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Abstract We review the status of integrable models
from the point of view of their dynamics and integrabil-
ity conditions. A few integrable models are discussed
in detail. We comment on the use it is made of them
in string theory. We also discuss the SO(6) symmetric
Hamiltonian with SO(6) boundary. This work is es-
pecially prepared for the 70th anniversaries of André
Swieca (in memoriam) and Roland Köberle.

Keywords Integrable systems · Yang–Baxter
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Supersymmetry

1 Introduction

As a natural extension of quantum mechanics, rela-
tivistic quantum field theory (QFT) has demonstrated
its predictive power in the calculation of processes in
quantum electrodynamics. There are, however, concep-
tual and technical difficulties, since the local products
of quantum fields, which are operator-valued distribu-
tions, are ill defined. This problem can only be resolved
via the techniques of renormalization.

The general non-perturbative properties of quan-
tum field theory were first extracted from a per-
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turbative setup by the so-called Lehmann–Symanzik–
Zimmermam formalism. Next, dispersion relations
were found and were used to obtain non-perturbative
information. These developments were followed by the
axiomatic approach, known as constructive QFT. An
important consequence of this approach is the charge–
parity–time (CPT) theorem connecting spin and statistics.

Nonetheless, dynamical calculations in QFT were, in
the 1960s, restricted to perturbation theory. Therefore,
calculations involving strong interactions were unreli-
able. Information about the bound-state spectrum were
very poor and could only be obtained within crude
approximate schemes. Thus, QFT fell into stagnation
for many years. These difficulties provided a motivation
for the S-matrix theory. But its predictive power turned
out to be very small, since it was entirely based on
kinematical principles, analyticity, and the bootstrap
idea. An underlying dynamical framework was lack-
ing. Nevertheless, analyticity in the complex angular
momentum plane led to the important concept of du-
ality. An explicit realization of these concepts by the
Veneziano formula led to a new parallel development
in the 1960s, the dual models. However, the predictions
of the dual models for high-energy scattering processes
were incorrect.

On the other hand, QFT explained very success-
fully the weak interactions. Moreover, symmetry prin-
ciples had proven powerful in predicting the masses of
strongly interacting particles without recourse to dy-
namical calculations. These facts led to a revival of QFT
in the late 1960s. In the 1970s, much effort was spent on
non-perturbative aspects. Quantum chromodynamics
(QCD) was proposed as the fundamental theory of the
strong interactions as a result of the successful pertur-
bative explanation of high energy scattering as well as
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the success of the quark model. Nevertheless, reliable
non-perturbative calculations were still lacking in four
dimensions and were only available for specific models
in two-dimensional space–time [1]. It was understood
that the short distance singularities of quantum field
theory play a key role in the dynamical structure of
the theory. The experimental results on lepton-proton
scattering at large momentum transfer required that a
realistic theory of the strong interactions be asymptoti-
cally free.

The recourse to soluble or almost soluble models as a
laboratory was a must for a dynamical understanding of
QFT. The first soluble model was that describing a two-
dimensional massless fermion with a current–current
interaction formulated by Thirring in 1958 [2] as an
example of a completely soluble quantum field theo-
retic model obeying the general principles of a QFT
[3]. Subsequently, Schwinger [4, 5] obtained an exact
solution of quantum electrodynamics in 1 + 1 dimen-
sions, QED2. A number of interesting properties, such
as the nontrivial vacuum structure of this model, were
understood only later [6] when it was found that there
is a long-range Coulomb force for the charge sectors
of the theory. This long-range force was interpreted as
being responsible for the confinement of quarks [7, 8].
The problem of confinement and the related phenom-
enon of screening of charge quantum numbers in two
dimensions have been studied by several authors [9–11]
and have served as a basis for understanding important
concepts in QFT. The surprisingly rich structure of two-
dimensional quantum electrodynamics was found to
describe several important features of the non-Abelian
gauge theories, which were under investigation in the
1970s.

Several results of increasing importance followed.
Two-dimensional classically integrable models were
studied in great detail. Such models are characterized
by the existence of an infinite number of conservation
laws. If these conservation laws survive quantization,
the corresponding S-matrices can be computed exactly
[12–16]. Some of the results concerning classical inte-
grability have also been generalized to higher dimen-
sions [17–22] and used to understand QCD [23, 24].

Describing two-dimensional fermions in terms of
bosons (bosonization) can lead to non-perturbative in-
formation. The building blocks of the procedure are the
exponentials of the free bosonic fields. One obtains a
fermion number which is connected to the infrared be-
havior of the massless scalar fields. One thus obtains a
superselection rule [25], and the charged sectors appear
in a natural way.

A particularly important class of two-dimensional
integrable non-linear sigma models are those with a

geometrical origin [26–28], which share several prop-
erties with four-dimensional Yang–Mills theories [26–
29]. Upon quantization, they exhibit dynamical mass
generation and contain a long-range force [29] for
simple gauge groups [30]. Such a long range force
can be screened by dynamical fermions [31–35]. These
properties make them appealing as toy models for the
strong interactions [36, 37]. They are also very interest-
ing mathematical objects, particularly important in the
framework of string theory.

Furthermore, the study of these models has led
to new developments in the study of quantum field
theories in higher dimensions. High-energy scattering
amplitudes involving fields with definite helicity or at
high energy, in four-dimensional Quantum Chromo-
dynamics, have a rather simple description, related to
integrable models [23, 24]. In the former case, the
scattering amplitudes are related to solutions of self-
dual Yang–Mills equation, while in the latter case the
interaction of external particles is described by the two-
dimensional Heisenberg Hamiltonian of spin systems.

2 Exact S-Matrices and Yang–Baxter Equations

The most general invariance group of a non-trivial
field theory in d > 2 dimensions is the product of the
Poincaré group and an internal symmetry [38] times
supersymmetry [39]. The basic idea of the proof is
that an infinite number of higher conservation laws
implies that the momenta involved in the scattering
process are individually conserved, so that the process
merely consists in an exchange of quantum numbers.
This would imply that the S-matrix does not depend
analytically on the scattering momenta; in particular,
the two-particle S-matrix would not depend analytically
on the scattering angle.

In two-dimensional space–time, the situation is dif-
ferent. The scattering angle can only be zero or π and
the clash with analyticity no longer exists. The con-
straints due to the conservation laws on the scattering
process are very strong. The conservation of an infinite
number of local charges implies conservation of the
energy, momentum, and their powers: The higher con-
served charges are higher-rank tensors Qμ1···μl , trans-
forming according to higher representations of the
Lorentz group, commuting with one another and with
the momentum [40].

The action of Qμ1···μn on asymptotic states is severely
restricted by Lorentz invariance. On a one-particle
state, we have

Qμ1···μl |P〉 = Pμ1 · · · Pμl |P〉 . (1)
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Conservation of the higher charges thus imply

n∑

i=1

Pμ1
i · · · Pμl

i =
m∑

i=1

P
′μ1
i · · · P

′μl
i , (2)

provided the corresponding scattering amplitudes do
not vanish. Hence, there exists an infinite number of
conservation laws that must be obeyed by the external
momenta. Equations such as (2) can only be satisfied
if n = m, i.e., if there is no particle production and the
individual momenta are conserved. Thus, after a suit-
able rearrangement, Pi = P′

i, and the scattering only
consists of time delays and exchange of quantum num-
bers [40–42] (we have ignored terms such as gμν Pρ |Pa〉
since they are not essential. Notice also that since the
mass operator commutes with the charge Qμνρ , there
can be degeneracy).

2.1 Factorizable S-Matrix

Absence of particle production implies that the S-
matrix is of the factorizable type, that is, the scattering
S-matrix is given by the product of all possible two-
particle scattering amplitudes [41, 42]. Furthermore,
the two-particle processes are severely constrained by
the so-called factorization relations.

In order to see this, one observes that intermedi-
ate multiparticle states, with the particles sufficiently
separated, should satisfy the same selection rules as
described above by (2). As a consequence, the S-matrix
elements for N-particle scattering amplitudes can be
expressed as a product of two-particle S-matrices.

Considering the wave packet

ψ(x) =
∫

dpe−a(p−p0)
2+ip(x−x0)|p〉 (3)

the action of a higher (local) charge leads to

eicQ(n)

ψ(x) = ψ̃(x)

=
∫

dpe−a(p−p0)
2+ip(x−x0)+icpn |p〉, (4)

which is a wave packet now centered at the point x̃0,
given by x̃0 = x0 − ncpn−1

0 . The shift is proportional to
a power of p0; hence, it grows with p0.

It is not difficult to see that for a three-particle
scattering (i, j, k), a momentum-dependent shift implies

Sij(θij)Sik(θik)S jk(θ jk) = S jk(θ jk)Sik(θik)Sij(θij) , (5)

where θij is the rapidity defined by θij = θi − θ j, with

pi = m(cosh θi, sinh θi), (6)

and where m is the mass of the fundamental particles.
A second, purely algebraic interpretation of (5) is also
possible. We consider the symbols {Ai(θ)} to represent
the set of particles. A given n-particle state is defined by
the action of a product of these symbols on the vacuum,
ordered according to their rapidities: The “in” states
are identified with the products in order of decreasing
rapidities, while the “out” states are arranged in the or-
der of increasing rapidities. The commutation relations
of the A′s are defined in terms of the S-matrix, that is,

A(θ1)A′(θ2) = ST(θ12)A′(θ2)A(θ1) + · · · , (7)

where ST is the transition amplitude for AA′ → AA′
and the dots represent other channels. There are dif-
ferent ways to consider the scattering of three particles
and uniqueness of the result leads to (5).

The two-particle S-matrix in a factorizable two-
dimensional theory is a function of the Mandelstam
variable s. It is convenient to write the momenta pi in
terms of the rapidity variable θi as defined in (6). The
two-particle S-matrix elements depend on the differ-
ence of rapidities: They only depend on the variable s,
related to θ = θi − θ j by

s = (pi + pj)
2 = m2

i + m2
j + 2mim j cosh θ . (8)

For equal masses, we have s = 2m2(1 + cosh θ) =
4m2(cosh θ

2 )2.
In general, the two-particle amplitudes are analytic

functions of s, with cuts along the real axis. The scatter-
ing amplitude has a cut for s ≤ (m1 − m2)

2 and for s ≥
(m1 + m2)

2. The point s = (m1 + m2)
2 corresponds to

the two-particle threshold. The mapping ( 8) transforms
the physical sheet in the s-plane into a strip 0 < �mθ <

π . The scattering amplitude S(θ) is real analytic and
hence is real on the imaginary θ axis. Moreover, on the
real axis S(−θ) = S∗(θ).

In the calculation of S-matrices in two dimensions,
one first computes the so-called minimal S-matrix,
which has a minimum number of zeros and poles on the
physical sheet and grows slower than exp p.p′

m2 for large
momenta. At this point, one requires that the S-matrix
obeys unitarity and crossing [41, 42]. The first condition
turns out to be a requirement on the modulus squared
of the two-particle scattering amplitude, since there is
no particle production [40].

In a relativistic theory, crossing corresponds to the
substitution of an incoming particle of momentum p
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by an outgoing antiparticle with momentum −p. This
is equivalent to the substitution s → 4m2 − s (or θ →
iπ − θ). In terms of equations, invariance under cross-
ing implies

〈 f ′
1 f ′

2|S(P1, P2)| f1, f2〉
= 〈 f ′

1 f 2|S(P1, −P2)| f1 f
′
2〉 . (9)

Crossing symmetry leads to useful constraints on the
scattering amplitudes and will be used frequently in
order to fix the S-matrices.

We can summarize the whole program of computing
exact S-matrices in the following steps [40, 43–46]:

1. Set up the factorization equations, either from the
local conservation laws, such as in (5), or using the
nonlocal conservation laws.

2. Impose crossing and unitarity.
3. Compute the minimal S-matrix, that is, the one

obeying analyticity, having the minimum number
of zeros or poles in the physical sheet, and growing
asymptotically slower than exp | p1 p2

m2 | for p1, p2 →
∞.

4. Using qualitative information about the bound-
state structure, introduce poles; resonances are sup-
posed to be absent, since unstable particles do not
exist for a factorizable S-matrix, due to the conser-
vation of the number of particles.

5. Check the results by perturbation theory, or any
other method available, as, e.g., semiclassical ap-
proximation, or 1/N expansion.

As an example of factorizable S-matrix, we find those
with symmetry groups U(N).

Such a symmetry requirement implies that the
particle–particle and particle–antiparticle scattering
amplitudes are of the form

〈Pγ (θ ′
1)Pδ(θ

′
2)out|Pα(θ1)Pβ(θ2)in〉

= [u1(θ)δαγ δβδ + u2(θ)δαβδγ δδ(θ1 − θ ′
2)δ(θ2 − θ ′

1)

± [u1(θ)δαδδβγ + u2(θ)δαβδγ δδ(θ1 − θ ′
2)δ(θ2 − θ ′

1)

〈Pγ (θ ′
1)Aδ(θ

′
2)out|Pα(θ1)Aβ(θ2)in〉

= [
t1(θ)δαγ δβδ + t2(θ)δαβδγ δ

]
δ(θ1 − θ ′

1)δ(θ2 − θ ′
2)

± [
r1(θ)δαγ δβδ + r2(θ)δαβδγ δ

]
δ(θ1 − θ ′

2)δ(θ2 − θ ′
1)

where the t’s are transmission amplitudes and the r’s
are the reflexion amplitudes.

Implementing the factorization equations, we find
that the solutions fall into six classes as given below.
The function f (θ, λ) is a meromorphic function of θ , for

Reλ > 0; it is uniquely defined by the requirement of
being minimal. The only arbitrariness lies in the bound-
state structure.

• Class I

r1(θ) = 0, t1(θ) = 1, u1(θ) = 1,

r2(θ) = 0, t2(θ) = 0, u2(θ) = 0.

• Class II

r1(θ) = 0, t1(θ) = f (θ, λ), u1(θ) = t1(iπ − θ),

r2(θ) = 0, t2(θ) = iπλ

θ − iπ
t1(θ),

u2(θ) = − iπλ

θ
u1(θ).

• Class III

r1(θ) = − iπλ

θ
t1(θ), t1(θ) = f (θ, λ),

f (iπ − θ, λ), u1(θ) = t1(θ),

r2(θ) = iπλ

θ − iπ
t1(θ), t2(θ) = r2(θ), u2(θ) = r1(θ).

• Class IV

r1(θ) = − iπλ

θ
t1(θ),

t1(θ)= f (θ,λ) f (iπ−θ, λ)i tanh
1
2

(
θ+ 1

2
iπ

)
,

u1(θ) = −t1(θ),

r2(θ) = iπλ

θ − iπ
t1(θ), t2(θ)=r2(θ), u2(θ)=r1(θ).

• Class V

r1(θ) =
∞∏

k=−∞

f (θ, k/2μi)

f (θ, k/2μi + 1
2 )

, t1(θ)=0, u1(θ)=0,

r2(θ) = sin μ(iπ − θ)

sin μθ
r1(θ),

t2(θ)=r2(θ), u2(θ)=r1(θ).

• Class VI

r1(θ) =
∞∏

k=−∞

f (θ, k/2μi)

f (θ, k/2μi + 1
2 )
, t1(θ)=0, u1(θ)=0,

r2(θ) = sin μ(iπ − θ)

sin μθ
r1(θ), t2(θ) = eiμ(iπ−θ)r2(θ),

u2(θ) = eiμθr1(θ).

From these classes, we see that for a U(N) symmetry
the solution of the factorization equations is not unique.
In the case of CPN−1 and chiral models, the solution
will be found to be of class II; to obtain it, we shall use
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the non-local conservation laws. The solutions belong-
ing to class III correspond to an O(N) symmetry.

The chiral fermion field in two dimensions is
a SU(N)(1) ⊗ Ũ(1) multiplet of fermions. The
Lagrangian is defined by

L = iψ i � ∂ψi + 1
2

g
[
(ψ iψi)

2 − (ψ iγ5ψi)
2], (10)

where summation over the SU(N) index i is under-
stood. The Lagrangian (10) again defines an integrable
model. The Noether current associated with the U(N)

symmetry is given by

jμij = iψ jγ
μψi, (11)

Use of the equation of motion and Fierz transformation
shows that it satisfies

∂μ jν − ∂ν jμ + 1
2

g[ jμ, jν] = 0 . (12)

This relation shows the integrability of the model and
implies the existence of a non-local conserved charge
of the usual form.

A possible candidate to exact S-matrix describing the
scattering of elementary fermions is that of class II in
the table. A strong indication of this fact should come
with the 1/N expansion. However, there is a massless
field in the theory if we try to obtain perturbation
naively. In two-dimensional space–time, this can lead
to infrared divergencies very difficult to deal with. The
solution of such a problem was given by two indepen-
dent papers . We quickly review them here.

Cancellation of Infrared Singularities In order to ob-
tain the 1/N expansion of this model, we have to re-
formulate it. The theory can be reduced to a quadratic
form in ψ at the expense of two auxiliary fields,

L = iψ � ∂ψ − 1
2g

(σ 2 + π2) + ψ(σ + iπγ5)ψ. (13)

However, the 1/N expansion of the model using
the above Lagrangian cannot be performed, due to
serious infrared (IR) problems [47]: We find a mass-
less pole in the π propagator. It plays the role of the
problematic massless Goldstone boson [1]. We now
rewrite the fields in terms of σ + iπ = ρeiφ , leading to
the Lagrangian

L = iψ � ∂ψ − 1
2g

ρ2 + ρψeiφγ5ψ . (14)

We now discuss the quantum theory associated with
the above classical Lagrangian. The most pedestrian
approach consists in the extensive use of the bosoniza-
tion formulae. The fermionic fields are bosonized in
terms of an N-plet ϕi. The situation is analogous to the

massive Thirring model and one obtains the equivalent
bosonic Lagrangian

L = 1
2

N∑

i=1

(∂μϕi)
2 − 1

2g
ρ2 + μ

2π
ρ

N∑

i=1

cos(φ + ϕi

√
4π).

(15)

It is now convenient to use “fermionization” formu-
lae in order to rewrite (15) in terms of new fermion
fields ψ̃i [48, 49], by making the identifications

iψ̃ i � ∂ψ̃i = 1
2

[
∂μ

(
ϕi + φ√

4π

)]2
,

ψ̃iψ̃i = μ

2π
cos(φ + ϕi

√
4π),

ψ̃iγμψ̃i = − 1√
π

εμν∂
ν

(
ϕi + φ√

4π

)
. (16)

The Lagrangian (15) then takes the form [49]

L = ψ̃ii � ∂ψ̃i − 1
2g

ρ2 + ρψ̃iψ̃i + 1
2
∂μφψ̃iγ

μγ5ψ̃i

+ N
8π

(∂μφ)2. (17)

The important point is that the massless field φ inter-
acts only via its derivative, thus implying the absence of
infrared problems in the correlation functions of ψ̃ . We
can obtain the same Lagrangian ( 17) by computing the
fermionic determinant associated with the Lagrangian
(14) (see [1]).

2.2 The 1
N Expansion

The large N expansion of the model defined by the
Lagrangian (17) can be explicitly performed [49]. The
propagator of the ρ field is exactly the same as that
obtained for the σ̃ field in the O(N) case. The zeroth
order contribution to the ρ-propagator is thus given by

�̃(p) = − i
2π

θ

tanh θ
2

, (18)

where θ is defined by p2 = −4m2 sinh2 θ
2 .

Since only ∂μφ occurs in (17), we just need the two
point function of Aμ = √

Nεμν∂
νφ, given by

�̃μν(p) = 1
2π

θ tanh
θ

2
(gμν p2 − pμ pν), (19)

where p2 = −4m2 sinh2 θ
2 .

The amplitudes for particle scattering are all free
from IR divergencies and may be computed without
difficulty. We can compute the two-particle scattering
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amplitude in the lowest order [1]. The lowest-order
contributions to u1(θ) lead to

u1(θ) = 1 + iπ
N

coth
(

θ

2

)
. (20)

Moreover, the backward fermion antifermion scatter-
ing vanishes, confirming the S-matrix belonging to the
class II defined before.

Operator Formulation This model may also be studied
in the operator formalism, which leads to the 1/N
expansion, and a correct understanding of the relation
between the “candidate” Goldstone boson and chiral
symmetry.

Since the fields ψi lie in the fundamental represen-
tation of U(N) , we have the bosonic representation
[50, 51]

ψi(x) = Ki

( μ

2π

) 1
2

e−i π
4 γ5 :ei

√
π
N [γ5χ(x)+∫ ∞

x1 dy1χ̇(x0,y1)] :

: e−i
√

π[γ5χi(x)+∫ ∞
x1 dy1χ̇i(x0,y1)] : (21)

with i = 1, . . . , N. Since the χ ′
i s are SU(N) valued, they

are not independent but satisfy

N∑

i=1

χi(x) = 0. (22)

The field χ is the potential of the conserved U(1)

current. Its zero-mass character will ensure that the
U(1) symmetry is not spontaneously broken.

In the above, Ki is a Klein factor, necessary to
enforce the correct anticommutation relations among
different ψ ′

i s. Due to the U(1) × Ũ(1) symmetry, the
divergence and the curl of the U(1) current vanish, so
that the field χ(x) is massless. Therefore, the fermion
fields contain the so-called infraparticles [52], and we
need to extract them in order to arrive at the physical
fields of the theory. They are given by

ψ̂i(x) = Ki

√
μ

2π
ei

√
π{γ5χi(x)+∫ ∞

x1 dy1χ̇i(x0,y1)}. (23)

The ψ fields (23) will be found to correspond to
the field ψ̃i in (17). These fields no longer carry
U(1) × Ũ(1) charge and transform as a representation
of SU(N). The constraint (22) implies

ψ̂
†
i ∼ 1

(n − 1)!εii1···in−1ψ̂i1 · · · ψ̂iN−1 , (24)

where on the right-hand side a suitable redefinition of
the Klein factor and the normal product prescription

is required. Equation 24 states that the antifermions
of the chiral Gross–Neveu model can be viewed as a
bound state of N − 1 fermions. We use this fact to
determine the S-matrix and its pole structure.

Asymptotically, one expects ψ̂ to describe massive
particles, so that one should have [50, 51]

ψ̂(vt, t) → 1√|t|
{
e−imγ −1tâ(mγ v) + eimγ −1tb̂ †(mγ v)

}
,

(25)

where γ = 1√
1−v2 .

The fields ψ̂i carry spin s = 1
2 (1 − 1/N),

ψ̂(x, t)ψ̂(y, t) = e2π isε(x−y)ψ̂(y, t)ψ̂(x, t), (26)

implying an unusual statistics for the creation and anni-
hilation operators defined in (25)

â†(p)â†(p′) = e2π isε(p−p′)â†(p′)â†(p). (27)

Since no scattering theory is known for particles with
the above statistics, it is necessary to replace the field ψ̂

by another field ψ ′ with a well-defined statistics. This
is achieved by introducing in (21) free massless scalar
and pseudoscalar fields B and A, quantized with metric
opposite to that of χ(x), in such a way that the divergent
infrared behavior of ψ induced by χ(x) is compensated,
without affecting the statistics. We define [50, 51]

ψ ′
i (x) = ei

√
π
N [γ 5 A(x)+B(x)]

ψi(x). (28)

Correspondingly, the operators a†, a, b †, b are related
to â†, â, b̂ †, b̂ by

â†
in(p) = a†

in(p)e2π i(s− 1
2 )

∫ ∞
p Nin(p′)dp′

,

â†
out(p) = a†

out(p)e2π i(s− 1
2 )

∫ p
∞ Nout(p′)dp′

. (29)

where N
inout

are the corresponding particle number
operators.

Since we expect ψ ′
i (x) to be a local field describing

massive degrees of freedom, we should have in the far
past and future [53]

ψ ′(vt, t)→ 1√|t|
[
e−imγ −1ta

outin
(mγ v) +eimγ −1tb †

outin
(mγ v)

]
.

(30)
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Substitution of ψ in terms of ψ ′ in (10) leads formally
to the Lagrangian

L = iψ
′
i � ∂ψ ′

i + 1
2

g
[
(ψ

′
iψ

′
i )

2 − (ψ
′
iγ5ψ

′
i )

2] − 1
2
(∂μ A)2

−1
2
(∂μ B)2 + α√

N
ψ

′
γ 5γ μψ ′∂μ A

− β√
N

ψ
′
γ μψ ′∂μ B, (31)

where we allowed for general couplings α and β,
which after renormalization should reduce to

√
π as the

renormalized value. We will come back to this point
after obtaining the 1

N expansion, which we consider
next.

The effective action obtained from the Lagrangian
(31) after introduction of the auxiliary fields σ and π

(compare with (13)) is given by

Seff =−iNtr ln
{

i � ∂ +σ + iπγ5+ α√
N

γ 5 � ∂ A − β√
π

� ∂ B
}

− 1
2g

∫
d2x(σ 2+π2) − 1

2

∫
d2x

[
(∂μ A)2+(∂μ B)2].

(32)

The field σ is found to have a non-vanishing vacuum
expectation value 〈σ 〉 = −m, so that it is convenient to
write

σ = −m + σ̃√
N

, and π = π̃√
N

. (33)

The second-order contribution to the effective action
can be computed, and the 1/N expansion turns out to
be well-defined.

We fix the parameters α and β in (31) by requiring
that the IR divergencies cancel. We expect to obtain for
the non-renormalized values, α = ∞ (corresponding to
αren = √

π and β = βren = √
π , since B couples to a

conserved current).
We have thus verified in the N → ∞ limit that both

Lagrangians (17) and (31) lead to the same result.
In the limit α → ∞, the renormalized coupling αren

indeed turns out to be
√

π , as one reads off from the
four-point function, and the pole in the π -propagator
vanishes. To summarize, we conclude that part of the
field (21) which carries chirality decouples [48–51] from
the physical spectrum and the remaining part describes
an SU(N) multiplet with a well-defined factorizable S-
matrix.

2.3 Quantization of Non-local Charge

The discussion of the existence and conservation of a
non-local charge in the quantum chiral Gross–Neveu

model follows exactly the same pattern as in the O(N)

invariant model. No anomaly exists in this case. It is
not difficult to see that the action of the charges on
asymptotic states is given in this case by

Qab |θ1i; θ2 j〉 = |θ1k; θ2l〉
[
−(Iac)ik(Icb ) jl + N

iπ
θ1(Iab )ikδ jl

+ N
iπ

θ2(Iab ) jlδik
]

,

〈θ1i; θ2 j|Qab = 〈θ1k; θ2l|
[
−(Iac)ki(Icb )l j + N

iπ
θ1(Iab )kiδl j

+ N
iπ

θ2(Iab )l jδik
]

,

Qab |θ1i; θ2 j〉 = |θ1k; θ2l〉
[
−(Iac)ik(Icb ) jl + N

iπ
θ1(Iab )ikδ jl

− N
iπ

θ2(Iab )l jδik
]

,

〈θ1i; θ2 j|Qab = 〈θ1k; θ2l|
[
−(Iac)ki(Icb )l j + N

iπ
θ1(Iab )kiδl j

− N
iπ

θ2(Iab ) jlδik
]

,

where Iab are the SU(N) generators [1]. Conservation
of the charge leads to the factorization equations and to
the exact S-matrix of the problem.

First Conclusions and Physical Interpretation The
Gross–Neveu models are simple but physically rich
models. The semi-classical analysis, both in the O(N)

and in the SU(N) × U(1) × Ũ(1)-symmetric cases, re-
veals that the models have a rich bound-state structure
[54].

The chiral Gross–Neveu model is particularly inter-
esting, due to the chiral symmetry breaking issue. Since,
as we saw in the previous section, a mass term is dynam-
ically generated for the fermion, one could be led to
conclude that the chiral symmetry is broken, which is
prohibited in two-dimensional space–time. This prob-
lem has been discussed at length by several authors
[48, 49]. The interesting outcome is that the chirality
carrying field decouples from the theory (28). In the
operator language, this is realized by the factorization
of the auxiliary fields A and B. The physical fermions,
as given by either (23) or (28), though exhibiting a non-
vanishing mass gap, are chiral singlets. This physical
picture is carried over to the supersymmetric CPN−1

model and reflects the fact that antiparticles are bound
states of particles in both the Gross–Neveu model and
in the supersymmetric CPN−1 model. This permits the
computation of the S-matrix for these two cases [55].
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3 The Exact Solutions of Classes of Integrable
Models and String Theories

Large N Yang–Mills theory has been frequently stud-
ied since the first seminal paper by ’t Hooft [56]. Some
time ago, it has been discovered that there is a large
N limit in N = 4 supersymmetric Yang–Mills which
corresponds to type IIB string theory. More recently,
we learned from [57] how to get the spectrum from the
gauge theory counterpart. The fact that the spectrum is
related to the hamiltonian of an integrable model [58]
is an outstanding achievement. The integrable model
is obtained from the matrix describing the anomalous
dimensions of certain classes of fields in super-Yang–
Mills theory in the field theory counterpart.

The procedure is obtained from the renormalization
group equation

{
μ

∂

∂μ
+ γ

}
� = 0 (34)

where � describes the correlator of the fields under
study and μ is a renormalization group parameter. As
it turns out, γ describes a matrix-valued Hamiltonian
whose indices describe the different fields in the corre-
lator, and its diagonalization amounts to a solution of
an integrable model.

Such a statement is a very nontrivial fact about
some field theories relating them in a very remarkable
fashion. Indeed, the existence of integrable structures
in gauge theories, at classical as well as quantum level,
in two- and four-dimensional space–time has been sus-
pected long ago in different setups [31–35, 59–64] and
a huge amount of more recent literature concerning
integrable structures in string related theories have
appeared [24, 57, 65].

Here we discuss boundaries in open spin chains
with SO(6) symmetry and their corresponding inter-
pretation in super-Yang–Mills theory with four super-
charges. Furthermore, the spin chain with static bound-
ary conditions has a more general parameter space,
which may suggest a larger class of operators whose
one-loop anomalous dimension matrix corresponds to
an integrable spin chain. Here the most general SO(6)

open spin chain Hamiltonian will be proposed using
integrability requirements.

The anti-de Sitter/conformal field theory (AdS/CFT)
conjecture relates two very different theories in two
very different settings; this is why at fist the conjecture
seems so surprising and interesting. In one side of the
conjecture, we have a quantum theory of gravity in
an asymptotic AdS space and the other we have a

conformal quantum field theory in the boundary of the
AdS space, which is the standard Minkowski space.
The claim is that for every observable in one side
of the conjecture, there is a corresponding observable
in the other side of it. Gauge invariant single trace
operators in the quantum field theory side corresponds
to physical states in the quantum gravity side. And
correlation functions (there is no S-matrix in a CFT) in
the quantum field theory are calculated using quantum
gravity states with appropriate boundary conditions.

The possible objects to compare in both sides are not
limited to states and correlation functions. There is a
very large amount of evidence for this conjecture, and
we refer to [66] for the most important ones. The best
known example is the case of type IIB string theory in
AdS5 × S5 space which is dual to N = 4 SYM theory
in four dimensions [67]. This case is particularly inter-
esting since it preserves all possible supersymmetries in
ten dimensions and has the largest possible symmetry
algebra in four dimensions.

The issue that prevents a better understanding of
this conjecture is that the sigma models describing
the dynamics of the string in such backgrounds is a
complicated CFT. Although these sigma models appear
to be integrable [68] (they have an infinite number of
conserved charges), no one was able to use the inte-
grable structure to make any non-trivial computation.
There are many questions regarding this problem, for
example, integrable field theories in d = 2 usually have
a mass gap, but in the case at hand, there is no S-matrix.
At least in the first order of perturbation theory it was
shown that there is no particle production, a property of
integrable field theories. On the other hand, there has
been much progress in the super-Yang–Mills side of the
conjecture.

3.1 N = 4 Supersymmetric Yang–Mills Theory

In four dimensions, there is only one field theory with
16 supercharges that do not contain gravity: N = 4
supersymmetric Yang–Mills theory with coupling con-
stant g and gauge group SU(N). Other gauge groups
are allowed, but will not be considered here. This the-
ory is unique up to the choice of the gauge group and
coupling constant. Its field content is the gauge field
Aμ, four fermions in the fundamental representation
of SU(4) (the R-symmetry group) ψ A

α , where A is an
SU(4) index and α is a spinor index and there are six
scalars in the antisymmetric representation of SU(4)

φAB. The scalars can also be seen as vectors of SO(6)

and the fermions as spinors of the same group. We
can use the gamma matrices γ I

AB to transform one
representation into the other.
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The Lagrangian of this theory ignoring terms with
fermions is

S =
∫

d4xTr
[

1
4

Fμν Fμν + 1
2

DμφAB DμφAB

+1
4

g2[φ I, φ J][φI, φJ] + · · ·
]

(35)

The underlying symmetry group of this theory is very
large. The classical conformal invariance is not bro-
ken in the quantum theory. The conformal transfor-
mations together with the super-Poincaré group form
the algebra PSU(2, 2|4), with 30 bosonic (including the
R-symmetry generators) and 32 fermionic generators.
Among all this symmetries, a especial one is the scale
symmetry, generated by the dilatation operator D, to
be defined later on.

3.2 Single Trace Operators

One class of interesting observables in this theory are
the gauge invariant single trace operators. The most
obvious example is

OF = Tr(Fμν Fμν). (36)

In the AdS/CFT correspondence, this operator couples
to the dilatation. Therefore, it corresponds to a change
in the coupling constant. This is an example of a chiral
operator as well, since it is annihilated by half of the
supercharges (half of the supersymmetry generators
and half of the superconformal transformations). This
operator is a descendant of

Oφ = Tr(φ{Iφ J}), (37)

where {I J} means symmetric traceless combination.
This means it can be obtained from the above expres-
sion by means of the action of some supercharges. All
chiral single trace operators with only two fields can be
obtained from the one above from the action of the
supercharges. More generally, all chiral operators are
obtained from

On = Tr(φ{I1φ I2 · · · φ In−1φ In}). (38)

In summary, all chiral operators in N = 4 super-Yang–
Mills are related to massless states in the corresponding
string theory. The spectrum of these operators is easy
to compute, since they are protected by quantum cor-
rections. The dimensions are the classical ones, which
can be easily computed from the classical action. A
much more difficult problem, which has not yet been
completely solved, is the computation of the dimension
of any gauge invariant single trace operator. The most
important progress on this problem is the conjecture

that the dimension of any gauge invariant operator is an
eigenvalue of the Hamiltonian of some integrable spin
chain. The simplest example of a nonchiral operator is
the Konishi operator

OK = Tr(φ Iφ I). (39)

Its one-loop anomalous dimension can be computed
using standard methods and does not vanish.

3.3 Dilatation Operator and Spin Chain Hamiltonian

In field theory, the dilatation operator D gives the con-
formal dimension (classical plus anomalous dimension)
upon commutation, by means of the expression

[D,O] = �OO, (40)

whenever we have a diagonal base, � being the confor-
mal dimension. The more general situation is

[D,Oi] = �ijO j, (41)

where �ij is the matrix of anomalous dimensions.
In a CFT, this knowledge allows one to compute any

two point function, since the latter is fixed, in the simple
case of scalar operators, to be

〈Oi(x)O j(y)〉 = δij

|x − y|2�i
. (42)

Thus, knowing the conformal dimensions is a small
step toward a solution of the full quantum field theory.
Three-point functions can also be obtained, but more
knowledge is necessary.

3.4 The SO(6) Spin Chain

The problem of studding the full PSU(2, 2|4) spin chain
is too broad for our proposes here. Thus, we shall re-
view the results of the one-loop anomalous dimension
and the spin chain for the SO(6) sector, which is closed
at one loop. We refer to [69].

Our interest lies in operators of the form

On = σI1 I2···In Tr(φ I1φ I2 · · · φ In), (43)

where σI1 I2···In are constant polarizations. At one-loop
level, these operators do not mix with other types, and
we can use only the first line of (35) to perform compu-
tations. Thus, supersymmetry is not directly responsible
for integrability at least at one-loop level. Note that we
are not imposing any condition on the above operator.

Although N = 4 super-Yang–Mills is a finite theory,
some renormalization has to be done. We only need a
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wave function renormalization, what is responsible for
the change of the classical dimension. We define

�O = �
∂ ZO
∂�

, (44)

in the simplest case. The task of computing �O using
( 35) for the operators (43) at one-loop level has been
explained in [69]. The matrix of anomalous dimensions
is given by

�O = λ

L∑

l=1

(Kl,l+1 − 2Pl,l+1 + 2), (45)

where Kl,l+1 is the trace operator and Pl,l+1 is the
permutation operator. This matrix was identified with
the integrable Hamiltonian of an SO(6) spin chain.

Using the Bethe ansatz [70] (see also [71]) to find the
eigenvalues of this Hamiltonian, one finds

γO = λ

n∑

i=1

1
xi + 1/4

, (46)

where n is the number of particle-like excitations and xi

are the rapidity parameters. We shall see that the addi-
tion of boundaries does not change these eigenvalues,
although it will put restriction on possible operators and
will change the Bethe equations.

3.5 Solutions with Boundaries

We now discuss how boundaries may appear in the
spin chain and in the gauge invariant operators. The
single trace operators in the Yang–Mills theory are dual
to closed string states. Open strings will appear in the
conjecture if there are D-branes in the theory. The
D-brane states, or giant gravitons, are represented by
determinant operators

OGG = det(Z ), (47)

where Z = φ1 + iφ6 is the highest weight state in SO(6)

representation and the determinant is in the adjoint
representation of SU(N). We shall attach an open
string to such state. We remove one Z in the determi-
nant above and replace it with a string of operators. To
be more explicit, the determinant is of the form

OGG = ε j1··· jN εi1···iN Z i1
j1 · · · Z iN ··· jN , (48)

and we attach the “open string” (ψ1 · · · ψL)i
j to the giant

graviton as

Oo = ε j1··· jN εi1···iN Z i1
j1 · · · Z iN−1··· jN−1(ψ1 · · · ψL)

iN
jN , (49)

where ψa is one of the other scalar fields. Berenstein
and Vázquez have shown that the anomalous dimen-
sion matrix for operators of this type corresponds to

the Hamiltonian of an open spin chain with static
boundary conditions. They analyzed the behavior of
wave functions of this Hamiltonian, and it was shown
that the boundary conditions for elementary excitations
satisfy Dirichlet boundary conditions. In this section,
the most general SO(6)-invariant spin chain with open
static boundary conditions will be derived.

We start with some definitions. The SO(6) invariant
rational R matrix is given by [70]

R(θ) =
(

1 − θ

2

)
I + θ

(
θ

2
− 1

)
P + θ

2
K, (50)

which satisfy the permutated Yang–Baxter equation

R12(θ)R23(θ + θ ′)R12(θ
′) = R23(θ

′)R12(θ + θ ′)R23(θ).

(51)

These operators are explicitly represented by

I =
6∑

i, j=1

êii ⊗ ê jj, P =
6∑

i, j=1

êij ⊗ ê ji, K =
6∑

i, j=1

êi′ j ⊗ êij′ ,

(52)

where i′ = 7 − i and (êij)αβ = δiαδ jβ are standard 6 × 6
Weyl matrices.

Using the S-matrix language, we can define S(θ) =
PR(θ), in order to recover the Yang–Baxter equation
(5) from the R-matrix equation (51).

Following Sklyanin [72], it turns out that an inte-
grable SO(6) open spin chain can be obtained from
the double-row transfer matrix defined as the following
trace over the 6 × 6 auxiliary space A:

T(θ) = tr
(
K+

A(θ)R̂AL(θ)...

R̂A1(θ)K−
A(θ)R̂A1(θ)...R̂AL(θ)

)
. (53)

While the operator RA j(u) determines the dynamics
of the bulk, the 6 × 6 matrices K±

A(u) describe the
interactions at the ends of the open chain. Moreover,
compatibility with the bulk integrability demands these
matrices to satisfy the reflection equation, which for
K−

A(u) reads

R12(θ − μ)K−
1 (θ)R12(θ + μ)K−

1 (μ)

= K−
1 (μ)R12(θ + μ)K−

1 (θ)R12(θ − μ). (54)

while a dual equation should also hold for the ma-
trix K+(u). Here K−

1 (u) = K−(u) ⊗ I and K−
2 (u) = I ⊗

K−(u).
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The solutions of the reflection equation (54) for the
SO(6) R-matrix (50) were derived in [73]. Here we will
consider only the particular solution,

K−(θ) = diag(k−
11(θ), ..., k−

66(θ)) (55)

where

k−
11(θ) = 1

k−
22(θ) = · · · = k−

55(θ) = − p−θ − 1
p−θ + 1

k−
66(θ) = p−θ − 1

p−θ + 1
p−(θ + 1) − 1
p−(θ − 1) + 1

(56)

where p− is a free parameter.
The diagonal matrix K+(θ) is obtained from crossing

symmetry θ → −θ + 2. It turns out that the matrix
elements of K+(θ) are given by

k+
11(θ) = 1 (57)

k+
22(θ) = · · · = k+

55(θ) = − p+(−θ + 2) − 1
p+(−θ + 2) + 1

(58)

k+
66(θ) = p+(−θ + 2) − 1

p+(−θ + 2) + 1
p+(−θ + 3) − 1
p+(−θ − 1) + 1

(59)

in (56) and p+ is a second free parameter.
Associated to the double-row transfer matrix (53),

we find the following open spin chain Hamiltonian
which is proportional to the first-order expansion of
T(θ) in the spectral parameter [72].

H = −
L−1∑

i=1

Pi,i+1 + 1
2

L−1∑

i=1

Ei,i+1 + 1
2

d
(
K−(θ)

)

dθ
|θ=0

+ tr
(
K+(0)HL,0

)

tr (K+(0))

(60)

where Hi,i+1 = −Pi,i+1 + 1
2 Ei,i+1.

In order to obtain the spectrum of (60) in a non-
perturbative way, we proceed with the exact diagonal-
ization of the double-row operator (53). Since the K-
matrices considered here are diagonal, this problem can
be tackled by means of the boundary algebraic Bethe
ansatz in the lines of [74].

4 Conclusions

There is a vast literature about the relation between
four-dimensional gauge theories and two-dimensional
integrable models. First arose the relation between
Yang–Mills theory and two-dimensional sigma models;
later, a few papers appeared implying an important
relation of four-dimensional QCD at high energies and

spin systems in two dimensions, and a third group, more
recently, about the relation of large number of colors
QCD, string theories, and integrable models, which is
the basic concern of the present paper [59–64]. While
the first group of relations points into general coinci-
dences and parallels between the two classes of models,
the latter two classes of relations are definite iden-
tifications of four-dimensional physical operators and
correlators with their two-dimensional counterparts.

In the second case above, the large N scattering in
four-dimensional QCD at high energies in the lead-
ing logarithm approximation is described by a near-
est neighbor Hamiltonian equivalent to that of the
Heisenberg spin chain. Such properties have been dis-
covered in the framework of a Feynman diagram-
matic expansion [75]. Later, it has been argued that
(3+1)-dimensional coordinates can be split into fast
(with large Fourier transform) and slow variables, and
Lorentz contraction in the direction of the motion
of the fast particles rendered the corresponding field
strength to the form of a shock wave nonvanishing only
in the direction of a hyperplane passing through the
trajectory of the particle.

Here the problem is even more sophisticated, re-
lying on further properties of the string/field theory
duality. The field theory correlators of some operators
have anomalous dimension matrices corresponding to
integrable model Hamiltonians. The latter have not
only familiar structures but also display further interest-
ing properties concerning deformation and especially
perturbations by boundary operators. Such boundary
operators can be understood, in the string theory coun-
terpart, as perturbing branes. In our problem, these are
actually zero branes, namely point particle operators
which do not break the original symmetries of the
problem.

We also presented the most general SO(6) spin chain
with open static boundary conditions. We expected that
this type of spin chain can be associated with the one-
loop anomalous dimension matrix of giant graviton
operators in SYM theory [76]. The Hamiltonian found
in the present paper is more general than the one found
previously in the literature in the sense that it has more
general boundary conditions. It would be interesting to
have an interpretation of these boundary conditions in
terms of giant graviton and D-branes in the AdS/CFT
duality.

We have established a perspective relating work
performed in the 1970s and 1980s to modern devel-
opments in string theory. The fact that today several
pieces of information from the dynamical knowledge
of two-dimensional field theory is used in the search
of structure in string and superstring theories as well



Braz J Phys (2012) 42:306–318 317

as super-Yang-Mills model shows that the models dis-
cussed in this paper are not only relevant from the
point of view of a theoretical laboratory but as standard
tools in the search for realistic field theories. That is
the case of integrable models in the structure of Yang–
Mills fields as well as string theory. The Bethe ansatz
solutions are used to obtain the structure of anom-
alous dimensions, and further, integrable structures in
two dimensional can also be used in order to achieve
knowledge about the structure of analogous structures
in the very important AdS ⊗ S5 space in string theory.
We are also sure that much of the dynamical structure
of two-dimensional models, such as that discussed in
the framework of the chiral fermion model, has not
been fully used as an interesting full-fledged dynamical
model.
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