intuitive
way to interpret this is that, since the interior of a full-dimensional cone makes up
its “bulk,” the probability of sampling C in the normal cone at X̄ such that strict
complementarity holds is 1. However, when C lies in the boundary of this normal
cone, it is not clear whether strict complementarity holds, since C may or may not
be in the relative interior of the normal cone of some other X ∈ En.

A very natural question is whether strict complementarity holds for every SDP
over the elliptope, that is, for every objective function. It turns out that this question
was already answered by Laurent and Poljak [26] in a slightly different context. They
answered in the negative by providing, for each integer n ≥ 3, a weighted Laplacian
matrix for which strict complementarity fails for the MaxCut SDP when G is the
complete graph Kn. Moreover, in these cases the unique optimal solution is at a vertex
of the elliptope, i.e., the relaxation is exact. Hence, these SDPs are very favorable
with respect to many geometric and duality properties, yet they have a rather nasty
behaviour with respect to strict complementarity. A very simple Laplacian matrix
provided by Laurent and Poljak’s construction is

4C =

 3 −1 −2
−1 3 −2
−2 −2 4

 ,
which corresponds to taking a triangle with edge weights 2, 2, and 1. (See also
section 3.) Note that this example has the smallest possible number of vertices with
failure of strict complementarity since E2 is polyhedral.1 By the discussion above,
such weighted Laplacians lie in the boundary of the normal cone of a vertex of the
elliptope.

In this paper, we continue the study of strict complementarity for SDPs over
elliptopes with objective matrix in the boundary of the normal cone of a vertex. We
prove that, when C is chosen from the boundary of the normal cone at any vertex
of the elliptope En with n ≥ 3, strict complementarity almost always fails for (4);
in this regard, surprisingly, SDPs over elliptopes display the worst possible behavior
for a convex optimization problem. In order to make the statement “almost always
fails” rigorous, we shall make use of Hausdorff measures. However, our treatment
is self-contained and it does not require prior in-depth knowledge of the theory of
Hausdorff measures.

Intuitively as above, one may consider a randomized experiment where one sam-
ples an objective matrix C uniformly at the boundary of the normal cone at X̄ and
checks if strict complementarity holds for (4). Naturally, there is a problem with
sampling uniformly from a cone, which is unbounded. A simple work-around would

1It is worthwhile to point out that strict complementarity may fail even when the set of optimal
solutions is not a singleton: consider the objective function −bbT ∈ S4 with b := [0, 2,−1,−1]T,
for which the set of optimal solutions is the line segment between the vertices 11T and x̄x̄T with
x̄ := [−1, 1, 1, 1]T.
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be to normalize the cone, albeit with some arbitrary normalization factor. For exam-
ple, suppose we take the sample space to be the unit vectors in the boundary of the
normal cone, and that the normal cone lives in an N -dimensional space. Then the
sample space is the intersection of a sphere centered at the origin and the boundary
of a full-dimensional cone, so we cannot use an (N − 1)-dimensional Lebesgue mea-
sure (of the sphere) to represent our “conditional” probability space. These issues are
neatly solved by the elegant theory of Hausdorff measures, which allows us to compute
d-dimensional measures in N -dimensional space even when d < N , and even on sets
that are highly nonlinear and nonconvex such as the boundaries in discussion. In fact,
Hausdorff measure theory applies to any metric space, which might not have a priori
any natural notion of (linear) dimension. The theory actually allows us to determine,
for each subset of our ambient space, the most natural dimension d with which to
perform the measuring as described; this is the Hausdorff dimension of such a set. In
this sense, we will say that a property P fails generically at a set C if, by taking d to
be the Hausdorff dimension of C , the set of points of C for which P holds has zero
d-dimensional Hausdorff measure.

We also focus on two classes of objective functions for (4). We prove that, when
C is sampled uniformly from (a normalization of) the negative semidefinite rank-
one matrices in the normal cone at a vertex of the elliptope, the probability that
strict complementarity fails for (4) is in (0, 1). Naturally, we shall also use Hausdorff
measures to achieve this. As Laurent and Poljak [25] proved, it is NP-hard to decide
whether the optimal value of our SDP with such a rank-one matrix C is attained at a
vertex. A consequence of this result is that this special class of SDPs are indeed very
interesting especially in connection with strict complementarity holding or failing
at a vertex of the underlying elliptope. Finally, we also extend the construction
by Laurent and Poljak [26] mentioned above. Whereas their construction provides
weighted Laplacian matrices that lead to failure of strict complementarity for the
MaxCut SDP for complete graphs, we extend it to graphs which are cosums where
one of the summands is connected and with some mild condition relating the maximum
eigenvalues of their Laplacians.

It is useful to consider a low-dimensional case that helps us to understand more
intuitively the geometry of normal cones of elliptopes at vertices and why their bound-
aries do not play nicely with strict complementarity. Take, for instance, the convex
set C ⊆ R2 in Figure 1. For concreteness, an explicit description of C is given by

(6) C := {x ∈ R2 : ‖x‖+ |x1| ≤ 1} =
{
x ∈ R2 : |x1| ≤ 1/2, |x2| ≤

√
1− 2|x1|

}
,

and it is not hard to show that C is the projection of the feasible region of an SDP. It
is intuitive and simple to verify that 1 lies in (the boundary of) the normal cone of C
at its vertex e2, but 1 is not in the relative interior of any normal cone of C . We can
trace this phenomenon to the smooth, nonpolyhedral boundary of C around e2. It is
straightforward to extend this example to R3 by considering the solid of revolution
obtained by rotating C around the e2 axis, i.e., an American football.

The elliptope looks somewhat similar to C in the following sense. Let us consider

the projection E ′n ⊆ R
(
n
2

)
of the elliptope En into its off-diagonal entries. For n ≥ 3,

the set E ′n is a compact nonpolyhedral convex set with 2n−1 vertices. Intuitively,
E ′n can be thought of as being obtained from the polytope which is the convex hull
of these 2n−1 vertices by inflating it like a balloon, while keeping the vertices fixed.
(In fact, by [25, Proposition 2.9], the line segments between the 2n−1 vertices are
also kept fixed.) In this way, E ′n is a round, plump convex set, whose boundary is
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x1

x2

−1 1

1

C

N (C ; e2)

Fig. 1. The set C defined in (6) and its normal cone N (C ; e2) at e2.

smooth almost everywhere, and the neighborhood of E ′n around any vertex looks like
(a generalization of) what is depicted by the set C from the previous paragraph.
Thus, when one considers that the elliptope around a vertex “locally” looks like C
around e2, the poor behavior of SDPs over elliptopes that we describe in this paper
makes more intuitive sense.

The order in which our results are presented is different from what we described
above. Since the weighted Laplacian construction generalized from Laurent and Poljak
involves only matrix analysis and spectral graph theory, and no measure theory, we
start with that result. Only then shall we delve into measure theory tools to prove
the other results. Hence, the rest of this paper is organized as follows. Section 2
contains some preliminaries, such as notation and background results about SDPs
over elliptopes. In section 3 we discuss failure of strict complementarity for (4) using
previous results by Laurent and Poljak and we extend their Laplacian construction
to cosums of graphs. In section 4, we develop some Hausdorff measure basics and
use them to prove that strict complementarity fails generically (“almost everywhere”)
for the SDPs over elliptopes when the objective function is in the boundary of the
normal cone of a vertex of the elliptope. Finally, in section 5, we zoom into the set
of negative semidefinite rank-one matrices in the latter boundary, and prove that in
this case the probability that strict complementarity holds is in (0, 1).

2. Preliminaries. We refer the reader to Tables 1 to 5 for our mostly standard
notation and terminology. In order to treat Rn and Sn uniformly, we adopt the
language of Euclidean spaces, i.e., finite-dimensional real vectors spaces equipped
with an inner product. We denote arbitrary Euclidean spaces by E and Y. We adopt
Minkowski’s notation; for instance, C + ΛD := {x+ λy : x ∈ C , λ ∈ Λ, y ∈ D} for
C ,D ⊆ E and Λ ⊆ R. Also, whenever possible we shorten singletons to their single
elements, e.g., we write R+(1 ⊕ C ) to denote the conic homogenization of the set C
in one higher-dimensional space.

2.1. Uniqueness of dual optimal solutions. Delorme and Poljak [9] proved
that the dual SDP in (4) has a unique optimal solution. We shall state a slightly
generalized version of their result with some changes and include a proof for the sake
of completeness.

Proposition 1 (see [9, Theorem 2]). Consider the primal-dual pair of SDPs
in (2) and (3), where A : Sn → Rm is a surjective linear map, C ∈ Sn, and b ∈ Rm.
Assume there exist X̊ ∈ Sn++ and ẙ ∈ Rm such that A(X̊) = b and A∗(ẙ) ∈ Sn++.
Suppose that, for every nonzero y ∈ Rm, there exists z ∈ Rm such that bTz 6= 0 and
Null(A∗(y)) ⊆ Null(A∗(z)). Then (3) has a unique optimal solution.
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Table 1
Notation for special sets.

[n] := {1, . . . , n} for each n ∈ N
P(X) := the power set of X

R+ := {x ∈ R : x ≥ 0}, the set of nonnegative reals

R++ := {x ∈ R : x > 0}, the set of positive reals

Rn×n := the space of n× n real-valued matrices

Sn := {X ∈ Rn×n : X = XT}, the space of symmetric n× n matrices

Sn+ := {X ∈ Sn : hTXh ≥ 0 ∀h ∈ Rn}, the cone of positive semidefinite matrices

Sn++ := {X ∈ Sn : hTXh > 0 ∀h ∈ Rn \ {0}}, the cone of positive definite matrices

Dn := the set of diagonal n-by-n matrices

En := the elliptope; see (9)

Table 2
Notation for linear algebra.

A∗ := the adjoint of a linear map A between Euclidean spaces

Tr(X) :=
∑n

i=1Xii, the trace of X ∈ Rn×n

I := the identity matrix in the appropriate space

1 := the vector of all-ones in the appropriate space

{e1, . . . , en} := the set of canonical basis vectors of Rn

Im(A) := the range of A ∈ Rn×n

Null(A) := the null space of A ∈ Rn×n

supp(x) := { i ∈ [n] : xi 6= 0}, the support of x ∈ Rn

diag(X) :=
∑n

i=1Xiiei for each X ∈ Rn×n so diag : Rn×n → Rn extracts the
diagonal

Diag(x) :=
∑n

i=1 xieie
T
i ∈ Rn×n for each x ∈ Rn, so Diag is the adjoint of diag

C⊥ := {x ∈ E : 〈x, s〉 = 0 ∀s ∈ C } for each subset C of a Euclidean space E
⊕ := the direct sum of two vectors or two sets of vectors

x ⊥ y := denotes that x, y ∈ E are orthogonal, i.e., 〈x, y〉 = 0

� := the Löwner partial order on Sn, i.e., A � B ⇐⇒ A − B ∈ Sn+ for
A,B ∈ Sn

� := the partial order on Sn defined as A � B ⇐⇒ A−B ∈ Sn++ for A,B ∈ Sn

λmax(A) := the largest eigenvalue of A ∈ Sn

A† := the Moore–Penrose pseudoinverse of A ∈ Rm×n; see [3]

vec := the map that sends a matrix in Rn×n to a vector indexed by [n]× [n]

Table 3
Notation for convex analysis on a Euclidean space E.

cl(C ) := the closure of C ⊆ E
int(C ) := the interior of C ⊆ E
ri(C ) := the relative interior of a convex set C ⊆ E

bd(C ) := cl(C ) \ int(C ), the boundary of C ⊆ E
rbd(C ) := cl(C ) \ ri(C ), the relative boundary of a convex set C ⊆ E
F E C := denotes that F is a face of a convex set C ⊆ E; see subsection 4.2

F C C := denotes that F is a proper face of a convex set C ⊆ E; see
subsection 4.2

Faces(C ) := the set of faces of a convex set C ⊆ E; see subsection 4.2

Normal(C ;x) := the normal cone of a convex set C ⊆ E at x ∈ C ; see (8)

B := the unit ball in the appropriate Euclidean space

B∞ := the unit ball for the ∞-norm in the appropriate Rn
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Table 4
Notation for the theory of Hausdorff measures in a normed space V .

Hd(X ) := the d-dimensional Hausdorff outer measure of X ⊆ V ; see (21)

λd(X ) := the d-dimensional Lebesgue outer measure of X ⊆ Rd

dimH(X ) := the Hausdorff dimension of X ⊆ V ; see (25)

Table 5
Notation for a graph G = (V,E).

V (G) := the vertex set of G

E(G) := the edge set of G

LG(w) := the weighted Laplacian matrix of G with weights w ∈ RE ; see (5)

G+H := the cosum of graphs G and H; see (13)

Proof. Since X̊ is a Slater point for (2), there exists an optimal solution for (3).
Suppose for the sake of contradiction that y1 ⊕ S1 and y2 ⊕ S2 are distinct optimal
solutions for (3). Set ȳ := 1

2 (y1 +y2) and S̄ := A∗(ȳ)−C = 1
2 (S1 +S2) � 0. We claim

that S̄ 6= 0; otherwise from S1, S2 � 0 we get S1 = S2 = 0 and so y1 = y2 since A is
surjective, a contradiction. Then ȳ ⊕ S̄ is also optimal in (3). Let z̄ ∈ Rm such that
bTz̄ 6= 0 and Null(A∗(y1 − y2)) ⊆ Null(A∗(z̄)), which exists by assumption. Then

(7) Null(S̄) ⊆ Null(A∗(z̄));

indeed, if h lies in Null(S̄) = Null(S1) ∩ Null(S2), then we get A∗(y1)h = Ch =
A∗(y2)h, whence h ∈ Null(A∗(y1 − y2)) ⊆ Null(A∗(z̄)).

Define

β := −b
Tẙ

bTz̄
, d := ẙ + βz̄,

and note that bTd = 0. Since S̄ ∈ Sn+ is nonzero, it has a smallest positive eigenvalue;
denote it by µ > 0. Let ‖·‖2 denote the operator 2-norm. If β‖A∗(z̄)‖2 = 0, set
ε := 1; otherwise set

ε :=
µ

|β|‖A∗(z̄)‖2
> 0.

Also, set ỹ := ȳ + εd and S̃ := A∗(ỹ) − C. Let h ∈ Rn. Write h = h1 + h2 with
h1 ∈ Null(S̄) and h2 ∈ [Null(S̄)]⊥. By (7) we have

hTS̃h = hTS̄h+ εhTA∗(d)h

≥ µ‖h2‖2 + εhTA∗(ẙ)h+ εβhTA∗(z̄)h
≥ µ‖h2‖2 + εhTA∗(ẙ)h− ε|β|‖A∗(z̄)‖2‖h2‖2

≥ εhTA∗(ẙ)h.

Thus, S̃ � εA∗(ẙ) and hence ȳ−εẙ is feasible for (3). Its objective value is bT(ȳ−εẙ) <
bTȳ since bTẙ = 〈A(X̊), ẙ〉 = 〈X̊,A∗(ẙ)〉 > 0 as X̊,A∗(ẙ) � 0. This contradiction
completes the proof of the theorem.

Corollary 2 (see [9, Theorem 2]). The dual SDP in (4) has a unique optimal
solution.

D
ow

nl
oa

de
d 

10
/2

3/
19

 to
 1

29
.1

05
.2

15
.1

46
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2658 MARCEL K. DE CARLI SILVA AND LEVENT TUNÇEL

Proof. We shall apply Proposition 1 to (4). Let us see that the map A := diag
satisfies the required properties. Take X̊ := I and ẙ := 1. Let y ∈ Rn be nonzero. De-
fine z ∈ Rn as zi := |yi| for every i ∈ [n], and note that Null(Diag(y)) = Null(Diag(z))
and that 1Tz > 0 since y 6= 0.

2.2. Vertices of the elliptope. Let C be a convex set in a Euclidean space E.
The normal cone of C at x̄ ∈ C is

(8) Normal(C ; x̄) := { a ∈ E : 〈a, x〉 ≤ 〈a, x̄〉 ∀x ∈ C },

i.e., it is the set of all normals to supporting half-spaces of C at x̄. Note that we are
identifying the dual space E∗ of E with E. We say that x̄ ∈ C is a vertex of C if
Normal(C ; x̄) is full-dimensional. The set of vertices of the elliptope

(9) En := {X ∈ Sn+ : diag(X) = 1}

was determined by Laurent and Poljak [25, Theorem 2.5].

Theorem 3 (see [25]). The set of vertices of En is
{
xxT : x ∈ {±1}n

}
.

An automorphism of En is a nonsingular linear operator T on Sn that preserves En,
i.e., T (En) = En. For s ∈ {±1}n, the map X ∈ Sn 7→ Diag(s)X Diag(s) is easily
checked to be an automorphism of En. Such maps can be seen as resigning and
they correspond to the well-known switching operations on cuts; see, e.g., [25]. If
x, y ∈ {±1}n, then y = Diag(s)x for s ∈ {±1}n defined by si := xiyi for each i ∈ [n].
Hence, any vertex of En can be mapped into the vertex 11

T by an automorphism
of En, i.e., the automorphism group of En acts transitively on the vertices of En. This
allows us to prove many linear properties about the vertices of En by just proving
them for the vertex 11

T. We shall make extensive use of this fact without further
mention.

Laurent and Poljak [25] also provided formulas for the normal cones of the ellip-
tope:

Normal(En;X) = Dn − (Sn+ ∩ {X}⊥)

= Dn − {Y ∈ Sn+ : Im(Y ) ⊆ Null(X)}
∀X ∈ En.(10)

When X̄ is a vertex of En, every element of Normal(En; X̄) can be described in a
unique way as an element of the Minkowski sum at the right-hand side (RHS) of (10).

Lemma 4. Let X̄ be a vertex of En. Let y1, y2 ∈ Rn and S1, S2 ∈ Sn+ ∩ {X̄}⊥ be
such that Diag(y1)− S1 = Diag(y2)− S2. Then y1 = y2 and S1 = S2.

Proof. Up to resigning, we may assume that X̄ = 11
T. Then S1 ∈ Sn+ ∩ {11T}⊥

implies that S11 = 0. Analogously, S21 = 0. Thus

y1 = Diag(y1)1 = (Diag(y1)− S1)1 = (Diag(y2)− S2)1 = Diag(y2)1 = y2,

so S1 = S2.

3. Failure of strict complementarity with Laplacian objectives. Exis-
tence of strictly complementary optimal solutions is known to be equivalent to mem-
bership of the objective vector in the relative interior of some normal cone.

Proposition 5 (see [8, Proposition 4.2]). If the feasible region C of the SDP (2)
has a positive definite matrix, then strict complementarity holds for (2) and its dual
if and only if C ∈ ri(Normal(C ;X)) for some X ∈ C .
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Hence, strict complementarity is locally generic when the objective function is
chosen in the normal cone of a given feasible solution; see [8, Corollary 4.3].

By (10) and standard convex analysis,

ri(Normal(En;X)) = Dn − ri(Sn+ ∩ {X}⊥)

= Dn − {Y ∈ Sn+ : Im(Y ) = Null(X)}
∀X ∈ En.(11)

When X̄ is a vertex of En, we may combine (10) with (11) and Lemma 4 to conclude
that

bd(Normal(En; X̄)) = Dn − rbd(Sn+ ∩ {X̄}⊥)

= Dn − {Y ∈ Sn+ : Im(Y ) ( Null(X̄)}.
(12)

Note that Lemma 4 is used to prove the inclusion

bd(Normal(En; X̄)) ⊇ Dn − rbd(Sn+ ∩ {X̄}⊥)

in (12), whereas the reverse inclusion is easy to prove. Indeed, if S = D−Y for some
D ∈ Dn and Y ∈ rbd(Sn+ ∩ {X̄}⊥), then clearly S ∈ Dn − (Sn+ ∩ {X}⊥). However we
also need to prove that S 6∈ Dn − ri(Sn+ ∩ {X}⊥), which is where the uniqueness of
decomposition shown in Lemma 4 comes in.

In [8], we noted that strict complementarity holds for (4) for every C of the form
C = 1

4LG(w) with w ≥ 0 provided that the polar

E ◦n := {Y ∈ Sn : Tr(Y X) ≤ 1∀X ∈ En}

of the elliptope is facially exposed, and we (implicitly) asked whether the latter holds.
It turns out, Laurent and Poljak [26, Example 5.10] showed, even before we raised the
question, in a different context and using a slightly different terminology, that strict
complementarity may fail for (4) for every n ≥ 3, hence answering the question in
the negative. For each complete graph G = Kn with n ≥ 3, they provided a weight
function w ≥ 0 for which strict complementarity fails for (4) with C = 1

4LG(w).
We generalize their construction showing that strict complementarity may fail

with a weighted Laplacian objective for graphs which are cosums, with mild conditions
on the (co)summands. Recall that, if G = (V,E) and H = (U,F ) are graphs such
that V ∩ U = ∅, the cosum of G and H is the graph

(13) G+H := (V ∪ U,E ∪ F ∪ { {v, u} : (v, u) ∈ V × U}).

We shall use a characterization of positive semidefinite matrices partitioned in blocks
using Schur complements and the Moore–Penrose pseudoinverse.

Lemma 6 (see [13, Theorem 4.3]). For A ∈ Sm, C ∈ Sn, and B ∈ Rm×n, we
have

(14)

[
A B
BT C

]
� 0 ⇐⇒ A � 0, (I −AA†)B = 0, and C � BTA†B.

Below we only use two properties of the pseudoinverse A† of A ∈ Rn×n. The matrix
AA† is the orthogonal projector onto Im(A). If v ∈ Rn is an eigenvector of A with
eigenvalue λ 6= 0, then v is an eigenvector of A† with eigenvalue λ−1.
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Theorem 7. Let G and H be graphs with nG ≥ 2 and nH ≥ 1 vertices, re-
spectively. Let wG : E(G) → R++ and wH : E(H) → R++ be weight functions, and
denote the respective weighted Laplacians by LG := LG(wG) and LH := LH(wH). Set
µG := λmax(LG) and µH := λmax(LH). Suppose that nGµG > nHµH and that H is
connected. Define w̄ : E(G+H)→ R++ as w̄ := wG ⊕wH ⊕ α1, where α := µG/nH .
Then there is no strictly complementary pair of primal-dual optimal solutions for (4)
when C := LG+H(w̄).

Proof. For enhanced clarity denote the vectors of all-ones in RV (G) and RV (H) by
1G and 1H , respectively. We will prove that the unique pair of primal-dual optimal
solutions for (4) is (X∗, y∗ ⊕ S∗) defined by

X∗ :=

[
−1G
1H

] [
−1G
1H

]T
, y∗ := 2α

[
nH1G
nG1H

]
,

S∗ := Diag(y∗)− LG+H(w̄) =

[
µGI − LG α1G1

T
H

α1H1
T
G αnGI − LH

]
.

(15)

In particular, since (X∗ + S∗)(h⊕ 0) = 0 for any µG-eigenvector h of LG, there is no
strictly complementary pair of primal-dual optimal solutions for (4).

It is easy to check that X∗ is feasible in the primal. We have

S∗ = 2

[
µGI 0T

0 αnGI

]
−
[
LG + µGI −α1G1T

H

−α1H1T
G LH + αnGI

]
= Diag(y∗)− LG+H(w̄),

and by Lemma 6 the condition S∗ � 0 is equivalent to the conditions

A := µGI − LG � 0,(16a)

(I −AA†)1G = 0,(16b)

αnGI � LH + α2
1
T
GA
†
1G1H1

T
H .(16c)

Note that (16a) holds trivially. Also A1G = µG1G, so 1G ∈ Im(A) and (16b) holds
since I − AA† is the orthogonal projector onto Null(A) = Im(A)⊥. Finally, A†1G =
µ−1
G 1G so (16c) is equivalent to αnGI � LH+αnG

1
nH

1H1
T
H , which holds since αnG >

µH by assumption. It follows that y∗ ⊕ S∗ is feasible in the dual. It is easy to check
that Tr(X∗S∗) = 0, so X∗ and y∗⊕S∗ are optimal solutions. By Corollary 2, y∗⊕S∗
is the unique optimal solution for the dual.

It remains to show that X∗ is the unique optimal solution for the primal. Let

X =

[
XG B
BT XH

]
be an optimal solution for the primal. Complementary slackness yields

(17) 0 = XS∗ =

[
XG(µGI − LG) + αB1H1

T
G αXG1G1

T
H +B(αnGI − LH)

BT(µGI − LG) + αXH1H1
T
G αBT

1G1
T
H +XH(αnGI − LH)

]
.

If h ⊥ 1H is an eigenvector of LH , (left) multiplying h by the bottom right block
in (17) yields XHh = 0, where we used the assumption that αnG > µH . Since H is
connected, this implies that XH is a nonnegative scalar multiple of 1H1

T
H , and so

XH = 1H1
T
H .
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Next apply 1
T
G · 1H and 1

T
H · 1G to the top right block and bottom left block of (17),

respectively, to get

0 = nH1
T
GXG1G + nG1

T
GB1H ,(18)

0 = nH1
T
HB

T
1G + nG1

T
HXH1H .(19)

Hence,

1
T
GXG1G

n2
G

=
1
T
HXH1H

n2
H

and XG = 1G1
T
G.

Finally, by (18) we get 1T
GB1H = −nGnH , and so B = −1G1T

H . Hence, X = X∗.

Note in the comment following (15) that the dimension of the λmax(LG(w))-
eigenspace controls the “degree” to which strict complementarity fails in Theorem 7.
In particular, when G is the complete graph and wG = 1, we have rank(X∗) +
rank(S∗) = 1 + nH . The construction by Laurent and Poljak [26, Example 5.10] may
be recovered from Theorem 7 by taking G = Kn−1 for some n ≥ 3, H = K1, and
setting wG := 1

n−11.
Theorem 7 shows that if F is a graph which is a cosum (i.e., the complement of F

is not connected) F = G+H, where G has at least one edge and H is connected, then
there is a nonnegative weight function w : E(F )→ R++ such that strict complemen-
tarity fails for (4) with C = 1

4LF (w); one may just fix wH ∈ RE(H)
++ arbitrarily (e.g.,

wH = 1) and set wG := M1 for large enough M so that nGµG > nHµH . A natural
question arising from this is as follows.

Problem 8. Characterize the set of graphs for which there exists a positive weight
function on the edges such that strict complementarity fails for (4) when 4C is the
corresponding weighted Laplacian matrix.

Positive semidefinite matrix completion problems can be phrased in terms of slices
of elliptopes. In that area, the paper [39] shares the spirit of Problem 8.

4. Generic failure of strict complementarity on the boundaries of nor-
mal cones. In this section, we consider how often strict complementarity holds for (4)
when C lies in the (relative) boundary of Normal(En; X̄) for some vertex X̄ of En.
Note that this boundary is described as a Minkowski sum in (12).

We start by considering the n = 3 case, where (12) simplifies to

(20) bd(Normal(E3; x̄x̄T)) = D3 − { zzT : z ∈ {x̄}⊥}

for every x̄ ∈ {±1}3.

Proposition 9. Let x̄ ∈ {±1}3, and let C = Diag(ȳ) − z̄ z̄T for some ȳ ∈ R3

and z̄ ∈ {x̄}⊥, so that C ∈ bd(Normal(E3; x̄x̄T)). Then strict complementarity holds
for (4) if and only if z̄i = 0 for some i ∈ [3].

Proof. Set S̄ := Diag(ȳ) − C = z̄ z̄T and X̄ := x̄x̄T. Clearly, ȳ ⊕ S̄ is feasible in
the dual and Tr(S̄X̄) = (z̄Tx̄)2 = 0, so (X̄, ȳ ⊕ S̄) is a pair of primal-dual optimal
solutions. By Corollary 2, ȳ ⊕ S̄ is the unique optimal solution in the dual.

Suppose that z̄i 6= 0 for every i ∈ [3]. We claim that X̄ is the unique optimal
solution in the primal. Indeed, let X ∈ E3 be optimal in the primal. Then 0 =
Tr(S̄X) = z̄TXz̄ so Xz̄ = 0. Thus,

0 =

 1 X12 X13

X12 1 X23

X13 X23 1

z̄1

z̄2

z̄3

 =

z̄1 + z̄2X12 + z̄3X13

z̄1X12 + z̄2 + z̄3X23

z̄1X13 + z̄2X23 + z̄3

 ,D
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so z̄2 z̄3 0
z̄1 0 z̄3

0 z̄1 z̄2

X12

X13

X23

 = −z̄.

The determinant of the matrix defining the latter linear system is −2z̄1z̄2z̄3 6= 0, so
the unique solution is given by the off-diagonal entries of X̄.

Suppose now that z̄i = 0 for some i ∈ [3]. If z̄ = 0 then (I, ȳ ⊕ 0) satisfies strict
complementarity, so assume z̄ 6= 0. Set x̃ := Diag(1− ei)x̄ and X̃ := x̃x̃T + eie

T
i ∈ E3.

Then Tr(S̄X̃) = z̄T(x̃x̃T + eie
T
i )z̄ = (z̄Tx̃)2 + z̄2

i = 0 since z̄Tx̃ = z̄Tx̄ = 0. Hence,
(X̃, ȳ ⊕ S̄) is a strictly complementary pair of primal-dual optimal solutions for (4).

For n ≥ 4, characterization of strict complementarity in (4) is not as easily de-
scribed. However, we can prove the following condition to be sufficient for the failure
of strict complementarity, which will turn out to be adequate for our purposes.

Theorem 10. Let n ≥ 3 and let C ∈ bd(Normal(En;11T)) be of the form
C = Diag(ȳ) − S̄, where ȳ ∈ Rn and S̄ ∈ Sn+. Assume that Null(S̄) = span{1, h},
where h ∈ {1}⊥ and at least three coordinates of h have distinct values. Then strict
complementarity fails for (4).

Proof. Set X̄ := 11
T. Clearly, ȳ ⊕ S̄ is feasible in the dual and Tr(S̄X̄) = 0,

so (X̄, ȳ ⊕ S̄) is a pair of primal-dual optimal solutions. By Corollary 2, ȳ ⊕ S̄
is the unique optimal solution in the dual. We shall prove that X̄ is the unique
optimal solution in the primal, which implies that strict complementarity fails as
rank(X̄) + rank(S̄) = 1 + n− 2 = n− 1 < n.

Let X ∈ En be an optimal solution in the primal. By complementary slackness,
Tr(XS̄) = 0, so S̄X = 0 and Im(X) ⊆ Null(S̄) = span{1, h}. Hence, X = α111

T +
α2hh

T + α3(h1T + 1hT) for some α ∈ R3. Since diag(X) = 1, we find that α1 +
α2h

2
i + 2α3hi = 1 for every i ∈ [n]. Let i, j, k ∈ [n] such that |{hi, hj , hk}| = 3. Then1 2hi h2

i

1 2hj h2
j

1 2hk h2
k


α1

α3

α2

 = 1.

The determinant of the matrix defining this linear system is a Vandermonde deter-
minant, and it is equal to 23(hj − hi)(hk − hi)(hk − hj) 6= 0 by assumption. Hence,
α = e1 is its unique solution. Thus, X = 11

T.

Theorem 10 seems to indicate that strict complementarity fails “almost every-
where” on the boundary of Normal(En;11T), since the high-rank matrices make up
the bulk of the boundary (consider that the set of nonsingular matrices is open and
dense) and for “most” of them the extra vector h in the null space has at least three
coordinates with distinct values. Unfortunately, we are dealing with somewhat com-
plicated sets (e.g., the high-rank matrices in the boundary of a normal cone). In order
to make our previous statements precise, we shall make use of the theory of Hausdorff
measures, which we introduce below in subsection 4.1.

Note also that the cone Normal(En;11T) is not pointed, and its lineality space is
Dn. This is the case due to the constraint that all the diagonal entries are ones, so
En is not full-dimensional in Sn. In the remainder of the paper, we shall focus on the
more relevant part of bd(Normal(En;11T)), namely the term − rbd(Sn+ ∩ {11T}⊥)
in (12). This corresponds to modding out the perturbation via a diagonal matrix in
expression (12).
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4.1. Preliminaries on Hausdorff measures. We refer the reader to [35],
though we use different notation and more standard terminology. See also [11, 33]
for a somewhat similar presentation. We focus our presentation on finite-dimensional
normed spaces (over the reals) but most of it could be developed for arbitrary met-
ric spaces. Our main normed spaces are (subspaces of) Rn and Sn. Since these are
Euclidean spaces, they are equipped with a norm induced by their inner products,
and that is the norm that we will consider unless explicitly stated otherwise. We shall
only use other norms in section 5.

Let V be a finite-dimensional normed space. Let d ∈ R+ and ε ∈ R++. For each
X ⊆ V , define

Hε
d(X ) := inf

{ ∞∑
i=0

[
diam(Ui)

]d
:

{Ui}i∈N ⊆ P(V ), X ⊆
∞⋃
i=0

Ui, diam(Ui) < ε∀i ∈ N

}
,

where the diameter of U ⊆ V is diam(U ) := supx,y∈U ‖x − y‖. The function
Hd : P(V )→ [0,+∞] defined by

(21) Hd(X ) := sup
ε>0

Hε
d(X ) = lim

ε↓0
Hε
d(X ) ∀X ⊆ V

is an outer measure on V . Hence, the restriction of Hd to the Hd-measurable subsets
of V is a complete measure on V , called the d-dimensional Hausdorff measure on V .
The 0-dimensional Hausdorff measure H0 is the cardinality of a set, H1 is its length,
H2 is its area, and so on.

Let d be a positive integer and set V := Rd. Let λd : P(Rd) → [0,+∞] denote
the d-dimensional Lebesgue outer measure on Rd. It can be proved [35, Theorem 30]
that

(22)
λd(X )

λd(B)
=
Hd(X )

2d
∀X ⊆ Rd.

In particular, the Hd-measurable subsets of Rd are the same as the λd-measurable
sets.

Let a, b ∈ R+ with a < b and let X ⊆ V . It is not hard to prove from the
definition that

Ha(X ) <∞ =⇒ Hb(X ) = 0,(23)

Hb(X ) > 0 =⇒ Ha(X ) =∞.(24)

Hence,

(25) sup{ d ∈ R+ : Hd(X ) =∞} = inf{ d ∈ R+ : Hd(X ) = 0},

and the common value in (25) is the Hausdorff dimension of X , denoted by dimH(X ),
that is,

(26) dimH(X ) = sup{ d ∈ R+ : Hd(X ) =∞} = inf{ d ∈ R+ : Hd(X ) = 0}.

In particular,

(27) if d ∈ R+ and X ⊆ V satisfy Hd(X ) ∈ (0,∞), then dimH(X ) = d.
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Note that the widely used notion of dimension of a convex set, while consistent
with the above definition (see the paragraph following the proof of Proposition 13), is
an elementary concept. The dimension of a convex set is the dimension of the smallest
affine subspace containing it (i.e., the dimension of a convex set is the dimension of its
affine hull). Therefore, the notion of dimension for convex sets is no more complicated
than that of linear subspaces. However, dealing with boundaries or relative boundaries
of convex sets requires us to understand the dimensions of these nonconvex sets. For
this purpose, we employ the notion of the Hausdorff dimension.

We may now define genericity precisely. Let X be a subset of a finite-dimensional
normed space V . Let P be a property that may hold or fail for points in X , i.e.,
P (x) is either true or false for each x ∈X . We say that P holds generically on X if
Hd({x ∈X : P (x) is false}) = 0 for d := dimH(X ). We say that P fails generically
on X if the negation of P holds generically on X . In subsection 4.3, we will use
Theorem 10 to prove that strict complementarity fails generically at the boundary
of the normal cone of any vertex of En, for n ≥ 3, modulo some qualification on the
ambient space. In the remainder of this section and in the next one, we will describe
a few more measure-theoretic tools that we shall use towards this goal.

Let V and U be finite-dimensional normed spaces. Let X ⊆ V . Recall that a
function ϕ : X → U is Lipschitz continuous with Lipschitz constant L > 0 if

(28) ‖ϕ(x)− ϕ(y)‖ ≤ L‖x− y‖ ∀x, y ∈X .

The following is well known and easy to prove (see, e.g., [35, Theorem 29] or [11,
Proposition 2.13]).

Theorem 11. Let V and U be finite-dimensional normed spaces. Let X ⊆ V
and d ∈ R+. Let ϕ : X → U be Lipschitz continuous with Lipschitz constant L. Then

(29) Hd

(
ϕ(X )

)
≤ LdHd(X ).

Theorem 11 is especially useful for determining some Hausdorff dimensions via
bi-Lipschitz maps. We recall the definition here. Let V and U be finite-dimensional
normed spaces. Let X ⊆ V , and let ϕ : X → U be a one-to-one function with range
Y := ϕ(X ). We say that ϕ is bi-Lipschitz continuous with Lipschitz constants L1 > 0
and L2 > 0 if ϕ is Lipschitz continuous with Lipschitz constant L1 and ϕ−1 : Y → V
is Lipschitz continuous with Lipschitz constant L2.

Corollary 12. Let V and U be finite-dimensional normed spaces. Let X ⊆ V
and d ∈ R+. Let ϕ : X → U be bi-Lipschitz continuous with Lipschitz constants L1

and L2. Then

(30) L−d2 Hd(X ) ≤ Hd(ϕ(X )) ≤ Ld1Hd(X ).

In particular, if Hd(X ) ∈ (0,∞), then dimH(ϕ(X )) = d.

This corollary may be used, for instance, to regard any d-dimensional Euclidean
space V as Rd by considering the coordinate map ϕ : V → Rd with respect to a
fixed orthonormal basis of V . Another frequent use of Corollary 12 goes as follows.
Equip the space Sn with the trace inner product. If Q ∈ Rn×n is an orthogonal
matrix, the map X ∈ Sn 7→ QXQT preserves inner products, and hence norms and
distances; hence, the map is Lipschitz continuous with Lipschitz constant 1. Its inverse
is X ∈ Sn 7→ QTXQ and so the map X ∈ Sn 7→ QXQT is bi-Lipschitz continuous
with Lipschitz constants 1 and 1.

The next result is useful for determining the Hausdorff dimension of some simple
unbounded sets in the σ-finite case, when (27) is not directly applicable.
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Proposition 13. Let X be a subset of a finite-dimensional normed space V .
For each i ∈ N, let Yi be a subset of a finite-dimensional normed space Ui, and
let ϕi : Yi → V be a Lipschitz continuous function with Lipschitz constant Li. If
X ⊆

⋃
i∈N ϕi(Yi), then dimH(X ) ≤ supi∈N dimH(Yi).

Proof. Set d := supi∈N dimH(Yi). Let d̄ > d. Then (25) yields Hd̄(Yi) = 0

for each i ∈ N, so by Theorem 11 we have Hd̄(X ) ≤
∑
i∈N L

d̄
iHd̄(Yi) = 0. Hence,

dimH(X ) ≤ d̄ by (26) and thus dimH(X ) ≤ d.

For instance, Rd =
⋃
M∈NMB and the ball MB ⊆ Rd with nonzero M has

Hausdorff dimension d by (27) and (22), so Proposition 13 shows that dimH(Rd) ≤ d.
Since Rd ⊇ B shows that Hd(Rd) ≥ Hd(B) > 0 by (22), we conclude by (27) that
dimH(Rd) = d. Together with Corollary 12, this shows that Hausdorff dimension and
the usual (linear) dimension coincide on linear subspaces, and hence also for convex
sets by translation invariance.

4.2. Hausdorff measures and the boundary structure of convex sets.
In this section we collect some results relating Hausdorff measures and the boundary
structure of convex sets, including a quick review of basic facts about faces.

The following result is well known.

Theorem 14. Let E be a Euclidean space. If C ⊆ E is a compact convex set with
dimension d ≥ 1, then dimH(rbd(C )) = d− 1.

Proof. We may assume that dim(E) = d so that C has nonempty interior. By
choosing an orthonormal basis for E, we may assume that E = Rd. We may also
assume that 0 ∈ int(C ) by translation invariance of Hausdorff measure. Set X :=
bd(B∞), and note that Hd−1(X) ∈ (0,+∞) by (22) and Corollary 12. Let ε,M ∈ R++

such that 2εB∞ ⊆ C ⊆ 1
2MB∞. Let pC : Rd → C be the metric projection onto C ,

i.e., {pC (x)} = arg miny∈C ‖y − x‖ for each x ∈ Rd. Then pC is Lipschitz continuous
(with Lipschitz constant 1). Theorem 11 applied to pC �MX , which is the restriction
of pC to the set MX, and positive homogeneity of Hd−1 (of degree d − 1) yield
Hd−1(bd(C )) < ∞. Similarly, applying Theorem 11 to the restriction to bd(C ) of
the metric projection onto εB∞ yields Hd−1(bd(C )) > 0. The theorem now follows
from (27).

Since we are dealing with convex cones, the previous result will be more useful to
us when stated in a lifted form about pointed closed convex cones.

Corollary 15. Let E be a Euclidean space. If K ⊆ E is a pointed closed convex
cone with dimension d ≥ 1, then dimH(rbd(K )) = d− 1.

Proof. We may assume that E = Rd. Since K is pointed, after applying some
rotation, which preserves Hausdorff measures by Corollary 12, we may assume that
K = R+(1 ⊕ C ) for some compact convex set C ⊆ Rd̄, where d̄ := d − 1. For each
N ∈ N, define the compact convex set KN := K ∩ [N,N + 1]⊕ Rd̄. Since

(31) rbd(K ) ⊆
∞⋃
N=0

rbd(KN ),

the result follows from Proposition 13 and Theorem 14.

The next result refers to faces of a convex set, so before we state it we shall briefly
recall the basic theory; see [34, section 18]. Let E be a Euclidean space. Let C ⊆ E be
a convex set. A convex subset F of C is a face of C if, for each x, y ∈ C such that the
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open line segment (x, y) := { (1− λ)x+ λy : λ ∈ (0, 1)} between x and y meets F ,
we have x, y ∈ F . We use the notation F E C to denote that F is a face of C , and
F C C to denote that F is a proper face of C , i.e., F E C and F 6= C . Define
Faces(C ) := {F : F E C }.

Faces of closed convex sets are closed, and faces of convex cones are convex cones.
An arbitrary intersection of faces of C is a face of C and, since the faces of a convex
set are partially ordered by inclusion and C E C , every point x of C lies in a unique
minimal face F of C ; this face F is characterized by the property x ∈ ri(F ). Also,
it can be proved that { ri(F ) : ∅ 6= F E C } is a partition of C . If C is a compact
convex set, it is not hard to prove that the faces of the homogenization of C are
described by

(32) Faces
(
R+(1⊕ C )

)
=
{
∅, {0}

}
∪
{
R+(1⊕F ) : ∅ 6= F E C

}
.

Theorem 16 (see Larman [22]). Let E be a Euclidean space. If C ⊆ E is a
compact convex set with dimension d ≥ 1, then

Hd−1

( ⋃
FCC

rbd(F )
)

= 0.

As before, we shall need a conic version of Larman’s theorem. We apply tools
similar to the ones used to lift Theorem 14 to Corollary 15.

Theorem 17. Let E be a Euclidean space. If K ⊆ E is a pointed closed convex
cone with dimension d ≥ 1, then

Hd−1

( ⋃
FCK

rbd(F )
)

= 0.

Proof. The d = 1 case is easy to verify; assume that d ≥ 2. We may assume that
E = R⊕Rd̄ for d̄ := d−1 and, as in the beginning of the proof of Corollary 15, we may
assume that K = R+(1 ⊕ C ) for some compact convex set C ⊆ Rd̄ with nonempty
interior. For each N ∈ N, define the compact convex set KN := K ∩ [N,N + 1]⊕Rd̄.
By elementary convex analysis,

(33)
⋃

FCK

rbd(F ) ⊆
∞⋃
N=0

⋃
FNCKN

rbd(FN ).

Hence,

Hd−1

( ⋃
FCK

rbd(F )

)
≤
∞∑
N=0

Hd−1

( ⋃
FNCKN

rbd(FN )

)
= 0,

where we used the fact that each summand is zero by Theorem 16.

4.3. Generic failure of strict complementarity. In this section, we prove one
of our main results: strict complementarity fails generically in the relative boundary
of the normal cone of the elliptope at any of its vertices.

We shall apply Theorem 17 to Sn+. Let us briefly recall some well-known descrip-
tions of the faces of the positive semidefinite cone Sn+; see, e.g., [18]. Let Ln denote
the set of linear subspaces of Rn. For each L ∈ Ln, define

(34) FL := {X ∈ Sn+ : Null(X) ⊇ L }
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and note that

(35) ri(FL ) = {X ∈ Sn+ : Null(X) = L }.

Then

Faces(Sn+) = {∅} ∪ {FL : L ∈ Ln}.(36)

Note that, for L ∈ Ln such that L 6= Rn, there is an orthogonal matrix Q ∈ Rn×n
such that

(37) FL =

{
Q

[
U 0
0 0

]
QT : U ∈ Sr+

}
,

where r := n− dim(L ).

Lemma 18. Let n ≥ 2 be an integer. Then the property “C 7→ rank(C) = n− 1”
holds generically in bd(Sn+).

Proof. Set d := dimH(Sn+). Note that d − 1 = dimH(bd(Sn+)) by Corollary 15.
Let X ∈ bd(Sn+) such that rank(X) = n − 1 fails. Then rank(X) ≤ n − 2. For each
nonzero h ∈ Null(X), let L be the linear subspace of Rn spanned by h and note that
X ∈ rbd(FL ), following the notation from (34). Hence,

{X ∈ bd(Sn+) : rank(X) 6= n− 1} = {X ∈ Sn+ : rank(X) ≤ n− 2} ⊆
⋃

FCSn+

rbd(F ).

The (d − 1)-dimensional Hausdorff measure of the set on the RHS above is zero by
Theorem 17.

We are ready to prove one of our main results.

Theorem 19. Let n ≥ 3, and let X̄ be a vertex of En. Then the property “C 7→
strict complementarity holds for (4)” fails generically on − rbd(Sn+ ∩ {X̄}⊥).

Proof. By Theorem 3 and the discussion of linear automorphisms of En from
subsection 2.2, we may assume that X̄ = 11

T. Set

m := n− 1.

Let Q ∈ Rn×n be an orthogonal matrix such that QTen = n−1/2
1 and QTem =

2−1/2(e1 − e2). Using the map M ∈ Sn 7→ QMQT and Corollary 12, we find that
rbd(Sn+ ∩ {X̄}⊥) and rbd(Sn+ ∩ {eneTn}⊥) have the same Hausdorff dimension. Since
the cone Sn+ ∩ {eneTn}⊥ is the image of an embedding of Sm+ into Sn+, the Hausdorff
dimension of rbd(Sn+ ∩ {eneTn}⊥) is dimH(Sm+ )− 1 by Corollary 15. Hence,

(38) d := dimH

(
rbd
(
Sn+ ∩ {X̄}⊥

))
=

(
n

2

)
− 1.

Set C :=
{
C ∈ − rbd(Sn+ ∩ {X̄}⊥) : strict complementarity holds in (4)

}
. We

want to show that Hd(C ) = 0. If strict complementarity holds for C = −S̄, i.e.,
C ∈ C , then by Theorem 10 it is not the case that Null(S̄) = span{1, h}, where h ⊥ 1

and at least three coordinates of h have distinct values. As S̄ ∈ rbd(Sn+ ∩ {X̄}⊥),
Null(S̄) contains 1 and rank(S̄) ≤ n− 2. If rank(S̄) ≤ n− 3 then

S̄ ∈ D0 :=
{
S ∈ Sn+ ∩ {X̄}⊥ : rank(S) ≤ n− 3

}
.
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Otherwise, S̄ lies in one of the sets

Dij :=
{
S ∈ Sn+ : ∃h ∈ {1, ei − ej}⊥, h 6= 0, Null(S) = span{1, h}

}
for each i, j ∈ [n].

Hence,

(39) − C ⊆ D0 ∪D12 ∪D13 ∪D23.

Clearly all the sets Dij have the same d-dimensional Hausdorff measures, so it suffices
to prove that

Hd(D0) = 0,(40)

Hd(D12) = 0.(41)

By using the map M ∈ Sn 7→ QMQT and Corollary 12,

D0 and {S ∈ Sm+ : rank(S) ≤ m− 2}

have the same d-dimensional Hausdorff measure. Hence, (40) follows from Lemma 18
and Corollary 15. Again using the map M ∈ Sn 7→ QMQT and Corollary 12, we find
that Hd(D12) = Hd(D ′), where

D ′ := {U ∈ Sm+ : rank(U) = m− 1, em ∈ Im(U)}.

Hence, to prove (41) and thus the theorem, it suffices to prove that

(42) Hd(D
′) = 0.

For each k ∈ [m − 1] define the permutation matrix Pk :=
∑
i∈[m]\{k,m} eie

T
i +

eke
T
m + eme

T
k ∈ Sm, so that right-multiplication by Pk permutes the columns indexed

by k and m. Set Pm := I. For each k ∈ [m] define the map ϕk : Sm−1
++ ⊕ Rm−1 → Sm

by setting

ϕk(A⊕ c) := PT
k

[
A Ac
cTA cTAc

]
Pk.

Note that, before applying PT
k ·Pk, the map ϕk builds from A⊕c ∈ Sm−1

++ ⊕Rm−1 a flat
extension (see [24, section 1.3.3]) of A in Sm+ whose null space is spanned by −c⊕ 1.
Then the application of PT

k ·Pk symmetrically permutes the last row/column with the
kth row/column. It is easy to verify that the images of these maps decompose the
rank-(m− 1) matrices in Sm+ :

{U ∈ Sm+ : rank(U) = m− 1} =
⋃
k∈[m]

ϕk(Sm−1
++ ⊕ Rm−1).(43)

Also, the null space of each shuffled flat extension is easy to compute:

Null(ϕk(A⊕ c)) = Pk span{−c⊕ 1} ∀A⊕ c ∈ Sm−1
++ ⊕ Rm−1.(44)

Let U ∈ Sm+ with rank(U) = m− 1, and let k ∈ [m] and A⊕ c ∈ Sm−1
++ ⊕ Rm−1 such

that U = ϕk(A ⊕ c). Then em ∈ Im(U) is equivalent to em ⊥ Pk(−c ⊕ 1), which is
equivalent to k ∈ [m− 1] and c ⊥ ek. Hence,

(45) D ′ =
⋃

k∈[m−1]

ϕk(Sm−1
++ ⊕ {ek}⊥).
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Let k ∈ [m − 1]. Since each entry of ϕk(A ⊕ c) is a (componentwise) polynomial
function of the input, the map ϕk is Lipschitz continuous on any compact subset of
the domain. It follows from Proposition 13 that

(46) dimH(ϕk(Sm−1
++ ⊕ {ek}⊥)) ≤

(
m

2

)
+m− 2 = d− 1;

note that the subspace {ek}⊥ on the left-hand side (LHS) is (m − 2)-dimensional,
as this subspace is the set of vectors in Rm−1 orthogonal to ek. Now (42) follows
from (45) and (46), since dimH(D ′) ≤ d− 1 implies that Hd(D ′) = 0.

Note that in the statement of Theorem 19, the objective function matrices C
vary over the relative boundary of −Sn+ ∩ {X̄}⊥, where one might have expected
that it would vary over the boundary of the normal cone at X̄. As mentioned in
our comment preceding subsection 4.1, here we are modding out the trivial part, the
lineality space of the normal cone (this being equivalent to taking the perturbation
by a fixed diagonal matrix).

5. Failure of strict complementarity for rank-one objectives. In sec-
tion 4, we zoomed into the boundary of the normal cone of an arbitrary vertex of the
elliptope and proved that strict complementarity fails generically there. Informally,
we might say that with zero “probability” a “uniformly chosen” objective function in
the boundary of such a normal cone yields an SDP that satisfies strict complemen-
tarity. Recall that Theorem 19 is based on Theorem 10, which provides a sufficient
condition for failure of strict complementarity based only on the highest-rank matri-
ces in the boundary of the normal cone. This may seem counterintuitive since we are
choosing objectives with corank 2, and so any primal optimal solution with rank 2
would already be sufficient for strict complementarity to hold.

In this section, we shall zoom in even further on the boundary of the normal
cone, into the set of negative semidefinite rank-one objectives, and consider again how
often strict complementarity holds. In a sense, we are now proceeding in the opposite
direction of Theorem 10, by looking at the lowest possible rank in the boundary of the
normal cone (excluding the zero matrix). For such objectives, strict complementarity
would require existence of extremely high-rank primal optimal solutions for strict
complementarity to hold, namely corank 1. Even though the requirements seem even
harder to achieve, we shall see that in this “conditional” probability space, strict
complementarity holds with positive probability. In fact, we will prove that such
probability lies strictly between 0 and 1.

We will state and prove a self-contained result in Theorem 23 below. However,
in order to motivate the objects of the construction and the intermediate results, we
start with an informal discussion. Assume throughout this discussion that n ≥ 4. We
will normalize the “sample space” so that we can have a probability space. Without
loss of generality, let us focus our attention on the vertex 11

T of En and consider the
sample space to be

Ω := {C ∈ − rbd(Sn+ ∩ {11T}⊥) : rank(C) = 1, ‖vec(C)‖∞ = 1}
= {−bbT : b ∈ Rn, ‖b‖∞ = 1, b ⊥ 1}.

(47)

Accordingly, equip Sn with the norm X ∈ Sn 7→ ‖vec(X)‖∞. Set d := dimH(Ω).
In order to obtain a probability space on Ω, we will define a probability measure

(48) P(A ) :=
Hd(A )

Hd(Ω)

D
ow

nl
oa

de
d 

10
/2

3/
19

 to
 1

29
.1

05
.2

15
.1

46
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2670 MARCEL K. DE CARLI SILVA AND LEVENT TUNÇEL

over all Hd-measurable subsets A of Ω; we shall prove that Hn−2(Ω) ∈ (0,∞), so
that (48) is properly defined and d = n− 2. Our goal is to prove that the probability
of the event

(49) G := {C ∈ Ω : strict complementarity holds for (4) with C}

lies in (0, 1).
In order to achieve this, we shall reduce the problem to the space of vectors that

generate the rank-one tensors in Ω and G , which lie in the matrix space. In order to
carry results back and forth between these spaces, we rely on Corollary 12. For each
s ∈ {±1}n, define

Rns := Diag(s)Rn+,(50)

ϕs : b ∈ Rns ∩ bd(B∞) 7→ −bbT.(51)

Equip Rn with the norm x ∈ Rn 7→ ‖x‖∞. We shall split our analysis to each of the
2n bi-Lipschitz maps ϕs, one for each chamber/orthant of Rn, according to their sign
vectors.

Theorem 20. Let s ∈ {±1}n. Then the map ϕs defined in (51) is bi-Lipschitz
continuous with Lipschitz constants 2 and 1, where we equip the domain with the
∞-norm, and we equip the range with the norm ‖vec(·)‖∞.

Proof. To see that ϕs is Lipschitz continuous with Lipschitz constant 2, let x, y ∈
Rns ∩ bd(B∞) and note that

‖2 vec(xxT − yyT)‖∞ = ‖vec[(x− y)(x+ y)T + (x+ y)(x− y)T]‖∞
≤ 2‖x+ y‖∞‖x− y‖∞
≤ 4‖x− y‖∞.

The proof that ϕ−1
s is Lipschitz continuous with Lipschitz constant 1 is also simple

but it involves case analysis. Set A := xxT − yyT. Let k ∈ [n] such that |xk| = 1, so
xk = sk. Similarly, let ` ∈ [n] such that |y`| = 1, so y` = s`. Let j ∈ [n]. We shall
make use of the following facts:

αk :=
yk
sk
∈ [0, 1], β` :=

x`
s`
∈ [0, 1], |Akj | = |xj − αkyj |, |A`j | = |β`xj − yj |.

We consider 4 cases, according to which of xj or yj is largest, and according to their
signs; note that xj and yj have the same sign.

We have

xj ≥ yj ≥ 0 =⇒ 0 ≤ |xj − yj | = xj − yj ≤ xj − αkyj = |Akj |,
yj ≥ xj ≥ 0 =⇒ 0 ≤ |xj − yj | = yj − xj ≤ yj − β`xj = |A`j |,
0 ≥ xj ≥ yj =⇒ 0 ≤ |xj − yj | = xj − yj ≤ β`xj − yj = |A`j |,
0 ≥ yj ≥ xj =⇒ 0 ≤ |xj − yj | = yj − xj ≤ αkyj − xj = |Akj |.

Hence, ‖x− y‖∞ ≤ ‖vec(xxT − yyT)‖∞.

Note that restricting the domain of ϕs in Theorem 20 to chambers of Rn is
necessary. Indeed, consider x := (1,−1, ε)T and y := (−1, 1, 0)T for an arbitrary
ε ∈ (0, 1). Then ‖x− y‖∞ = 2 but ‖vec(xxT − yyT)‖∞ = ε.
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Finally, we need to relate G with the vectors that appear in the rank-one tensors.
A vector b ∈ Rn is strictly balanced if |bi| <

∑
j∈[n]\{i}|bj | for every i ∈ [n]. It is easy

to verify that

(52) if b ∈ Rn and i ∈ [n] is such that |bi| = ‖b‖∞, then b is strictly balanced

⇐⇒ |bi| <
∑
j∈[n]\{i}|bj |.

We shall rely on yet another result by Laurent and Poljak.

Theorem 21 (see [26, Theorem 2.6]). Let b ∈ Rn be such that b ⊥ 1 and
supp(b) = [n]. Then there exists X ∈ En such that Null(X) = span{b} if and only if
b is strictly balanced.

Theorem 21 provides a neat characterization of strict complementarity for full
support matrices in Ω in terms of strict balancedness.

Proposition 22. Let b ∈ Rn be such that b ⊥ 1 and supp(b) = [n]. Then strict
complementarity holds for (4) with C = −bbT if and only if b is strictly balanced.

Proof. Note that 11T is an optimal solution for (4) if C = −bbT. By Proposition 5,
we must show that existence of X ∈ En such that −bbT ∈ ri(Normal(En;X)) is
equivalent to strict balancedness of b. We will show that, for each X ∈ En,

(53) − bbT ∈ ri(Normal(En;X)) ⇐⇒ bbT ∈ {Z ∈ Sn+ : Im(Z) = Null(X)}.

Since existence of X ∈ En such that the RHS of (53) holds is equivalent to b being
strictly balanced by Theorem 21, the result will follow.

The proof of sufficiency in (53) follows from (11) and

ri(Sn+ ∩ {X}⊥) = {Z ∈ Sn+ : Im(Z) = Null(X)}.

For the proof of necessity, recall (11) and suppose that there exists X ∈ En such that
−bbT = Diag(y) − S for some y ∈ Rn and S ∈ ri(Sn+ ∩ {X}⊥). Then 0 = −bbT1 =
(Diag(y)− S)1 = y − S1 shows that

(54) y = S1.

Since X and 11
T are optimal solutions for (4), we find that 0 = Tr(−bbT11T) =

Tr(−bbTX) = yT diag(X)− Tr(SX), so 1
Ty = Tr(SX) = 0. By (54), 1TS1 = 1

Ty =
0, so 1 ∈ Null(S) and y = 0.

We are now in position to present the main result of this section.

Theorem 23. Let n ≥ 4 be an integer. Equip Sn with the norm ‖vec(·)‖∞. Set

Ω := {−bbT : b ∈ Rn, ‖b‖∞ = 1, b ⊥ 1} ⊆ Sn,
G := {C ∈ Ω : strict complementarity holds for (4) with C}.

Set d := dimH(Ω). Let Σd be the σ-algebra of Hd-measurable subsets of Sn and set
Σ := {A ∈ Σd : A ⊆ Ω}. Then

(i) Ω ∈ Σd;
(ii) Hn−2(Ω) ∈ (0,∞), so d = n− 2;
(iii) G ∈ Σ;
(iv) Hd(G ) > 0 and Hd(G ) > 0, where G := Ω \ G .
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In particular, if we set

(55) P(A ) :=
Hd(A )

Hd(Ω)
∀A ∈ Σ,

then (Ω,Σ,P) is a probability space and the event G satisfies P(G ) ∈ (0, 1).

Proof. Define ϕs as in (51) for each s ∈ {±1}n.
(i) This is trivial since Ω is compact.
(ii) We will prove that Hn−2(Ω) ∈ (0,∞), from which it will follow via (27) that

d = n− 2. We have

Ω ⊇ {−bbT : b = −1⊕ c, c ∈ Rn−1
+ , 1Tc = 1} =⇒ Hn−2(Ω) > 0.

For each s ∈ {±1}n and i ∈ [n], the polytope

Ps,i := { b ∈ Rns : b ⊥ 1, −1 ≤ b ≤ 1, bi = si}

has dimension less than or equal to n− 2. Since

Ω =
⋃

s∈{±1}n

⋃
i∈[n]

ϕs(Ps,i)

and each ϕ(Ps,i) has finite d-dimensional Hausdorff measure by Corollary 12 and
Theorem 20, the proof of (ii) is complete.

(iii) In the remainder of the proof we shall use subsets of Rn with constraints on
the coordinates that are zero:

Zi := { b ∈ Rn : bi = 0} ∀i ∈ [n],

and

Z∅ := Rn \
⋃
i∈[n]

Zi = { b ∈ Rn : supp(b) = [n]}.

We will transfer measures of sets in a space of vectors to sets in a space of matrices.
To distinguish them, we shall decorate the sets in spaces of vectors with a prime:

Ω′ := { b ∈ Rn : b ⊥ 1, ‖b‖∞ = 1},
G ′ := { b ∈ Ω′ : −bbT ∈ G },

G ′ := Ω \ G ′,

Bbal := { b ∈ Ω′ : b is strictly balanced},
Bbal := Ω′ \Bbal.

Proposition 22 implies that

G ′ ∩Z∅ = Bbal ∩Z∅,(56)

G ′ ∩Z∅ = Bbal ∩Z∅.(57)

For each i ∈ [n], we have G ′ ∩ Zi ⊆ Ω′ ∩ Zi and the set on the RHS has zero
d-dimensional Hausdorff measure. Hence,

(58) Hd(G
′ ∩Zi) = 0 ∀i ∈ [n].
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Define ϕs as in (51) for each s ∈ {±1}n. By putting together (58) and (56), we find
that

(59) G = N ∪
⋃

s∈{±1}n
ϕs(G

′ ∩Z∅ ∩ Rns ) = N ∪
⋃

s∈{±1}n
ϕs(Bbal ∩Z∅ ∩ Rns )

for some subset N ⊆ Ω such that Hd(N ) = 0. This set N arises as the image under
the various maps ϕs of the sets G ′ ∩ Zi; again we are relying on Corollary 12 and
Theorem 20.

Let us prove that

(60) G ∈ Σ.

By standard Hausdorff measure theory, Σd contains every Borel set of Sn; see, e.g.,
[35, Theorem 27]. Recall that the Borel sets of Sn are the elements of the smallest
σ-algebra on Sn that contains all the open subsets of Sn. For each m ∈ N\{0}, define

Bbal,m :=

{
b ∈ Rn : b ⊥ 1, ‖b‖∞ = 1, |bi| ≥ 1

m ∀i ∈ [n],

|bi|+ 1
m ≤

∑
j∈[n]\{i}

|bj | ∀i ∈ [n]

}
.

Clearly, Bbal =
⋃∞
m=1 Bbal,m. Hence, by (59),

(61) G = N ∪
∞⋃
m=1

⋃
s∈{±1}n

ϕs(Bbal,m ∩Z∅ ∩ Rns ).

Since each ϕs(Bbal,m ∩Z∅ ∩ Rns ) is compact, it follows that G is the union of a null
set with an Fσ, i.e., a countable union of closed sets, and hence a Borel set. Thus,
G ∈ Σd, and the proof of (iii) is complete.

(iv) Set

x̊ := 1⊕ 1

n− 1
⊕ −n

(n− 1)(n− 2)
1 ∈ Rn, ε :=

3

4(n− 1)(n− 2)
,

and

s(x) := 1⊕ 1⊕−1 ∈ {±1}n.

It is not hard to verify that

(62) x̊+ ε(B∞ ∩ {e1,1}⊥) ⊆ Bbal ∩Z∅ ∩ Rns(x).

Since the set on the LHS of (62) has positive d-dimensional measure, so does the set
on the RHS of (62), whence

(63) Hd(G ) > 0

by Corollary 12, Theorem 20, and (59).
Set

ẙ := 1⊕− 1

n− 1
1 ∈ Rn, δ :=

1

2(n− 1)
, and s(y) := 1⊕−1 ∈ {±1}n.
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It is not hard to verify that

(64) ẙ + δ(B∞ ∩ {e1,1}⊥) ⊆ Bbal ∩Z∅ ∩ Rns(y).

Hence,

G ⊇ ϕ(G ′ ∩Z∅) = ϕ(Bbal ∩Z∅) ⊇ ϕs(y)(Bbal ∩Z∅ ∩ Rns(y))

⊇ ϕs(y)(ẙ + δ(B∞ ∩ {e1,1}⊥)).

Thus,

Hd(G ) > 0

by Corollary 12 and Theorem 20.

We note that, in the above proof, it is possible to compute the volume of the set
Bbal exactly, since it can be expressed as a combinatorial function of certain slabs of
hypercubes in a Euclidean space. Some of the underlying volume formulae go back at
least to works of Laplace as well as Pólya (see [6]), and they are related to Ehrhart
theory (see [12, 7]). We opted to present the above high-level elegant proof instead of
long computations and analysis for at least two reasons: (i) the above proof is more
clearly adaptable to similar situations in convex optimization; (ii) the use of the bi-
Lipschitz map with constants 2 and 1 from Theorem 20, together with Corollary 12,
degrades the probabilities by a factor of 2Ω(n). Therefore, to present an exact value
(or near exact value) for this probability would take us far afield.

Acknowledgments. The authors thank the associate editor and three anony-
mous referees for their helpful comments, which improved the presentation of the
results.
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[19] J. C. K. Ho and L. Tunçel, Reconciliation of various complexity and condition measures for
linear programming problems and a generalization of Tardos’ theorem, in Foundations of
Computational Mathematics: Proceedings of SMALEFEST 2000, World Scientific, River
Edge, NJ, 2002, pp. 93–147.

[20] J. Ji, F. A. Potra, and R. Sheng, On the local convergence of a predictor-corrector method
for semidefinite programming, SIAM J. Optim., 10 (1999), pp. 195–210, https://doi.org/
10.1137/S1052623497316828.

[21] M. Kojima, M. Shida, and S. Shindoh, Local convergence of predictor-corrector infeasible-
interior-point algorithms for SDPs and SDLCPs, Math. Program., 80 (1998), pp. 129–160.

[22] D. G. Larman, On a conjecture of Klee and Martin for convex bodies, Proc. Lond. Math. Soc.
(3), 23 (1971), pp. 668–682.

[23] J. B. Lasserre, An Introduction to Polynomial and Semi-algebraic Optimization, Cambridge
Texts Appl. Math., Cambridge University Press, Cambridge, 2015.

[24] M. Laurent, Sums of squares, moment matrices and optimization over polynomials, in Emerg-
ing Applications of Algebraic Geometry, IMA Vol. Math. Appl. 149, Springer, New York,
2009, pp. 157–270, https://doi.org/10.1007/978-0-387-09686-5 7.

[25] M. Laurent and S. Poljak, On a positive semidefinite relaxation of the cut polytope, Lin-
ear Algebra Appl., 223/224 (1995), pp. 439–461, https://doi.org/10.1016/0024-3795(95)
00271-R.

[26] M. Laurent and S. Poljak, On the facial structure of the set of correlation matrices, SIAM
J. Matrix Anal. Appl., 17 (1996), pp. 530–547, https://doi.org/10.1137/0617031.

[27] Z.-Q. Luo, J. F. Sturm, and S. Zhang, Superlinear convergence of a symmetric primal-
dual path following algorithm for semidefinite programming, SIAM J. Optim., 8 (1998),
pp. 59–81, https://doi.org/10.1137/S1052623496299187.

[28] Y. Nesterov, Semidefinite relaxation and nonconvex quadratic optimization, Optim. Methods
Softw., 9 (1998), pp. 141–160, https://doi.org/10.1080/10556789808805690.

[29] Y. Nesterov, M. J. Todd, and Y. Ye, Infeasible-start primal-dual methods and infeasibility
detectors for nonlinear programming problems, Math. Program., 84 (1999), pp. 227–267.
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