GLOBAL ANALYTIC HYPOELLIPTICITY OF INVOLUTIVE
SYSTEMS ON COMPACT MANIFOLDS

G. ARAUJO, P. L. DATTORI DA SILVA, AND B. DE LESSA VICTOR

ABSTRACT. Given M a compact, connected and orientable, real-analytic man-
ifold, and closed, real-valued, real-analytic 1-forms wq,...,w, on M, we char-
acterize the global analytic hypoellipticity of the first operator featuring in the
differential complex over M x T™ naturally associated to a involutive system of
vector fields determined by them. Global Gevrey hypoellipticity is determined
simultaneously.

1. INTRODUCTION

One of the foremost models of systems of linear PDEs is that of the so-called
tube structures, whose global properties have long attracted the attention of several
researchers; see e.g. [1, 2, 5,8, 6, 11, 3,9, 1] as well as further references therein and
subsequent works.

A straightforward way to define a corank m tube structure goes as follows: given
a compact manifold M and closed 1-forms wy, ..., w,, on M, we look at the product
manifold M x T™ and the subbundle ¥V C CT'(M x T™) annihilated by all the forms
e = daog —wy, k=1,...,m; here (z1,...,x,) denote standard angular coordinates
on the torus T™. Such a bundle is then involutive (in the sense of Frobenius) and
therefore gives rise to a complex of first-order differential operators on M xT™ [17, 7],
whose first operator L maps (complex-valued) functions to 1-forms via the expression

Lf=dif+) we A (D), (1.1)

k=1
where t € M, x € T™ and d; stands for the exterior derivative on M.
The question of determining global hypoellipticity of L is then of interest:

u € D'(M x T™) and Lu € A'C®(M x T™) = u € C°(M x T™), (1.2)

which was previously investigated mainly when m = 1, or for general corank when
M is itself a torus. In the former situation, a classical result [, Theorem 2.4] yields
a complete characterization when w = wy is real: L is globally hypoelliptic in M x T*
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if and only if w is neither rational nor Liouville — a Diophantine condition that aims
to describe how w can be approximated by rational forms in the Fréchet topology
of A'C°°(M). This is our motivation and starting point.

In this work, we take M a compact (and for simplicity also connected and ori-
entable) real-analytic manifold and real-analytic 1-forms wy,...,w,, which we as-
sume to be real-valued and closed, aiming to characterize, instead, global analytic
hypoellipticity of L:

u € D'(M x T™) and Lu € A'C¥(M x T™) = u € C*(M x T™).

Besides some necessary conceptual adjustments for treating the case of arbitrary
corank m, the actual difficulties arise from the more delicate nature of the spaces
of real-analytic functions and forms. In Section 2, we define properly their natural
(locally convex) topologies on a general compact, real-analytic manifold: from a
functional analytic perspective, such topologies turn them in what one calls DFS
spaces, which are well-understood [12] but have properties rather diverse than, say,
Fréchet spaces. This fact is crucial to understand the structure of their bounded
sets — a notion that is instrumental in the very definition of the number theoretic
conditions (Definition 3.2) we impose on the system w = (wy, ..., wn).

The advantage of such an abstract approach is that we can abstain from adding
any further hypotheses to M (such as the existence of global frames) and also make
our definitions inherently coordinate-free; nevertheless, all of them admit charac-
terizations by means of local data computed via suitable norms (which we actually
needed in our proofs).

We prove our results in the more general framework of Gevrey classes of order
s > 1 (the real-analytic case corresponds to s = 1) whose definition and essential
properties we recall in Section 2 and along the way as needed; we refer the reader
to [15] for more details. Next, we investigate the global s-hypoellipticity (3.1) of L,
whose characterization is the content of our main result (Theorem 3.4). For that
matter, we can relax our assumptions and suppose that the 1-forms wy,...,w,, are
just Gevrey of order s (even though our base manifold M is always assumed real-
analytic, mainly for simplicity). Actually, one is tempted to conjecture that our
strategy can be carried out in ultradifferentiable settings of Roumieu type.

It must be pointed out that our results were previously obtained when M is a torus
T™ [9, Theorem 8.3|, where its strong geometric properties were used: for instance,
its parallelizability and the possibility of doing “total” Fourier series (whilst in our
case only a partial Fourier series in the z-variable makes sense, see Section 5), which
in turn enables one to effectively reduce L to an operator with constant coefficients
in T" x T™; such properties make many technical issues a lot simpler. In the present
work, however, we prove our results for a general M — in particular, we do not make
use of symmetries or assume the existence of a global frame of vector fields for V.

In [9], even the definition of the correct number theoretic condition is clearer:
theirs and ours turn out, however, to be the same (Proposition 4.1); this is achieved
through a concrete realization of our abstract Diophantine conditions by means of
the so-called matrix of periods of w (Section 4), which also happens to be critical
in obtaining estimates throughout the proofs. Curiously, what plays a role in our
conditions is the dimension d of the homology space H;(M;R), and not the dimen-
sion n of M as a manifold, thus revealing their true nature (when M = T" these
parameters are of course equal).
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Moreover, although at a first glance there is no relationship between the definitions
of s-exzponential Liouville systems (Definition 3.2) for different values of s, the fact
that these conditions can be read off as inequalities involving the matrix of periods
of w allows us to compare them, and conclude, for instance, that when s; > s, the
global s1-hypoellipticity of L. implies its global so-hypoellipticity (provided the latter
makes sense).

Finally, a similar condition can be obtained in classifying (smooth) global hypoel-
lipticity of L, thus generalizing [1, Theorem 2.4] to arbitrary corank. We state it in
Section 7 (the proofs are omitted since can be easily obtained using our framework).
This condition can be encoded in an inequality (7.1) involving the matrix of periods
of w as well (of “polynomial flavor”, as in [8]); which, in turn, imply the Gevrey
ones (4.2) by simple comparison. A corollary of this reasoning is the following: if L
is globally hypoelliptic in M x T™ then it is also globally s-hypoelliptic in M x T™
for every s > 1 for which wy,...,w,, are G°.

2. SPACES OF GEVREY FORMS ON COMPACT MANIFOLDS AND THEIR
TOPOLOGIES

The space G*(U) of Gevrey functions of order s > 1 over an open set U C R"
consists of all functions f € C*°(U) such that for each compact set K C U one can
find constants C, h > 0 for which

sup |0°f| < Chl*lal*, Vo € 7.
K
Given K C R™ a regular compact set (i.e. K is the closure of a bounded open set
with smooth boundary) and h > 0 we define

aEZi K

Gs’h(K) S {f € C®(K) ; | fllsnx = sup Rl o= sup |0%f] < oo} )

This is a Banach space with respect to the norm |- ||5,5,x, and for Ay > h the natural
inclusion map G*"(K) < G*"+(K) is compact, meaning that
G*(K) = lim G*"(K)
h>0
is a so-called DF'S space.

Now let €2 be a real-analytic manifold. A function f € C*°(Q) is said to belong to
G*(Q) if given an analytic atlas {(U;, xi) }ier of Q we have that fox; ' € G*(x:(Uy))
for every ¢ € I; this is a meaningful definition since Gevrey regularity is preserved
by composition with real-analytic diffeomorphisms. It is also independent of our
choice of the atlas {(U;, xi) }ier-

When ( is further assumed to be compact (and, for simplicity, also connected) we
endow G*(2) with a locally convex topology as follows. We select a finite analytic
atlas {(U;, xi) }ier of  and regular compact sets K; C U; whose interiors still cover
2, and endow G*(2) with the coarsest topology which makes continuous each one
of the linear maps

fe@ Q) foxi' € G*(xi(K)), i€l
Or, equivalently, the coarsest topology that makes continuous their direct sum

FeG(Q) — (fox; Vier € P G (x:(F), (2.1)

el
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where we endow the right-hand side with the (finite) direct sum topology; this is
also a DF'S space, actually [12, Theorems 9 and 10]

P & (i) = i @ G (i (52)). (2.2)

iel h>0 jer

Notice that the map (2.1) is injective since the family { K;};c; covers 2, and also has
closed range (as one easily checks using (2.2) and [12, Theorem 6’]), being therefore
a topological isomorphism onto its range (since closed subspaces of DFS spaces are
also DFS [12, Theorem 7’] and the Open Mapping Theorem [13, p. 59] applies).

This device allows one to recast the topology on G*(€2) as follows: for each A > 0
we define

Gs’h(Q) ={feGQ); fo X;l € Gs’h(xi(Ki)), Viel}
and endow it with the norm

1 lsme = D IF o x5 ot

iel
then G*(Q2) = liglGS’h(Q) as the direct limit of an injective sequence of Banach
spaces with compact inclusion maps. By [12, Lemma 3 and Theorem 6’| we conclude:

Proposition 2.1. A subset B C G*(Q) is bounded if and only if B is contained in
some G*"(Q) and is bounded there. A sequence {f,},en converges to zero in G*()
if and only if there exists h > 0 such that either one of the following equivalent
conditions hold:

(1) {f}ven € G*M(Q) and || fullsna — 0;
(2) {fsoxi ven C G (xi(K)) and || f, © X shoxities) = 0 for everyi € 1.

It follows that the inclusion map G*(€2) — C*(2) is continuous. Moreover, the
topology we endowed G*(2) with is clearly independent of the coverings employed.
Indeed, denote temporarily by 7 the topology on G*(2) defined above. Pick any
analytic chart (Up, xo) in 2 and Ky C Uy a compact set, and let Iy = I U {0}.
Then {(U;, x:) }ier, is a new analytic atlas and {K;}iej, is an open covering of €.
By definition, the topology induced on G*(£2) by this new choice is the coarsest one
to make each assignment

feG Q) — fox;' € G°(xi(Ky)), i€l

continuous. Denote it by 7y: since I C Iy we conclude that 7 C 7y by definition,
i.e. the identity map (G*(2),70) — (G*(R2),7) is continuous, hence a homeomor-
phism (by the Open Mapping Theorem), meaning that 7o = 7. Proceeding induc-
tively, any finite refinement of our choices yields that same topology 7; since any
two initial choices admit a common refinement (namely, their union) we are done.

The same basic construction works on the space of Gevrey sections of any real-
analytic vector bundle over €2, but here we will only deal with the space of Gevrey
1-forms A*G*(2). A smooth 1-form f € A'C>(2) can be written on each coordinate
patch U; as

f= Zfij dxij, fiy € C™(Us),
j=1
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where x; = (Xi1, .-, Xin) : Ui = R"™. Since each x; is a real-analytic map, we have
that f € ALG*(Q) if and only if fi; 0 x;' € G*(x:(U;)) for each j € {1,...,n} and
rel It

fi=(fir,- s fin) Ui — R”
then the condition above reduces to: f;ox; ' € G*(x:(U;))" for every i € I. We put
on G®(x;(K;))™ the (finite) product topology, which turns it into a DFS space in the
same manner as above; actually

G*(xa(KG)" = hﬂ Gs’h(Xi(Ki))n,

where G*"(y;(K;))" is a Banach space with norm
(91:- -2 9n) € G OG(ED)" — > 11gillshoxs (160 -
j=1

We endow A'G#(€)) with the coarsest topology that makes the linear map
FENGH(Q) — (fiox; Vier € PG (xi(F)"
iel
continuous: again, this is the locally convex injective limit of the Banach spaces
NGMQ) ={f e N'G*(Q) ;5 fiox;' € G*"(xi(Ky)", Yie I}, h>0,

where the norm is defined, say, by

A llsme =D 0D i 0 %0  llsmo s

el j=1

hence turning A'G*(Q) into a DFS space. One then easily derives the following
criteria for boundedness and convergence of sequences there.

Proposition 2.2. A subset B C A G*(Q) is bounded if and only if there exists
constants C,h > 0 such that

1fis © xi lsmaati) < O,
for every f € B, everyi € I and j € {1,...,n}. A sequence {f,},en converges to

zero in AYG*(Q) if and only if there exists h > 0 such that for everyi € I and j €
{1,....n} we have {(f.)i 0 X hven € G (xa(EG)) and [|(£,)ij 0 X5 lsnaitxiy = 0.

Again, one deduces that the inclusion map A'G*(Q2) — A'C*>(Q) is continuous
and that the topology on A'G*(€2) just introduced is independent of the coverings
chosen.

3. A CLASS OF REAL DIFFERENTIAL OPERATORS

Let M be a compact real-analytic manifold, which for simplicity we further assume
to be connected and oriented. Given a system wq,...,w,, of real, closed 1-forms
belonging to A*G*(M), our main purpose is to study global s-hypoellipticity of the
differential operator IL as defined in (1.1), by which we mean

u € D' (M x T™) and Lu € A'G*(M x T™) = u € G*(M x T™). (3.1)

Our classification will be in terms of properties of the system w = (w1, ..., wy,). Let
us first recall [1, Definition 2.1]:
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Definition 3.1. A real 1-form a € A'C*(M) is integral if da = 0 and [ o € 27Z
for every 1-cycle o in M. It is otherwise rational if qa is integral for some ¢ € Z\ {0}.

Definition 3.2. We say that w = (wy,...,wy,) is:
(1) a rational system if there exists £ € Z™ \ {0} such that

Ew=) G
k=1
is an integral 1-form i.e.
1
— ‘wEZ 3.2
5 [ 6w (32)

for every 1-cycle o in M.

(2) an s-exponential Liouville system if w is not rational and there exist € > 0, a
sequence of integral forms {0, },eny C A'G*(M;R) and {&,},eny C Z™ such that
|€,] — oo and

{edf“'% (&, -w —0,)},en is bounded in A*G*(M). (3.3)

Remark 3.3. The reader should notice that w can be a rational system even if
no wy is a rational form in the sense of Definition 3.1. Moreover, the conditions
set forth in Definition 3.2 depend only on the cohomology classes of wy, ..., w,, in
H'(M;R). In fact, suppose that w® = (w}, ..., w?,) is another m-tuple of real, closed
1-forms in A'G*(M) such that [wf] = [wi] in H'(M;R) for every k € {1,...,m},
i.e. there exist g, € C*°(M;R) such that w; = wy, + dgx (hence gi are a posteriori
G®). It is then clear that £ - w® and £ - w are in the same cohomology class for
every £ € Z™, in particular their integrals over an 1-cycle are the same; moreover,
& owt =00 =&, -w— 0, provided we let
0 =0, — > (&) dgk
k=1
which is obviously integral if so is 6,.

We are ready to state our main result. The next sections are dedicated to prove
it.
Theorem 3.4. Let wy,...,w, € ANG*(M) be real and closed. The operator L
defined in (1.1) is globally s-hypoelliptic if and only if w = (w1, ... ,wpn) s neither a
rational system nor an s-exponential Liouville system.

4. THE MATRIX OF PERIODS

The notions established in Definition 3.2 admit a more concrete characterization.
Fix _
01,...,04 l-cycles in M

(#)

and regard them as a real basis of H;(M;R). We may assume that these cycles are
smooth (or even real-analytic [10, Theorem 5]). To w (as defined in the previous
section) we then assign a matriz of periods as follows: define A(w) € Mgy, (R) by

1
A(w)eki%/wk, fe{l,... .}, ke{l,....m)
oy

whose classes in Hy(M;Z) form a basis of its free part



that is!

Mt = 5 ([ v [ cu). cenn (4.1)

Again, the definition of A(w) clearly depends only on the classes [wi],. .., [wn] €
H'(M;R) and we therefore have a linear map
A HY (M;R)™ — Mgyem(R).
As in [9, Section 3], we say that a d x m matrix with real entries A satisfies
condition (DC)2 it for every € > 0 there exists C. > 0 such that

[+ AE| > Cee D" (e, €) € (29 x Z7) \ {(0,0)}; (4.2)
or, equivalently, if for every € > 0 there exists C. > 0 such that

|k + A& > Cee™ 8 V(k,€) € (2% x ™)\ {(0,0)}.
This condition implies [9, Lemma 8.1] that for every € > 0 there exists C. > 0 such
that

: 1
max |e2miart 1| > Ce™tl* | ve e Zm\ {0}, (4.3)

where a, € R™ denotes the ¢/-th row of A.

Proposition 4.1. The system w is rational if and only if A(w)(Z™\ {0}) NZI # ).
It is an s-exponential Liouville system if and only if it is not rational and A(w) does
not satisfy (DC)i.

Proof. If w is a rational system then it follows from (4.1) that A(w)& € Z¢ for some
€ € 7™\ {0}. Conversely, if A(w)¢ € Z4 then

1
— . 7 1,...
27T/Wgwe , Ve{l,...,d},

which thanks to (f) is enough to ensure (3.2) for every l-cycle o in M.

For the second statement, we need some preliminary remarks. By de Rham’s
Theorem, one can identify H'(M;R) with the dual space of H;(M;R), via the
pairing

(ol fo) € B OGR) x BB — o= [ac R

and hence consider
V,...,9q € N'C(M;R) closed

whose classes form a basis of H'(M;R) dual to [o4],...,[04].

()

We can assume without loss of generality that each ¥, is actually real-analytic.
Indeed, by endowing M with a real-analytic Riemannian metric (which is always
possible thanks to Grauert’s embedding theorem [10)]), the Laplace-Beltrami opera-
tor
A =dd* +d*d: A'C®(M) — A O (M)

is an elliptic, real-analytic operator, and by Hodge theory every cohomology class in
H'(M) has a representative f € A'C°(M) such that Af = 0; such an f is therefore
real-analytic thanks to the ellipticity of A.

LAbout the notation: £ in (4.1) is to be regarded as a column vector, so it should, more properly,
be transposed. We keep however this notation for simplicity and use it consistently along the text.
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We may write for each k € {1,...,m}

d
W — Z )\gkﬁg + dvk,

=1
where each Ay € R is uniquely determined by

1
>\ = — = A
0k o /oz Wk (w)em

and vy € G*(M;R) by ellipticity of the exterior derivative on M. Hence, for £ € Z™,

£ w= Z <ZA M,f) Do+ &edug. (4.4)

=1
We assume from here until the end of the proof that w is not a rational system,;
hence, as we have seen, A(w)¢ ¢ Z< for every & € Z™ \ {0}.
Suppose first that A(w) does not satisfy (DC)i. Then there exists € > 0 and a
sequence {(k,,&,) bven C Z%4 x Z™ \ {(0,0)} such that

K + Aw)&,| = 0. (4.5)

1
lim elé 1
V—00

Suppose by contradiction that {&,},en is bounded: the same cannot hold for {x, },en
(otherwise the sequence {(k,,&,)}ven would attain at most finitely many values,
contradicting (4 5)). Moreover, in this case,

by +AW)E| = |5 + Alw)6| = || = [AW)E| = |k = C

for some C' > 0, now contradicting the unboundedness of {x, },en. We can therefore
assume that |£,| — oo as v — 0o. Now define

d m
Z /<Ll, gﬁg —+ Z f,, kdvk (46)
/=1 =

Clearly each 6, is an integral 1-form. Furthermore using (4.4) and (4.6) we obtain

Py = €€|§V 3 (5 cw—0 ) _ e€\§u|% Z (ZA W)k 5,/ kTt (KJ,,) ) Dy.

(=1 =

5|§u 5

We fix a coordinate chart (U;ty,...,t,) in M and a compact set K C U. Hence,
there exist C7, h; > 0 such that

sup |00, < Cih\Mal®, Yo ez, Ve e {1,...,d}.
K

Thus on K,

|atapl,| S 65\5,,|§ Z <Z |A Zk fl/ k+ ("iu) |> |ata19€|

(=1 =

U

m

1
< C’lh‘f‘|a!se€|£” A ZZ |AW)er(&)r + (K0l

(=1 k=1
< Cohllal el |AW)E, + k)
< Cshilal?,
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for some constant C3 > 0 independent of v thanks to (4.5). This proves that {p, },en
is bounded in A'G*(M); hence, w is an s-exponential Liouville system.

Conversely, suppose that there exist € > 0, a sequence of integral forms {0, },en C
AG*(M;R) and {&,},en C Z™, such that |£,| — oo and (3.3) holds. Again, we
may write for every v € N

d
61/ = Zﬁuéﬂf + dgw (47)
where (3,0 € Z and g, € G*(M;R). By associating (4.4) with (4.7) we have

py = ee\ﬁu (f cw—0 )
= ee‘f”Ii Z <ZA w)ek(&)k — By e) Ue + eler® : (Z(fu)kdvk N dgl,> :
— k=1

As a consequence of the exactness of both dv, and dg, we have

1
27T

p = 66|§V|5 (ZA tk fu ﬂuf) ) Ve € {L s 7d}7 Vv € N.

Since by hypothesis {p, },en is bounded in A'G*(M) we can find a constant C' > 0

/ pV
gy

Indeed, only the sup norms of the local coefficients of the p, added across a finite
covering of M play a role in the estimation of such integrals (no derivatives are
required). Therefore, by setting x, = — (8,1, ... B,4) € Z* one obtains

<C, Yle{l,...d}), WweN,

1
AW)é, + k| < Cre™®1* Wy e N,

for some C; > 0. Since [£,| — oo, by possibly extracting a subsequence we may

1
assume that e~31¢1° < (Cv)7!, for every v € N, which allows us to obtain

L e}

AW + | < e 2T, vy e N

therefore A(w) does not satisfy (DC)2. O

Remark 4.2. If d = dim H'(M;R) then any A € Myy,,(R) is the matrix of periods
of some system of closed 1-forms w = (w1, ...,w,,) on M. Indeed, defining

d
wkiZAfkﬁéa ke{l,...,m},

(=1

where 94,...,9,; are as in (b), yields A(w) = A by previous computations. We
can use this fact to provide examples of systems w on M that satisfy the number
theoretic conditions in Definition 3.2, as these can be read directly from A(w) by
Proposition 4.1. For instance, in [9] many examples of matrices A that do (or do
not) satisfy condition (DC)? are discussed.
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5. PARTIAL FOURIER SERIES

Let U C R™ be an open set. Given f € C*°(U x T™) we define for each £ € Z™ a
function fe € C>°(U) by

fi= [ e pan tev

more generally, if f € D'(U x T™) we define f, € D'(U) by the rule
¢ € CX(U) v (f,o@ e ) € C.

It is easy to see that this construction is local in U; that is
VcU open —> (f|V><Tm)§ = f;’v

A related issue is the following formula that one checks at once:

(0f)e = dfe, Vo € C=(U). (5.1)

Another important feature is its invariance under changes of variables. We take
X : U — U a diffeomorphism between open sets in R™ and define

X =xXidpm : U xT" — U x T, (5.2)
that is, X(¢',z) = (x(¥'),z) for (¢',z) € U' x T™. One checks easily that
(X*f)e=x"fe, VEezZ™ (5.3)

whatever f € D'(U x T™).
Finally, we are able to define f; € D'(M) for f € D'(M x T™), where M is now

a smooth manifold. On a coordinate domain U C M we must define f¢|y € D'(U)
through the following steps:

(1) take x1 : U] = U a diffeomorphism where U] C R" is an open set;

(2) define X7 = x; X idpm;

(3) let fi = X;(flurn) € D(ULx T™;

(4) take its Fourier coefficient (f1), € D'(U;) (using the former definition);

(5) define fely = (x1")*(f1)e € D'(V).
This definition is independent of our choice of parametrization on U: if xo : U) — U
is another such diffeomorphism then we let, in accordance with (5.2),

X=xslox1: Ul —Upy= X =x xidpm = X; 0 X, : U x T™ — U} x T™
so that, by (5.3),

— -

X*(fQ)g = (X*f2)g = (fl)ga
where we have used that
X fa = X" X3 (floxrn) = (Xo 0 X)*(fluxrn) = X7 (fluxtn) = fi,

and from which it follows that

— — —

O (f)e = 0 X (f)e = 0 ) (f2)e
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Notice that this procedure yields, for f € LL (M x T™):

loc

—

Ht' z) = fOat),2) = (f)(t) = / . e foat), z)dx
— fe(t) = / ) e EF(t, x)da

as expected.
Let again U C R" be an open set.

Lemma 5.1. An f € D'(U x T™) is zero if and only if fg =0 for every £ € Z™.

Proof. Suppose all the partial Fourier coefficients of f are zero. Thanks to (5.1) we
may assume that f € £'(U x T™), which we regard as a continuous linear functional
on C*°(U x T™), whose vanishing we proceed to check. By C-linearity, it is sufficient
to show that it vanishes on the space of real-valued functions C>*(U x T™;R).

Let ¢ € C*°(T™; R). Using Fourier series we can write

1 o i N
w:WZ%e 5, e eC,

cezm
with convergence in C*°(T™). We have that
1 - , 1 P
= —_— lil?f — 0
(1,69 9) = G gz; be (08 %) = 5m &EZ; Ve (fie,0) =0,

whatever ¢ € C°°(U;R); hence, by passing to finite sums of simple tensors we
prove that f vanishes on A = C*°(U;R) @ C*°(T™;R). This is a real subalgebra of
C>®(U x T™;R) that satisfies:

(1) given distinct (¢,z), (f',2') € U x T™ there exists g € A such that g(t,z) #
g(t', z');

(2) given (t,x) € U x T™ there exists g € A such that g(¢,z) # 0; and

(3) given (t,x) € U x T™ and a non-zero (v,w) € TU & T, T™ = T(; (U x T™)
there exists g € A such that dg . (v, w) # 0.

These happen to be the hypotheses of Nachbin’s extension of the Stone-Weierstrass
Theorem [I4, Theorem 1.2.1], by virtue of which A is dense in C*°(U x T™;R).
Continuity of f entails our conclusion. O

5.1. Gevrey type estimates. Back to an open set U C R™, for an f € D'(U x T™)
we take a closer look at the following couple of properties:

(a) for each £ € Z™ we have that fe € C*°(U) and
(b) for each compact set K C U there exist constants C, h, e > 0 such that

N 1
sup |02 fe| < ChlMalfe™®l* | Vo € Z7 | Ve € Z™ (5.4)
K

Let us investigate how they behave under a change of variables y : U" — U. First,
concerning condition (a), it is clear from (5.3) that f¢ is smooth in U if and only

—

if (X*f), is smooth in U’. As for condition (b), we will be interested only in the
case when y is a real-analytic diffeomorphism, in which case the same is true for
its associated diffeomorphism X defined in (5.2). Keeping in mind (5.3), a careful
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inspection in the proof of [15, Proposition 1.4.6] shows that if (5.4) holds for some
constants C, h,e > 0 (provided of course each f¢ is smooth) then

(XD < (W)l e Vo ez, Ve e Z",

where K’ = x " }(K) c U’ and C’, ' > 0 depend only on C, h and . Notice that
every compact set K’ C U’ is of that form. We summarize our conclusions in the
first statement of the next result.

Proposition 5.2. Conditions (a)-(b) are invariant by real-analytic changes of vari-
ables. They hold if and only if f € G5(U x T™).

Proof. We prove the equivalence stated above. If f € G*(U x T™) then given K C U
a compact set there exist C', h > 0 such that

sup |02 f] < Chlélal®, Vo e 7,
KxTm

hence for any ¢t € K and a € Z,

07 fe(t)] =

e 89N f(t, x)dw
Tm

< / 00 F(t, ) |de < C(2m) ™Rl ate.
Tm

For the converse, conditions (a)—(b) ensure that the series
sz
Qﬂ-nz EE: j%
gezm

converges uniformly on compact sets to a continuous function g : U x T™ — C,
which is actually smooth and, moreover, satisfies

opollg(t, x Z a5 fe(t)(i) e,
§ezm™

with uniform convergence on compact sets for every (a, 5) € Zy x Z'? thanks to (b).
In particular, for ¢t € K we have

( B > 1op fe()]]€)™ < G )mCh‘o‘|a!s S JgflFleeel®

cezm cezm

079 g(t,2)| <

which easily yields g € G*(U x T™). Since we are allowed to integrate under the
summation sign we obtain

) = Gom > / T fe(t)e ™t da = fo(t), Wy e 2™
cezm
hence, by Lemma 5.1 we conclude that f = g is G°. U

5.2. Forms of type (0,1). Let M be a smooth manifold. Given U C M the domain
of a coordinate system (ty, ..., t,) we denote by A»'C°(U x T™) the space of 1-forms
fon U x T™ with no do component i.e.

=Y di, (5.5)
j=1
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where f; € C°°(U x T™). We then define fe € A'C=(U) by

n

fe=> @g dt;. (5.6)

J=1

One can prove that these definitions are independent of the choice of coordinates
on U (recall (5.1)), which allows us to define the space A% C(M x T™) of all
f € A*C°°(M x T™) such that f|yxrm € A%C°(U x T™) for every coordinate open
set U C M, as well as their partial Fourier coefficients fg € A'C>*(M). We also let
AOIGE(U x T™) = ABIC>(U x T™) N A'G*(U x T™).

More generally, for U € M we define A®»'D'(U x T™) as the space of currents
f € A'D'(U x T™) which can be written as (5.5), where now f; € D'(U x T™)
for each j € {1,...,n}, in which case we define fi € A'D/(U) by (5.6). Again,
this is independent of the coordinates (ti,...,¢,) so we can define the space of
currents A% D’'(M x T™) and their partial Fourier coefficients, which are elements of
A'D'(M). One can apply the results in the previous section to each local coefficient

f; in order to retrieve Gevrey regularity of f from local estimates on fg; more
precisely, on their local coefficients (f;) e

Concerning our operator L defined in (1.1), notice that for u € C*(M x T™) we
have that Lu € A%'C>(M x T™) and, moreover,

—

(Lu)é = d’LALg + Zﬁg(ﬁ . LU) = Lgﬁg, (57)

thus defining a differential operator Lg = d + i(§ -w) A - : C®(M) — A'C(M);
identity (5.7) also holds for u € D'(M x T™). It is enough to check this locally: we
reason in a coordinate chart (U;ty,...,t,), where

W = Zij dtj, Wik & COO(U),

j=1
hence, by (1.1), we have that

n

Lu = Z (@J,u + Zw]kaxku> dt] = Z(LJU) dtj = Z f]' dt]
j=1

j=1 k=1 j=1

belongs to A% D' (U xT™), where L; is a complex vector field with smooth coefficients
on U x T™ for each j € {1,...,n}. We take as a parametrization of U the inverse
of the chart map x = (¢1,...,t,)" ' : U — U where U’ C R" is an open set and let
X = x X idpm. Notice that

X" f; = X" (Lyu) = (X7Ly) (X7u) = 05, (X"u) + ) (wje 0 %) e, (X "0),

where by abuse of notation (¢1,...,t,) also denotes the standard Euclidean coordi-
nates on U’ so that 9, is simply a partial derivative. Using the local definition of
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the Fourier coefficients we take an arbitrary ¢ € C2°(U’) and evaluate
<(X*fj)§7 ¢> = <X*fj7 (b ® eiim.£>

= (0, (X" u), p @ e %) +Z Wik © X) O, (X* ), ¢ @ %)
k=1

— —(X*u, (3,6 it Z (X*u, (wik 0 X)P @ (—i&ke ™))
k=1

m
—

= —((X*u)e, 0, 0) +1 Y &((X*u), (wjk 0 X))

— (0, (X W) )+ Y Eul(win 0 ) (X70), 0),

k=1
which implies that

—_— —

(X*fj)g =0y, (X*u)g + i Z &k (wjk © X)(X*U)g
k=1

as elements of D'(U’). Finally, pulling everything back to U via xy~! we obtain, by
definition,

<fj)§ = 8t].125 + 1 Z fkwjk’llg n U,
k=1
for each j € {1,...,n}; hence, by (5.6),
fg = Z <8th5 + Zﬂg Z fkw]-k> dtj = dﬂg + Z'ftg ngwk = dﬁg + Mlg(g -w).
k=1

Jj=1 k=1
6. PROOF OF THEOREM 3.4

Before we start, we state a technical lemma whose proof follows closely that of [9,
Lemma 4.3].

Lemma 6.1. Let U C R" be an open set and ¢ = (¢1,...,¢0m) : U — R™ be a
smooth map satisfying the following condition: for some compact set K C U there
exist C'v, hqy > 0 such that

sup |0%y| < Clhllalozls, Va e Z7, Yk € {1,...,m}.
K
Then for every e > 0 we can find hy > 0 depending on Cy, hy,m and € such that

. 1
sup |0%e®?| < Rlatseddls  va e Zly, NEelm
K

We will make use of the universal covering space II : ijv — M of M. One can
prove that since M is a real-analytic manifold then so is M, and that II is a real-
analytic map that satisfies the following property: a map f : M — N is real-analytic
(resp. G*) — N being an arbitrary real-analytic manifold — if and only if the same
holds for foll: M — N.

It is also helpful to endow M with a real-analytic Riemannian metric, T™ with the
standard (flat) metric and M x T™ with the product metric, whose volume forms we
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denote by du, dz and du A dz, respectively. We assume without loss of generality
that fM dp = 1, and for Q € {M,T™ M x T™} we consider the space of square
integrable functions L?(9).

Step 1. Suppose that w is a rational system. Then there exists n € Z™ \ {0} such

that 7 - w is integral. It is well-known that if we take a 1 € C*°(M;R) such that
dip = IT*(n-w) (recall that integral forms on M are by definition closed, and therefore

exact on M) then
for every p,q € M such that II(p) = II(q) we have ¥(p) — ¥(q) € 2nZ,

which is the condition one needs to descend e to M via II to a function g € C>(M).
Notice that

IT*(dg) = dIl*g = de™ = ie"dy = I*[ig(n -w)] = dg = ig(n -w) on M,

thanks to injectivity of II* (since II is a submersion). By ellipticity of the exterior
derivative on M we have 1/1 € G*(M;R), which in turn yields g € G*(M). We define

27T Zy72 v _—iz-(vn) c LQ(M « Tm)

which satisfies 4 = v=2¢g” if £ = —vny and ¢ = 0 otherwise. Notice that u does
not belong to G*(M x T™): indeed, if it did (Proposition 5.2) there would exist
constants C, e > 0 such that

1
S}\l/[p [te| < Ce > veezm,

contradicting that |@_, ( ) =v72|g(t)|” = v2, for every v € N. However,
Li—um (=) = d(v2g") +i(v"?g")(—vn - w) = v~ g" g — ig(n - w)].

Hence, (]Lu) ¢ = Lgag = 0, for every £ € Z™; i.e. Lu = 0 (which follows by applying
Lemma 5.1 locally), showing that L is not globally s-hypoelliptic.

Step 2. We proceed to the case where w is an s-exponential Liouville system. By
hypothesis there exist € > 0, a sequence of integral forms {0,},en C A'G*(M;R)
and a sequence {&,},eny C Z™ such that |£,| — oo and (3.3) holds. For each v € N
we select ¢, € 000(1\7 :R) such that dip, = I1*6,, and once again integrality of 6,
allows us to descend e to a function ¢, € C>*(M) that satisfies dg, = ig,0, on
M; as before, v, and g, are a posteriori G* on their respective domains.

Assume without loss of generality &, # &,/ if v # v/, and set

1 - -2 —ix-§
(2m)m

by similar arguments as in the previous step we have u € L2(M x T™)\ G*(M x T™).
We will prove that f =Lu € A'G*(M x T™). Notice that

1
L—g)i(-¢,) = d(v"20,) +i(v%g,) (=& w) = w29, (0, — & w) = —iv 2V g p,
where {p,},en is bounded in A'G*(M); hence,
o[ —i2edels if & =¢,:
f{ = {0 woe GvPv, 1f§ % (61)

otherwise.
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We proceed to estimate the G* norms of these terms.
We address g, first, focusing our attention on a coordinate domain V' C M so

small that IT: V — V is a real-analytic diffeomorphism for some open set VCM.
Let ¢, € G*(V;R) be given by ¢, o Il =4, |;; hence,
g =€ onV (6.2)
and therefore
[1*(de,) = dll*¢, = d¢, = 11", = d¢, =0, on V. (6.3)

Since DFS spaces are regular injective limits of Banach spaces, one can reduce
the property of boundedness in A'G*(M) to boundedness in some normed space
(Proposition 2.2): this one piece of information (the actual definition of the norm is
irrelevant in this argument) can be used to prove that, in the topology of A'G*(M),

1

e (€, -w —6,) bounded = |£,|71(£, - w — 6,) bounded = |£,|716, bounded,

where we have used that |£,| — co. Hence, by Proposition 2.2, given a compact set
K C V there exist C, hy > 0 such that

sup |07 (16[716,)] < Ciklflal’,  sup|9fpul < Cuhiflal’, Va €2, W €N, (64)

with the abuse of notation of treating a 1-form as a n-tuple of functions on V, on
which the partial derivatives act, and whose indices we omit. It follows from the
former inequality, together with identity (6.3), that there exist Cy, hy > 0 such that

sup |7 (&,17100)] < Cohylal®, Vo € Z7, Wy € N;

hence, by the scalar version of Lemma 6.1 applied to (6.2) we conclude that one can
find hs > 0 (depending only on Cj, ha, €) such that

. — € l
greilevllen ™ an | < plolgpsesiels (6.5)

sup [0 g,| = sup |97 e'* | = sup
K K K

for every a € Z% and v € N. From (6.4) and (6.5) one then deduces that

€ 1 o|— « £ %
Sup|3ta(gypy)| S Cl€§|§u\s Z (Oé) h:|3 | W|(a o ﬁ)|sh|15\6|s S C4hL |&!362|£u\ ,
K o \s
for some constants Cy, hy > 0. This ultimately proves, in view of (6.1), that

1
\

sup |02 fe| < Cubltlalre 51617 wa ez, ve € 7™,
K

ensuring that f € A'G*(M x T™) by Proposition 5.2.

Step 3. Finally, we consider the case when the system w is neither rational nor
s-exponential Liouville. In this situation, take u € D'(M x T™) such that f = Lu €
A'G#*(M x T™). Then, for every £ € Z™ we have

f5 = Lgﬁg = dﬂg + Z’llg(f . w)

For each k € {1,...,m} we take a function ¢y, € GS(M; R) such that dyy, = IT*wy.
It follows that

d[e“YIT* ()] = *VdIT* (iig) + IT* () de’™ ¥
= VI (fe) — il [ae (€ - w)]} + T (fe)ie“ VI (€ - w) = Y1 (fe)  (6.6)
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on M where we employed the notation ¥ = (¢y,...,1,,). For each ¢ € {1,...,d}

we denote by 7y : [0, 27] — M alift of the 1- cycle oy described in (f) to M. If we fix
a base point to € M and some to € TI71(ty) we can assume that o,(0) =ty = 0y(27)
and that ,(0) = t, for every £ € {1,...,d}. Then, by (6.6),

[ esmgo = [ e g
gy Gy

— eié«/:(tz)ag(ﬂ(gé)) — eiﬁ'fl’(tO)ag(H(fO)) = (¥t _ ¢i& w(to)) ¢(to),
where #, = 5,(27) € II7(ty), which allows us to deduce that

fe (to) = ei£~[¢(fo)—¢(fz)]a§(t0) + 6—1’6-1&(&)/ eifﬂllﬂ*(fg). (6.7)

o¢

Observe that

Ur(te) — i(fo) = /&e diy = /&Z Twy, = /Ho&/Z wg = /w wi = 2 A(W) ax;

hence,
1 - - - -
Aw)é = o (&- () —¥(to)],. .-, & - [W(ta) —¥(t0)]) -
Due to our assumptions on w, we have by Proposition 4.1 that A(w) satisfies
condition (DC)?. Hence, by (4.3) for every e > 0 there exists C, > 0 such that

max |1 — e W) —v(te)
4

Therefore, for a given £ € Z™\ {0} we pick that ¢ € {1,...,d} at which the maximum
in the left-hand side is attained; in particular, that term does not vanish, allowing
us to conclude from (6.7) that

, 1
’1 . e—2m(/-\(w)€)z} > 056—6\&3’ VEez™ \ {()}

e~ s¥ ()] i —1e¢|? Pl F
e (to)| = 1= e o |‘/ I ( ‘<C€ g /e I (fe)| - (68)
Ge
We claim that there exist C,d > 0 such that
. . 1
/ CEVIT* (feo)| < Ce 81 ve e Z™, (6.9)
G

Indeed, first of all we have, by definition,

27 2
[ et = [ eem gy = [ v o,
gy 0 0

As in Section 2, we fix a finite family { K, };c; of coordinate compact subsets of M
whose interiors form an open covering of M, and a partition 0 =75 < 73 < -+ <
v = 2w such that for each r € {1,..., N} (that will remain fixed until (6.11)
and upon which our choices will depend without explicit mention) oy([7,—1, 7]) is
contained in the interior of a single K; (depending on 7). Denoting by (t1,...,t,)
a fixed set of real-analytic coordinates in a neighborhood of that K;, we write f
as (5.5) and fg as (5.6), and conclude that on [7,_1,7,] C R we have

n n

— —

oi(fe) =D ((feoor) dtyoo) =) ((f;)e 0 ov)g; dr, (6.10)
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for some continuous function® g; in [7,_y,7,].
Hence,

—

/ eig-('z,bo&g) O—Z(ff) — Z/ eig'(¢(&Z(T)))(fj)g(o_ﬂ(T))gj(T) dr.
Tr—1 j=1 Tr—1

Now, since f € A'G*(M x T™) one can apply Proposition 5.2 to find constants
C',6 > 0 independent of r such that

— 1
sup(fy)el < C'e™*", V) € {L,....n}, VE € 27,
and, therefore,
[ s gy
Tr—1

for some C” > 0 independent of £ € Z™ and r € {1,..., N}. Since

o N Tr . . N
/ VI (fe) =/ W) o7 (fe) = Z/ W) a7 (fe),
r=1 Y Tr-1

Gy 0

< ZI/TTl \@5(@(7))!!%(7)! dr < C”Q*JIE\%’ (6.11)

we conclude that
N

[ oo <3

r=1

Tr . 5 R 1
/ ¢S Woae) gx( fg)‘ < C"Ne ®kl* weez™
Tr—1

thus proving (6.9).
It follows from (6.8) and (6.9), by taking € = ¢/2 in the former and C}, = C-'C,
that

lig(to)| < Cre311% . ve e Zm, (6.12)

Next we must estimate the derivatives of ie. Once again we take V' C M a coor-

dinate ball centered at ¢y, so small that II : Vs Visa real-analytic diffeomorphism

for an open set V C M; this time, for each k € {1,...,m} there exists ¢, € G5(V;R)
so that ¢ o Il = v}, on XN/; notice that d¢p = w, on V', and thus

A(%ag) = il + ide®® = [ fy — itg(€ - w)] + aclie (€ - w)] = 44 .

Therefore, by integrating over the segment {7t + (1 — 7)t ; 7 € [0,1]} C V we
deduce that .
€i5~¢(t)@£(t) _ ei§'¢(t°)d§(to) — / ei£-¢f€7
to
which implies that

t
G (t) = e10t0)=eWlg (19) 4 e~ 40 / el f., VteV, VEezm (6.13)
~ ~~ o to
iTl N — J/
¢ (t) 50

It follows from (6.12) and Lemma 6.1 that on a given compact set K C V

0°TE| < Crem 217 |ope=9| < Cibllale i€ va ez, Ve € Z™,  (6.14)

2We stress that the expression (6.10) can only be obtained because o4 ([7,_1,7,]) C K lies within
a coordinate patch of M. One cannot expect that the whole image of the cycle oy be contained in
such a patch, and this is the reason to introduce the partition 0 =19 <7 < --- < 7y = 27.
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for some hy > 0. We further write

t
T3(t) = e 600 / e fe = e DY (1), (6.15)
to
so that
deg = €i§.¢f§.
It follows from the hypothesis that f € A'G*(M x T™) and Proposition 5.2 that
there exist Cs, hs, 6 > 0 such that

A 1
sup |08 fe| < Cshllatse " Vo e 77 Ve € 7™, (6.16)
K

where again we treat 1-forms on V' as n-tuples of functions. Therefore, it follows
from (6.16) and Lemma 6.1 that for some hy > 0 we have on K:

A\ | naeB ic. A
A <Y (3) 0P

B<a
. 1
< Z ( ) aa—ﬂeléﬂCghgmﬁ!se*ﬂélS
B<la
1
<Z( ) |04\ \5| 5)!sc«gh|35|ﬂ!se*%|§\s
B<la

P
< C’gh‘Sa'oz!Se_?lf‘s ,

whatever a € Z7}, for some hs > 0. By possibly increasing Cs and hs, one obtains
1
sup |07 V| < Cyhllalre=51° v e zn | Ve ez, (6.17)

Finally, we return to (6.15); one repeats the previous argument using Lemma 6.1
and now (6.17) to conclude that

1
sup |0°T2| < Crhlilalre™ 1 va e z7, Ve e 2™, (6.18)
K

for some constants C7,h; > 0. Using (6.13), (6.14) and (6.18), we deduce the
existence of C', h and € > 0 such that

1
sup [00te| < Chl*lalse™kl* - va ez, V¢ € 7™
K

Since M can be covered by finitely many V' with the aforementioned properties and
K C V is arbitrary, this last estimate shows that v is G* in M x T™ by a final
application of Proposition 5.2. O

7. FINAL REMARKS

Using the tools developed above, one can derive the following characterizations of
(smooth) global hypoellipticity of the operator L, thus extending [!, Theorem 2.4]
to arbitrary corank. Of course, in that case M and the 1-forms wy,...,w,, can be
assumed just smooth.

In order to properly state them, we need some preliminary definitions.
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Definition 7.1. We say that w = (w1,...,wy) is a Liouville system if w is not
rational and there exist a sequence of integral forms {6, },eny C A'C*°(M;R) and
{& }ven C Z™ such that |€,| — oo and

{I&, (& - w — 6,) }en is bounded in A'C*°(M).

Definition 7.2. We say that a matrix A € Mgy, (R) satisfies condition (DC)? if
there exist C', p > 0 such that

[+ Al > C(|ul + €))7, V(k,€) € (27 x Z™) \ {(0,0)}. (7.1)

Notice that the latter condition implies condition (DC) used in [3] to study global
solvability of corank m tube structures when M = T9 It also implies condi-
tion (DC)? for every s > 1.

Theorem 7.3. The following are equivalent:
(1) L is globally hypoelliptic; i.e. (1.2) holds.
(2) w= (wi,...,wn) is neither a rational system nor a Liouville system.
(8) The matriz of periods Aw) satisfies condition (DC)>.

We omit the proof. As a consequence, using the theorem above together with
Theorem 3.4 and Proposition 4.1 we conclude that when wy, ... ,w,, are G° we have:

Corollary 7.4. If L is globally hypoelliptic then it is globally s-hypoelliptic.
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