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Resumo

Seja R um anel de ideais livres (“fir”) com centro k e seja E uma extensao
de corpos comutativos. Neste trabalho, estuda-se a estrutura do anel Ry =
R®; E. Consideramos uma generalizagao do conceito de “fir”, anéis de ideais
de poténcias livres (“pfirs”), e mostramos que para todo “fir” R, existe uma
localizagao finita 7" de R tal que, para qualquer extensdo galoisiana E do
centro k de R, o anel 7 é um “pfir”.

Alguns casos nos quais o anel estendido é um anel de matrizes sobre um

“fir” e nos quais a localizacao nao é necessaria também sao estudados.



SPLIT FIRS
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ABSTRACT. A study is made of firs under ground field extension.
We consider a generalization: power-free ideal rings (pfirs) and
show that for any fir R there is a finite localization T' such that
for any Galois extension E of the centre Tg is a pfir. Cases are
examined where the resulting ring is a fir and where no localization

is necessary.

INTRODUCTION

Let D be a skew field with centre k. For any finite field extension
E of k, the extended algebra Dg = D ®; E is a total matrix ring over
a skew field, as is well known (see e.g. [5], Chapter 7). For a subring
R of D which is a k-algebra and which generates D as a skew field,
it is no longer true that Rp is necessarily a full matrix ring, but this
can be achieved if we enlarge R by adjoining the inverses of a finite
set of elements. In the case where R is a full matrix ring of the same
order as the ring Dg, R is said to be split by E. Here it is of some
interest to find out what properties of R are preserved by extension.
We shall be particularly concerned with free ideal rings, briefly firs; it
seems plausible that for a fir R a split fir can be obtained by adjoining
inverses of a finite set, this has been proved in the particular case of
tensor rings in [8]. For general firs we are not quite able to prove this,
but we shall find in §1 that the extended ring is hereditary and power-
free, i.e. every finitely generated projective module has a power which
is free of unique rank. This leads to the notion of a power-free ideal
ring (pfir), which is discussed in §2. In §3 we study the effect on skew
fields of extending the centre, and in §4 we look at some special cases
where the extended ring is a matrix ring over a fir. This already yields
some interesting constructions; in particular, we shall need the matrix
reduction functor (§5) as well as some of the results on division algebras
Date: 19 February 2002.
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2 P. M. COHN AND V. O. FERREIRA

which remain true for skew fields finite-dimensional over their centres
(86).
Sometimes the prefix “skew” is omitted from skew field; it is usually

clear from the context whether fields are commutative or not.

1. GENERALITIES ON EXTENSIONS

Let R be a ring and ¥ a set of matrices over R. If we adjoin a formal
inverse to each matrix in ¥ we obtain a ring Ry, called the localization
of R by ¥, with a homomorphism R — Ry. If ¥ is a finite set of
matrices over R, then Ry will be called a finite localization of R. Since
we are mainly interested in fields of fractions, we shall assume that £
consists of full matrices, where a matrix A is full if it is square, say
n x n, and for any factorization into an n X 7 by an r X n matrix of
A we have r > n (see [3] or [6]). When R is a fir, semifir, or more
generally, a Sylvester domain, the mapping R — Ry is injective for
any set ¥ of full matrices, and there exists a universal (skew) field of
fractions U, obtained by localizing at the set of all full matrices over
R.

Suppose further that R is a k-algebra, where k is a commutative field,
and let E be a finite commutative field extension of k. We write Rg =
R ®; F and similarly for the universal field of fractions U. Our object
will be to compare R with R, for any fir R, given information about
the relation between U and Ug. The centre C of U is a commutative
extension field of k£ and if we localize a fir R at C* we again obtain
a fir, by [3], Proposition 1.5.4; a similar result (with a similar proof)
holds for semifirs or Sylvester domains. Henceforth we shall assume
that R,U, k are as before and in addition k is the centre of R and of
U. As we know from Corollary 6.3.4 of 3], this is so for any non-Ore
fir.

Our first result concerns the effect of extending the ground field.

Proposition 1.1. Let R be an algebra over a commutative field k and
E/k be a commutative field extension. Then for any set ¥ of matrices

over R we have

(1) (Re)e = (Rp)s
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Proof. The natural homomorphism R — Ry arises by inverting
hence we have a homomorphism R — (Ryx)g in which ¥ is inverted.
This gives rise to a homomorphism (Rg)s — (Rx)g; to show that
it is an isomorphism, we construct its inverse. The homomorphism
R — Ry extends to a homomorphism Ry — (Rg)g, and hence
to a map (Rg)g — (Rg)s, which is seen to be the inverse, and it
establishes the isomorphism (1). O

In the particular case where R is a semifir and ¥ the set of all full

matrices over R, this (with the remark before Proposition 1.1) proves

Corollary 1.2. Let R be a semifir with universal field of fractions U,
and suppose that R is a k-algebra, where k is the centre of U (hence
also of R). Let E/k be a commutative field extension and denote by
the set of all full matrices over R. Then

Next we note that coproducts are preserved by field extensions.

Theorem 1.3. Let k be a commutative field and R, S any k-algebras
with a common subfield F which is a k-algebra. If E/k is any commu-

tative field extension, then we have a natural isomorphism
(2) (R+r S)p = Rg * Sk,

where the coproduct on the right is taken over Fg.

Proof. We have a bilinear map (R*S) x E — Rp * Sg which extends

to a homomorphism

In the other direction we have embeddings Rg — (R * S)g, Sg —
(R S)g, and hence a homomorphism from right to left in (2) which is
inverse to the map (3), hence the latter is an isomorphism. O

We also note that for a coproduct of firs, we can find the universal
field of fractions of the coproduct by taking the firs or their universal
fields of fractions. A homomorphism is called honest if it keeps all full

matrices full.
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Theorem 1.4. Let R; (i = 1,2) be a fir with centre k and universal
field of fractions U; and put R = Ry xp Ry, with universal field of
fractions U. Then U is also the universal field of fractions of Uy * Us.

Proof. The coproduct U; * U, is a fir and so has a universal field of
fractions V, say, and we have to show that U = V. Consider the
inclusion map R; — R; x Ry. It is honest, for if we combine it with
the natural map Ry * Ry — U; x Uy, it maps all full matrices over R,
to invertible matrices, so these matrices must be full over R; * Ry. It
follows that the natural map Ry * R, — U inverts all full matrices over
R, and likewise all full matrices over Ry, so we have a map U; * Uy —
U. Now any full matrix over R; * Ry is inverted over U (by definition
of the latter) and so is full over U; * Us; therefore it is inverted over
V and so we have a map U — V which restricts to the identity on
R, * Ry. But the map U, *U, — V is an epimorphism, hence the map
U — V is an isomorphism, as claimed. O

Auslander-Reiten-Smalg have given conditions for a ring extension
to preserve the global dimension (cf. II1.4, p. 89ff. of [2]), which can be
put as follows in a more general context.

All rings are K-algebras, where K is a commutative ring. We shall
be concerned with a ring extension A C B, and look for conditions

under which the global dimension is unchanged.

Proposition 1.5. Let A, B be rings, where A C B with a split ezact

sequence of A-bimodules

0—A—B—C—0,
where C4 is projective. Then r.gl.dim(A) < r.gl.dim(B).

Proof. By hypothesis B = A & C, hence we have, for any right A-
module M, M ® B=M & (M ® C), and so

(4) pd,(M) < pdy(M @ B).
Now take a minimal projective B-resolution of M ® B:
. — P —PFP —M®B—0.

Since B4 = A®C is projective, this is a projective resolution of M ® B
as A-module, so pd,(M ® B) < pdg(M ® B), and with (4) this shows



SPLIT FIRS 5

that
pd (M) < pdg(M ® B) < r.gl.dim(B).

Taking the supremum over all My, we get the asserted inequality. [
For an inequality in the other direction we need a stronger condition.

We recall that, regarding B as an A-ring, we have an exact sequence
of B-bimodules

0—N—B®4B— B—0,

where the second homomorphism is the multiplication map (and € is
the universal derivation module, cf. [5] 2.2, p. 48). If the sequence splits,
as B-bimodule sequence, B is said to be separable over A. As is well
known, this is equivalent to the existence of a separability idempotent
e =Y a; ®b;, i.e. an idempotent e in B ® B mapping to 1 in B and
such that ea = ae for all a € A ([5], Proposition 6.7.1, p. 249).

Proposition 1.6. Let A, B be rings such that B is separable as A-ring
and projective as left A-module. Then r.gl.dim(B) < r.gl.dim(A).

Proof. For any right B-module N we have N® 4B = NQg(B®aB) =
N @ (N ®p ?), hence

(5) pdp(N) < pdg(N ® B).
Now take a minimal projective A-resolution of N:
. — PP — P — N —0

and tensor with B over A. Since 4B is projective, we get an exact

sequence

(6) ...— P ®B—F®B—N®B—0.

Now for any projective right A-module P and right B-module NV,
Homp(P ® B, N) = Homy (P, Homg(B, N)) = Homy (P, N);

since P, is projective, this is exact in N, so P ® B is B-projective and
(6) is a projective B-resolution of N ® B. It follows that

(7) pdp(N ® B) < pd4(N).

Combining (5) and (7) we find that pdg(N) < pd,(N) for all B-
modules N, hence the result. O



6 P. M. COHN AND V. O. FERREIRA

To apply these results to group rings we note that for any ring A and
any finite group G whose order is a unit in A, the group ring GA of G
over A, more generally any skew group ring of G over A is separable
over A, for we have the separability idempotent e = |G|7! Y 97! ® g,
where the summation is over all g € G. Clearly e maps to 1 and for
any h € G, Y. g7 ® gh = h Y (gh)™ ® gh, hence eh = he, while for
a€A Y0 '®p=Y9'®adg=>9'®g=ad 9g'®g,s0
ea = ae. Thus we have

Theorem 1.7. Let A be any ring and G a finite group with an action
on A and such that |G| is a unit in A. Then the skew group ring B of
G over A has the same (left or right) global dimension as A. O

Suppose that E/k is any commutative field extension which is sep-
arable. Then the multiplication map F ®; £ — E is split by a
separability idempotent, and for any k-algebra A we have

Ap®s A= (AR E) @4 (A®r E) = A®r E®: E,

and now the separability idempotent for £ can be used to show that
Apg is separable over A. Thus we obtain

Proposition 1.8. Let A be any k-algebra, where k is a commutative
field and let E/k be a finite separable field extension. Then Agp is

separable over A and so these two rings have the same global dimension.
O

We recall from [3] that any fir is (left and right) hereditary; in fact
it may be defined as a ring which is (left and right) hereditary and
projective-free (i.e. finitely generated projective modules are free, of
unique rank). Hence the above result shows in particular that a fir
under a separable field extension of the centre remains a hereditary
ring. Whether it remains a fir depends on the behaviour of the monoid
of projectives. Our next result gives some information in the case of a
Galois extension. A ring R will be called powerprojective-free, or briefly
power-free, if it has IBN (invariant basis number) and for each finitely
generated projective R-module P there is a positive integer n such that
P™ is free. If the integer n can be chosen independently of P, R is said
to be power-free of indez n, or generally of bounded index. It is clear

that any power-free ring has a unique projective rank function.
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For the next proof we shall need a result on Galois descent (see [7],
Chapter 11). If E/k is a finite Galois extension with group G and V is a
vector space over F with an action of G' by semilinear transformations,
then V' can be obtained from a k-space by extension of scalars and the
same holds for any subspace admitting the G-action (Theorem 11.9.1).

Theorem 1.9. Let R be a fir with centre k, where k is a field, and
let E/k be a (commutative) Galois extension of finite degree n. Then
there is a finite localization T of R such that Ty = T @ E is power-free

of indezx at most n.

Proof. Denote the Galois group of E/k by G, write S = Rg = R® E
and let P be any (finitely generated) projective S-module. If P is a
direct summand of S”, write P, = P, P, ..., P, for the submodules of
S" obtained by applying the n elements of G to P, form Q = P, ®---&
P, and define a homomorphism ¢ : Q — S” by the rule (z;) — >_ z;.
The image [ is invariant under G and hence is obtained by extension
from a submodule of a free R-module, which is itself free because R is a
fir. It follows that the image is free, say I = S°. The kernel K consists
of all elements u € @ such that u maps to 0 in S”, but if v maps to 0,
then so does u?, for any ¢ € GG, so K is again obtained by extension
from a free module and so is itself a free S-module, say K = St. Thus

we have an exact sequence
0—sK-—Q-5T1-—0

The sequence is clearly split, and we conclude that @ = S**. Now let
U be the universal field of fractions of R; then Ug is a d X d matrix ring,
where d | n, so over Ug the modules P; are all isomorphic: if P; = S7e;,
then e; = eju; for a unit u; in Ug. Let ¥ be the set of denominators of
the u; in R and set T' = Ry; then over T all the P; become isomorphic
and so Q & P" = Tkt which is what we had to prove. O

It seems likely that under the given hypothesis T is actually a full
matrix ring over a fir, but so far there is no proof.

Let U be any skew field with centre k. Then for any finite field
extension F of k, the extended ring Ug is a d X d matrix ring over a
skew field, where d | [E : k]. If R is a k-subalgebra of U such that Rg is
a d x d matrix ring, we shall say that R is split by E. If in particular R
is split by the algebraic closure of k, R is said to be absolutely split. It
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1s easy to see that any algebra generating a skew field can be extended
to a split ring by adjoining a finite set of inverses of elements. We need
only form Ug and adjoin the inverses occurring in the matrix units e;;.

Thus we obtain

Proposition 1.10. Let U be a skew field with centre k and let R be
a k-subalgebra generating U as a skew field. Then there is a finite
localization of R which is absolutely split. O

2. POWER-FREE IDEAL RINGS

The results of §1 suggest the following slight extension of the notion
of a fir.

Definition. A ring R is called a left power-free ideal ring, left pfir for
short, if there exists an integer n > 1 such that for every left ideal I of
R the left R-module I" is free of unique rank. Right pfirs are defined
similarly and a pfir is a left and right pfir.

We note that in contrast to firs, pfirs may have zero-divisors; for
example, any full matrix over a fir is a pfir, as is easily verified. The
converse does not hold, as Theorem 2.2 below shows.

In analogy with the case of firs we have

Proposition 2.1. A ring is a left pfir if and only if it is left hereditary
and power-free of bounded indez.

Proof. Under either hypothesis R has IBN. Now let R be a left pfir of
index n. For any left ideal I of R, I™ is free, hence projective, so R
is hereditary. Further, any finitely generated projective left R-module
P is a direct sum of left ideals and it follows that P" is free, so R is
power-free of index n. Conversely, assume that R is left hereditary and
power-free of index n. Then any left ideal I is projective, and in fact
isomorphic to a direct sum of finitely generated projective modules. It
follows that I™ is free, and so R is a left pfir. a

As an example of a pfir we have the coproduct of skew fields under
field extension.
Theorem 2.2. Let C, D be skew fields with a common centre k and let
R = C %3, D. Then, for any finite commutative field extension E of k,
Rg is a pfir.
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Proof. We know that Rp = Cg *g Dg, by Theorem 1.3, and that
Cp = M. (K),Dg = M,(L), where both 7 and s divide [F : k] and
K and L are skew fields with centre E. Therefore R is hereditary.
Moreover, the monoid of projectives of R is isomorphic to +N ][y 1N
and hence Ry is power-free of index at most [E : k]. O

It is clear that if in this theorem we choose C,D and F so that
neither 7 nor s is 1, we obtain a pfir which is not a full matrix ring over
a fir.

More generally, we obtain from Proposition 1.8 and Theorem 1.9,

Theorem 2.3. Let R be a fir with centre k. Then for any Galois field
extension F of k, there exists a finite localization T of R such that Tg
is a pfir of index at most [E : k. O

3. SKEW FIELDS UNDER EXTENSION OF THE CENTRE

Let R be a semifir with centre k, a field, and suppose that the univer-
sal field of fractions U of R also has the precise centre k. Given a finite
algebraic extension field £ of k of degree n, form R = R®; E; this is
contained as a subring in Ugp = U®; E. By Theorem 7.1.3 of [5], Ug is a
central simple E-algebra, left Artinian, because [Ug : U] = [E : k] =n
and so we have

Ue = D ®k E;,
for some integer r and skew field D. Secondly, since £ is embedded in
kn, Ug is embedded in U,. But U, = U ® k, contains Ug and hence k.
If the centralizer of &, in U, is denoted by B, then B = C; = C ® k;
for some skew field C, and so, by Proposition 7.1.5 of [5],

U®kn:kr®ngr®C®ksu

in fact, C' = U by uniqueness, and now a comparison gives n = rs.

Thus we have

Proposition 3.1. Let U be any skew field with centre k, and E a finite
extension of k of degree n. Then Ug = D,., for a skew field D, where
T | n. More precisely, if E = k(c), where a has the minimal polynomial
f of degree n over k, then f splits into r factors over D; thus Dg 1is a

skew field if and only if f remains irreducible over D.
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Proof. We have seen that Ug = D,. Now assume that E/k is a simple
extension, say £ = k(a), and let f be the minimal polynomial of o
over k, deg f = [E : k] = n. Since f is irreducible over the centre
k of D, f is an I-atom in D[t] (that is, f is an invariant non-unit
which is not a product of invariant non-units) and over D we have the
factorization f = p;...p,, where the polynomials p; all have the same

degree t = n/r, and by tensoring the exact sequence
0— (f) —k[t] = E—0
with D we obtain
0— (f) — D[t] — Dg — 0,

hence Dg = D,, where D is the endomorphism ring of the (unique)
simple module of Dy (see [3] Theorem 6.4.3, p. 314, [6] Theorem 1.5.4,
p. 29). O

The next lemma generalizes Theorem 7.2.6 of [5] (which was limited
to finite-dimensional algebras). We shall write A @ B for the diagonal

sum of matrices A, B.

Lemma 3.2. Let D be a skew field with centre k, let E/k be a finite
field extension of degree v and let n be the least integer such that E is
embedded in D,. Then n < r, the centralizer E' of E in D,, is a skew
field and D @y E = (E')4, where 1 = nd.

Proof. Since E C k, C D,, it follows that n exists and satisfies n < r.
Take the least such n and denote by E’ the centralizer of E' in D,,. By
Theorem 7.1.9 of [5], E' is simple with centre E; if E' consists entirely
of non-singular elements it is a field. Otherwise take A € E’ singular
but not zero. By similarity transformation we have A = B @ 0, where
B is non-singular. Any matrix commuting with A has the form P& Q),
where PB = BP. Thus all the matrices in £ have this form, and
if P(a) ® Q(a) is the matrix corresponding to a € E, then the map
a — P(a) is a homomorphism E — D,,, where m < n and this
contradicts the definition of n. Thus E’ is a field; by Theorem 7.1.9
of [5], we have D, ® E = E' ® k., hence n | r, say r = dn, and so
D®E 2 (E'),. 0
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Given a fir R with centre k, if R contains a commutative field F
(containing k) and E = F', then Rp has zero-divisors and so is not a
fir; to study it, we shall need to examine F'® F; this is a direct product
of commutative fields, which are all isomorphic when F'/k is Galois (5.7
of [4]). To find its structure it will be helpful to have idempotents in
F®E:

Proposition 3.3. Let f be a separable polynomial over k and define
o(z,y) by the equation
f(z) - f(y)

(z-y)
If F| E are extension fields of k generated by zeros «, 8 of [ respectively,
then in F ® E the element p = (o, f) satisfies pa = pB and p? =
f'(B)p, where f' is the derivative of f; so p/f'(B) is an idempotent in
FQE.

(8) o(r,y) =

Proof. By definition we have ¢(z,y)(z —y) = f(z) — f(y), hence
ola, B)(a — B) = f(a) = f(B) = 0, and it follows that pa = ppg.
Now the Taylor expansion shows that ¢(z, 8) = f'(8) + (z — B)h(z),
hence p — f'(8) = (o — B)h(e), and so (p — f'(B))p = 0, as we had to
show. O

Let R be a fir with centre k£ and let F' be a subfield of R containing
k such that F'/k is a Galois extension of finite degree n, say F' = k(«),
where a; = a,an,...,a, are the conjugates of a. Given a field £
isomorphic to F, with o «— [ say, consider the extension Rg. Let
f be the minimal polynomial of « over k£ and define ¢(z,y) as in (8).
We note that ¢(y,z) = ¢(z,y),¢(z,z) = f'(z). In F ® E we have
o(a, B)(a— B) = f(a) = f(B) = 0, hence ¢(e, f)a = ¢(a, f)B and so
p(a, B)f' () = p(a, B)f'(B). Let us define
__¢lenh) _ ¢las,)
() £’
so that e; is an idempotent, by Proposition 3.3. For any by,...,b,
the polynomial F(z) = > byp(z,a;)/f (a;) is of degree at most n —
1 and for z = «; it reduces to b;, because ¢(oy,0s)/f'(ci) = by
Thus F is constant, equal to 1, and so Y e; = 1; further for ¢ # j
we have @(a;, B)p(ay, B)ai = p(ai, B)p(a;, B)B = p(au, B)p(ay, B)ey,
hence e;e; = 0; so it only remains to show that all the e; are conjugate.
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Let L(c), R(c) denote left and right multiplication by ¢, respectively,
for any ¢ € R. Since L(a), R(b) commute, for any a, b, by associativity,
we have p(L(@), R(0:))(L(a) = R(e)) = f(L(a)) — f(R(a)) = 0. Now
choose z € R such that za # az; this is possible, because « is not in
the centre k of R. We put ¢; = zp(L(a), R(o)); then ac — ¢y =
ci(L(a) — R(ay)) = 0, so ¢ ac; = o; and more generally, ¢; lejc; = e;.
Thus all the e; are conjugate, once the inverses of the ¢; have been
adjoined.

Let U be the universal field of fractions of R; then R C Ug, while
Ug = D, for some field D. Now e;Ug = D", a simple D,-module; it
follows that e; Rg is indecomposable, and every projective Rg-module
is a power of e;Rg. Hence Rg is an n X m matrix ring over a fir.

We sum up the result as

Theorem 3.4. Let R be a fir with centre k and let F' be a subfield of
R containing k such that F/k is a Galois extension of degree n. Then
there is a finite localization T of R such that for any field E isomorphic

to F, Tg is a full n X n matriz ring over a fir. O

4. EXAMPLES

Let us look again at the examples at the end of §3, of a fir which
is split by a field extension. Our ground field £ is assumed to have
characteristic not 2 and to contain an element a, say, which is not a
square. We put F' = k(a), where o®> = a, and consider the tensor
ring R = Fi(z). Clearly this is a fir, we denote its universal field of
fractions by U. Next take a field F isomorphic to F', say E = k(f),
where 3? = a, and consider R = R ®; E. We have Ug = D,, where
D is a skew field, and we ask what elements need to be adjoined to
R to ensure that an extension of the ground field £ to E produces a
2 x 2 matrix ring. Clearly what is needed is a complete set of matrix
units, so we need to take the matrix units in Up and adjoin inverses
of their denominators, elements of R, to R. They can be obtained as
follows. In F'® E we have an idempotent e = 1/2(1 + o/f); we put
e11 = e,exn = 1 — e, and further define v = az + z0,v = az — za.
Then au = azae + az = ue, av = ax — azxa = —va, hence aw? = v2a.
The set ¥ = {v} regarded as a matrix system is factor-complete, i.e.
if AB € ¥, where Aisr xn and B is n x r, then r < n and in the



SPLIT FIRS 13

localization Ry there exists an n X (n —r) matrix B’ such that (B, B')
is invertible. It follows that the multiplicative system ¥’ generated by
Y is also factor-complete. Let us put S = Rys/; by Theorem 7.10.7
of [3], S is again a fir and in S we have e;;v = vey; we now put

1

e12 = e11v, es1 = v teqr; then ejn = egv, €91 = exv~!, and it is easily

verified that the e;; form a set of matrix units. Thus we have
(9) Sg 2T,

where T is a subring of D, because Sy C Ug. Since Sg is hereditary,
by Proposition 1.8 above, so is 7' (by Morita equivalence). We also
note that R has centre k, as does S, so Sg has centre E and hence T
also has centre F.

Now T is the centralizer of the e;; and it follows that T" contains v?
as well as p,q, where p = e u + exnv luv,q¢ = epu + ejjvuvt. To
realize the isomorphism (9) we need to map s € Sg to (s;;), where
Sij = Y., €visej,. Writing [s] for the matrix (s;;), we find

_[(p O (0 1
[u]—<0 q>, M”(w 0),

[a] = (g _05> . 2] :[%(u—# v)} = —2—% (_];2 —1q> )

Let A = E(p,q,r), the free E-algebra on p, ¢, r. This is a fir, and if we
adjoin r~!, we again get a fir, B say. We claim that B = T'; to prove

)

this it will be enough to show that B, = T;. We define a map from Sg

(10)

to B, as follows:

B([p 1 B 0
.’IH—)iE(_T —q), OF—><O —ﬁ)

Then az + za = u, 0z — o = v, where u,v are as in (10) (with v?
replaced by 7). Thus we have a homomorphism from Sg to Bj, which is
surjective, since the image includes a generating set, and the restriction
to T is injective, because its image B is free. This shows that B = T,
so T is a fir, as claimed.

More generally, suppose that F/k is a cyclic extension of degree n
(prime to char k), say F' = k(c), where o™ = a € k, and E = k(8) with
B" = a, assume further that k£ contains a primitive nth root of 1, say

w, and put v = o™ 'z + wa" *za + - - - + w" 'za™!. Then we have
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av = vwa, thus the automorphism o — wa of F' is realized within
Fi.(z) by conjugation with v. From this it is easy to construct a set of
matrix units in Sg as before.

As another example let us take a field & of characteristic 2, with an
element a which is not a square in k. Define F' = k(«), where « is a root
of z2 = a, and form the tensor ring Fy,(z) with a single indeterminate
z and its universal field of fractions U. Let F be a field isomorphic to
F over k, say E = k(B), where 82 = a, and consider Ug = U ®; E.
As a skew field under extension, Ug is central simple and Artinian,
but it is not a field because it has zero divisors, e.g. 1 + a~!f; hence
it is a matrix ring over a field. Let us find an explicit form for the
matrix units. We put ¢ = z(za + az)™!; then at + ta = 1 and if
we put v = ta, then at = v+ 1 and u(u + 1) = t?a. Now consider
u+pt = t(a+p) in Ug; we have (u+ft)? = u?+B(ut+tu)+at® = u+pt,
because ut + tu = tat + t?a = t. Thus we have found an idempotent
e = t(a + ) different from 0 and 1 in Ug. Further, we have t~let =
(a+pBt=tla+pP)+1=1—e. Now put p=t(la+ B)t,q =a+ 8,
so that p?> = ¢> = 0. Then pe = 0,ep = p,ge = ¢, eq = 0 with similar
equations for 1 —e in place of e, so that e, p, ¢, 1 —e form a set of matrix
units for Ug.

More generally consider the case of a p-radical (purely inseparable)
extension in characteristic p. We shall need the following elementary
fact:

Lemma 4.1. Let k be a field of prime characteristic p and let z,y be

two indeterminates satisfying the relation
(11) 2y — yz = 1.

Then for any positive integer T,

(12) 2"y —yx’ =rad
(13) (zy)? = zPy” + ay,
(14) (yz)P~! = P yP ! 4+ 1.

Proof. The formula (12) (which is well known) follows by an easy in-
duction left to the reader. To prove (13), let us put z = zy; then (11)
becomes 7z = 2z + x = (z + 1)z, hence zz7! = z7(z + 1). Now we
have y? = (z712)? =27 P(z+p—1)(z+p—2)...(2+1)z = z7P(2" — 2),
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hence 2P — z = 2PyP, i.e. (13), and (14) follows on dividing by z on the
left and y on the right. O

Now, as before, let F' = k(«), where « is a root of 2P = a, and
char k = p, form the tensor ring Fy(z) with a single indeterminate z
and denote its universal field of fractions by U. Further, let £ = k(f),
where 8P = a, and consider Ug. As before this is a full matrix ring
over a field and our task is to find a set of matrix units in Ug. We
shall use the characterization of matrix rings given in [1]: a given ring
R is an n x n matrix ring if and only if R contains elements ¢, f, g such
that f* = 0 and ¢f* ! + fg = 1. In that case R = S,,, where S is the
centralizer of ¢, f, g in R.

Let ¢ be the inner derivation u — ua — au on U. Clearly 67 = 0,
so if we put t = £dP~2(z6P~1)7L, then t§ = 1, i.e. ta — ot = 1, and it
follows that on writing d = o — 8 we have td — dt = 1. Further, we
have d? = (o — B)P = o — P = a — a = 0, and, by (14), (dt)?~! =
tP~1dP~=1 + 1. Let us put f = d,c = t*P71dt,g = t(dt)P"2. We have
fP=0,cfP 1+ fg =t dtdP~ 1+ (dt)P~' = tP7 1 (td — 1)dP~1 + (dt)P~1 =
tPdP — tP~1dP~! + (dt)P~! = 1, by (14), bearing in mind that d? = 0.
Thus the conditions for a matrix ring are satisfied and we have Ug =V,
where V is the centralizer in Ug of ¢, f, g, i.e. of d, t*P~'dt and t(dt)P~2.

In this connexion it may be of interest to note Theorem 3.2 of [§],
which deals with a purely inseparable field extension F'/k of degree p:
given a tensor ring R = Fy(xz), there is an element of R such that by
adjoining its inverse we obtain a ring S with the property that Sp = A,,

where A is a fir.

5. MATRIX REDUCTION

We recall the matrix reduction functor from [3], 2.11 and [6], 1.7 in a
slightly generalized form. Let K be any ring and consider the category
Rgy of K-rings. For each n > 1, the matriz reduction functor 20, is
defined as the left adjoint of the n x n matrix functor 9, (R) = Ry:

Rgk (R, Mn(S)) = Rgx (Wn(R),S).

The explicit definition of 20, runs as follows. Put §,(R) = R *x Kp;
since §,(R) contains a set of n X n matrix units (e;;), it is itself a matrix
ring: §n(R) = S, (cf. Proposition 0.1.1 of [3] or Proposition 4.3.3 of
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[4]). We put S = 20,,(R), thus
Rk K, =M, (2W,(R)).

Sometimes we shall write 20, (R; K') to emphasize the role of K. An-
other description which is sometimes useful (and is easily seen to be
equivalent to the one just given) is as follows: interpret the elements
of R as n x n matrices, with the elements of K as scalar matrices. To
obtain the elements of 20,(R) we take the centralizer of the e;;. For
each a € R this gives n? elements ai; = ZU eivae;,; when a € K, then
since a commutes with the e;;, this reduces to a;; = ad;;. Now we have
Theorem 5.1. Let K be a field and R a K-ring which is non-trivial.
Then for any n > 1, W, (R; K) is a K-ring which is an (n — 1)-fir. If
R is a fir and K s a field, then 200, (R; K) is again a fir.

Proof. When K is in the centre of R, then 20,(R; K) has a filtration
satisfying the (n — 1)-term weak algorithm, by Theorem 2.11.2 of [3],
and the proof clearly still applies in the more general case of a K-ring.
The last part follows by Corollary 5.7.7 of [6] when K is a commutative
field; the extension to the general case is straightforward. O

We can also obtain pfirs through matrix reduction. We shall need

Lemma 5.2. Let R be an algebra over a commutative field k and let
E/k be a commutative field extension. Then for any n > 1 we have an

isomorphism of E-algebras

W, (R; k) = Wn(Re; E).
Proof. If we tensor M, (W, (R; k)) with E over k, we obtain
(15) M, (W (R; k))& = M (W (R; k) ).

Next we tensor R *, 9,(k) with E over k and use Theorem 1.3 to

obtain

By definition, Rg *g 9, (E) = M, (W, (RE; E)), therefore
(16) (R *, M, (k) g = M, (W, (RE; E)).

We now combine (15) and (16), bearing in mind that all the isomor-

phisms involved preserve the matrix units; this yields the desired re-
sult. ]
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As a consequence we have

Theorem 5.3. Let D be a skew field with centre k and let E/k be
a finite commutative field extension. Then, for every n > 1, R =
W,(D; k) is a fir and Rg is a pfir, but not a fir, unless Dg is a skew
field.

Proof. We have seen in Theorem 5.1 that R is a fir and, by Proposi-
tion 3.1, Dg = 9, (U), where r | [E : k] and U is a skew field. By

Lemma 5.2,
(17) M, (Rg) =M, (U) xg M, (E).

By (17), 9, (RE) is hereditary, hence so is Rg, and if M denotes its
monoid of projectives, the isomorphism (17) gives *M = IN]]y i N.
Hence R is power-free of index r. Finally it is clear that A/ = IN if and

only if r—=1. U

Given a fir R with centre k£ and universal field of fractions U, let us
take an algebraic extension E of k of degree r, say. Then Ugp = UQE =
D,, where D is a field and s is a factor of 7. We ask: what can be said
about Rg? One would hope that R has the form 7§, where T is a fir
with universal field of fractions D, or at least a well-behaved integral
domain, but this need not be so. E.g. let R = F*, F', where F'is a field
with centre & and with £ as commutative subfield. Then Fg = L, for
some field L with centre F, and s > 1, because E®y E, a subring of Fg,
has zero-divisors. It follows that Rg = (F*x F)g = FgxgFg = Ls*gL;
(cf. Theorem 1.3 above), and this is not of the form A; for any fir A and
any integer t. For we have R = 9,(2,(L *g L,; L)) = T, where T
is a ring with (s — 1)-term weak algorithm, but 7' has non-trivializable
s-term relations and so is not an s-fir (cf. [6], Theorem 5.7.6, p. 247).

We also note a characterization of matrix algebras, taken from [9],
which is sometimes useful. Let R be a ring which is an n X n matrix
algebra, say R = M, (A); f e = €11, w = e1n + €31 + €32+ -+ €nn1,

then we have equations

T E wlew!™ and ew'le = d;e.
i

Conversely if a ring R contains two elements e, w satisfying these equa-
tions, then R = 91,(A), where A is the centralizer of e and w. To see
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this we define, for any b € R, n? elements b;; by the equations
bij = ew'wiTte, i,j=1,...,n.

Now it is easily verified that the rule b —— (b;;) defines a homo-
morphism from R to 9,(A), where A = eRe, with inverse (¢;;) —

i=1,. o 1—j

6. SPECIAL CASES OF EXTENSIONS

Let D be a skew field with centre k and let E/k be a finite commu-
tative field extension, say [E : k] = r. Then Dg = G, where s | r and
G is a skew field with centre E, by Proposition 3.1.

If E has a subfield containing k£ which can be embedded in D, then
Dp clearly cannot be a field, as we see by taking the minimal equation
of an element in E \ k£ which has a root in D. To give an example
where Dy is a matrix ring even though E and D have no isomorphic
subextension over k, take any commutative field F and let H = F(z,§)
be a rational function field, put n = z(§ —z) and k = F'(§¢,7n),D = Hoy,
k(y) with an indeterminate y, where o stands for the field coproduct.
Then D is a field with centre k and f = t* + £t + 7 is irreducible over
k, but over D we have f = (> + z)(t* + £ — x), where the factors are
irreducible over D. Let E be the field obtained by adjoining to k a zero
of f; calling this zero A, we have (\2+z)(A2+&—z) = 0. If Dg were a
skew field, it would follow that either A> +xz =0or N>+ —z=0,s0 z
now lies in the centre, but zy — yx # 0, a contradiction. It follows that
Dg = G4 for some field G. However, D contains no zero of f, because
f splits into two irreducible factors of degree greater than one.

The phenomenon can also occur for finite-dimensional algebras. Let
F and H = F(z,£) be as before; on H we have an automorphism «
of order two fixing F'(§) and mapping = to { — z. We form the skew
polynomial ring H|[y; ] and its rational function field D = H(y; a);
clearly D is generated over F' by z,y, { subject to zy = y({—z), and its
centre is C = F(&,y? z(§ —z)). Since 1, z,y, zy span D over C and are
linearly independent, we have [D : C] = 4. We write n = z(£ — z) and
consider the polynomial f = t* —£t?+n in D]t]; it is irreducible over C,
while over D it splits into two irreducible factors: f = (t*—z)(t*—£+z).
Let E be the field obtained by adjoining a zero A of f and consider Dg.
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If this were a skew field, we find as before that z lies in the centre, but
zy = y(€ — z), so 2z = £, a contradiction.

However, it is not clear whether the stated condition (no isomorphic
subfields) is really satisfied, so it may be better to use the example
below.

Here is an example of a central division algebra (finite-dimensional)
D/k and a finite commutative extension £/k such that Dp is not a
skew field, even though E and D have no commutative subfields strictly
containing k that are isomorphic. Let D be the rational quaternions,
so that £ = Q, the rationals, and take E/k to be of degree 4, generated
by two square roots 31, B2, where 82 = b; € k. We know that Dg is a
total matrix ring over a skew field; to show that it is not a skew field,
it will be enough to show that it contains a non-zero element whose
square is zero. Consider the element f =i+ jB; + kf;, where we have

omitted the tensor product for simplicity. If f? = 0, then
0= (i+jb +kpo)’
(18) = —1—by — by + (ij +ji) 51 + (ik + ki) B> + (jk + kj) 152
= —1—by — bs.

It only remains to choose by, by so that /—1 & E. Take by = 2,b; = =3,
then (18) is satisfied and E = Q(v/2,v/=3). Clearly E does not contain
/=1, so this is the desired construction. We note further that for any
commutative subfield F of D, F®FE is again a field, by Theorem 5.5.5,
p. 188 of [5], because F is a Galois extension of & (so, for that matter,

is E/k).
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