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Abstract: Geostationary satellites can retrieve the cloud droplet effective radius (,) but suffer biases
from cloud inhomogeneities, internal retrieval nonlinearities, and 3-D scattering/shadowing from
neighboring clouds, among others. A 1-D retrieval method was applied to Geostationary Opera-
tional Environmental Satellite 13 (GOES-13) imagery, over large areas in South America (5° N-30° S;
20°-70° W), the Southeast Pacific (5° N-30° S; 70°-120° W), and the Amazon (2° N-7° S; 54°-73° W),
for four months in each year from 2014-2017. Results were compared against in situ aircraft measure-
ments and the Moderate Resolution Imaging Spectroradiometer cloud product for Terra and Aqua
satellites. Monthly regression parameters approximately followed a seasonal pattern. With up to
108,009 of matchups, slope, intercept, and correlation for Terra (Aqua) ranged from about 0.71 to 1.17,
—2.8 t0 2.5 um, and 0.61 to 0.91 (0.54 to 0.78, —1.5 to 1.8 um, 0.63 to 0.89), respectively. We identified
evidence for r, overestimation (underestimation) correlated with shadowing (enhanced reflectance) in
the forward (backscattering) hemisphere, and limitations to illumination and viewing configurations
accessible by GOES-13, depending on the time of day and season. A proposition is hypothesized to
ameliorate 3-D biases by studying relative illumination and cloud spatial inhomogeneity.
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1. Introduction

Clouds are the main radiative modulator in the atmosphere [1] and have relevant
impacts on climate. In order to adequately describe these impacts, global climate models
need constant improvements in the parametrization of cloud properties, and how they
respond to changes in atmospheric dynamics and composition. The radiative effect of
clouds is influenced by atmospheric aerosol loading [2-5] and constitutes one of the greatest
uncertainties in estimates of climate radiative forcing [6].

Aerosol effects on clouds, at local and global scales, are often modeled as changes
in the effective radius of cloud droplets (.) (e.g., [7,8]), and as the net radiative forcing
originating from these changes (e.g., [9]). In case the droplet size is larger than or very close
to the incident radiation wavelength, which often happens for warm (i.e., liquid phase)
clouds, . is defined [10] according to:
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where n,4(r) is the number concentration of droplets of radius r per size distribution interval.
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Nakajima and King [1] have developed a bispectral method to simultaneously derive
te and the cloud optical depth 7. Most of the orbital 7, retrieval methods today employ,
in one way or another, the ideas put forward in their seminal paper. The method uses
radiance measurements at one water-absorbing wavelength, typically in the near-infrared,
and a weakly absorbing wavelength, usually in the visible part of the spectrum. A com-
monly used strategy is to apply forward modeling to simulate sensor-specific radiance
measurements, for a myriad of physical conditions, with 1-D cloud properties, illumination,
and viewing angles. A look-up table (LUT) with these results is compiled for use in the
inverse problem, i.e., minimizing a cost function defined as the difference between actual
radiance measurements and the precomputed LUT solutions.

Assessing 1. over large extents of the globe is only practical if performed using satellite
remote sensing retrievals. National Aeronautics and Space Administration (NASA) oper-
ates the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard
Terra and Aqua satellites, routinely retrieving cloud microphysics [11]. Due to their polar
orbits, these satellites can sample cloud properties over the entire globe. However, at
surface locations near the Equator, MODIS will have at most one daytime overpass for
each satellite, while multiple passes occur near the poles. The instrument has a nominal
cross-track swath of 2330 km, which causes gaps between consecutive orbits near the Equa-
tor. Therefore, even though MODIS , retrievals are considered a worldwide standard, we
still lack more frequent, accurate information on cloud microphysics, to better understand
cloud development and lifetime cycle, especially in the tropics.

Instruments onboard geostationary satellites, which have been routinely used for
weather forecast-related applications, can also be employed for microphysical retrievals.
For example, previous works have studied warm cloud r, retrievals, from radiance mea-
sured by the imager sensor on Geostationary Operational Environmental Satellites (GOESs)
operated by the National Oceanic and Atmospheric Administration (NOAA). These in-
cluded retrievals by GOES-8 over the land [12], GOES-§, -10, and -11 also over land [13],
GOES-10 over the Southeast Pacific [14], and GOES-13 over the North Atlantic [15]. In
all these cases, r, was retrieved with a repeatability rate of about 30 min, a much higher
frequency than possible with polar satellites.

Although useful for gathering a broad perspective on cloud microphysics, r. retrievals
by instruments in polar or geostationary platforms are indirect estimates. They show statis-
tically significant biases when compared to in situ measurements by aircraft (e.g., [14-19]),
or surface measurements (e.g., [12,13,20]). r, retrievals also show angular dependence with
solar illumination and viewing angles (e.g., [13,21-24]). The sources of these discrepancies
are manifold. Operational retrievals rely on the 1-D LUT approach described above, with
biases that are inherent to this methodology (internal biases), and others that are not directly
related to it (external). Some general external biases are instrument deviations from calibra-
tion, unaccounted above-cloud gaseous absorption, surface albedo contamination [25], and
the presence of precipitation [16,26]. Internal biases originate from limitations in the 1-D
modeling of cloud properties to accurately describe what in fact are 3-D radiative transfer
phenomena. These can be further classified into biases due to resolved and unresolved
(subpixel) variability [25]. At the subpixel scale, cloud inhomogeneities (e.g., broken cloud
fields) may result in horizontal photon transport that cannot be represented by 1-D model-
ing [27,28]. Another type of unresolved bias originates from the nonlinear relation between
the measured near-infrared radiance and r,. Due to this nonlinearity, averaging or gridding
processes result in a negative bias to the retrieved r. [25,26]. In addition to this effect, the
fact the two wavelengths used to build the LUT have a certain degree of covariance results
in an underestimated r., associated with averaging radiances at the subpixel scale [29].
Fortunately, a framework has been put forward to mitigate the effects of these unresolved
biases [27,29]. Resolved variability refers to enhanced scattering or shadowing effects from
nearby 3-D cloud parts, which change the effective radiance measured out of a given cloud
section, hence altering the retrieved r, [25,28,30].
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Comparing GOES and surface-derived r., McHardy et al. [13] have identified im-
portant biases related to 3-D effects. The authors analyzed more than 8 years of data, for
one specific land site, and concluded that solar and viewing geometries are important
factors to be considered in geostationary . retrievals. Some other works have analyzed
geostationary r. retrievals in a broader spatial context, however, under a limited temporal
domain [12,14-16]. This limitation is necessary to avoid technical or practical difficulties
related to in situ samplings, but it also restricts the range of accessible illumination and
viewing geometries, which are found lacking.

From the operational point of view, 1-D modeling is currently the only option to
addpress r, retrievals, across broad spatial domains, in a timely manner [28]. Still, the litera-
ture has shown the importance of understanding 3-D effects due to cloud inhomogeneity
at various levels, and the role of viewing and illuminating geometries in geostationary
platforms. This work proposes discussing these issues by using a simple 1-D retrieval
methodology and analyzing regressions of GOES-13 r, against the reference MODIS Terra
and Aqua cloud products. We seek to answer how these inter-satellite comparisons change
over the seasons and to discuss the role played by geometrical factors. Large areal extents
in the tropics are studied over continental South America and the Southeast Pacific. We
present our results in the context of previous studies in the Discussion section. The fol-
lowing sections are structured as follows: Section 2.1 presents the datasets used in this
study; Section 2.2 discusses the retrieval methodology and assumptions that have been
made; Sections 2.3 and 2.4 describe the strategy used for matching up GOES to MODIS
and aircraft datasets; results of matchups are shown in Sections 3.1 and 3.2; Section 3.3
discusses the influence of illumination on the retrievals; Section 3.4 shows a comparison of
some of our retrieval results with in situ aircraft data. We discuss our results in Section 4,
with a proposition for moving forward in future studies; our conclusions are discussed in
Section 5.

2. Materials and Methods
2.1. Spatial-Temporal Domain and Datasets

The spatial domain for this study was divided into three sections: one designated as
the West sector (5° N to 30° S; 70° to 120° W), another as the East sector (5° N to 30° S; 20° to
70° W), and a special quadrant designated as the Amazon sector (2° N to 7° S; 54° to 73° W).
The East sector is characterized by a large extent of continental South America, covering
a profusion of different surface types, including forests, savannah, grasslands, cities, and
mountainous regions over the Andes. The Amazon sector corresponds to mostly forested
surfaces and large rivers. The West sector area is dominated by the oceanic surface of the
Southeast Pacific, as shown in Figure 1. Over the East sector, many different cloud systems
may occur, ranging from small to mid-level cumuli up to deep convective cells, mesoscale
convective systems, propagating squall lines, and frontal systems, especially during the
austral winter. In the Amazon sector, intense convective activity is often observed, with
rapid daily cloud formation, from initial shallow convection to deep convective cells,
organization of squall lines, and mesoscale convective systems. In contrast, the West
sector is dominated by stratocumuli or stratus cloud decks in the Pacific Ocean, but deeper
convective cells may occur closer to the Intertropical Convergence Zone, also subject
to seasonal fluctuations. For the sake of this work, we note that these different cloud
properties are key to understanding differences in results for each of the regions under
study. Statistically, for broken cloud fields and convective cells, under different stages of
development in the East and Amazon sectors, shape irregularities on cloud tops are more
likely subject to 3-D illumination or shadow casting effects than the more homogeneous
conditions in the West sector [25]. Pockets of open cells in the Pacific can be screened out
based on their lower average albedo.

GOES-13 imager, Terra MODIS, and Aqua MODIS data over the three sectors were
obtained from online repositories administered by NASA (https:/ /atmosphere-imager.
gsfcnasa.gov/products/cloud, accessed 9 November 2021 12:00 UTC) and NOAA (https:
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//www.avl.class.noaa.gov/saa/products/welcome, accessed 9 November 2021 12:00 UTC).
Data from these sensors were retrieved for January, April, July, and October, between
2014 and 2017. Restricting the analyses to these months was motivated by limitations in
managing sizable data files, due to the large areal extent in each sector. This constraint
does not impact the goals in this work. Only daytime data were used, hence, for each
sector, a specific daily time interval was considered. For the East and Amazon sectors
GOES and MODIS data were retrieved between 11:00 UTC and 19:59 UTC. For the West
sector, this interval was 13:30 UTC to 22:29 UTC. Since the geostationary sensor at 75.2° W
has a fixed observation geometry for each given surface pixel, the different months chosen
in the study were intended to probe how varying illumination angles along Earth’s orbit
would impact GOES vs. MODIS retrieval comparisons. MODIS 7, retrievals have been
investigated for biases under inhomogeneous cloud fields, due to 3-D effects arising from
the illumination and observation geometries [23]. Horvath et al. [23] have shown that,
under observation conditions analogous to the ones used in this work, MODIS r, retrieval
biases due to variations in the sensor view zenith angle, 8;, are minimized. Therefore, such
biases do not compromise our results.

Figure 1. Spatial domain used in this study: East (5° N to 30° S; 20° to 70° W), West (5° N to 30° S; 70°
to 120° W), and Amazon (2° N to 7° S; 54° to 73° W) sectors.

Collection 6.1 Terra and Aqua MODIS cloud products (M*D06) [11] were considered
as baseline references in this study. Average and sample standard deviation statistics of r.,
from MODIS 3.7 um channel “best quality” pixels, were compared to GOES r, retrievals
in matched-up grid cells. No modification was applied to the regular M*D06 product
other than grid averaging. Choosing the MODIS 3.7 um r, product was motivated by the
following: first, this is the closest wavelength to the nominal 3.9 um GOES channel, hence
both retrievals should be constrained by similar physical processes, regarding cloud droplet
photon scattering and absorption. Secondly, the 3.7 um wavelength vertical photon trans-
port within the cloud is shallower than the shorter 2.2 and 1.6 um wavelengths [31], thus it
is less susceptible to variations in the vertical profile of cloud hydrometeor size. Lastly, the
3.7 um MODIS 7, product has shown better resilience against biases due to the presence
of precipitation, the occurrence of 3-D effects, and subpixel horizontal photon transport
inhomogeneity, and fares better against in situ measurements, when compared to the 2.2
and 1.6 um products [17,23]. Geolocation products (M*D03) were used to assess MODIS
viewing geometry, surface type (i.e., land/sea mask), and hydrometeor thermodynamic
phase. Only daytime MODIS data were used due to the limitation in the GOES-13 retrieval
algorithm, which requires information on the visible (VIS) channel cloud reflectance, as
discussed below.
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GOES-13 imager raw count data from VIS, infrared (IR), and thermal infrared (TIR)
channels, at 0.63, 3.90, and 11.0 um, were converted to calibrated radiances (VIS at 1km
nominal spatial resolution, IR at 4 km), and brightness temperature (TIR at 4 km), according
to NOAA's specifications (https:/ /www.ospo.noaa.gov/Operations/GOES/ calibration/
index.html, accessed 9 November 2021 21:00 UTC) [32]. GOES-13 “scan coverages” desig-
nate specific regions, delimited by latitude-longitude boxes, for which imagery is acquired
at regular time intervals. In this study we used the “Full Disk” and the “Northern Hemi-
sphere Extended” scan schedules, resulting in having GOES imagery data typically every
30 min.

2.2. GOES-13 r, and Phase Retrievals

We describe below the general retrieval strategy used to derive r, from GOES-13
radiance measurements. This is not intended to be an operational retrieval program, but
rather a simple approach anchored in physical processes. The assumptions described below
arise from 1-D radiative transfer concepts, and as such need to have their limitations of
applicability recognized [26,27]. Yet the same set of concepts constitutes the current core
of NOAA'’s official r, retrieval algorithm for GOES-16, as indicated by their Algorithm
Theoretical Basis Document (https://www.ospo.noaa.gov/Products/Suites/files /atbd /
DCOMP_ATBD_2016_Apr.pdf, accessed 9 November 2021 12:00 UTC).

Pixel-level VIS radiances, Lg 43, measured by the GOES-13 imager sensor, at 1 km
nominal spatial resolution, were expressed in terms of the reflectance function pg ¢3 as:

Lo.e3
060 2
£0.63 080/ )

where F)93 is the extraterrestrial solar flux at 0.63 um (i.e., integrated over the VIS channel
filter function), ug is the pixel-level cosine of the instantaneous solar zenith angle, and
d is the Sun—Earth distance, in astronomical units, for a given day of the year. pg 3 was
used to identify cloudy pixels that could be potential candidates for a retrieval attempt, as
explained below.

Planck’s blackbody emission at 3.90 um, B3 99(Tp), was subtracted from the mea-
sured IR radiance L3 gg to derive p390, at 4 km spatial resolution, following Kaufman and
Nakajima [33]:

P390 = L3.90 — t5,90B3.90(TB)
' t3.90F5 " 1o/ 7td? — t; 60 Ba.90(Tp)

where FS"% is the extraterrestrial solar flux at 3.90 um [34], tg.90 and t} o, are, respectively,
the bidirectional and the upward solar radiation transmission functions at 3.90 pm, and Tp
is the brightness temperature derived from the TIR channel. Notice that B39 (Tg), Fg"%,
t3 oo, and t} o, were specifically derived using the GOES-13 IR channel filter function (https:
/ /www.ospo.noaa.gov/Operations/ GOES/ goes-imager-srfs.html, accessed 9 November
2021 21:00 UTC).

The transmission functions £ ¢, and #; 4, were parameterized as functions of the pixel-
level T of a cloudy pixel, using the libRadtran [35] radiative transfer code package. The
parameterization is shown in Table 1 and represents the fact that, on average, the lower (i.e.,
warmer) the cloud, the more water vapor is present in the column above it, hence resulting
in lower 34, and t} 4. In practice, #J o, varies between about 0.6 and 1.0 depending on the
cloudy pixel Tp, while Kaufman and Nakajima [33] considered a fixed value of 0.75.

One key issue in this study is what constitutes a cloudy pixel. Our definition is based
on a simple threshold method. For small clouds the classification results will deviate
from more intricate methodologies, like the one used in the MODIS product chain. In our
study GOES-13 pixels were classified as cloudy when having pg 63 >0.35 and Tp <290 K.
We reckon this is a rather stringent requirement for the VIS reflectance threshold. It ensures
only optically thick clouds (T above 8-10) are selected for subsequent 7, retrievals, and
corresponds to a region of approximate orthogonal solutions for T and r, in Nakajima-King

®)
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type diagrams [33]. The choice does impact the mean GOES-13 7, retrieval results since it
imposes limitations on the subset of cloud regions selected for analysis. In other words, the
resulting 7, is constrained to optically thicker clouds, and cannot be identical (i.e., along the
1:1 line) to results intended for broad application, including all types of clouds, such as the
MODIS operational product. This does not interfere with the main goal in this study, which
is to gather new insights on seasonal variations for the retrievals. In future developments, it
will be possible to reevaluate the threshold specifications to admit more demanding cloudy
pixel definitions, or to use external ancillary data to improve the cloud selection method.

Table 1. Parameterized transmission functions, according to the pixel-level Tg.

Cloudy Pixel Condition Transmission Function
T > 300K 390 = 06
200K < Tp < 300K 90 =a0+ a1 Tp +ap Tg + a3 Ty + as T}
Tp < 200K 99 = 1.0

— (40 0.5
t/3.90 - (t3.90)

ag = —3.11175 x 10%; a3 = 5.60850 x 10~ 1K ~1; 4y = —3.66394 x 103K 2
a3 = 1.06237 x 105K ~3; g, = —1.15596 x 107 8K—*

To avoid inhomogeneous regions near cloud edges, only sections containing at least
8 x 8 km contiguous cloudy pixels were retained for subsequent analysis. This restriction
favors the selection of the central core of cloud sections. Avoiding cloud edges [30], and
considering clouds with T > 8, aims at reducing subpixel and pixel-level variability [26],
and the likelihood of having surface scattered radiance diverted toward the sensor field of
view. This cloud edge detection routine was performed in the following steps: (1) Tp was
resampled to 1 km to match the pg g3 spatial resolution (these resampled Ty data were used
only internally in this routine); (2) an initial cloud mask at 1 km was derived applying the
po.63 and Tp threshold levels described above, by assigning 0 or 1 to noncloudy or cloudy
pixels, respectively; (3) the average of 8 x 8 pixel cloud mask boxes was calculated; if a
box showed an average value below unity, none of the corresponding pixels in pg¢3 and Tp
arrays were further used by the algorithm. The 8 x 8 km size is arbitrary. We empirically
found this to be an adequate compromise in ensuring the screening of inhomogeneous
cloud edges and keeping enough statistics for robust results.

The thermodynamic phase of cloudy pixels was determined based on the spectral
00.63/ P390 signature due to water and ice differential wavelength absorption properties
in the VIS and IR. By analyzing the pg¢3/p03.90 ratio for cloudy pixels in the water phase
(i.e., Tg > 0 °C) and pixels in the ice phase (Tp < —40 °C), this quantity can identify the
thermodynamic phase in hydrometeors and their glaciation temperature [36], for use in
future works involving mixed-phase clouds. In this study, only warm water phase pixels
were selected.

A LUT with precomputed simulated L3 9o radiances, under a number of preset con-
ditions, was derived by Mendonga [37] using libRadtran [35]. The LUT was originally
developed for tropical atmospheric profile conditions, considering a homogeneous dark
surface with 0.09 albedo at 3.90 um, 1-D plane-parallel clouds with constant r., considering
te values from 2.0 to 59.0 um in each simulation, 8, of 10°, 20°, and 30°, solar zenith angles,
6o, ranging from 0° to 75°, relative azimuth angles ¢ (sensor view minus solar illumina-
tion azimuth: ¢ = ¢, — @) of 30° and 150°, and 7 ranging from 1.0 to 50. In this work,
only the optically thick, asymptotic results for T = 50 were used. Surface locations with
6, < 15°,15° < 0, < 25°,and 25° < 6, < 60°, respectively, used corresponding LUT
solutions for 8, = 10°,20°, and 30°. No retrievals were attempted for 6, > 60° locations.
No modifications were introduced to account for the fact the nominal wavelength for
GOES-13 at 3.90 um differs from the 3.7 um used in MODIS cloud products. The full LUT
included calculations for both water droplets and ice particles. Ice phase solutions were
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based on bulk scattering properties using a general mixture of crystal habits provided by
libRadtran [35,38]. Here, only the water phase LUT section was used.

The general GOES-13 r. retrieval process operated in this fashion: (1) for pixels
within a section of at least 8 x 8 km cloudy pixels, the warm water phase was selected by
identifying pixels with Tp > 0 °C; (2) for the selected pixels, ¢ was determined based on
pixel-level latitude, longitude coordinates, day of the year, and the imagery acquisition
time. This provided the information to select the LUT subset of solutions in the forward
(¢ >90°) or backward (¢ < 90°) scattering hemispheres. Notice that since the LUT uses 1-D
calculations, the choice of the scattering hemisphere refers to anisotropic characteristics
of the hydrometeor phase function, not related to shading/illumination issues that can
only arise in 3-D modeling; (3) considering the particularly observed illumination and
viewing geometries, the measured p399 was sought over the LUT; (4) the retrieved 7,
solution corresponded to the linear interpolation between the two nearest matching results
found in the LUT. Figure 2 illustrates one particular subset of conditions in the LUT, where
6, = 20°, ¢ = 150°, and the nonlinear relation between p3 99 and . is evident. This inherent
nonlinearity is in itself a potential source of unaccounted subpixel bias in 1-D radiative
transfer simulations [25], but mitigating strategies [27,29] can ameliorate this issue. We did
not seek to retrieve T from the measured VIS reflectance, since our goal is specifically to
study 7, retrievals, considered approximately independent of pg ¢3 for T > 8 clouds.

03.90 X Ie for 6, = 20° and ¢ = 150°

407
358
30
25
20
15
10

2 a 6 8 10 12 14 16 18 20 22 24262830
le (M)

Figure 2. LUT subsection with solutions for water phase cloud droplets with T = 50,2 < r, < 30 um,
¢ = 150°,and 6, = 20°. The curves correspond to the interval 0° < 6y < 75°.

2.3. MODIS Match Up and Spatial-Temporal Comparison Strategy

GOES-13 imager radiance scans take a regular amount of time to be completed, hence
their start times do not directly reflect the instant of acquisition over the region of interest.
For instance, a “Full Disk” scan schedule takes about 13 min from the start to get to the
Equator region, while in “Northern Hemisphere Extended” scans the same process takes
about 7.5 min. Thus, all GOES-13 retrieval times in this study were adjusted to their
equivalent Equator scanning times.

Due to Terra and Aqua polar orbits, MODIS retrievals closer to the Equator can typi-
cally have one overpass during daytime for each satellite, while closer to the poles several
retrieval occasions can occur each day. To match up these multiple retrieval opportunities,
a temporal window of 20 min was established, centered at each GOES-13 Equator scanning
time. In this way, any MODIS data granule within this time slot was considered apt for
comparison. 8, was limited at below 60° for both MODIS and GOES-13 [39].

To compare the GOES-13 derived r. to the reference MODIS r, both these quantities
were bilinearly interpolated over a regular 0.2° latitude/longitude grid, across the spatial
domain in each sector, to allow for a direct comparison in coincidentally cloudy pixels.
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A post-gridding cut-off value of 1.0 um was defined to represent a physical consistency
check, i.e., as a lower limit of acceptable gridded values for effective radii. The gridding
process can introduce artifacts if a cell contains cloud edges, or if pixels with significantly
different r, end up in the same gridding cell. This can be controlled by excluding from the
analysis cells with a relatively large r, standard deviation (¢7,), compared to the gridded
value < r, >, such as:

oy V<12 > —< 1, >2
< Tp > < Te >

(4)

where the brackets < > denote the bilinear gridding. Only grid cells with a relative standard
deviation below 10% were retained for comparison. Besides excluding gridding artifacts,
this also eliminates regions with high r, variability, arising from other sources of resolved
inhomogeneities, such as juxtaposed interfaces with shadowed/illuminated cloud sec-
tions [30], or with clouds at different top heights [25]. The computed o7, in each grid cell
was further used as an estimate of the uncertainty in regressions, i.e., the larger the o;, in a
grid cell, the smaller its weight in computing the regression Q? statistic.

The aim in imposing these series of strict sets of requirements for matchups is assessing
the performance of this GOES-13 retrieval algorithm under relatively uniform, although
realistic, atmospheric conditions representative of a panoply of environments. In future
studies, more challenging cases can be used.

2.4. Aircraft In Situ Match Up and Comparison Strategy

The GOES-13 r, retrievals were also compared to aircraft in situ measurements col-
lected during the GoAmazon2014/5 experiment [40,41]. During the first GoAmazon2014/5
Intensive Operations Period (IOP1), the US Department of Energy (DOE) Atmospheric
Radiation Measurement (ARM) Gulfstream-1 (G-1) aircraft [42] performed 16 research
flights near the city of Manaus (3°06’ S, 60°01" W) to measure aerosol, clouds, radiation,
and gas-phase chemistry characteristics. The IOP1 took place between February and March
2014, corresponding to the local wet season. During this time of the year, the background
atmospheric conditions are rather clean in terms of aerosol pollution due to the frequent
rain showers. On the other hand, Manaus emits daily pollution plumes downwind (most
often towards the southwest) due in large part to car traffic and urban activities. This
creates a contrast between clean and polluted atmospheric conditions, with the respective
variety in cloud microphysical properties.

Cecchini et al. [43] have analyzed the statistical differences between clouds affected or
not by the pollution plume emitted from Manaus. In this study, the authors organized the
1 Hz Fast Cloud Droplet Probe (FCDP, Spec Inc.) measurements for all G-1 flights, excluding
all occurrences of thin clouds with droplet number concentrations below 0.3 cm 3, or
liquid water content below 0.02 g m~3. Additionally, the data collected during aircraft
maneuvers were filtered out. These observations were synchronized with temperature,
humidity, pressure, and wind measurements collected by the Aventec Research Inc. Aircraft-
Integrated Meteorological Measurement System (AIMSS-20) [44]. For consistency with the
warm cloud 7, retrievals presented here, we further excluded all G-1 measurements with
temperatures below 0 °C. This process resulted in 3068 measurements of 1,(r) with 1Hz
frequency, from which 7, was calculated following Equation (1). With a flight speed of
approximately 100 ms~!, each measurement corresponds to a segment of about 100 m. We
refer the reader to Cecchini et al. [43] for further details on the G-1 instrumentation as well
as the flight strategies employed during IOP1.

To colocate aircraft 7, measurements with the satellite retrievals the following method
was applied: (1) each flight during IOP1 was scrutinized and segmented into flight legs
comprising a duration between 120 and 130s; (2) for each flight leg the average ., latitude,
longitude, and time coordinates were computed. The selected data points in each leg were
also used to compute the r, standard deviation; (3) each flight leg average time coordinate
was used as a reference to search the contemporary GOES-13 imagery, considering a time



Atmosphere 2022, 13,77

9o0f23

window of +£15min; (4) the 3 x 3 GOES-13 pixels centered on each flight leg latitude
and longitude were used to compute the satellite r, standard deviation. The GOES-13 r
retrieved at the central pixel was compared to the aircraft average ..

Since the IOP1 measurements were performed during a short period of time, a special
GOES-13 comparison strategy was adopted to ensure enough statistics remained for the
matchups. The threshold levels to detect cloudy pixels were set as ppg3 > 0.125 and
Tp < 300 K during IOP1. These levels were found adequate for the environmental and
physical conditions observed during the G-1 flights. The cloud edge detection routine was
not applied, i.e., no restrictions were imposed to exclusively retrieve over 8 x 8 contiguous
cloudy pixel regions. The 7, relative standard deviation restriction was relaxed to allow
up to 50% variation. An additional restriction was implemented, requiring the Tp relative
standard deviation to be below 1%.

3. Results
3.1. GOES-13 Imager and MODIS r, Direct Matchup Results

Representative results of the matchup comparison are shown here, while subsequent
sections examine these results in further detail. Comparisons between other geostationary r
retrievals and MODIS, from previous works, are presented in the Discussion section. In this
work, the data were not scrutinized for the influence of precipitation events [16,26], in part
due to the relatively shallow vertical photon transport associated with the 3.90 um wave-
length [31]. Only statistically significant figures with p-values under 0.05 are presented.

Figure 3 shows an example of regression results and r, comparison histograms, for
January and July in 2014, over the West sector, for water phase droplets over the ocean.
Both regressions show a relatively high correlation coefficient, with tens of thousands of
matchups in each month. Despite all simplifications involved in the 1-D radiative transfer
modeling, the results do capture the essence of MODIS retrievals, explaining 74% to 84%
(R?) of r, variability over a large section in the Southeast Pacific. The sample confidence
interval indicates the linear model can explain 95% of individual r, retrievals within a
couple of pm. As explained earlier, the retrieved 7, data are not expected to lie at the 1:1 line
since our cloudy pixel definition differs from the method used by the operational MODIS
product. Most noticeably, the slopes and intercepts change significantly between January
and July 2014. While the MODIS 7, value retrieval domain (i.e., Figure 3 projection on the x-
axis) does not change considerably between these two months, GOES-13 retrievals undergo
a visible change, such that the intercept varies from about +1.5 um to —1.9 um. Even though
these regressions show relatively high correlation coefficients, the changing slopes and
intercepts show it is not possible to lump all yearly retrievals together to derive a unique
comparison. On the contrary, these seasonal differences corroborate the complexities of
orbital variations and the relative illumination/viewing geometry [13] in a geostationary
platform. Of course, cloud microphysics should change between the two situations in
January and July, and therefore can also contribute part of the changes, but the MODIS 7,
retrieval domain was not significantly affected.

In order to assess the degree of variability, and whether it would impact the com-
parisons in a consistent fashion, we compared monthly regression results over the ocean,
throughout the four years used in this study. Figure 4 shows the regression parameters and
correlation coefficients from 2014-2017. In general, similar slope, intercept, and correlation
coefficients are obtained for the same months in different years. The yearly repeatability
of the regression parameters is an indication that the comparisons are reproducible to a
certain degree. Considering the large number of varying physical conditions for cloud
formation and development over the region, it is most likely that this cyclic pattern may
be related to varying solar illumination conditions, with average 3-D effects related to
the illumination and viewing directions, due to shadow casting on irregularly shaped
cloud tops [25,30]. Considering our matchup selection method precludes pixels from the
shallowest, optically thin clouds, and broken cloud fields, it is unlikely that the pattern
shown in Figure 4 reflects seasonal changes in surface properties. The hot spot and glory
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effects, showing peaking reflectance at the Sun’s backscatter, are other periodic phenomena
that can in principle alter cloud reflectivity properties in the region. However, the particular
set of geometrical configurations required for illumination and viewing directions makes
them rare occurrences [21], that cannot explain the observed yearlong variations shown in
Figure 4. These results confirm that each month needs to be treated separately for these
inter-instrument comparisons.
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N=39506 R=0.917
GOES r, = 0.8307 * MODIS r, — 1.9054 0.040
July 2014 )

N=19245 R=0.862
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Figure 3. West sector matchup histograms for the months of (a) January and (b) July in 2014, and
regression results for water phase droplets over the ocean. Dashed lines show the 95% sample
confidence interval for each regression. Colorbar units are relative density AN/ Nyy;q1/ um?,

West sector - water phase droplets over Ocean
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Figure 4. West sector monthly regression results, for water phase droplets over the ocean, for the
months of January, April, July, and October from 2014-2017. (a) Regression slope, (b) intercept, and
(c) correlation coefficient. Individual markers correspond to a given month in different years.
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We next discuss the particular case for the month of October. Regressions for the
monthly 2014-2017 matched-up data are shown in Figure 5. Histograms are shown over
the West sector, for oceanic and continental surface types, and the East and Amazon sectors
over the land. In the West sector (Figure 5a,b), the number of matchups, N, is much larger
over the ocean compared to the land since this sector extends predominantly over the Pacific.
The regression results are significantly different over the land and ocean: over the Pacific
(Figure 5a) a smaller (absolute) intercept value was obtained, compared to continental
matchups (Figure 5b). However, the slope of the regression is closer to unity over land than
over the ocean. The sample confidence intervals show the regressions can predict 95% of
individual r, data points within about +3 pm over the ocean, and within about +4 pm over
the continental surface. Incidentally, we note the currently operational GOES-16 droplet
size retrieval algorithm is required to match MODIS retrievals along the 1:1 line within
£4 um (https:/ /www.ospo.noaa.gov/Products/Suites/files /atbd /DCOMP_ATBD_2016
_Apr.pdf, accessed 10 November 2021 12:00 UTC).
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Figure 5. West sector (a) ocean and (b) land, (c) East sector, and (d) Amazon sector GOES-13 and
MODIS Terra and Aqua matchup histograms for the month of October, from 2014 to 2017, and
regression results according to surface type. Dashed lines and colorbar units as in Figure 3.

Figure 5c shows East sector matchup and regression results over the land for October
2014-2017. In this sector, there were few matchups for the oceanic surface, which were
not statistically significant. Close examination of the bimodal data structure shown in the
graph indicated the need to analyze Terra and Aqua matchups separately, as discussed
below. Amazon sector results are shown in Figure 5d. In this case the number of water
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phase matchups is much smaller than identified ice phase pixels. This is mostly due to
the prevalence of strong convective activity in this region when compared to the average
conditions in the East and West sectors, which favors the frequent occurrence of deep
convective clusters with glaciated cloud tops [36].

3.2. GOES-13 r, Monthly Matchups for MODIS Terra and Aqua

Analyzing East sector r, matchups over land for October, separately for MODIS
aboard Terra and Aqua, allowed a considerable improvement in the regressions as shown
in Figure 6a,b (contrast with Figure 5c). Although the methodology was never intended
for a 1:1 comparison with MODIS, Figure 6a shows that a slope slightly above unity and
intercept of about —0.4 um is a feasible result, even over the land. The correlation coefficient
was close to 0.7, with 18,814 observations. However, similar to what occurs over the ocean
(Figure 4), land comparisons also show regression parameters that oscillate along the
different months of the year. Hence, we interpret the regression in Figure 6a predominantly
as the result of a particular set of favorable illumination/viewing conditions, but also due
to the average type of clouds observed in October in that region, with less convective
activity than in January.
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Figure 6. East sector water phase matchup histograms for MODIS (a) Terra and (b) Aqua, over the
land, for October from 2014 to 2017, and regression results. Dashed lines and colorbar units as in
Figure 3.

The October regression against MODIS Aqua in Figure 6b indicated a noticeably
smaller slope than Terra. Despite the different overpass times for Terra and Aqua, the
MODIS retrievals refer essentially to similar environmental conditions, hence the ranges of
MODIS retrieved r. for Terra and Aqua are nearly equivalent (projection onto the x-axis in
both graphs). Therefore, the conclusion is that the GOES-13 r, retrievals in Figure 6b must be
subject to particular biases that lead to 7, being underestimated. From the combined analysis
with Figure 6a, we propose that this should be related to 3-D illumination/shadowing
effects from the geostationary viewpoint, and the particular cloud development stage.
Nominally, Aqua overpasses occur at around 1:30 p.m. local time, while for Terra mid-
morning overpasses occur at 10:30 a.m. On average, over large areas in continental South
America, more convective activity is present close to local noon than by mid-morning,
which may contribute to the occurrence of more developed clouds, and therefore be more
subject to 3-D shading/illumination effects [25,30].

To assess how the matchups fare against Terra and Aqua overpasses in general,
monthly regressions are shown in Table 2 considering each MODIS platform separately.
Firstly, analyzing the West sector results over the Pacific, one notices the regressions show
consistent similar figures for the correlation coefficients and slopes, for Terra and Aqua,
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with tens to hundreds of thousands of observations. Intercepts, however, are distinct for
the two platforms, with Terra showing larger absolute values than Aqua for all regressions
in this sector.

On the land surface in the East or the Amazon sectors, GOES-13 vs. Terra slopes
approach unity while Aqua regressions show, in general, slopes under 0.6, except for July,
with a slightly higher slope of about 0.7 in the East sector. This extends the October analysis
discussed above for the other months, such that in the East, Terra and Aqua show robustly
different regression results.

Table 2. Segregated Terra and Aqua MODIS monthly regressions, such that GOES-13 r. = Slope X
MODIS 7, + Intercept. N: number of matchups; R: correlation coefficient.

GOES-13 X Terra MODIS GOES-13 x Aqua MODIS
Month Intercept Intercept
Sector Surface (2014- N R Slope P N R Slope P
(um) (um)
2017)
January 52,944 0.839 0.717 1.85 18,461 0.894 0.744 0.42
West Ocean April 32,147 0.876 0.796 ~1.59 11,951 0.889 0.729 ~151
s cea July 108,009 0.912 0.871 —2.24 55,634 0.891 0.751 —142
October 93,266 0.778 0.863 —0.84 39,429 0.880 0.776 —0.18
January 54,181 0.796 0.965 1.38 20,514 0.802 0.576 1.00
East Land April 39,680 0.742 0.919 0.69 18,207 0.781 0.549 0.02
July 32,823 0.791 1.172 —2.82 19,544 0.835 0.706 ~1.12
October 18,814 0.682 1.027 —0.40 10,886 0.742 0.563 043
January 6040 0.775 0.838 1.97 1841 0.723 0.562 1.81
Amazon Land April 2144 0.609 0.708 247 486 0.598 0.536 1.55
July 4522 0.759 0.847 —0.14 1764 0.794 0.559 0.70
October 1410 0.625 0.777 1.97 347 0.626 0.599 1.13

Considering Table 2 as a whole, except for two cases in the East sector, all other
slopes are below unity. The implication is that, in general, a better agreement with MODIS
retrievals is observed for smaller ., becoming progressively more distant as r, increases.
The reason for this slope underestimation is still under investigation. Marshak et al. [25]
show that subpixel variability induces a reduction in r, associated with the gridding
process. In our case in particular, the same 0.2° gridding is applied to GOES-13 and
MODIS. However, the original data have distinct spatial scales, nominally of 1 km for
MODIS [11], and 4 km for GOES-13 retrievals, so this can be a possible explanation for
slopes smaller than unity. Enhanced illumination at backscattered viewing angles can also
act to reduce 7, [30], as discussed in Section 3.3, but it is unlikely this effect alone would
act predominantly over clouds with larger r. to generate smaller slopes. Another possible
factor for this would be a positive residual bias in the process of deriving p3 gp, such as not
accounting for droplet size-dependent effective cloud emissivity [45]. We will continue
seeking improvements to the GOES-13 retrieval methodology.

The intercepts in Table 2 seem to show a pattern of a relative maximum in January
and a minimum in July, except for the Amazon sector that shows a maximum in April.
The pattern is not due to any issues concerning the computation of the Sun-Earth distance
in Equation (4), which was double-checked to be accurate. The cyclic pattern, though,
suggests a global unaccounted effect acting upon the GOES-13 dataset, due to the prevalent
scattering conditions and cloud structures in each regression subset. We examine this issue
in more detail in the Discussion section. From the results shown in Table 2, it is clear
that, statistically, GOES-13 retrievals are subject to different observational artifact levels
over oceanic or continental surfaces, that can be due to different illumination/observation
geometries, coupled with physically distinct average cloud types, e.g., stratified cloud
decks or vertically developed convective clouds.
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3.3. Assessing GOES-13 r, Sensitivity to llumination and Observation Geometries

Below, we examine the sensitivity of GOES-13 r, retrievals to geometrical parameters
related to the angles of illumination and observation. We compute the relative azimuth
angle ¢, as a means to quantify the relative amount of illuminated vs. shaded hemispheres
directly accessible to the imager sensor on GOES-13. This methodology was adopted
previously to analyze MODIS retrievals” dependence on 8, [23]. ¢ is more sensitive in
capturing the variations in illumination observed on the surface of clouds than the scattering
angle. While the GOES-13 position relative to a point on the surface is fixed over time, the
solar illumination undergoes angular variations during the day and seasonal variations
throughout the year. Therefore, since the studied areas include pixels from every view
direction to the subsatellite point, it is not immediately obvious how to identify the subset
of spatial and temporal domains with scattering regimens best suited for 7, retrievals.

Surface pixels for which ¢ > 90° correspond to the forward scattering hemisphere and
@ < 90° pixels are located in the backscattering hemisphere. In the forward direction, scat-
tering by 3-D cloud structures may cast shadows towards the pixel under analysis, reducing
the measured reflectance, therefore inducing an artificial increase in the retrieved r. [25,30].
In the backscatter hemisphere the opposite effect can happen, with an increased reflectance
signal in the field of view, originating from photons scattered by nearby irregularly shaped
3-D clouds [25,30].

In Figure 7 we analyze the measured p3 99 and retrieved GOES-13 r,, as a function
of ¢ for April 2014-2017, during Terra (Figure 7a,b) and Aqua (Figure 7c,d) overpasses.
For the oceanic surface in the West sector (Figure 7a) there are retrievals over the whole ¢
range, from 0° to 180°, with a predominance of backscattering ¢ < 90° conditions. This
shows that in April, most of the area in the West sector is usually observed by GOES-13
in the backscatter hemisphere at the time Terra flies over the region. p399 and r. do not
show noticeable trends with ¢, but looking closely one notices these two quantities are
somewhat anti-correlated: in sections of Figure 7a where p3 99 decreases with ¢ (e.g., for
10° < ¢ < 30°), there is an increase in .. In contrast, Figure 7b shows GOES-13 7, retrievals
over the land, in the Amazon sector, during Terra overpasses. In this case, there are much
fewer opportunities for sampling the backscatter hemisphere and the retrievals are largely
performed under forward scattering ¢ > 90°. On average, the measured p3 g9 in Figure 7b
is smaller than in Figure 7a, resulting in larger retrieved r, for clouds over the Amazon,
compared to oceanic clouds. This may make sense statistically since it is possible that,
by mid-morning during Terra overpasses, deepening cloud clusters might have larger r,
compared to stratiform cloud decks over the Pacific. However, it is not possible to rule out
the occurrence of partial shadowing to explain the Figure 7b results, with thousands of
measurements spread over four years.

Figure 7c shows West sector GOES-13 r, retrievals over the Pacific during Aqua
overpasses for April 2014-2017. There are observations under forward and backward
scattering, with a predominance toward backscattering. A section of 20° < ¢ < 60°
corresponds to decreasing p3 99 and increasing r,, possibly associated with the increased
illumination effect that biases the retrievals to smaller r,. Figure 7d shows that over the
land GOES-13 7, retrievals during Aqua overpasses have very few observations in the
forward scattering hemisphere. p3 99 shows a peak in the backscatter ¢ ~ 0° associated
with reduced 7, that is consistent with the description of the increased illumination effect.
Notice that amidst the cases in Figure 7, Figure 7b,c show relatively more retrievals in the
forward scattering hemisphere. Figure 7c shows some indication of the shadowing effect
for ¢ > 160°, i.e., a reduction in p3 99 accompanied by an increase in the retrieved re.

We note some of the results described in Figure 7 are contingent on the particular
conditions that have been observed in our specific dataset. Namely, 3-D scattering or
shadowing effects by neighboring clouds or clusters require that particular configuration
to be present [25]. However, the relative position between the satellite and the region of
interest (i.e., to the east or west of the subsatellite point), the access to a given ¢ range that
determines the scattering regimen, and also the typical range of measured p3 g9 values are all
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key characteristics for the development of a geostationary retrieval algorithm. These need
to be taken into account over large spatial domains, either for research concerning GOES-13,
or in currently operational applications such as GOES-16 hydrometeor size retrievals.
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Figure 7. GOES-13 p3 99 measurements and 7, retrievals for April 20142017, as a function of ¢, for
the oceanic surface in the West sector for (a) Terra and (¢) Aqua overpass times, and for the land
surface over the Amazon sector for (b) Terra and (d) Aqua overpass times. Colorbar units are relative
density AN/ Ny, /deg for p3.90 plots, and AN/ Nyopa / (um deg) for r, plots.

3.4. GOES-13 r, In Situ Aircraft Matchups During GoAmazon

Although our focus here is on the multi-year seasonality of GOES vs. MODIS compar-
isons, it is useful to examine how the GOES-13 algorithm fares against in situ measurements
during GoAmazon IOP1 [40]. Figure 8 shows the resulting matchup, using the methodology
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described in Section 2.4. The data were classified according to ¢ to highlight distinctions in
the forward or backward scattering regimens.
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Figure 8. Colocated comparison between GOES-13 r, retrievals and GoAmazon in situ aircraft
measurements. Forward (¢ > 90°) and backward (¢ < 90°) scattering retrievals are shown in
red and blue, respectively. Full lines show the linear regression models using all (gray) or only
backscattering data (blue). Dashed lines indicate the 95% confidence interval for each regression
model. Error bars for in situ 7, are one standard deviation of measurements within 120-130 s time
windows. Error bars for GOES r. are one standard deviation of retrievals in 3 x 3 pixel boxes.

In general, there is a tendency for GOES retrievals to overestimate in situ measure-
ments, similar to those observed in other studies [14-16]. It is clear that forward scattering
conditions correspond to the highest positive biases in the set. The linear regression with
the whole dataset results in a positive correlation of about 0.54. The correlation increases
to about 0.65 when considering only GOES r, retrievals in the backscattering hemisphere.
The main reason for the forward scattering r, overestimation should be related to 3-D
shadow casting effects [25]. Note that backscattering retrievals are also overestimated
relative to in situ measurements, i.e., they mostly lie above the 1:1 line. In these cases,
shadows are less prevalent but other effects contribute to reducing the measured p3 g,
such as contamination of the detected signal by the surface albedo, the pixel coarsening
effect [25], and intrinsic LUT nonlinearities [29]. The altitude inside the cloud at which
the aircraft measurements were performed is also important since, on average, 7, is larger
closer to cloud tops [15]. Although these results are derived from a limited sample, they
provide ground truth equivalence to the algorithm used in this study and clearly show the
influence of ¢ configurations in the final outcome. The illumination and viewing directions
are fundamental pieces of information to determine to what level we can expect GOES
retrieved r, to reproduce direct measurements.
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4. Discussion

Previous works have examined the feasibility of 7, retrievals from a geostationary
platform, with different objectives from the ones in this study. In general, these works
have used operational products to generate r., which were compared to in situ aircraft
measurements or MODIS retrievals, for limited spatial and/or temporal domains. This
work addresses the seasonal variability in regression results, over large spatial scales, while
using a simple retrieval strategy. With diverging objectives and methodologies, not all the
results are directly comparable. However, it is still interesting to contextualize some key
findings in previous works.

Over the North Atlantic, Painemal et al. [15] showed GOES-13 r, retrievals have a
positive bias of about 4.8 um on average compared to in situ aircraft measurements, with
a root mean squared error (RMSE) of 5.8 um and R = 0.68. Comparisons with in situ
measurements like this are operationally very complex and are fundamental to establishing
ground truth equivalence. Against MODIS Terra and Aqua these retrievals showed positive
biases of 1.9 and 2.0 um, R = 0.84 and R = 0.90, respectively. The study area was situated
between 40-60° N, 35-50° W, with an average 6, = 65°.

In another study over the Southeast Pacific (10-30° S, 65-90° W), Painemal et al. [14]
showed smaller biases for GOES-10 retrievals, compared to the result over the North
Atlantic. Against in situ measurements, the retrieval bias was 2.4 pm, with R = 0.91 and
RMSE = 1.15 um. Against Terra and Aqua, retrieval biases (RMSE) were 1.15 pm (1.2 um),
and 0.43 um (0.82 um), respectively.

Kang et al. [16] showed r, retrievals for the geostationary Himawari-8 satellite for
the south of Australia (48-60° S, 138-162° E), with a mean positive bias relative to in situ
measurements of 1.88 ym and R = 0.86. The authors also reported strong negative biases
in cases of heavy precipitation near the cloud tops.

Chen et al. [46] analyzed imagery from the geostationary Feng Yun 4A (FY-4A) satellite,
over eastern China (25-35° N, 110-120°E), on 30 June 2018, and compared r. retrievals with
MODIS. Both liquid droplet and ice phase retrievals were performed. The authors found
an overall similar r, spatial distribution pattern, with relatively good agreement for small
particles but discrepancies for large sizes. The differences were attributed to the disparity
in spatial resolution and 6, between the two sensors.

Some other studies highlighted difficulties in comparing retrievals with aircraft and
surface-derived measurements. Dong et al. [12] analyzed GOES-8 retrievals over the
Southern Great Plains site and found essentially no correlation (R = 0.18) with in situ
aircraft measurements. At the same location, McHardy et al. [13] derived GOES-8, -10, and
-11 retrievals, with data from 1998 to 2006, and also found no correlation (R = 0.17) with
surface measurements. In this latter study, the authors identified a strong dependence of
the retrieved r, on the solar illumination geometry. They further recognized that it is not
possible to probe and study this issue from measurements performed in just one location.

In Figure 8 we show a comparison between GOES-13 r, retrievals and in situ mea-
surements, for particular GoAmazon conditions. Even with limited statistics, retrievals are
markedly dependent on the ¢ geometry. These will ultimately determine the regression re-
sults, which quantify how retrievals are connected to direct measurements. Considering the
wide expanse of the three sectors covered in this study, and the orbital illumination changes
throughout the year, many different ¢ configurations are accessible. Figure 9 exemplifies
typical ¢ spatial distribution configurations observed for GOES-13 retrievals during Terra
and Aqua overpasses over the East and West sectors, for each of the studied months. Specif-
ically, in Figure 9 we show mid-month days, from the 14th to the 16th, to find convenient
GOES-13 imagery examples matching Terra and Aqua overpass times. Some of the exam-
ples in the West sector show two foci. One of them corresponds to the GOES-13 subsatellite
point on the equatorial line at 75.2° W, and the other corresponds to the instantaneous
subsolar point. In the East sector, only the subsolar point is sometimes apparent.
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Figure 9. Typical GOES-13 ¢ configurations, in degrees, for the East and West sectors during Terra
and Aqua overpass times, for the 14th to 16th day of January, April, July, and October 2014-2017.

Forward scattering is shown in red hues, backscattering in blue.

From the ¢ distributions in Figure 9, it is clear that relative illumination conditions vary
greatly over the spatial domain, and at the same time, not all ¢ ranges may be available
for r, validation efforts. For instance, to avoid the enhanced illumination effect in the
backscatter hemisphere, one may wish to retrieve 7, under, say, 100° < ¢ < 170° conditions.
From Figure 9 we see that Aqua overpasses will rarely have this particular subset of ¢
conditions to the east of GOES-13, but will have many such opportunities to the west of
the sensor. Likewise, for some months, there are more/fewer occasions for retrievals in
the forward /backward scattering hemispheres. In July, for instance, when the sun is in
the Northern Hemisphere, there are relatively fewer opportunities for forward scattering
observations during both Terra and Aqua overpasses.

In the tropics, the regions on the surface closest to the subsatellite point will see large
variations in ¢ with changes in the apparent solar position. These changes correspond
to illumination constraints that are unique to geostationary platforms, and which need
to be properly accounted for in r, retrievals. However, the quality of these retrievals is
also subject to the occurrence resolved and unresolved spatial inhomogeneities [25,26].
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Interestingly, Werner et al. [27] have shown it is possible to mitigate subpixel variability
and partially compensate for their effects on r, retrievals. This can be done by applying
a framework [29] based on VIS and IR radiance measurements, from two channels with
higher spatial resolution than the r, product. The authors also show that even using a
single higher-resolution band with their methodology can improve 7, retrievals [27]. This
is important for GOES-13 and other legacy geostationary platforms that only counted with
one higher-resolution VIS channel. However, note that the framework implicitly assumes
unbiased radiance measurements are used, i.e., not influenced by scattering or shadowing
from foreign 3-D cloud structures.

Resolved variability of neighboring cloud structures is a challenging concept to address
in single real clouds. It is highly contingent on the type of surrounding clouds, their
particular spatial configuration and morphology. In trying to tackle this problem statistically,
it is possible to quantify a spatial inhomogeneity index yx, similar to what has been done
before [15,17,23,26]. In one possible definition, x corresponds to the ratio between the
standard deviation to the average of a variable, such as pg 3 or Tp. x can thus be a proxy
quantifying surface roughness for spatial variations at smaller scales, at the same scale, or
at coarser resolutions than r.. The more dissimilar the cloud field in the vicinity of a specific
pixel, the higher the values x can assume, hence, in general, the higher the potential for the
occurrence of 3-D shadowing or enhanced illumination effects.

A possible strategy for future works could begin by seeking to parameterize a function
f¢(@, x), describing the overall combined effect of the geometrical configuration ¢, with the
potential for 3-D effects x over a given scene. This would be a statistical parameterization
in the sense that it does not address individual clouds, but the average signal from a
subdomain. ¢ can be computed for each latitude, longitude, and time coordinate, as
exemplified in Figure 9. x needs to be computed for the specific scene under consideration.
The measured p3 99 can be regressed against a combination of ¢ and x to derive the effective
parameterization function f¢(¢, x). For instance, with careful study over a stratiform scene,
neighboring pixels will have similar ¢ = ¢’ values, but may have different x ranges. At
the very homogeneous cloud limit (x ~ 0), the measured p3 o will respond to f¢(¢’,0)
and 7. If the surface inhomogeneity increases to xy = x’ over nearby clouds, we can learn
how fg((p’ ,x') affects p399. For instance, Horvéth et al. [23] have shown how increasing
inhomogeneity changes the retrieved r, for MODIS. Next, for cloud field sections with
similar x one can study how the retrieved r, changes with ¢. For instance, taking low
8y MODIS retrievals over the Southeast Pacific as an 7, benchmark, it can be possible to
find stratiform cloud sections with similar MODIS r, and ), but far apart enough to have
distinct ¢ from the GOES perspective. In such a case, differences in GOES r, retrievals
could then be attributed to ¢ variations. The underlying assumption in this type of analysis
is that one can find pairs of cloud field sections, with similar microphysical properties,
for which only one variable in the (¢, x) space changes significantly. In principle, f; (¢, x)
could be positive or negative, i.e., it can represent an effective enhanced or diminished
reflectance added to p3gp, to represent the average resolved 3-D variability [25] in a given
configuration. The magnitude of f;(¢, x) should be small compared to unity, but since p3 99
is nonlinearly related to r,, the final result on droplet size retrievals can be meaningful. This
entire procedure can only make sense if the parameterization is reproducible over time.
The periodic regression results shown in Figure 4 indicate that this is possible, i.e., GOES-13
1. retrievals follow a predictable pattern over months and years, and so it must also be for
the p3.99 signal from which r. is derived. If proven, this hypothetical procedure could help
mitigate enhanced illumination/shadowing effects, to prepare the cloud field scene p3.99
for applying the aforementioned framework [27,29]. This latter step can further curb cloud
subpixel bias due to gridding in r, retrievals [25] and due to the covariance between pg 63
and p3 g9 in Nakajima—King diagrams [29]. Other forms of subpixel variability biases, such
as horizontal photon transport [17] or precipitation biases [16,26], remain unaddressed.
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5. Conclusions

Studying cloud microphysics from geostationary platforms has been hampered by
artifacts at subpixel and pixel levels [14,25,28] and geometrical difficulties [13]. We have
examined how GOES-13 r, retrievals, for warm-phase clouds, fare against the reference
MODIS cloud product, over large areas in continental South America and the Southeast
Pacific Ocean. The retrievals were based on a 1-D LUT developed to simulate radiance
measurements at the 3.90 pm channel in GOES-13. Despite this simplified approach,
we found our results were highly correlated with operational MODIS retrievals, with R
between about 0.60 for Aqua and 0.91 for Terra. It is remarkable that over the vast spatial
domains analyzed here, combining data from 2014 to 2017, this kind of coherence was
observed between MODIS and GOES datasets, with sometimes more than 100,000 matching
cloud retrievals (cf. July results for Terra in Table 2).

Over the ocean, there is, in general, a better agreement between GOES and Terra or
Aqua, than over the land. The different regression slopes shown in Table 2 indicate that the
location of clouds relative to the satellite sensor (i.e., to the east or west of the subsatellite
point) and the time of the day the imagery is acquired are critical for the retrievals. The
reason for this is twofold. First, cloud formation and development are distinct in both
regions, hence the vertical cloud structure will be physically different. These different cloud
types have varying degrees of spatial inhomogeneities due to their evolving 3-D structures.
Second, the geometrical configuration of illumination and viewing angles are distinct for
the two regions, both throughout the day and seasonally. These two factors combined are
fundamental in defining the p3 99 signal from which r. is directly derived.

We found that GOES vs. MODIS regressions showed a clear seasonal pattern. Re-
gression slopes, intercepts, and R values varied between the ranges shown in Table 2, and
exemplified in Figure 4, indicating these retrieval results are reproducible over time. Even
though the analyses were performed with varying atmospheric conditions, cloud types,
and cloud frequency distributions, the regressions did converge statistically, which allowed
combining data from the same months in different years to derive these results.

Evidence for 7, overestimation against in situ measurements is shown in Figure 8,
associated with forward scattering conditions. On the other hand, an average r, under-
estimation effect, correlated with enhanced p3 99 in the backscatter hemisphere [25], was
exemplified in Figure 7. However, this phenomenon did not always peak at ¢ = 0°, as
shown in Figure 7c. This further highlights how intricate the relationship between illumi-
nation/viewing angles and the occurrence of 3-D cloud structures can be, and how they
combine to define the retrieved 7.

There are limitations to the illumination/viewing ¢ configurations that can be accessed
by GOES-13, as exemplified in Figure 7. Depending on the time of day and season, there
will be more or fewer opportunities to sample each scattering hemisphere, for regions to
the east or west of the sensor. To define a future retrieval strategy, ¢ can be calculated for
any given latitude, longitude, time, and day of the year, to predefine a particular scattering
regimen of interest. For the sake of geostationary r, validation efforts, which usually rely
on MODIS products, Figure 9 shows typical ¢ scattering conditions available throughout
the year, at Terra and Aqua overpass times.

We speculate that partial mitigation of pixel-level 3-D illumination/shading effects
can be pursued by combining the geometrical information provided by ¢ and the inhomo-
geneity proxy index x. This would be a statistical approach to parameterize an average 3-D
related effect over subdomains with specific cloud configurations. For instance, Figure 7a,b
have different average p3 90 in April, both measured at Terra overpass times. From Figure 9
we see that April Terra scattering over the ocean is mostly in the backscatter hemisphere,
while the Amazon is typically in the forward scattering regimen. Under the hypothetical
procedure we discussed in this work, part of the average p3 99 signal in a small subdomain
over the ocean (Figure 7a) could, for instance, be quantified as excess illumination in the
backscattering due to contributions of nearby clouds. In this case, p3 99 could be corrected
to yield larger r, retrievals. Similarly, in a subdomain in the Amazon sector, the average
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p3.90 (Figure 7b) could be linked to partial shadowing effects since scattering is mostly in
the forward hemisphere. In that case, the corrected p3 99 could yield smaller . retrievals.
One potential outcome of using this approach could be smaller yearly variations for the
intercepts in Table 2. Terra intercepts vary from about —2.8 to 2.4 um across different
sectors, and such oscillations would be altered if the average p3 99 signal changes, after
implementing the corrections predicted by this procedure.

The complexities of retrieving 7, from geostationary platforms are well known [12,13].
We have discussed new insights from a simple retrieval scheme, and its application over a
broad spatial domain, with surprisingly periodic results over four years. The conclusions
drawn here are also possibly applicable to other platforms seeking to derive cloud micro-
physical properties over large geostationary footprints, such as GOES-16, Himawari-8, or
FY-4A products.

Author Contributions: A.L.C. initiated the study, analyzed and interpreted the data, and wrote the
paper. M.M.M. analyzed and interpreted the data, and modeled the simulation LUT used in the study.
T.EN. and A.C.P. analyzed and interpreted the data, and contributed to the writing. M.A.C. curated,
analyzed, interpreted the aircraft data, and contributed to the writing. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data
can be found at NASA: https://atmosphere-imager.gsfc.nasa.gov/products/cloud, accessed on
10 November 2021 12:00 UTC, and NOAA: https:/ /www.avl.class.noaa.gov/saa/products/welcome,
accessed on 10 November 2021 12:00 UTC.

Acknowledgments: We thank NOAA GOES and NASA MODIS teams for the datasets used in
this study. A.L.C. thanks the Brazilian National Council for Scientific and Technological Develop-
ment (CNPq) for research grant 421870/2018-4. A.L.C. and M.A.C. thank the Sao Paulo Research
Foundation (FAPESP) for research grants SeReNA 2010/15959-3 and 2020/13273-9.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Nakajima, T.; King, M.D. Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar
Radiation Measurements. Part I: Theory. J. Atmos. Sci. 1990, 47, 1878-1893. [CrossRef]

2. Twomey, S. The Influence of Pollution on the Shortwave Albedo of Clouds. |. Atmos. Sci. 1977, 34, 1149-1152. [CrossRef]

3. Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227-1230. [CrossRef] [PubMed]

4.  Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 1999,
26,3105-3108. [CrossRef]

5. Wang, H; Dai, T.; Zhao, M.; Goto, D.; Bao, Q.; Takemura, T.; Nakajima, T.; Shi, G. Aerosol Effective Radiative Forcing in the
Online Aerosol Coupled CAS-FGOALS-{3-L Climate Model. Atmosphere 2020, 11, 1115. [CrossRef]

6.  Forster, P; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.L.; Frame, D.; Lunt, D.; Mauritsen, T.; Palmer, M.; Watanabe, M.; et al.
Chapter 7: The Earth’s energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Open Access Victoria
University of Wellington: Wellington, New Zealand, 2021. [CrossRef]

7. Feingold, G.; Eberhard, W.L.; Veron, D.E.; Previdi, M. First measurements of the Twomey indirect effect using ground-based
remote sensors: Surface remote sensing of the indirect effect. Geophys. Res. Lett. 2003, 30. [CrossRef]

8.  Zheng, X.; Xi, B.; Dong, X.; Logan, T.; Wang, Y.; Wu, P. Investigation of aerosol-cloud interactions under different absorptive
aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements.
Atmos. Chem. Phys. 2020, 20, 3483-3501. [CrossRef]

9. Sena, E.T.; McComiskey, A.; Feingold, G. A long-term study of aerosol-cloud interactions and their radiative effectat the Southern
Great Plains using ground-based measurements. Atmos. Chem. Phys. 2016, 16, 11301-11318. [CrossRef]

10. Hansen, J.E.; Travis, L.D. Light scattering in planetary atmospheres. Space Sci. Rev. 1974, 16, 527-610. [CrossRef]

11. Platnick, S.; Meyer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, PA;
Holz, R.E.; et al. The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and
Aqua. IEEE Trans. Geosci. Remote Sens. 2017, 55, 502-525. [CrossRef]

12. Dong, X.; Mace, G.G.; Minnis, P.; Smith, W.L.; Poellot, M.; Marchand, R.T.; Rapp, A.D. Comparison of Stratus Cloud Prop-

erties Deduced from Surface, GOES, and Aircraft Data during the March 2000 ARM Cloud IOP. ]. Atmos. Sci. 2002, 59,
3265-3284. [CrossRef]


https://atmosphere-imager.gsfc.nasa.gov/products/cloud
https://www.avl.class.noaa.gov/saa/products/welcome
http://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
http://dx.doi.org/10.1126/science.245.4923.1227
http://www.ncbi.nlm.nih.gov/pubmed/17747885
http://dx.doi.org/10.1029/1999GL006066
http://dx.doi.org/10.3390/atmos11101115
http://dx.doi.org/10.25455/WGTN.16869671.V1
http://dx.doi.org/10.1029/2002GL016633
http://dx.doi.org/10.5194/acp-20-3483-2020
http://dx.doi.org/10.5194/acp-16-11301-2016
http://dx.doi.org/10.1007/BF00168069
http://dx.doi.org/10.1109/TGRS.2016.2610522
http://dx.doi.org/10.1175/1520-0469(2002)059<3265:COSCPD>2.0.CO;2

Atmosphere 2022, 13,77 22 of 23

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

McHardy, T.M.; Dong, X.; Xi, B.; Thieman, M.M.; Minnis, P.; Palikonda, R. Comparison of Daytime Low-Level Cloud Properties
Derived From GOES and ARM SGP Measurements. J. Geophys. Res. Atmos. 2018, 123, 8221-8237. [CrossRef]

Painemal, D.; Minnis, P.; Ayers, ].K.; O'Neill, L. GOES-10 microphysical retrievals in marine warm clouds: Multi-instrument
validation and daytime cycle over the southeast Pacific: Marine clouds microphysics from GOES-10. . Geophys. Res. Atmos. 2012,
117,19212. [CrossRef]

Painemal, D.; Spangenberg, D.; Smith, W.L., Jr.; Minnis, P.; Cairns, B.; Moore, R.H.; Crosbie, E.; Robinson, C.; Thornhill, K.L.;
Winstead, E.L.; et al. Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude
North Atlantic during the NAAMES campaign. Atmos. Meas. Tech. 2021, 14, 6633-6646. [CrossRef]

Kang, L.; Marchand, R.; Smith, W. Evaluation of MODIS and Himawari-8 Low Clouds Retrievals Over the Southern Ocean With
In Situ Measurements From the SOCRATES Campaign. Earth Space Sci. 2021, 8, e01397. [CrossRef]

King, N.J.; Bower, K.N.; Crosier, J.; Crawford, I. Evaluating MODIS cloud retrievals with in situ observations from VOCALS-REXx.
Atmos. Chem. Phys. 2013, 13, 191-209. [CrossRef]

Painemal, D.; Zuidema, P. Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast
Pacific with VOCALS-REXx in situ measurements: MODIS VALIDATION DURING VOCALS-REx. ]. Geophys. Res. Atmos.
2011, 116. [CrossRef]

Noble, S.R.; Hudson, ].G. MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics. |. Geophys. Res.
Atmos. 2015, 120, 8332-8344. [CrossRef]

Zhang, Z.; Dong, X.; Xi, B.; Song, H.; Ma, P; Ghan, S.J.; Platnick, S.; Minnis, P. Intercomparisons of marine boundary layer
cloud properties from the ARM CAP-MBL campaign and two MODIS cloud products. ]. Geophys. Res. Atmos. 2017, 122,
2351-2365. [CrossRef]

Benas, N.; Meirink, J.E; Stengel, M.; Stammes, P. Sensitivity of liquid cloud optical thickness and effective radius retrievals to
cloud bow and glory conditions using two SEVIRI imagers. Atmos. Meas. Tech. 2019, 12, 2863-2879. [CrossRef]

Grosvenor, D.P; Wood, R. The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine
liquid water clouds. Atmos. Chem. Phys. 2014, 14, 7291-7321. [CrossRef]

Horvéth, A.; Seethala, C.; Deneke, H. View angle dependence of MODIS liquid water path retrievals in warm oceanic clouds. J.
Geophys. Res. Atmos. 2014, 119, 8304-8328. [CrossRef]

Liang, L.; Di Girolamo, L.; Sun, W. Bias in MODIS cloud drop effective radius for oceanic water clouds as deduced from optical
thickness variability across scattering angles. J. Geophys. Res. Atmos. 2015, 120, 7661-7681. [CrossRef]

Marshak, A.; Platnick, S.; Varnai, T.; Wen, G.; Cahalan, R.F. Impact of three-dimensional radiative effects on satellite retrievals of
cloud droplet sizes. J. Geophys. Res. 2006, 111, D09207. [CrossRef]

Zhang, Z.; Ackerman, A.S.; Feingold, G.; Platnick, S.; Pincus, R.; Xue, H. Effects of cloud horizontal inhomogeneity and drizzle
on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations: Heterogeneity and drizzle
effect on effective radius retrieval. J. Geophys. Res. Atmos. 2012, 117, 19208. [CrossRef]

Werner, F.; Zhang, Z.; Wind, G.; Miller, D.].; Platnick, S. Quantifying the Impacts of Subpixel Reflectance Variability on Cloud
Optical Thickness and Effective Radius Retrievals Based On High-Resolution ASTER Observations. |. Geophys. Res. Atmos. 2018,
123, 4239-4258. [CrossRef]

Kato, S.; Hinkelman, L.M.; Cheng, A. Estimate of satellite-derived cloud optical thickness and effective radius errors and their
effect on computed domain-averaged irradiances. |. Geophys. Res. 2006, 111, D17201. [CrossRef]

Zhang, Z.; Werner, E; Cho, HM.; Wind, G.; Platnick, S.; Ackerman, A.S.; Di Girolamo, L.; Marshak, A.; Meyer, K. A framework
based on 2-D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical
thickness and effective radius retrievals based on the bispectral method: Subpixel impact on retrievals. J. Geophys. Res. Atmos.
2016, 121, 7007-7025. [CrossRef]

Vant-Hull, B.; Marshak, A.; Remer, L.A.; Li, Z. The Effects of Scattering Angle and Cumulus Cloud Geometry on Satellite Retrievals
of Cloud Droplet Effective Radius. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1039-1045. [CrossRef]

Platnick, S. Vertical photon transport in cloud remote sensing problems. |. Geophys. Res. Atmos. 2000, 105, 22919-22935. [CrossRef]
Weinreb, M.; Jamieson, M.; Fulton, N.; Chen, Y.; Johnson, ].X.; Bremer, J.; Smith, C.; Baucom, J. Operational calibration of Geosta-
tionary Operational Environmental Satellite-8 and -9 imagers and sounders. Appl. Opt. 1997, 36, 6895. [CrossRef] [PubMed]
Kaufman, YJ.; Nakajima, T. Effect of Amazon Smoke on Cloud Microphysics and Albedo-Analysis from Satellite Imagery. J.
Appl. Meteorol. 1993, 32, 729-744. [CrossRef]

Platnick, S.; Fontenla, ].M. Model Calculations of Solar Spectral Irradiance in the 3.7-m Band for Earth Remote Sensing
Applications. J. Appl. Meteorol. Climatol. 2008, 47, 124-134. [CrossRef]

Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C,;
Dowling, T.;etal. The libRadtran software package for radiative transfer calculations (version 2.0.1).  Geosci. Model
Dev. 2016, 9, 1647-1672. [CrossRef]

Correia, A.L.; Sena, E.T.; Silva Dias, M.A.E; Koren, I. Preconditioning, aerosols, and radiation control the temperature of glaciation
in Amazonian clouds. Commun. Earth Environ. 2021, 2, 168. [CrossRef]

Mendonga, M.M. Estudo de Propriedades de Nuvens no Contexto de Sensoriamento Remoto com satéLites Usando c6Digos de
Transferéncia Radiativa. Mestrado em Fisica, Universidade de Sdo Paulo, Sdo Paulo, Brazil, 2017. [CrossRef]


http://dx.doi.org/10.1029/2018JD028911
http://dx.doi.org/10.1029/2012JD017822
http://dx.doi.org/10.5194/amt-14-6633-2021
http://dx.doi.org/10.1029/2020EA001397
http://dx.doi.org/10.5194/acp-13-191-2013
http://dx.doi.org/10.1029/2011JD016155
http://dx.doi.org/10.1002/2014JD022785
http://dx.doi.org/10.1002/2016JD025763
http://dx.doi.org/10.5194/amt-12-2863-2019
http://dx.doi.org/10.5194/acp-14-7291-2014
http://dx.doi.org/10.1002/2013JD021355
http://dx.doi.org/10.1002/2015JD023256
http://dx.doi.org/10.1029/2005JD006686
http://dx.doi.org/10.1029/2012JD017655
http://dx.doi.org/10.1002/2017JD027916
http://dx.doi.org/10.1029/2005JD006668
http://dx.doi.org/10.1002/2016JD024837
http://dx.doi.org/10.1109/TGRS.2006.890416
http://dx.doi.org/10.1029/2000JD900333
http://dx.doi.org/10.1364/AO.36.006895
http://www.ncbi.nlm.nih.gov/pubmed/18259561
http://dx.doi.org/10.1175/1520-0450(1993)032<0729:EOASOC>2.0.CO;2
http://dx.doi.org/10.1175/2007JAMC1571.1
http://dx.doi.org/10.5194/gmd-9-1647-2016
http://dx.doi.org/10.1038/s43247-021-00250-3
http://dx.doi.org/10.11606/D.43.2017.tde-18122017-090055.

Atmosphere 2022, 13,77 23 of 23

38.

39.

40.

41.

42.

43.

44.

45.
46.

Baum, B.A.; Yang, P; Heymsfield, A J.; Platnick, S.; King, M.D.; Hu, Y.X.; Bedka, S.T. Bulk Scattering Properties for the Remote
Sensing of Ice Clouds. Part II: Narrowband Models. J. Appl. Meteorol. 2005, 44, 1896-1911. [CrossRef]

Maddux, B.C.; Ackerman, S.A.; Platnick, S. Viewing Geometry Dependencies in MODIS Cloud Products. J. Atmos. Ocean. Technol.
2010, 27, 1519-1528. [CrossRef]

Martin, S.T.; Artaxo, P.; Machado, L.A.T.; Manzi, A.O.; Souza, R.A.F.; Schumacher, C.; Wang, J.; Andreae, M.O.; Barbosa, HM.].;
Fan, J.; et al. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys.
2016, 16, 4785-4797. [CrossRef]

Machado, L.A.T.; Calheiros, A.J.P.; Biscaro, T.; Giangrande, S.; Silva Dias, M.A.F.,; Cecchini, M.A.; Albrecht, R.; Andreae, M.O.;
Araujo, WE,; Artaxo, P; et al. Overview: Precipitation characteristics and sensitivities to environmental conditions during
GoAmazon2014/5 and ACRIDICON-CHUVA. Atmos. Chem. Phys. 2018, 18, 6461-6482. [CrossRef]

Schmid, B.; Tomlinson, J.M.; Hubbe, J.M.; Comstock, ].M.; Mei, E; Chand, D.; Pekour, M.S.; Kluzek, C.D.; Andrews, E.;
Biraud, S.C.; et al. The DOE ARM Aerial Facility. Bull. Am. Meteorol. Soc. 2014, 95, 723-742. [CrossRef]

Cecchini, M.A.; Machado, L.A.T.; Comstock, ].M.; Mei, E; Wang, J.; Fan, J.; Tomlinson, ].M.; Schmid, B.; Albrecht, R,;
Martin, S5.T; et al. Impacts of the Manaus pollution plume on the microphysical properties of Amazonian warm-phase clouds in
the wet season. Atmos. Chem. Phys. 2016, 16, 7029-7041. [CrossRef]

Beswick, K.M.; Gallagher, M.W.; Webb, A.R.; Norton, E.G.; Perry, F. Application of the Aventech AIMMS20AQ airborne probe for
turbulence measurements during the Convective Storm Initiation Project. Atmos. Chem. Phys. 2008, 8, 5449-5463. [CrossRef]
Platnick, S.; Valero, EPJ. A Validation of a Satellite Cloud Retrieval during ASTEX. ]. Atmos. Sci. 1995, 52, 2985-3001. [CrossRef]
Chen, Y.; Chen, G.; Cui, C.; Zhang, A.; Wan, R;; Zhou, S.; Wang, D.; Fu, Y. Retrieval of the vertical evolution of the cloud
effective radius from the Chinese FY-4 (Feng Yun 4) next-generation geostationary satellites. Afmos. Chem. Phys. 2020, 20,
1131-1145. [CrossRef]


http://dx.doi.org/10.1175/JAM2309.1
http://dx.doi.org/10.1175/2010JTECHA1432.1
http://dx.doi.org/10.5194/acp-16-4785-2016
http://dx.doi.org/10.5194/acp-18-6461-2018
http://dx.doi.org/10.1175/BAMS-D-13-00040.1
http://dx.doi.org/10.5194/acp-16-7029-2016
http://dx.doi.org/10.5194/acp-8-5449-2008
http://dx.doi.org/10.1175/1520-0469(1995)052<2985:AVOASC>2.0.CO;2
http://dx.doi.org/10.5194/acp-20-1131-2020

	Introduction
	Materials and Methods
	Spatial–Temporal Domain and Datasets
	GOES-13 re and Phase Retrievals
	MODIS Match Up and Spatial–Temporal Comparison Strategy
	Aircraft In Situ Match Up and Comparison Strategy

	Results
	GOES-13 Imager and MODIS re Direct Matchup Results
	GOES-13 re Monthly Matchups for MODIS Terra and Aqua
	Assessing GOES-13 re Sensitivity to Illumination and Observation Geometries
	GOES-13 re In Situ Aircraft Matchups During GoAmazon

	Discussion
	Conclusions
	References

